Tag Archives: CodePipeline

Using AWS CodePipeline, AWS CodeBuild, and AWS Lambda for Serverless Automated UI Testing

Post Syndicated from Prakash Palanisamy original https://aws.amazon.com/blogs/devops/using-aws-codepipeline-aws-codebuild-and-aws-lambda-for-serverless-automated-ui-testing/

Testing the user interface of a web application is an important part of the development lifecycle. In this post, I’ll explain how to automate UI testing using serverless technologies, including AWS CodePipeline, AWS CodeBuild, and AWS Lambda.

I built a website for UI testing that is hosted in S3. I used Selenium to perform cross-browser UI testing on Chrome, Firefox, and PhantomJS, a headless WebKit browser with Ghost Driver, an implementation of the WebDriver Wire Protocol. I used Python to create test cases for ChromeDriver, FirefoxDriver, or PhatomJSDriver based the browser against which the test is being executed.

Resources referred to in this post, including the AWS CloudFormation template, test and status websites hosted in S3, AWS CodeBuild build specification files, AWS Lambda function, and the Python script that performs the test are available in the serverless-automated-ui-testing GitHub repository.

S3 Hosted Test Website:

AWS CodeBuild supports custom containers so we can use the Selenium/standalone-Firefox and Selenium/standalone-Chrome containers, which include prebuild Firefox and Chrome browsers, respectively. Xvfb performs the graphical operation in virtual memory without any display hardware. It will be installed in the CodeBuild containers during the install phase.

Build Spec for Chrome and Firefox

The build specification for Chrome and Firefox testing includes multiple phases:

  • The environment variables section contains a set of default variables that are overridden while creating the build project or triggering the build.
  • As part of install phase, required packages like Xvfb and Selenium are installed using yum.
  • During the pre_build phase, the test bed is prepared for test execution.
  • During the build phase, the appropriate DISPLAY is set and the tests are executed.
version: 0.2

    BROWSER: "chrome"
    WebURL: "https://sampletestweb.s3-eu-west-1.amazonaws.com/website/index.html"
    ArtifactBucket: "codebuild-demo-artifact-repository"
    MODULES: "mod1"
    ModuleTable: "test-modules"
    StatusTable: "blog-test-status"

      - apt-get update
      - apt-get -y upgrade
      - apt-get install xvfb python python-pip build-essential -y
      - pip install --upgrade pip
      - pip install selenium
      - pip install awscli
      - pip install requests
      - pip install boto3
      - cp xvfb.init /etc/init.d/xvfb
      - chmod +x /etc/init.d/xvfb
      - update-rc.d xvfb defaults
      - service xvfb start
      - export PATH="$PATH:`pwd`/webdrivers"
      - python prepare_test.py
      - export DISPLAY=:5
      - cd tests
      - echo "Executing simple test..."
      - python testsuite.py

Because Ghost Driver runs headless, it can be executed on AWS Lambda. In keeping with a fire-and-forget model, I used CodeBuild to create the PhantomJS Lambda function and trigger the test invocations on Lambda in parallel. This is powerful because many tests can be executed in parallel on Lambda.

Build Spec for PhantomJS

The build specification for PhantomJS testing also includes multiple phases. It is a little different from the preceding example because we are using AWS Lambda for the test execution.

  • The environment variables section contains a set of default variables that are overridden while creating the build project or triggering the build.
  • As part of install phase, the required packages like Selenium and the AWS CLI are installed using yum.
  • During the pre_build phase, the test bed is prepared for test execution.
  • During the build phase, a zip file that will be used to create the PhantomJS Lambda function is created and tests are executed on the Lambda function.
version: 0.2

    BROWSER: "phantomjs"
    WebURL: "https://sampletestweb.s3-eu-west-1.amazonaws.com/website/index.html"
    ArtifactBucket: "codebuild-demo-artifact-repository"
    MODULES: "mod1"
    ModuleTable: "test-modules"
    StatusTable: "blog-test-status"
    LambdaRole: "arn:aws:iam::account-id:role/role-name"

      - apt-get update
      - apt-get -y upgrade
      - apt-get install python python-pip build-essential -y
      - apt-get install zip unzip -y
      - pip install --upgrade pip
      - pip install selenium
      - pip install awscli
      - pip install requests
      - pip install boto3
      - python prepare_test.py
      - cd lambda_function
      - echo "Packaging Lambda Function..."
      - zip -r /tmp/lambda_function.zip ./*
      - func_name=`echo $CODEBUILD_BUILD_ID | awk -F ':' '{print $1}'`-phantomjs
      - echo "Creating Lambda Function..."
      - chmod 777 phantomjs
      - |
         func_list=`aws lambda list-functions | grep FunctionName | awk -F':' '{print $2}' | tr -d ', "'`
         if echo "$func_list" | grep -qw $func_name
             echo "Lambda function already exists."
             aws lambda create-function --function-name $func_name --runtime "python2.7" --role $LambdaRole --handler "testsuite.lambda_handler" --zip-file fileb:///tmp/lambda_function.zip --timeout 150 --memory-size 1024 --environment Variables="{WebURL=$WebURL, StatusTable=$StatusTable}" --tags Name=$func_name
      - export PhantomJSFunction=$func_name
      - cd ../tests/
      - python testsuite.py

The list of test cases and the test modules that belong to each case are stored in an Amazon DynamoDB table. Based on the list of modules passed as an argument to the CodeBuild project, CodeBuild gets the test cases from that table and executes them. The test execution status and results are stored in another Amazon DynamoDB table. It will read the test status from the status table in DynamoDB and display it.

AWS CodeBuild and AWS Lambda perform the test execution as individual tasks. AWS CodePipeline plays an important role here by enabling continuous delivery and parallel execution of tests for optimized testing.

Here’s how to do it:

In AWS CodePipeline, create a pipeline with four stages:

  • Source (AWS CodeCommit)
  • UI testing (AWS Lambda and AWS CodeBuild)
  • Approval (manual approval)
  • Production (AWS Lambda)

Pipeline stages, the actions in each stage, and transitions between stages are shown in the following diagram.

This design implemented in AWS CodePipeline looks like this:

CodePipeline automatically detects a change in the source repository and triggers the execution of the pipeline.

In the UITest stage, there are two parallel actions:

  • DeployTestWebsite invokes a Lambda function to deploy the test website in S3 as an S3 website.
  • DeployStatusPage invokes another Lambda function to deploy in parallel the status website in S3 as an S3 website.

Next, there are three parallel actions that trigger the CodeBuild project:

  • TestOnChrome launches a container to perform the Selenium tests on Chrome.
  • TestOnFirefox launches another container to perform the Selenium tests on Firefox.
  • TestOnPhantomJS creates a Lambda function and invokes individual Lambda functions per test case to execute the test cases in parallel.

You can monitor the status of the test execution on the status website, as shown here:

When the UI testing is completed successfully, the pipeline continues to an Approval stage in which a notification is sent to the configured SNS topic. The designated team member reviews the test status and approves or rejects the deployment. Upon approval, the pipeline continues to the Production stage, where it invokes a Lambda function and deploys the website to a production S3 bucket.

I used a CloudFormation template to set up my continuous delivery pipeline. The automated-ui-testing.yaml template, available from GitHub, sets up a full-featured pipeline.

When I use the template to create my pipeline, I specify the following:

  • AWS CodeCommit repository.
  • SNS topic to send approval notification.
  • S3 bucket name where the artifacts will be stored.

The stack name should follow the rules for S3 bucket naming because it will be part of the S3 bucket name.

When the stack is created successfully, the URLs for the test website and status website appear in the Outputs section, as shown here:


In this post, I showed how you can use AWS CodePipeline, AWS CodeBuild, AWS Lambda, and a manual approval process to create a continuous delivery pipeline for serverless automated UI testing. Websites running on Amazon EC2 instances or AWS Elastic Beanstalk can also be tested using similar approach.

About the author

Prakash Palanisamy is a Solutions Architect for Amazon Web Services. When he is not working on Serverless, DevOps or Alexa, he will be solving problems in Project Euler. He also enjoys watching educational documentaries.

Implement Continuous Integration and Delivery of Apache Spark Applications using AWS

Post Syndicated from Luis Caro Perez original https://aws.amazon.com/blogs/big-data/implement-continuous-integration-and-delivery-of-apache-spark-applications-using-aws/

When you develop Apache Spark–based applications, you might face some additional challenges when dealing with continuous integration and deployment pipelines, such as the following common issues:

  • Applications must be tested on real clusters using automation tools (live test)
  • Any user or developer must be able to easily deploy and use different versions of both the application and infrastructure to be able to debug, experiment on, and test different functionality.
  • Infrastructure needs to be evaluated and tested along with the application that uses it.

In this post, we walk you through a solution that implements a continuous integration and deployment pipeline supported by AWS services. The pipeline offers the following workflow:

  • Deploy the application to a QA stage after a commit is performed to the source code.
  • Perform a unit test using Spark local mode.
  • Deploy to a dynamically provisioned Amazon EMR cluster and test the Spark application on it
  • Update the application as an AWS Service Catalog product version, allowing a user to deploy any version (commit) of the application on demand.

Solution overview

The following diagram shows the pipeline workflow.

The solution uses AWS CodePipeline, which allows users to orchestrate and automate the build, test, and deploy stages for application source code. The solution consists of a pipeline that contains the following stages:

  • Source: Both the Spark application source code in addition to the AWS CloudFormation template file for deploying the application are committed to version control. In this example, we use AWS CodeCommit. For an example of the application source code, see zip. 
  • Build: In this stage, you use Apache Maven both to generate the application .jar binaries and to execute all of the application unit tests that end with *Spec.scala. In this example, we use AWS CodeBuild, which runs the unit tests given that they are designed to use Spark local mode.
  • QADeploy: In this stage, the .jar file built previously is deployed using the CloudFormation template included with the application source code. All the resources are created in this stage, such as networks, EMR clusters, and so on. 
  • LiveTest: In this stage, you use Apache Maven to execute all the application tests that end with *SpecLive.scala. The tests submit EMR steps to the cluster created as part of the QADeploy step. The tests verify that the steps ran successfully and their results. 
  • LiveTestApproval: This stage is included in case a pipeline administrator approval is required to deploy the application to the next stages. The pipeline pauses in this stage until an administrator manually approves the release. 
  • QACleanup: In this stage, you use an AWS Lambda function to delete the CloudFormation template deployed as part of the QADeploy stage. The function does not affect any resources other than those deployed as part of the QADeploy stage. 
  • DeployProduct: In this stage, you use a Lambda function that creates or updates an AWS Service Catalog product and portfolio. Every time the pipeline releases a change to the application, the AWS Service Catalog product gets a new version, with the commit of the change as the version description. 

Try it out!

Use the provided sample template to get started using this solution. This template creates the pipeline described earlier with all of its stages. It performs an initial commit of the sample Spark application in order to trigger the first release change. To deploy the template, use the following AWS CLI command:

aws cloudformation create-stack  --template-url https://s3.amazonaws.com/aws-bigdata-blog/artifacts/sparkAppDemoForPipeline/emrSparkpipeline.yaml --stack-name emr-spark-pipeline --capabilities CAPABILITY_NAMED_IAM

After the template finishes creating resources, you see the pipeline name on the stack Outputs tab. After that, open the AWS CodePipeline console and select the newly created pipeline.

After a couple of minutes, AWS CodePipeline detects the initial commit applied by the CloudFormation stack and starts the first release.

You can watch how the pipeline goes through the Build, QADeploy, and LiveTest stages until it finally reaches the LiveTestApproval stage.

At this point, you can check the results of the test in the log files of the Build and LiveTest stage jobs on AWS CodeBuild. If you check the CloudFormation console, you see that a new template has been deployed as part of the QADeploy stage.

You can also visit the EMR console and view how the LiveTest stage submitted steps to the EMR cluster.

After performing the review, manually approve the revision on the LiveTestApproval stage by using the AWS CodePipeline console.

After the revision is approved, the pipeline proceeds to use a Lambda function that destroys the resources deployed on the QAdeploy stage. Finally, it creates or updates a product and portfolio in AWS Service Catalog. After the final stage of the pipeline is complete, you can check that the product is created successfully on the AWS Service Catalog console.

You can check the product versions and notice that the first version is the initial commit performed by the CloudFormation template.

You can proceed to share the created portfolio with any users in your AWS account and allow them to deploy any version of the Spark application. You can also perform a commit on the AWS CodeCommit repository. The pipeline is triggered automatically and repeats the pipeline execution to deploy a new version of the product.

To destroy all of the resources created by the stack, make sure all the deployed stacks using AWS Service Catalog or the QAdeploy stage are destroyed. Then, destroy the pipeline template using the following AWS CLI command:


aws cloudformation delete-stack --stack-name emr-spark-pipeline


You can use the sample template and Spark application shared in this post and adapt them for the specific needs of your own application. The pipeline can have as many stages as needed and it can be used to automatically deploy to AWS Service Catalog or a production environment using CloudFormation.

If you have questions or suggestions, please comment below.

Additional Reading

Learn how to implement authorization and auditing on Amazon EMR using Apache Ranger.


About the Authors

Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.



Samuel Schmidt is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.




Automating Blue/Green Deployments of Infrastructure and Application Code using AMIs, AWS Developer Tools, & Amazon EC2 Systems Manager

Post Syndicated from Ramesh Adabala original https://aws.amazon.com/blogs/devops/bluegreen-infrastructure-application-deployment-blog/

Previous DevOps blog posts have covered the following use cases for infrastructure and application deployment automation:

An AMI provides the information required to launch an instance, which is a virtual server in the cloud. You can use one AMI to launch as many instances as you need. It is security best practice to customize and harden your base AMI with required operating system updates and, if you are using AWS native services for continuous security monitoring and operations, you are strongly encouraged to bake into the base AMI agents such as those for Amazon EC2 Systems Manager (SSM), Amazon Inspector, CodeDeploy, and CloudWatch Logs. A customized and hardened AMI is often referred to as a “golden AMI.” The use of golden AMIs to create EC2 instances in your AWS environment allows for fast and stable application deployment and scaling, secure application stack upgrades, and versioning.

In this post, using the DevOps automation capabilities of Systems Manager, AWS developer tools (CodePipeLine, CodeDeploy, CodeCommit, CodeBuild), I will show you how to use AWS CodePipeline to orchestrate the end-to-end blue/green deployments of a golden AMI and application code. Systems Manager Automation is a powerful security feature for enterprises that want to mature their DevSecOps practices.

Here are the high-level phases and primary services covered in this use case:


You can access the source code for the sample used in this post here: https://github.com/awslabs/automating-governance-sample/tree/master/Bluegreen-AMI-Application-Deployment-blog.

This sample will create a pipeline in AWS CodePipeline with the building blocks to support the blue/green deployments of infrastructure and application. The sample includes a custom Lambda step in the pipeline to execute Systems Manager Automation to build a golden AMI and update the Auto Scaling group with the golden AMI ID for every rollout of new application code. This guarantees that every new application deployment is on a fully patched and customized AMI in a continuous integration and deployment model. This enables the automation of hardened AMI deployment with every new version of application deployment.



We will build and run this sample in three parts.

Part 1: Setting up the AWS developer tools and deploying a base web application

Part 1 of the AWS CloudFormation template creates the initial Java-based web application environment in a VPC. It also creates all the required components of Systems Manager Automation, CodeCommit, CodeBuild, and CodeDeploy to support the blue/green deployments of the infrastructure and application resulting from ongoing code releases.

Part 1 of the AWS CloudFormation stack creates these resources:

After Part 1 of the AWS CloudFormation stack creation is complete, go to the Outputs tab and click the Elastic Load Balancing link. You will see the following home page for the base web application:

Make sure you have all the outputs from the Part 1 stack handy. You need to supply them as parameters in Part 3 of the stack.

Part 2: Setting up your CodeCommit repository

In this part, you will commit and push your sample application code into the CodeCommit repository created in Part 1. To access the initial git commands to clone the empty repository to your local machine, click Connect to go to the AWS CodeCommit console. Make sure you have the IAM permissions required to access AWS CodeCommit from command line interface (CLI).

After you’ve cloned the repository locally, download the sample application files from the part2 folder of the Git repository and place the files directly into your local repository. Do not include the aws-codedeploy-sample-tomcat folder. Go to the local directory and type the following commands to commit and push the files to the CodeCommit repository:

git add .
git commit -a -m "add all files from the AWS Java Tomcat CodeDeploy application"
git push

After all the files are pushed successfully, the repository should look like this:


Part 3: Setting up CodePipeline to enable blue/green deployments     

Part 3 of the AWS CloudFormation template creates the pipeline in AWS CodePipeline and all the required components.

a) Source: The pipeline is triggered by any change to the CodeCommit repository.

b) BuildGoldenAMI: This Lambda step executes the Systems Manager Automation document to build the golden AMI. After the golden AMI is successfully created, a new launch configuration with the new AMI details will be updated into the Auto Scaling group of the application deployment group. You can watch the progress of the automation in the EC2 console from the Systems Manager –> Automations menu.

c) Build: This step uses the application build spec file to build the application build artifact. Here are the CodeBuild execution steps and their status:

d) Deploy: This step clones the Auto Scaling group, launches the new instances with the new AMI, deploys the application changes, reroutes the traffic from the elastic load balancer to the new instances and terminates the old Auto Scaling group. You can see the execution steps and their status in the CodeDeploy console.

After the CodePipeline execution is complete, you can access the application by clicking the Elastic Load Balancing link. You can find it in the output of Part 1 of the AWS CloudFormation template. Any consecutive commits to the application code in the CodeCommit repository trigger the pipelines and deploy the infrastructure and code with an updated AMI and code.


If you have feedback about this post, add it to the Comments section below. If you have questions about implementing the example used in this post, open a thread on the Developer Tools forum.

About the author


Ramesh Adabala is a Solutions Architect in Southeast Enterprise Solution Architecture team at Amazon Web Services.

Launch – .NET Core Support In AWS CodeStar and AWS Codebuild

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/launch-net-core-support-in-aws-codestar-and-aws-codebuild/

A few months ago, I introduced the AWS CodeStar service, which allows you to quickly develop, build, and deploy applications on AWS. AWS CodeStar helps development teams to increase the pace of releasing applications and solutions while reducing some of the challenges of building great software.

When the CodeStar service launched in April, it was released with several project templates for Amazon EC2, AWS Elastic Beanstalk, and AWS Lambda using five different programming languages; JavaScript, Java, Python, Ruby, and PHP. Each template provisions the underlying AWS Code Services and configures an end-end continuous delivery pipeline for the targeted application using AWS CodeCommit, AWS CodeBuild, AWS CodePipeline, and AWS CodeDeploy.

As I have participated in some of the AWS Summits around the world discussing AWS CodeStar, many of you have shown curiosity in learning about the availability of .NET templates in CodeStar and utilizing CodeStar to deploy .NET applications. Therefore, it is with great pleasure and excitement that I announce that you can now develop, build, and deploy cross-platform .NET Core applications with the AWS CodeStar and AWS CodeBuild services.

AWS CodeBuild has added the ability to build and deploy .NET Core application code to both Amazon EC2 and AWS Lambda. This new CodeBuild capability has enabled the addition of two new project templates in AWS CodeStar for .NET Core applications.  These new project templates enable you to deploy .NET Code applications to Amazon EC2 Linux Instances, and provides everything you need to get started quickly, including .NET Core sample code and a full software development toolchain.

Of course, I can’t wait to try out the new addition to the project templates within CodeStar and the update .NET application build options with CodeBuild. For my test scenario, I will use CodeStar to create, build, and deploy my .NET Code ASP.Net web application on EC2. Then, I will extend my ASP.Net application by creating a .NET Lambda function to be compiled and deployed with CodeBuild as a part of my application’s pipeline. This Lambda function can then be called and used within my ASP.Net application to extend the functionality of my web application.

So, let’s get started!

First, I’ll log into the CodeStar console and start a new CodeStar project. I am presented with the option to select a project template.

Right now, I would like to focus on building .NET Core projects, therefore, I’ll filter the project templates by selecting the C# in the Programming Languages section. Now, CodeStar only shows me the new .NET Core project templates that I can use to build web applications and services with ASP.NET Core.

I think I’ll use the ASP.NET Core web application project template for my first CodeStar .NET Core application. As you can see by the project template information display, my web application will be deployed on Amazon EC2, which signifies to me that my .NET Core code will be compiled and packaged using AWS CodeBuild and deployed to EC2 using the AWS CodeDeploy service.

My hunch about the services is confirmed on the next screen when CodeStar shows the AWS CodePipeline and the AWS services that will be configured for my new project. I’ll name this web application project, ASPNetCore4Tara, and leave the default Project ID that CodeStar generates from the project name. Yes, I know that this is one of the goofiest names I could ever come up with, but, hey, it will do for this test project so I’ll go ahead and click the Next button. I should mention that you have the option to edit your Amazon EC2 configuration for your project on this screen before CodeStar starts configuring and provisioning the services needed to run your application.

Since my ASP.Net Core web application will be deployed to an Amazon EC2 instance, I will need to choose an Amazon EC2 Key Pair for encryption of the login used to allow me to SSH into this instance. For my ASPNetCore4Tara project, I will use an existing Amazon EC2 key pair I have previously used for launching my other EC2 instances. However, if I was creating this project and I did not have an EC2 key pair or if I didn’t have access to the .pem file (private key file) for an existing EC2 key pair, I would have to first visit the EC2 console and create a new EC2 key pair to use for my project. This is important because if you remember, without having the EC2 key pair with the associated .pem file, I would not be able to log into my EC2 instance.

With my EC2 key pair selected and confirmation that I have the related private file checked, I am ready to click the Create Project button.

After CodeStar completes the creation of the project and the provisioning of the project related AWS services, I am ready to view the CodeStar sample application from the application endpoint displayed in the CodeStar dashboard. This sample application should be familiar to you if have been working with the CodeStar service or if you had an opportunity to read the blog post about the AWS CodeStar service launch. I’ll click the link underneath Application Endpoints to view the sample ASP.NET Core web application.

Now I’ll go ahead and clone the generated project and connect my Visual Studio IDE to the project repository. I am going to make some changes to the application and since AWS CodeBuild now supports .NET Core builds and deployments to both Amazon EC2 and AWS Lambda, I will alter my build specification file appropriately for the changes to my web application that will include the use of the Lambda function.  Don’t worry if you are not familiar with how to clone the project and connect it to the Visual Studio IDE, CodeStar provides in-console step-by-step instructions to assist you.

First things first, I will open up the Visual Studio IDE and connect to AWS CodeCommit repository provisioned for my ASPNetCore4Tara project. It is important to note that the Visual Studio 2017 IDE is required for .NET Core projects in AWS CodeStar and the AWS Toolkit for Visual Studio 2017 will need to be installed prior to connecting your project repository to the IDE.

In order to connect to my repo within Visual Studio, I will open up Team Explorer and select the Connect link under the AWS CodeCommit option under Hosted Service Providers. I will click Ok to keep my default AWS profile toolkit credentials.

I’ll then click Clone under the Manage Connections and AWS CodeCommit hosted provider section.

Once I select my aspnetcore4tara repository in the Clone AWS CodeCommit Repository dialog, I only have to enter my IAM role’s HTTPS Git credentials in the Git Credentials for AWS CodeCommit dialog and my process is complete. If you’re following along and receive a dialog for Git Credential Manager login, don’t worry just your enter the same IAM role’s Git credentials.

My project is now connected to the aspnetcore4tara CodeCommit repository and my web application is loaded to editing. As you will notice in the screenshot below, the sample project is structured as a standard ASP.NET Core MVC web application.

With the project created, I can make changes and updates. Since I want to update this project with a .NET Lambda function, I’ll quickly start a new project in Visual Studio to author a very simple C# Lambda function to be compiled with the CodeStar project. This AWS Lambda function will be included in the CodeStar ASP.NET Core web application project.

The Lambda function I’ve created makes a call to the REST API of NASA’s popular Astronomy Picture of the Day website. The API sends back the latest planetary image and related information in JSON format. You can see the Lambda function code below.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

using System.Net.Http;
using Amazon.Lambda.Core;

// Assembly attribute to enable the Lambda function's JSON input to be converted into a .NET class.
[assembly: LambdaSerializer(typeof(Amazon.Lambda.Serialization.Json.JsonSerializer))]

namespace NASAPicOfTheDay
    public class SpacePic
        HttpClient httpClient = new HttpClient();
        string nasaRestApi = "https://api.nasa.gov/planetary/apod?api_key=DEMO_KEY";

        /// <summary>
        /// A simple function that retreives NASA Planetary Info and 
        /// Picture of the Day
        /// </summary>
        /// <param name="context"></param>
        /// <returns>nasaResponse-JSON String</returns>
        public async Task<string> GetNASAPicInfo(ILambdaContext context)
            string nasaResponse;
            //Call NASA Picture of the Day API
            nasaResponse = await httpClient.GetStringAsync(nasaRestApi);
            Console.WriteLine("NASA API Response");
            //Return NASA response - JSON format
            return nasaResponse; 

I’ll now publish this C# Lambda function and test by using the Publish to AWS Lambda option provided by the AWS Toolkit for Visual Studio with NASAPicOfTheDay project. After publishing the function, I can test it and verify that it is working correctly within Visual Studio and/or the AWS Lambda console. You can learn more about building AWS Lambda functions with C# and .NET at: http://docs.aws.amazon.com/lambda/latest/dg/dotnet-programming-model.html


Now that I have my Lambda function completed and tested, all that is left is to update the CodeBuild buildspec.yml file within my aspnetcore4tara CodeStar project to include publishing and deploying of the Lambda function.

To accomplish this, I will create a new folder named functions and copy the folder that contains my Lambda function .NET project to my aspnetcore4tara web application project directory.



To build and publish my AWS Lambda function, I will use commands in the buildspec.yml file from the aws-lambda-dotnet tools library, which helps .NET Core developers develop AWS Lambda functions. I add a file, funcprof, to the NASAPicOfTheDay folder which contains customized profile information for use with aws-lambda-dotnet tools. All that is left is to update the buildspec.yml file used by CodeBuild for the ASPNetCore4Tara project build to include the packaging and the deployment of the NASAPictureOfDay AWS Lambda function. The updated buildspec.yml is as follows:

version: 0.2
    basePath: 'hold'
      - echo set basePath for project
      - basePath=$(pwd)
      - echo $basePath
      - echo Build restore and package Lambda function using AWS .NET Tools...
      - dotnet restore functions/*/NASAPicOfTheDay.csproj
      - cd functions/NASAPicOfTheDay
      - dotnet lambda package -c Release -f netcoreapp1.0 -o ../lambda_build/nasa-lambda-function.zip
      - echo Deploy Lambda function used in ASPNET application using AWS .NET Tools. Must be in path of Lambda function build 
      - cd $basePath
      - cd functions/NASAPicOfTheDay
      - dotnet lambda deploy-function NASAPicAPI -c Release -pac ../lambda_build/nasa-lambda-function.zip --profile-location funcprof -fd 'NASA API for Picture of the Day' -fn NASAPicAPI -fh NASAPicOfTheDay::NASAPicOfTheDay.SpacePic::GetNASAPicInfo -frun dotnetcore1.0 -frole arn:aws:iam::xxxxxxxxxxxx:role/lambda_exec_role -framework netcoreapp1.0 -fms 256 -ft 30  
      - echo Lambda function is now deployed - Now change directory back to Base path
      - cd $basePath
      - echo Restore started on `date`
      - dotnet restore AspNetCoreWebApplication/AspNetCoreWebApplication.csproj
      - echo Build started on `date`
      - dotnet publish -c release -o ./build_output AspNetCoreWebApplication/AspNetCoreWebApplication.csproj
    - AspNetCoreWebApplication/build_output/**/*
    - scripts/**/*
    - appspec.yml

That’s it! All that is left is for me to add and commit all my file additions and updates to the AWS CodeCommit git repository provisioned for my ASPNetCore4Tara project. This kicks off the AWS CodePipeline for the project which will now use AWS CodeBuild new support for .NET Core to build and deploy both the ASP.NET Core web application and the .NET AWS Lambda function.



The support for .NET Core in AWS CodeStar and AWS CodeBuild opens the door for .NET developers to take advantage of the benefits of Continuous Integration and Delivery when building .NET based solutions on AWS.  Read more about .NET Core support in AWS CodeStar and AWS CodeBuild here or review product pages for AWS CodeStar and/or AWS CodeBuild for more information on using the services.

Enjoy building .NET projects more efficiently with Amazon Web Services using .NET Core with AWS CodeStar and AWS CodeBuild.



AWS Hot Startups – June 2017

Post Syndicated from Tina Barr original https://aws.amazon.com/blogs/aws/aws-hot-startups-june-2017/

Thanks for stopping by for another round of AWS Hot Startups! This month we are featuring:

  • CloudRanger – helping companies understand the cloud with visual representation.
  • quintly – providing social media analytics for brands on a single dashboard.
  • Tango Card – reinventing rewards programs for businesses and their customers worldwide.

Don’t forget to check out May’s Hot Startups in case you missed them.

CloudRanger (Letterkenny, Ireland)   

The idea for CloudRanger started where most great ideas do – at a bar in Las Vegas. During a late-night conversation with his friends at re:Invent 2014, Dave Gildea (Founder and CEO) used cocktail napkins and drink coasters to visually illustrate servers and backups, and the light on his phone to represent scheduling. By the end of the night, the idea for automated visual server management was born. With CloudRanger, companies can easily create backup and retention policies, visual scheduling, and simple restoration of snapshots and AMIs. The team behind CloudRanger believes that when servers and cloud resources are represented visually, they are easier to manage and understand. Users are able to see their servers, which turns them into a tangible and important piece of business inventory.

CloudRanger is an excellent platform for MSPs who manage many different AWS accounts, and need a quick method to display many servers and audit certain attributes. The company’s goal is to give anyone the ability to create backup policies in multiple regions, apply them using a tag-based methodology, and manage backups. Servers can be scheduled from one simple dashboard, and restoration is easy and step-by-step. With CloudRanger’s visual representation of resources, customers are encouraged to fully understand their backup policies, schedules, and servers.

As an AWS Partner, CloudRanger has built a globally redundant system after going all-in with AWS. They are using over 25 AWS services for everything including enterprise-level security, automation and 24/7 runtimes, and an emphasis on Machine Learning for efficiency in the sales process. CloudRanger continues to rely more on AWS as new services and features are released, and are replacing current services with AWS CodePipeline and AWS CodeBuild. CloudRanger was also named Startup Company of the Year at a recent Irish tech event!

To learn more about CloudRanger, visit their website.

quintly (Cologne, Germany)

In 2010, brothers Alexander Peiniger and Frederik Peiniger started a journey to help companies track their social media profiles and improve their strategies against competitors. The startup began under the name “Social.Media.Tracking” and then “AllFacebook Stats” before officially becoming quintly in 2013. With quintly, brands and agencies can analyze, benchmark, and optimize their social media activities on a global scale. The innovative dashboarding system gives clients an overview across all social media profiles on the most important networks (Facebook, Twitter, YouTube, Google+, LinkedIn, Instagram, etc.) and then derives an optimal social media strategy from those profiles. Today, quintly has users in over 180 countries and paying clients in over 65 countries including major agency networks and Fortune 500 companies.

Getting an overview of a brand’s social media activities can be time-consuming, and turning insights into actions is a challenge that not all brands master. Quintly offers a variety of features designed to help clients improve their social media reach. With their web-based SaaS product, brands and agencies can compare their social media performance against competitors and their best practices. Not only can clients learn from their own historic performance, but they can leverage data from any other brand around the world.

Since the company’s founding, quintly built and operates its SaaS offering on top of AWS services, leveraging Amazon EC2, Amazon ECS, Elastic Load Balancing, and Amazon Route53 to host their Docker-based environment. Large amounts of data are stored in Amazon DynamoDB and Amazon RDS, and they use Amazon CloudWatch to monitor and seamlessly scale to the current needs. In addition, quintly is using Amazon Machine Learning to add additional attributes to the data and to drive better decisions for their clients. With the help of AWS, quintly has been able to focus on their core business while having a scalable and well-performing solution to solve their technical needs.

For more on quintly, check out their Social Media Analytics blog.

Tango Card (Seattle, Washington)

Based in the heart of West Seattle, Tango Card is revolutionizing rewards programs for companies around the world. Too often customers redeem points in a loyalty or rebate program only to wait weeks for their prize to arrive. Companies generously give their employees appreciation gifts, but the gifts can be generic and impersonal. With Tango Card, companies can choose from a variety of rewards that fit the needs of their specific program, event, or business incentive. The extensive Rewards Catalog includes options for e-gift cards that are sure to excite any recipient. There are plenty of options for everyone from traditional e-gift cards to nonprofit donations to cash equivalent rewards.

Tango Card uses a combination of desired rewards, modern technology, and expert service to change the rewards and incentive experience. The Reward Delivery Platform offers solutions including Blast Rewards, Reward Link, and Rewards as a Service API (RaaS). Blast Rewards enables companies to purchase and send e-gift cards in bulk in just one business day. Reward Link lets recipients choose from an assortment of e-gift cards, prepaid cards, digital checks, and donations and is delivered instantly. Finally, Rewards as a Service is a robust digital gift card API that is built to support apps and platforms. With RaaS, Tango Card can send out e-gift cards on company-branded email templates or deliver them directly within a user interface.

The entire Tango Card Reward Delivery Platform leverages many AWS services. They use Amazon EC2 Container Service (ECS) for rapid deployment of containerized micro services, and Amazon Relational Database Service (RDS) for low overhead managed databases. Tango Card is also leveraging Amazon Virtual Private Cloud (VPC), AWS Key Management Service (KMS), and AWS Identity and Access Management (IMS).

To learn more about Tango Card, check out their blog!

I would also like to thank Alexander Moss-Bolanos for helping with the Hot Startups posts this year.

Thanks for reading and we’ll see you next month!

-Tina Barr

Continuous Delivery of Nested AWS CloudFormation Stacks Using AWS CodePipeline

Post Syndicated from Prakash Palanisamy original https://aws.amazon.com/blogs/devops/continuous-delivery-of-nested-aws-cloudformation-stacks-using-aws-codepipeline/

In CodePipeline Update – Build Continuous Delivery Workflows for CloudFormation Stacks, Jeff Barr discusses infrastructure as code and how to use AWS CodePipeline for continuous delivery. In this blog post, I discuss the continuous delivery of nested CloudFormation stacks using AWS CodePipeline, with AWS CodeCommit as the source repository and AWS CodeBuild as a build and testing tool. I deploy the stacks using CloudFormation change sets following a manual approval process.

Here’s how to do it:

In AWS CodePipeline, create a pipeline with four stages:

  • Source (AWS CodeCommit)
  • Build and Test (AWS CodeBuild and AWS CloudFormation)
  • Staging (AWS CloudFormation and manual approval)
  • Production (AWS CloudFormation and manual approval)

Pipeline stages, the actions in each stage, and transitions between stages are shown in the following diagram.

CloudFormation templates, test scripts, and the build specification are stored in AWS CodeCommit repositories. These files are used in the Source stage of the pipeline in AWS CodePipeline.

The AWS::CloudFormation::Stack resource type is used to create child stacks from a master stack. The CloudFormation stack resource requires the templates of the child stacks to be stored in the S3 bucket. The location of the template file is provided as a URL in the properties section of the resource definition.

The following template creates three child stacks:

  • Security (IAM, security groups).
  • Database (an RDS instance).
  • Web stacks (EC2 instances in an Auto Scaling group, elastic load balancer).
Description: Master stack which creates all required nested stacks

    Type: String
    Description: S3Bucket Path where the templates are stored
    Type: "AWS::EC2::VPC::Id"
    Description: Enter a valid VPC Id
    Type: "AWS::EC2::Subnet::Id"
    Description: Enter a valid SubnetId of private subnet in AZ1
    Type: "AWS::EC2::Subnet::Id"
    Description: Enter a valid SubnetId of private subnet in AZ2
    Type: "AWS::EC2::Subnet::Id"
    Description: Enter a valid SubnetId of public subnet in AZ1
    Type: "AWS::EC2::Subnet::Id"
    Description: Enter a valid SubnetId of public subnet in AZ2
    Type: String
    Description: Name of the S3 bucket to allow access to the Web Server IAM Role.
    Type: "AWS::EC2::KeyPair::KeyName"
    Description: Enter a valid KeyPair Name
    Type: "AWS::EC2::Image::Id"
    Description: Enter a valid AMI ID to launch the instance
    Type: String
    Description: Enter one of the possible instance type for web server
      - t2.large
      - m4.large
      - m4.xlarge
      - c4.large
    Type: String
    Description: Minimum number of instances in auto scaling group
    Type: String
    Description: Maximum number of instances in auto scaling group
    Type: String
    Description: Enter a valid DB Subnet Group
    Type: String
    Description: Enter a valid Database master username
    MinLength: 1
    MaxLength: 16
    AllowedPattern: "[a-zA-Z][a-zA-Z0-9]*"
    Type: String
    Description: Enter a valid Database master password
    NoEcho: true
    MinLength: 1
    MaxLength: 41
    AllowedPattern: "[a-zA-Z0-9]*"
    Type: String
    Description: Enter one of the possible instance type for database
      - db.t2.micro
      - db.t2.small
      - db.t2.medium
      - db.t2.large
    Type: String
    Description: Select the appropriate environment
      - dev
      - test
      - uat
      - prod

    Type: "AWS::CloudFormation::Stack"
        Fn::Sub: "https://s3.amazonaws.com/${TemplatePath}/security-stack.yml"
          Ref: S3BucketName
          Ref: VPCID
          Ref: Environment
        - Key: Name
          Value: SecurityStack

    Type: "AWS::CloudFormation::Stack"
        Fn::Sub: "https://s3.amazonaws.com/${TemplatePath}/database-stack.yml"
          Ref: DBSubnetGroup
          Ref: DBUsername
          Ref: DBPassword
          Fn::GetAtt: SecurityStack.Outputs.DBServerSG
          Ref: DBInstanceType
          Ref: Environment
        - Key: Name
          Value:   DatabaseStack

    Type: "AWS::CloudFormation::Stack"
        Fn::Sub: "https://s3.amazonaws.com/${TemplatePath}/server-stack.yml"
          Ref: VPCID
          Ref: PrivateSubnet1
          Ref: PrivateSubnet2
          Ref: PublicSubnet1
          Ref: PublicSubnet2
          Ref: KeyPair
          Ref: AMIId
          Fn::GetAtt: SecurityStack.Outputs.WebSG
          Fn::GetAtt: SecurityStack.Outputs.ELBSG
          Fn::GetAtt: SecurityStack.Outputs.DBClientSG
          Fn::GetAtt: SecurityStack.Outputs.WebIAMProfile
          Ref: WebInstanceType
          Ref: WebMinSize
          Ref: WebMaxSize
          Ref: Environment
        - Key: Name
          Value: ServerStack

    Description: "URL endpoint of web ELB"
      Fn::GetAtt: ServerStack.Outputs.WebELBURL

During the Validate stage, AWS CodeBuild checks for changes to the AWS CodeCommit source repositories. It uses the ValidateTemplate API to validate the CloudFormation template and copies the child templates and configuration files to the appropriate location in the S3 bucket.

The following AWS CodeBuild build specification validates the CloudFormation templates listed under the TEMPLATE_FILES environment variable and copies them to the S3 bucket specified in the TEMPLATE_BUCKET environment variable in the AWS CodeBuild project. Optionally, you can use the TEMPLATE_PREFIX environment variable to specify a path inside the bucket. This updates the configuration files to use the location of the child template files. The location of the template files is provided as a parameter to the master stack.

version: 0.1


      npm install jsonlint -g
      - echo "Validating CFN templates"
      - |
        for cfn_template in $TEMPLATE_FILES; do
          echo "Validating CloudFormation template file $cfn_template"
          aws cloudformation validate-template --template-body file://$cfn_template
      - |
        for conf in $CONFIG_FILES; do
          echo "Validating CFN parameters config file $conf"
          jsonlint -q $conf
      - echo "Copying child stack templates to S3"
      - |
        for child_template in $CHILD_TEMPLATES; do
          if [ "X$TEMPLATE_PREFIX" = "X" ]; then
            aws s3 cp "$child_template" "s3://$TEMPLATE_BUCKET/$child_template"
            aws s3 cp "$child_template" "s3://$TEMPLATE_BUCKET/$TEMPLATE_PREFIX/$child_template"
      - echo "Updating template configurtion files to use the appropriate values"
      - |
        for conf in $CONFIG_FILES; do
          if [ "X$TEMPLATE_PREFIX" = "X" ]; then
            echo "Replacing \"TEMPLATE_PATH_PLACEHOLDER\" for \"$TEMPLATE_BUCKET\" in $conf"
            sed -i -e "s/TEMPLATE_PATH_PLACEHOLDER/$TEMPLATE_BUCKET/" $conf
            echo "Replacing \"TEMPLATE_PATH_PLACEHOLDER\" for \"$TEMPLATE_BUCKET/$TEMPLATE_PREFIX\" in $conf"

    - master-stack.yml
    - config-*.json

After the template files are copied to S3, CloudFormation creates a test stack and triggers AWS CodeBuild as a test action.

Then the AWS CodeBuild build specification executes validate-env.py, the Python script used to determine whether resources created using the nested CloudFormation stacks conform to the specifications provided in the CONFIG_FILE.

version: 0.1

    CONFIG_FILE: env-details.yml

      - pip install --upgrade pip
      - pip install boto3 --upgrade
      - pip install pyyaml --upgrade
      - pip install yamllint --upgrade
      - echo "Validating config file $CONFIG_FILE"
      - yamllint $CONFIG_FILE
      - echo "Validating resources..."
      - python validate-env.py
      - exit $?

Upon successful completion of the test action, CloudFormation deletes the test stack and proceeds to the UAT stage in the pipeline.

During this stage, CloudFormation creates a change set against the UAT stack and then executes the change set. This updates the UAT environment and makes it available for acceptance testing. The process continues to a manual approval action. After the QA team validates the UAT environment and provides an approval, the process moves to the Production stage in the pipeline.

During this stage, CloudFormation creates a change set for the nested production stack and the process continues to a manual approval step. Upon approval (usually by a designated executive), the change set is executed and the production deployment is completed.

Setting up a continuous delivery pipeline

I used a CloudFormation template to set up my continuous delivery pipeline. The codepipeline-cfn-codebuild.yml template, available from GitHub, sets up a full-featured pipeline.

When I use the template to create my pipeline, I specify the following:

  • AWS CodeCommit repositories.
  • SNS topics to send approval notifications.
  • S3 bucket name where the artifacts will be stored.

The CFNTemplateRepoName points to the AWS CodeCommit repository where CloudFormation templates, configuration files, and build specification files are stored.

My repo contains following files:

The continuous delivery pipeline is ready just seconds after clicking Create Stack. After it’s created, the pipeline executes each stage. Upon manual approvals for the UAT and Production stages, the pipeline successfully enables continuous delivery.


Implementing a change in nested stack

To make changes to a child stack in a nested stack (for example, to update a parameter value or add or change resources), update the master stack. The changes must be made in the appropriate template or configuration files and then checked in to the AWS CodeCommit repository. This triggers the following deployment process:



In this post, I showed how you can use AWS CodePipeline, AWS CloudFormation, AWS CodeBuild, and a manual approval process to create a continuous delivery pipeline for both infrastructure as code and application deployment.

For more information about AWS CodePipeline, see the AWS CodePipeline documentation. You can get started in just a few clicks. All CloudFormation templates, AWS CodeBuild build specification files, and the Python script that performs the validation are available in codepipeline-nested-cfn GitHub repository.

About the author

Prakash Palanisamy is a Solutions Architect for Amazon Web Services. When he is not working on Serverless, DevOps or Alexa, he will be solving problems in Project Euler. He also enjoys watching educational documentaries.

How to Create an AMI Builder with AWS CodeBuild and HashiCorp Packer – Part 2

Post Syndicated from Heitor Lessa original https://aws.amazon.com/blogs/devops/how-to-create-an-ami-builder-with-aws-codebuild-and-hashicorp-packer-part-2/

Written by AWS Solutions Architects Jason Barto and Heitor Lessa

In Part 1 of this post, we described how AWS CodeBuild, AWS CodeCommit, and HashiCorp Packer can be used to build an Amazon Machine Image (AMI) from the latest version of Amazon Linux. In this post, we show how to use AWS CodePipeline, AWS CloudFormation, and Amazon CloudWatch Events to continuously ship new AMIs. We use Ansible by Red Hat to harden the OS on the AMIs through a well-known set of security controls outlined by the Center for Internet Security in its CIS Amazon Linux Benchmark.

You’ll find the source code for this post in our GitHub repo.

At the end of this post, we will have the following architecture:


To follow along, you will need Git and a text editor. Make sure Git is configured to work with AWS CodeCommit, as described in Part 1.


In addition to the services and products used in Part 1 of this post, we also use these AWS services and third-party software:

AWS CloudFormation gives developers and systems administrators an easy way to create and manage a collection of related AWS resources, provisioning and updating them in an orderly and predictable fashion.

Amazon CloudWatch Events enables you to react selectively to events in the cloud and in your applications. Specifically, you can create CloudWatch Events rules that match event patterns, and take actions in response to those patterns.

AWS CodePipeline is a continuous integration and continuous delivery service for fast and reliable application and infrastructure updates. AWS CodePipeline builds, tests, and deploys your code every time there is a code change, based on release process models you define.

Amazon SNS is a fast, flexible, fully managed push notification service that lets you send individual messages or to fan out messages to large numbers of recipients. Amazon SNS makes it simple and cost-effective to send push notifications to mobile device users or email recipients. The service can even send messages to other distributed services.

Ansible is a simple IT automation system that handles configuration management, application deployment, cloud provisioning, ad-hoc task-execution, and multinode orchestration.

Getting Started

We use CloudFormation to bootstrap the following infrastructure:

Component Purpose
AWS CodeCommit repository Git repository where the AMI builder code is stored.
S3 bucket Build artifact repository used by AWS CodePipeline and AWS CodeBuild.
AWS CodeBuild project Executes the AWS CodeBuild instructions contained in the build specification file.
AWS CodePipeline pipeline Orchestrates the AMI build process, triggered by new changes in the AWS CodeCommit repository.
SNS topic Notifies subscribed email addresses when an AMI build is complete.
CloudWatch Events rule Defines how the AMI builder should send a custom event to notify an SNS topic.
Region AMI Builder Launch Template
N. Virginia (us-east-1)
Ireland (eu-west-1)

After launching the CloudFormation template linked here, we will have a pipeline in the AWS CodePipeline console. (Failed at this stage simply means we don’t have any data in our newly created AWS CodeCommit Git repository.)

Next, we will clone the newly created AWS CodeCommit repository.

If this is your first time connecting to a AWS CodeCommit repository, please see instructions in our documentation on Setup steps for HTTPS Connections to AWS CodeCommit Repositories.

To clone the AWS CodeCommit repository (console)

  1. From the AWS Management Console, open the AWS CloudFormation console.
  2. Choose the AMI-Builder-Blogpost stack, and then choose Output.
  3. Make a note of the Git repository URL.
  4. Use git to clone the repository.

For example: git clone https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/AMI-Builder_repo

To clone the AWS CodeCommit repository (CLI)

# Retrieve CodeCommit repo URL
git_repo=$(aws cloudformation describe-stacks --query 'Stacks[0].Outputs[?OutputKey==`GitRepository`].OutputValue' --output text --stack-name "AMI-Builder-Blogpost")

# Clone repository locally
git clone ${git_repo}

Bootstrap the Repo with the AMI Builder Structure

Now that our infrastructure is ready, download all the files and templates required to build the AMI.

Your local Git repo should have the following structure:

├── ami_builder_event.json
├── ansible
├── buildspec.yml
├── cloudformation
├── packer_cis.json

Next, push these changes to AWS CodeCommit, and then let AWS CodePipeline orchestrate the creation of the AMI:

git add .
git commit -m "My first AMI"
git push origin master

AWS CodeBuild Implementation Details

While we wait for the AMI to be created, let’s see what’s changed in our AWS CodeBuild buildspec.yml file:

      - ./packer build -color=false packer_cis.json | tee build.log
      - egrep "${AWS_REGION}\:\sami\-" build.log | cut -d' ' -f2 > ami_id.txt
      # Packer doesn't return non-zero status; we must do that if Packer build failed
      - test -s ami_id.txt || exit 1
      - sed -i.bak "s/<<AMI-ID>>/$(cat ami_id.txt)/g" ami_builder_event.json
      - aws events put-events --entries file://ami_builder_event.json
    - ami_builder_event.json
    - build.log
  discard-paths: yes

In the build phase, we capture Packer output into a file named build.log. In the post_build phase, we take the following actions:

  1. Look up the AMI ID created by Packer and save its findings to a temporary file (ami_id.txt).
  2. Forcefully make AWS CodeBuild to fail if the AMI ID (ami_id.txt) is not found. This is required because Packer doesn’t fail if something goes wrong during the AMI creation process. We have to tell AWS CodeBuild to stop by informing it that an error occurred.
  3. If an AMI ID is found, we update the ami_builder_event.json file and then notify CloudWatch Events that the AMI creation process is complete.
  4. CloudWatch Events publishes a message to an SNS topic. Anyone subscribed to the topic will be notified in email that an AMI has been created.

Lastly, the new artifacts phase instructs AWS CodeBuild to upload files built during the build process (ami_builder_event.json and build.log) to the S3 bucket specified in the Outputs section of the CloudFormation template. These artifacts can then be used as an input artifact in any later stage in AWS CodePipeline.

For information about customizing the artifacts sequence of the buildspec.yml, see the Build Specification Reference for AWS CodeBuild.

CloudWatch Events Implementation Details

CloudWatch Events allow you to extend the AMI builder to not only send email after the AMI has been created, but to hook up any of the supported targets to react to the AMI builder event. This event publication means you can decouple from Packer actions you might take after AMI completion and plug in other actions, as you see fit.

For more information about targets in CloudWatch Events, see the CloudWatch Events API Reference.

In this case, CloudWatch Events should receive the following event, match it with a rule we created through CloudFormation, and publish a message to SNS so that you can receive an email.

Example CloudWatch custom event

            "Source": "com.ami.builder",
            "DetailType": "AmiBuilder",
            "Detail": "{ \"AmiStatus\": \"Created\"}",
            "Resources": [ "ami-12cd5guf" ]

Cloudwatch Events rule

  "detail-type": [
  "source": [
  "detail": {
    "AmiStatus": [

Example SNS message sent in email

    "version": "0",
    "id": "f8bdede0-b9d7...",
    "detail-type": "AmiBuilder",
    "source": "com.ami.builder",
    "account": "<<aws_account_number>>",
    "time": "2017-04-28T17:56:40Z",
    "region": "eu-west-1",
    "resources": ["ami-112cd5guf "],
    "detail": {
        "AmiStatus": "Created"

Packer Implementation Details

In addition to the build specification file, there are differences between the current version of the HashiCorp Packer template (packer_cis.json) and the one used in Part 1.


  "variables": {
    "vpc": "{{env `BUILD_VPC_ID`}}",
    "subnet": "{{env `BUILD_SUBNET_ID`}}",
         “ami_name”: “Prod-CIS-Latest-AMZN-{{isotime \”02-Jan-06 03_04_05\”}}”
  • ami_name: Prefixes a name used by Packer to tag resources during the Builders sequence.
  • vpc and subnet: Environment variables defined by the CloudFormation stack parameters.

We no longer assume a default VPC is present and instead use the VPC and subnet specified in the CloudFormation parameters. CloudFormation configures the AWS CodeBuild project to use these values as environment variables. They are made available throughout the build process.

That allows for more flexibility should you need to change which VPC and subnet will be used by Packer to launch temporary resources.


  "builders": [{
    "ami_name": “{{user `ami_name`| clean_ami_name}}”,
    "tags": {
      "Name": “{{user `ami_name`}}”,
    "run_tags": {
      "Name": “{{user `ami_name`}}",
    "run_volume_tags": {
      "Name": “{{user `ami_name`}}",
    "snapshot_tags": {
      "Name": “{{user `ami_name`}}",
    "vpc_id": "{{user `vpc` }}",
    "subnet_id": "{{user `subnet` }}"

We now have new properties (*_tag) and a new function (clean_ami_name) and launch temporary resources in a VPC and subnet specified in the environment variables. AMI names can only contain a certain set of ASCII characters. If the input in project deviates from the expected characters (for example, includes whitespace or slashes), Packer’s clean_ami_name function will fix it.

For more information, see functions on the HashiCorp Packer website.


  "provisioners": [
        "type": "shell",
        "inline": [
            "sudo pip install ansible"
        "type": "ansible-local",
        "playbook_file": "ansible/playbook.yaml",
        "role_paths": [
        "playbook_dir": "ansible",
        "galaxy_file": "ansible/requirements.yaml"
      "type": "shell",
      "inline": [
        "rm .ssh/authorized_keys ; sudo rm /root/.ssh/authorized_keys"

We used shell provisioner to apply OS patches in Part 1. Now, we use shell to install Ansible on the target machine and ansible-local to import, install, and execute Ansible roles to make our target machine conform to our standards.

Packer uses shell to remove temporary keys before it creates an AMI from the target and temporary EC2 instance.

Ansible Implementation Details

Ansible provides OS patching through a custom Common role that can be easily customized for other tasks.

CIS Benchmark and Cloudwatch Logs are implemented through two Ansible third-party roles that are defined in ansible/requirements.yaml as seen in the Packer template.

The Ansible provisioner uses Ansible Galaxy to download these roles onto the target machine and execute them as instructed by ansible/playbook.yaml.

For information about how these components are organized, see the Playbook Roles and Include Statements in the Ansible documentation.

The following Ansible playbook (ansible</playbook.yaml) controls the execution order and custom properties:

- hosts: localhost
  connection: local
  gather_facts: true    # gather OS info that is made available for tasks/roles
  become: yes           # majority of CIS tasks require root
    # CIS Controls whitepaper:  http://bit.ly/2mGAmUc
    # AWS CIS Whitepaper:       http://bit.ly/2m2Ovrh
    # 3.4.2 and 3.4.3 effectively blocks access to all ports to the machine
    ## This can break automation; ignoring it as there are stronger mechanisms than that
      - 3.4.2 
      - 3.4.3
    # CloudWatch Logs will be used instead of Rsyslog/Syslog-ng
    ## Same would be true if any other software doesn't support Rsyslog/Syslog-ng mechanisms
    # Autofs is not installed in newer versions, let's ignore
      - 1.1.19
    # Cloudwatch Logs role configuration
      - file: /var/log/messages
        group_name: "system_logs"
    - common
    - anthcourtney.cis-amazon-linux
    - dharrisio.aws-cloudwatch-logs-agent

Both third-party Ansible roles can be easily configured through variables (vars). We use Ansible playbook variables to exclude CIS controls that don’t apply to our case and to instruct the CloudWatch Logs agent to stream the /var/log/messages log file to CloudWatch Logs.

If you need to add more OS or application logs, you can easily duplicate the playbook and make changes. The CloudWatch Logs agent will ship configured log messages to CloudWatch Logs.

For more information about parameters you can use to further customize third-party roles, download Ansible roles for the Cloudwatch Logs Agent and CIS Amazon Linux from the Galaxy website.

Committing Changes

Now that Ansible and CloudWatch Events are configured as a part of the build process, commiting any changes to the AWS CodeComit Git Repository will triger a new AMI build process that can be followed through the AWS CodePipeline console.

When the build is complete, an email will be sent to the email address you provided as a part of the CloudFormation stack deployment. The email serves as notification that an AMI has been built and is ready for use.


We used AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, Packer, and Ansible to build a pipeline that continuously builds new, hardened CIS AMIs. We used Amazon SNS so that email addresses subscribed to a SNS topic are notified upon completion of the AMI build.

By treating our AMI creation process as code, we can iterate and track changes over time. In this way, it’s no different from a software development workflow. With that in mind, software patches, OS configuration, and logs that need to be shipped to a central location are only a git commit away.

Next Steps

Here are some ideas to extend this AMI builder:

  • Hook up a Lambda function in Cloudwatch Events to update EC2 Auto Scaling configuration upon completion of the AMI build.
  • Use AWS CodePipeline parallel steps to build multiple Packer images.
  • Add a commit ID as a tag for the AMI you created.
  • Create a scheduled Lambda function through Cloudwatch Events to clean up old AMIs based on timestamp (name or additional tag).
  • Implement Windows support for the AMI builder.
  • Create a cross-account or cross-region AMI build.

Cloudwatch Events allow the AMI builder to decouple AMI configuration and creation so that you can easily add your own logic using targets (AWS Lambda, Amazon SQS, Amazon SNS) to add events or recycle EC2 instances with the new AMI.

If you have questions or other feedback, feel free to leave it in the comments or contribute to the AMI Builder repo on GitHub.

Amazon EC2 Container Service – Launch Recap, Customer Stories, and Code

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-ec2-container-service-launch-recap-customer-stories-and-code/

Today seems like a good time to recap some of the features that we have added to Amazon EC2 Container Service over the last year or so, and to share some customer success stories and code with you! The service makes it easy for you to run any number of Docker containers across a managed cluster of EC2 instances, with full console, API, CloudFormation, CLI, and PowerShell support. You can store your Linux and Windows Docker images in the EC2 Container Registry for easy access.

Launch Recap
Let’s start by taking a look at some of the newest ECS features and some helpful how-to blog posts that will show you how to use them:

Application Load Balancing – We added support for the application load balancer last year. This high-performance load balancing option runs at the application level and allows you to define content-based routing rules. It provides support for dynamic ports and can be shared across multiple services, making it easier for you to run microservices in containers. To learn more, read about Service Load Balancing.

IAM Roles for Tasks – You can secure your infrastructure by assigning IAM roles to ECS tasks. This allows you to grant permissions on a fine-grained, per-task basis, customizing the permissions to the needs of each task. Read IAM Roles for Tasks to learn more.

Service Auto Scaling – You can define scaling policies that scale your services (tasks) up and down in response to changes in demand. You set the desired minimum and maximum number of tasks, create one or more scaling policies, and Service Auto Scaling will take care of the rest. The documentation for Service Auto Scaling will help you to make use of this feature.

Blox – Scheduling, in a container-based environment, is the process of assigning tasks to instances. ECS gives you three options: automated (via the built-in Service Scheduler), manual (via the RunTask function), and custom (via a scheduler that you provide). Blox is an open source scheduler that supports a one-task-per-host model, with room to accommodate other models in the future. It monitors the state of the cluster and is well-suited to running monitoring agents, log collectors, and other daemon-style tasks.

Windows – We launched ECS with support for Linux containers and followed up with support for running Windows Server 2016 Base with Containers.

Container Instance Draining – From time to time you may need to remove an instance from a running cluster in order to scale the cluster down or to perform a system update. Earlier this year we added a set of lifecycle hooks that allow you to better manage the state of the instances. Read the blog post How to Automate Container Instance Draining in Amazon ECS to see how to use the lifecycle hooks and a Lambda function to automate the process of draining existing work from an instance while preventing new work from being scheduled for it.

CI/CD Pipeline with Code* – Containers simplify software deployment and are an ideal target for a CI/CD (Continuous Integration / Continuous Deployment) pipeline. The post Continuous Deployment to Amazon ECS using AWS CodePipeline, AWS CodeBuild, Amazon ECR, and AWS CloudFormation shows you how to build and operate a CI/CD pipeline using multiple AWS services.

CloudWatch Logs Integration – This launch gave you the ability to configure the containers that run your tasks to send log information to CloudWatch Logs for centralized storage and analysis. You simply install the Amazon ECS Container Agent and enable the awslogs log driver.

CloudWatch Events – ECS generates CloudWatch Events when the state of a task or a container instance changes. These events allow you to monitor the state of the cluster using a Lambda function. To learn how to capture the events and store them in an Elasticsearch cluster, read Monitor Cluster State with Amazon ECS Event Stream.

Task Placement Policies – This launch provided you with fine-grained control over the placement of tasks on container instances within clusters. It allows you to construct policies that include cluster constraints, custom constraints (location, instance type, AMI, and attribute), placement strategies (spread or bin pack) and to use them without writing any code. Read Introducing Amazon ECS Task Placement Policies to see how to do this!

EC2 Container Service in Action
Many of our customers from large enterprises to hot startups and across all industries, such as financial services, hospitality, and consumer electronics, are using Amazon ECS to run their microservices applications in production. Companies such as Capital One, Expedia, Okta, Riot Games, and Viacom rely on Amazon ECS.

Mapbox is a platform for designing and publishing custom maps. The company uses ECS to power their entire batch processing architecture to collect and process over 100 million miles of sensor data per day that they use for powering their maps. They also optimize their batch processing architecture on ECS using Spot Instances. The Mapbox platform powers over 5,000 apps and reaches more than 200 million users each month. Its backend runs on ECS allowing it to serve more than 1.3 billion requests per day. To learn more about their recent migration to ECS, read their recent blog post, We Switched to Amazon ECS, and You Won’t Believe What Happened Next.

Travel company Expedia designed their backends with a microservices architecture. With the popularization of Docker, they decided they would like to adopt Docker for its faster deployments and environment portability. They chose to use ECS to orchestrate all their containers because it had great integration with the AWS platform, everything from ALB to IAM roles to VPC integration. This made ECS very easy to use with their existing AWS infrastructure. ECS really reduced the heavy lifting of deploying and running containerized applications. Expedia runs 75% of all apps on AWS in ECS allowing it to process 4 billion requests per hour. Read Kuldeep Chowhan‘s blog post, How Expedia Runs Hundreds of Applications in Production Using Amazon ECS to learn more.

Realtor.com provides home buyers and sellers with a comprehensive database of properties that are currently for sale. Their move to AWS and ECS has helped them to support business growth that now numbers 50 million unique monthly users who drive up to 250,000 requests per second at peak times. ECS has helped them to deploy their code more quickly while increasing utilization of their cloud infrastructure. Read the Realtor.com Case Study to learn more about how they use ECS, Kinesis, and other AWS services.

Instacart talks about how they use ECS to power their same-day grocery delivery service:

Capital One talks about how they use ECS to automate their operations and their infrastructure management:

Clever developers are using ECS as a base for their own work. For example:

Rack is an open source PaaS (Platform as a Service). It focuses on infrastructure automation, runs in an isolated VPC, and uses a single-tenant build service for security.

Empire is also an open source PaaS. It provides a Heroku-like workflow and is targeted at small and medium sized startups, with an emphasis on microservices.

Cloud Container Cluster Visualizer (c3vis) helps to visualize resource utilization within ECS clusters:

Stay Tuned
We have plenty of new features in the works for ECS, so stay tuned!



Building a Secure Cross-Account Continuous Delivery Pipeline

Post Syndicated from Anuj Sharma original https://aws.amazon.com/blogs/devops/aws-building-a-secure-cross-account-continuous-delivery-pipeline/

Most organizations create multiple AWS accounts because they provide the highest level of resource and security isolation. In this blog post, I will discuss how to use cross account AWS Identity and Access Management (IAM) access to orchestrate continuous integration and continuous deployment.

Do I need multiple accounts?

If you answer “yes” to any of the following questions you should consider creating more AWS accounts:

  • Does your business require administrative isolation between workloads? Administrative isolation by account is the most straightforward way to grant independent administrative groups different levels of administrative control over AWS resources based on workload, development lifecycle, business unit (BU), or data sensitivity.
  • Does your business require limited visibility and discoverability of workloads? Accounts provide a natural boundary for visibility and discoverability. Workloads cannot be accessed or viewed unless an administrator of the account enables access to users managed in another account.
  • Does your business require isolation to minimize blast radius? Separate accounts help define boundaries and provide natural blast-radius isolation to limit the impact of a critical event such as a security breach, an unavailable AWS Region or Availability Zone, account suspensions, and so on.
  • Does your business require a particular workload to operate within AWS service limits without impacting the limits of another workload? You can use AWS account service limits to impose restrictions on a business unit, development team, or project. For example, if you create an AWS account for a project group, you can limit the number of Amazon Elastic Compute Cloud (Amazon EC2) or high performance computing (HPC) instances that can be launched by the account.
  • Does your business require strong isolation of recovery or auditing data? If regulatory requirements require you to control access and visibility to auditing data, you can isolate the data in an account separate from the one where you run your workloads (for example, by writing AWS CloudTrail logs to a different account).
  • Do your workloads depend on specific instance reservations to support high availability (HA) or disaster recovery (DR) capacity requirements? Reserved Instances (RIs) ensure reserved capacity for services such as Amazon EC2 and Amazon Relational Database Service (Amazon RDS) at the individual account level.

Use case

The identities in this use case are set up as follows:

  • DevAccount

Developers check the code into an AWS CodeCommit repository. It stores all the repositories as a single source of truth for application code. Developers have full control over this account. This account is usually used as a sandbox for developers.

  • ToolsAccount

A central location for all the tools related to the organization, including continuous delivery/deployment services such as AWS CodePipeline and AWS CodeBuild. Developers have limited/read-only access in this account. The Operations team has more control.

  • TestAccount

Applications using the CI/CD orchestration for test purposes are deployed from this account. Developers and the Operations team have limited/read-only access in this account.

  • ProdAccount

Applications using the CI/CD orchestration tested in the ToolsAccount are deployed to production from this account. Developers and the Operations team have limited/read-only access in this account.


In this solution, we will check in sample code for an AWS Lambda function in the Dev account. This will trigger the pipeline (created in AWS CodePipeline) and run the build using AWS CodeBuild in the Tools account. The pipeline will then deploy the Lambda function to the Test and Prod accounts.



  1. Clone this repository. It contains the AWS CloudFormation templates that we will use in this walkthrough.
git clone https://github.com/awslabs/aws-refarch-cross-account-pipeline.git
  1. Follow the instructions in the repository README to push the sample AWS Lambda application to an AWS CodeCommit repository in the Dev account.
  2. Install the AWS Command Line Interface as described here. To prepare your access keys or assume-role to make calls to AWS, configure the AWS CLI as described here.


Note: Follow the steps in the order they’re written. Otherwise, the resources might not be created correctly.

  1. In the Tools account, deploy this CloudFormation template. It will create the customer master keys (CMK) in AWS Key Management Service (AWS KMS), grant access to Dev, Test, and Prod accounts to use these keys, and create an Amazon S3 bucket to hold artifacts from AWS CodePipeline.
aws cloudformation deploy --stack-name pre-reqs \
--template-file ToolsAcct/pre-reqs.yaml --parameter-overrides \

In the output section of the CloudFormation console, make a note of the Amazon Resource Number (ARN) of the CMK and the S3 bucket name. You will need them in the next step.

  1. In the Dev account, which hosts the AWS CodeCommit repository, deploy this CloudFormation template. This template will create the IAM roles, which will later be assumed by the pipeline running in the Tools account. Enter the AWS account number for the Tools account and the CMK ARN.
aws cloudformation deploy --stack-name toolsacct-codepipeline-role \
--template-file DevAccount/toolsacct-codepipeline-codecommit.yaml \
--capabilities CAPABILITY_NAMED_IAM \
--parameter-overrides ToolsAccount=ENTER_TOOLS_ACCT CMKARN=FROM_1st_Step
  1. In the Test and Prod accounts where you will deploy the Lambda code, execute this CloudFormation template. This template creates IAM roles, which will later be assumed by the pipeline to create, deploy, and update the sample AWS Lambda function through CloudFormation.
aws cloudformation deploy --stack-name toolsacct-codepipeline-cloudformation-role \
--template-file TestAccount/toolsacct-codepipeline-cloudformation-deployer.yaml \
--capabilities CAPABILITY_NAMED_IAM \
--parameter-overrides ToolsAccount=ENTER_TOOLS_ACCT CMKARN=FROM_1st_STEP  \
  1. In the Tools account, which hosts AWS CodePipeline, execute this CloudFormation template. This creates a pipeline, but does not add permissions for the cross accounts (Dev, Test, and Prod).
aws cloudformation deploy --stack-name sample-lambda-pipeline \
--template-file ToolsAcct/code-pipeline.yaml \
--parameter-overrides DevAccount=ENTER_DEV_ACCT TestAccount=ENTER_TEST_ACCT \
S3Bucket=FROM_1st_STEP--capabilities CAPABILITY_NAMED_IAM
  1. In the Tools account, execute this CloudFormation template, which give access to the role created in step 4. This role will be assumed by AWS CodeBuild to decrypt artifacts in the S3 bucket. This is the same template that was used in step 1, but with different parameters.
aws cloudformation deploy --stack-name pre-reqs \
--template-file ToolsAcct/pre-reqs.yaml \
--parameter-overrides CodeBuildCondition=true
  1. In the Tools account, execute this CloudFormation template, which will do the following:
    1. Add the IAM role created in step 2. This role is used by AWS CodePipeline in the Tools account for checking out code from the AWS CodeCommit repository in the Dev account.
    2. Add the IAM role created in step 3. This role is used by AWS CodePipeline in the Tools account for deploying the code package to the Test and Prod accounts.
aws cloudformation deploy --stack-name sample-lambda-pipeline \
--template-file ToolsAcct/code-pipeline.yaml \
--parameter-overrides CrossAccountCondition=true \

What did we just do?

  1. The pipeline created in step 4 and updated in step 6 checks out code from the AWS CodeCommit repository. It uses the IAM role created in step 2. The IAM role created in step 4 has permissions to assume the role created in step 2. This role will be assumed by AWS CodeBuild to decrypt artifacts in the S3 bucket, as described in step 5.
  2. The IAM role created in step 2 has permission to check out code. See here.
  3. The IAM role created in step 2 also has permission to upload the checked-out code to the S3 bucket created in step 1. It uses the KMS keys created in step 1 for server-side encryption.
  4. Upon successfully checking out the code, AWS CodePipeline triggers AWS CodeBuild. The AWS CodeBuild project created in step 4 is configured to use the CMK created in step 1 for cryptography operations. See here. The AWS CodeBuild role is created later in step 4. In step 5, access is granted to the AWS CodeBuild role to allow the use of the CMK for cryptography.
  5. AWS CodeBuild uses pip to install any libraries for the sample Lambda function. It also executes the aws cloudformation package command to create a Lambda function deployment package, uploads the package to the specified S3 bucket, and adds a reference to the uploaded package to the CloudFormation template. See here.
  6. Using the role created in step 3, AWS CodePipeline executes the transformed CloudFormation template (received as an output from AWS CodeBuild) in the Test account. The AWS CodePipeline role created in step 4 has permissions to assume the IAM role created in step 3, as described in step 5.
  7. The IAM role assumed by AWS CodePipeline passes the role to an IAM role that can be assumed by CloudFormation. AWS CloudFormation creates and updates the Lambda function using the code that was built and uploaded by AWS CodeBuild.

This is what the pipeline looks like using the sample code:


Creating multiple AWS accounts provides the highest degree of isolation and is appropriate for a number of use cases. However, keeping a centralized account to orchestrate continuous delivery and deployment using AWS CodePipeline and AWS CodeBuild eliminates the need to duplicate the delivery pipeline. You can secure the pipeline through the use of cross account IAM roles and the encryption of artifacts using AWS KMS. For more information, see Providing Access to an IAM User in Another AWS Account That You Own in the IAM User Guide.


New- Introducing AWS CodeStar – Quickly Develop, Build, and Deploy Applications on AWS

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/new-aws-codestar/

It wasn’t too long ago that I was on a development team working toward completing a software project by a release deadline and facing the challenges most software teams face today in developing applications. Challenges such as new project environment setup, team member collaboration, and the day-to-day task of keeping track of the moving pieces of code, configuration, and libraries for each development build. Today, with companies’ need to innovate and get to market faster, it has become essential to make it easier and more efficient for development teams to create, build, and deploy software.

Unfortunately, many organizations face some key challenges in their quest for a more agile, dynamic software development process. The first challenge most new software projects face is the lengthy setup process that developers have to complete before they can start coding. This process may include setting up of IDEs, getting access to the appropriate code repositories, and/or identifying infrastructure needed for builds, tests, and production.

Collaboration is another challenge that most development teams may face. In order to provide a secure environment for all members of the project, teams have to frequently set up separate projects and tools for various team roles and needs. In addition, providing information to all stakeholders about updates on assignments, the progression of development, and reporting software issues can be time-consuming.

Finally, most companies desire to increase the speed of their software development and reduce the time to market by adopting best practices around continuous integration and continuous delivery. Implementing these agile development strategies may require companies to spend time in educating teams on methodologies and setting up resources for these new processes.

Now Presenting: AWS CodeStar

To help development teams ease the challenges of building software while helping to increase the pace of releasing applications and solutions, I am excited to introduce AWS CodeStar.

AWS CodeStar is a cloud service designed to make it easier to develop, build, and deploy applications on AWS by simplifying the setup of your entire development project. AWS CodeStar includes project templates for common development platforms to enable provisioning of projects and resources for coding, building, testing, deploying, and running your software project.

The key benefits of the AWS CodeStar service are:

  • Easily create new projects using templates for Amazon EC2, AWS Elastic Beanstalk, or AWS Lambda using five different programming languages; JavaScript, Java, Python, Ruby, and PHP. By selecting a template, the service will provision the underlying AWS services needed for your project and application.
  • Unified experience for access and security policies management for your entire software team. Projects are automatically configured with appropriate IAM access policies to ensure a secure application environment.
  • Pre-configured project management dashboard for tracking various activities, such as code commits, build results, deployment activity and more.
  • Running sample code to help you get up and running quickly enabling you to use your favorite IDEs, like Visual Studio, Eclipse, or any code editor that supports Git.
  • Automated configuration of a continuous delivery pipeline for each project using AWS CodeCommit, AWS CodeBuild, AWS CodePipeline, and AWS CodeDeploy.
  • Integration with Atlassian JIRA Software for issue management and tracking directly from the AWS CodeStar console

With AWS CodeStar, development teams can build an agile software development workflow that now only increases the speed in which teams and deploy software and bug fixes, but also enables developers to build software that is more inline with customers’ requests and needs.

An example of a responsive development workflow using AWS CodeStar is shown below:

Journey Into AWS CodeStar

Now that you know a little more about the AWS CodeStar service, let’s jump into using the service to set up a web application project. First, I’ll go to into the AWS CodeStar console and click the Start a project button.

If you have not setup the appropriate IAM permissions, AWS CodeStar will show a dialog box requesting permission to administer AWS resources on your behalf. I will click the Yes, grant permissions button to grant AWS CodeStar the appropriate permissions to other AWS resources.

However, I received a warning that I do not have administrative permissions to AWS CodeStar as I have not applied the correct policies to my IAM user. If you want to create projects in AWS CodeStar, you must apply the AWSCodeStarFullAccess managed policy to your IAM user or have an IAM administrative user with full permissions for all AWS services.

Now that I have added the aforementioned permissions in IAM, I can now use the service to create a project. To start, I simply click on the Create a new project button and I am taken to the hub of the AWS CodeStar service.

At this point, I am presented with over twenty different AWS CodeStar project templates to choose from in order to provision various environments for my software development needs. Each project template specifies the AWS Service used to deploy the project, the supported programming language, and a description of the type of development solution implemented. AWS CodeStar currently supports the following AWS Services: Amazon EC2, AWS Lambda, and AWS Elastic Beanstalk. Using preconfigured AWS CloudFormation templates, these project templates can create software development projects like microservices, Alexa skills, web applications, and more with a simple click of a button.

For my first AWS CodeStar project, I am going to build a serverless web application using Node.js and AWS Lambda using the Node.js/AWS Lambda project template.

You will notice for this template AWS CodeStar sets up all of the tools and services you need for a development project including an AWS CodePipeline connected with the services; AWS CodeBuild, AWS CloudFormation, and Amazon CloudWatch. I’ll name my new AWS CodeStar project, TaraWebProject, and click Create Project.

Since this is my first time creating an AWS CodeStar, I will see a dialog that asks about the setup of my AWS CodeStar user settings. I’ll type Tara in the textbox for the Display Name and add my email address in the Email textbox. This information is how I’ll appear to others in the project.

The next step is to select how I want to edit my project code. I have decided to edit my TaraWebProject project code using the Visual Studio IDE. With Visual Studio, it will be essential for me to configure it to use the AWS Toolkit for Visual Studio 2015 to access AWS resources while editing my project code. On this screen, I am also presented with the link to the AWS CodeCommit Git repository that AWS CodeStar configured for my project.

The provisioning and tool setup for my software development project is now complete. I’m presented with the AWS CodeStar dashboard for my software project, TaraWebProject, which allows me to manage the resources for the project. This includes the management of resources, such as code commits, team membership and wiki, continuous delivery pipeline, Jira issue tracking, project status and other applicable project resources.

What is really cool about AWS CodeStar for me is that it provides a working sample project from which I can start the development of my serverless web application. To view the sample of my new web application, I will go to the Application endpoints section of the dashboard and click the link provided.

A new browser window will open and will display the sample web application AWS CodeStar generated to help jumpstart my development. A cool feature of the sample application is that the background of the sample app changes colors based on the time of day.

Let’s now take a look at the code used to build the sample website. In order to view the code, I will back to my TaraWebProject dashboard in the AWS CodeStar console and select the Code option from the sidebar menu.

This takes me to the tarawebproject Git repository in the AWS CodeCommit console. From here, I can manually view the code for my web application, the commits made in the repo, the comparison of commits or branches, as well as, create triggers in response to my repo events.

This provides a great start for me to start developing my AWS hosted web application. Since I opted to integrate AWS CodeStar with Visual Studio, I can update my web application by using the IDE to make code changes that will be automatically included in the TaraWebProject every time I commit to the provisioned code repository.

You will notice that on the AWS CodeStar TaraWebProject dashboard, there is a message about connecting the tools to my project repository in order to work on the code. Even though I have already selected Visual Studio as my IDE of choice, let’s click on the Connect Tools button to review the steps to connecting to this IDE.

Again, I will see a screen that will allow me to choose which IDE: Visual Studio, Eclipse, or Command Line tool that I wish to use to edit my project code. It is important for me to note that I have the option to change my IDE choice at any time while working on my development project. Additionally, I can connect to my Git AWS CodeCommit repo via HTTPS and SSH. To retrieve the appropriate repository URL for each protocol, I only need to select the Code repository URL dropdown and select HTTPS or SSH and copy the resulting URL from the text field.

After selecting Visual Studio, CodeStar takes me to the steps needed in order to integrate with Visual Studio. This includes downloading the AWS Toolkit for Visual Studio, connecting the Team Explorer to AWS CodeStar via AWS CodeCommit, as well as, how to push changes to the repo.

After successfully connecting Visual Studio to my AWS CodeStar project, I return to the AWS CodeStar TaraWebProject dashboard to start managing the team members working on the web application with me. First, I will select the Setup your team tile so that I can go to the Project Team page.

On my TaraWebProject Project Team page, I’ll add a team member, Jeff, by selecting the Add team member button and clicking on the Select user dropdown. Team members must be IAM users in my account, so I’ll click on the Create new IAM user link to create an IAM accounts for Jeff.

When the Create IAM user dialog box comes up, I will enter an IAM user name, Display name, and Email Address for the team member, in this case, Jeff Barr. There are three types of project roles that Jeff can be granted, Owner, Contributor, or Viewer. For the TaraWebProject application, I will grant him the Contributor project role and allow him to have remote access by select the Remote access checkbox. Now I will create Jeff’s IAM user account by clicking the Create button.

This brings me to the IAM console to confirm the creation of the new IAM user. After reviewing the IAM user information and the permissions granted, I will click the Create user button to complete the creation of Jeff’s IAM user account for TaraWebProject.

After successfully creating Jeff’s account, it is important that I either send Jeff’s login credentials to him in email or download the credentials .csv file, as I will not be able to retrieve these credentials again. I would need to generate new credentials for Jeff if I leave this page without obtaining his current login credentials. Clicking the Close button returns me to the AWS CodeStar console.

Now I can complete adding Jeff as a team member in the TaraWebProject by selecting the JeffBarr-WebDev IAM role and clicking the Add button.

I’ve successfully added Jeff as a team member to my AWS CodeStar project, TaraWebProject enabling team collaboration in building the web application.

Another thing that I really enjoy about using the AWS CodeStar service is I can monitor all of my project activity right from my TaraWebProject dashboard. I can see the application activity, any recent code commits, and track the status of any project actions, such as the results of my build, any code changes, and the deployments from in one comprehensive dashboard. AWS CodeStar ties the dashboard into Amazon CloudWatch with the Application activity section, provides data about the build and deployment status in the Continuous Deployment section with AWS CodePipeline, and shows the latest Git code commit with AWS CodeCommit in the Commit history section.


In my journey of the AWS CodeStar service, I created a serverless web application that provisioned my entire development toolchain for coding, building, testing, and deployment for my TaraWebProject software project using AWS services. Amazingly, I have yet to scratch the surface of the benefits of using AWS CodeStar to manage day-to-day software development activities involved in releasing applications.

AWS CodeStar makes it easy for you to quickly develop, build, and deploy applications on AWS. AWS CodeStar provides a unified user interface, enabling you to easily manage your software development activities in one place. AWS CodeStar allows you to choose from various templates to setting up projects using AWS Lambda, Amazon EC2, or AWS Elastic Beanstalk. It comes pre-configured with a project management dashboard, an automated continuous delivery pipeline, and a Git code repository using AWS CodeCommit, AWS CodeBuild, AWS CodePipeline, and AWS CodeDeploy allowing developers to implement modern agile software development best practices. Each AWS CodeStar project gives developers a head start in development by providing working code samples that can be used with popular IDEs that support Git. Additionally, AWS CodeStar provides out of the box integration with Atlassian JIRA Software providing a project management and issue tracking system for your software team directly from the AWS CodeStar console.

You can get started using the AWS CodeStar service for developing new software projects on AWS today. Learn more by reviewing the AWS CodeStar product page and the AWS CodeStar user guide documentation.


ServerlessConf and More!

Post Syndicated from Bryan Liston original https://aws.amazon.com/blogs/compute/serverless-conference-and-more/

ServerlessConf Austin

ServerlessConf Austin is just around the corner! April 26-28th come join us in Austin at the Zach Topfer Theater. Our very own Tim Wagner, Chris Munns and Randall Hunt will be giving some great talks.

Serverlessconf is a community led conference focused on sharing experiences building applications using serverless architectures. Serverless architectures enable developers to express their creativity and focus on user needs instead of spending time managing infrastructure and servers.

Tim Wagner, GM Serverless Applications, will be giving a keynote on Friday the 28th, do not miss this!!!
Chris Munns, Sr. Developer Advocate, will be giving an excellent talk on CI/CD for Serverless Applications.

Check out the full agenda here!

AWS Serverless Updates and More!

Incase you’ve missed out lately on some of our new content such as our new YouTube series “Coding with Sam”, or our new Serverless Special AWS Podcast Series, check them out!

Meet SAM!

We’ve recently come out with a new branding for AWS SAM (Serverless Application Model), so please join me in welcoming SAM the Squirrel!

The goal of AWS SAM is to define a standard application model for serverless applications.

Once again, don’t hesitate to reach out if you have questions, comments, or general feedback.


Implementing DevSecOps Using AWS CodePipeline

Post Syndicated from Ramesh Adabala original https://aws.amazon.com/blogs/devops/implementing-devsecops-using-aws-codepipeline/

DevOps is a combination of cultural philosophies, practices, and tools that emphasizes collaboration and communication between software developers and IT infrastructure teams while automating an organization’s ability to deliver applications and services rapidly, frequently, and more reliably.

CI/CD stands for continuous integration and continuous deployment. These concepts represent everything related to automation of application development and the deployment pipeline — from the moment a developer adds a change to a central repository until that code winds up in production.

DevSecOps covers security of and in the CI/CD pipeline, including automating security operations and auditing. The goals of DevSecOps are to:

  • Embed security knowledge into DevOps teams so that they can secure the pipelines they design and automate.
  • Embed application development knowledge and automated tools and processes into security teams so that they can provide security at scale in the cloud.

The Security Cloud Adoption Framework (CAF) whitepaper provides prescriptive controls to improve the security posture of your AWS accounts. These controls are in line with a DevOps blog post published last year about the control-monitor-fix governance model.

Security CAF controls are grouped into four categories:

  • Directive: controls establish the governance, risk, and compliance models on AWS.
  • Preventive: controls protect your workloads and mitigate threats and vulnerabilities.
  • Detective: controls provide full visibility and transparency over the operation of your deployments in AWS.
  • Responsive: controls drive remediation of potential deviations from your security baselines.

To embed the DevSecOps discipline in the enterprise, AWS customers are automating CAF controls using a combination of AWS and third-party solutions.

In this blog post, I will show you how to use a CI/CD pipeline to automate preventive and detective security controls. I’ll use an example that show how you can take the creation of a simple security group through the CI/CD pipeline stages and enforce security CAF controls at various stages of the deployment. I’ll use AWS CodePipeline to orchestrate the steps in a continuous delivery pipeline.

These resources are being used in this example:

  • An AWS CloudFormation template to create the demo pipeline.
  • A Lambda function to perform the static code analysis of the CloudFormation template.
  • A Lambda function to perform dynamic stack validation for the security groups in scope.
  • An S3 bucket as the sample code repository.
  • An AWS CloudFormation source template file to create the security groups.
  • Two VPCs to deploy the test and production security groups.

These are the high-level security checks enforced by the pipeline:

  • During the Source stage, static code analysis for any open security groups. The pipeline will fail if there are any violations.
  • During the Test stage, dynamic analysis to make sure port 22 (SSH) is open only to the approved IP CIDR range. The pipeline will fail if there are any violations.



These are the pipeline stages:

1. Source stage: In this example, the pipeline gets the CloudFormation code that creates the security group from S3, the code repository service.

This stage passes the CloudFormation template and pipeline name to a Lambda function, CFNValidateLambda. This function performs the static code analysis. It uses the regular expression language to find patterns and identify security group policy violations. If it finds violations, then Lambda fails the pipeline and includes the violation details.

Here is the regular expression that Lambda function using for static code analysis of the open SSH port:


2. Test stage: After the static code analysis is completed successfully, the pipeline executes the following steps:

a. Create stack: This step creates the stack in the test VPC, as described in the test configuration.

b. Stack validation: This step triggers the StackValidationLambda Lambda function. It passes the stack name and pipeline name in the event parameters. Lambda validates the security group for the following security controls. If it finds violations, then Lambda deletes the stack, stops the pipeline, and returns an error message.

The following is the sample Python code used by AWS Lambda to check if the SSH port is open to the approved IP CIDR range (in this example,

for n in regions:
    client = boto3.client('ec2', region_name=n)
    response = client.describe_security_groups(
        Filters=[{'Name': 'tag:aws:cloudformation:stack-name', 'Values': [stackName]}])
    for m in response['SecurityGroups']:
        if "" not in str(m['IpPermissions']):
            for o in m['IpPermissions']:
                    if int(o['FromPort']) <= 22 <= int(o['ToPort']):
                        result = False
                        failReason = "Found Security Group with port 22 open to the wrong source IP range"
                    if str(o['IpProtocol']) == "-1":
                        result = False
                        failReason = "Found Security Group with port 22 open to the wrong source IP range"
                        offenders.append(str(n) + " : " + str(m['GroupId']))

c. Approve test stack: This step creates a manual approval task for stack review. This step could be eliminated for automated deployments.

d. Delete test stack: After all the stack validations are successfully completed, this step deletes the stack in the test environment to avoid unnecessary costs.

3. Production stage: After the static and dynamic security checks are completed successfully, this stage creates the stack in the production VPC using the production configuration supplied in the template.

a. Create change set: This step creates the change set for the resources in the scope.

b. Execute change set: This step executes the change set and creates/updates the security group in the production VPC.


Source code and CloudFormation template

You’ll find the source code at https://github.com/awslabs/automating-governance-sample/tree/master/DevSecOps-Blog-Code

basic-sg-3-cfn.json creates the pipeline in AWS CodePipeline with all the stages previously described. It also creates the static code analysis and stack validation Lambda functions.

The CloudFormation template points to a shared S3 bucket. The codepipeline-lambda.zip file contains the Lambda functions. Before you run the template, upload the zip file to your S3 bucket and then update the CloudFormation template to point to your S3 bucket location.

The CloudFormation template uses the codepipe-single-sg.zip file, which contains the sample security group and test and production configurations. Update these configurations with your VPC details, and then upload the modified zip file to your S3 bucket.

Update these parts of the code to point to your S3 bucket:

 "S3Bucket": {
      "Default": "codepipeline-devsecops-demo",
      "Description": "The name of the S3 bucket that contains the source artifact, which must be in the same region as this stack",
      "Type": "String"
    "SourceS3Key": {
      "Default": "codepipe-single-sg.zip",
      "Description": "The file name of the source artifact, such as myfolder/myartifact.zip",
      "Type": "String"
    "LambdaS3Key": {
      "Default": "codepipeline-lambda.zip",
      "Description": "The file name of the source artifact of the Lambda code, such as myfolder/myartifact.zip",
      "Type": "String"
	"OutputS3Bucket": {
      "Default": "codepipeline-devsecops-demo",
      "Description": "The name of the output S3 bucket that contains the processed artifact, which must be in the same region as this stack",
      "Type": "String"

After the stack is created, AWS CodePipeline executes the pipeline and starts deploying the sample CloudFormation template. In the default template, security groups have wide-open ports (, so the pipeline execution will fail. Update the CloudFormation template in codepipe-single-sg.zip with more restrictive ports and then upload the modified zip file to S3 bucket. Open the AWS CodePipeline console, and choose the Release Change button. This time the pipeline will successfully create the security groups.


You could expand the security checks in the pipeline to include other AWS resources, not just security groups. The following table shows the sample controls you could enforce in the pipeline using the static and dynamic analysis Lambda functions.

If you have feedback about this post, please add it to the Comments section below. If you have questions about implementing the example used in this post, please open a thread on the Developer Tools forum.

AWS Week in Review – March 6, 2017

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-week-in-review-march-6-2017/

This edition includes all of our announcements, content from all of our blogs, and as much community-generated AWS content as I had time for!


March 6


March 7


March 8


March 9


March 10


March 11


March 12



Announcing the AWS Health Tools Repository

Post Syndicated from Ana Visneski original https://aws.amazon.com/blogs/aws/announcing-the-aws-health-tools-repository/

Tipu Qureshi and Ram Atur join us today with really cool news about a Git repository for AWS Health / Personal Health Dashboard.


Today, we’re happy to release the AWS Health Tools repository, a community-based source of tools to automate remediation actions and customize Health alerts.

The AWS Health service provides personalized information about events that can affect your AWS infrastructure, guides you through scheduled changes, and accelerates the troubleshooting of issues that affect your AWS resources and accounts.  The AWS Health API also powers the Personal Health Dashboard, which gives you a personalized view into the performance and availability of the AWS services underlying your AWS resources. You can use Amazon CloudWatch Events to detect and react to changes in the status of AWS Personal Health Dashboard (AWS Health) events.

AWS Health Tools takes advantage of the integration of AWS Health, Amazon CloudWatch Events and AWS Lambda to implement customized automation in response to events regarding your AWS infrastructure. As an example, you can use AWS Health Tools to pause your deployments that are part of AWS CodePipeline when a CloudWatch event is generated in response to an AWS Health issue.


The AWS Health Tools repository empowers customers to effectively utilize AWS Health events by tapping in to the collective ingenuity and expertise of the AWS community. The repository is free, public, and hosted on an independent platform. Furthermore, the repository contains full source code, allowing you to learn and contribute. We look forward to working together to leverage the combined wisdom and lessons learned by our experts and experts in the broader AWS user base.

Here’s a sample of the AWS Health tools that you now have access to:

To get started using these tools in your AWS account, see the readme file on GitHub. We encourage you to use this repository to share with the AWS community the AWS Health Tools you have written

-Tipu Qureshi and Ram Atur

AWS Organizations – Policy-Based Management for Multiple AWS Accounts

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-organizations-policy-based-management-for-multiple-aws-accounts/

Over the years I have found that many of our customers are managing multiple AWS accounts. This situation can arise for several reasons. Sometimes they adopt AWS incrementally and organically, with individual teams and divisions making the move to cloud computing on a decentralized basis. Other companies grow through mergers and acquisitions and take on responsibility for existing accounts. Still others routinely create multiple accounts in order to meet strict guidelines for compliance or to create a very strong isolation barrier between applications, sometimes going so far as to use distinct accounts for development, testing, and production.

As these accounts proliferate, our customers find that they would like to manage them in a scalable fashion. Instead of dealing with a multitude of per-team, per-division, or per-application accounts, they have asked for a way to define access control policies that can be easily applied to all, some, or individual accounts. In many cases, these customers are also interested in additional billing and cost management, and would like to be able to control how AWS pricing benefits such as volume discounts and Reserved Instances are applied to their accounts.

AWS Organizations Emerges from Preview
To support this increasingly important use case, we are moving AWS Organizations from Preview to General Availability today. You can use Organizations to centrally manage multiple AWS accounts, with the ability to create a hierarchy of Organizational Units (OUs), assign each account to an OU, define policies, and then apply them to the entire hierarchy, to select OUs, or to specific accounts. You can invite existing AWS accounts to join your organization and you can also create new accounts. All of these functions are available from the AWS Management Console, the AWS Command Line Interface (CLI), and through the AWS Organizations API.

Here are some important terms and concepts that will help you to understand Organizations (this assumes that you are the all-powerful, overall administrator of your organization’s AWS accounts, and that you are responsible for the Master account):

An Organization is a consolidated set of AWS accounts that you manage. Newly-created Organizations offer the ability to implement sophisticated, account-level controls such as Service Control Policies. This allows Organization administrators to manage lists of allowed and blocked AWS API functions and resources that place guard rails on individual accounts. For example, you could give your advanced R&D team access to a wide range of AWS services, and then be a bit more cautious with your mainstream development and test accounts. Or, on the production side, you could allow access only to AWS services that are eligible for HIPAA compliance.

Some of our existing customers use a feature of AWS called Consolidated Billing. This allows them to select a Payer Account which rolls up account activity from multiple AWS Accounts into a single invoice and provides a centralized way of tracking costs. With this launch, current Consolidated Billing customers now have an Organization that provides all the capabilities of Consolidated Billing, but by default does not have the new features (like Service Control Policies) we’re making available today. These customers can easily enable the full features of AWS Organizations. This is accomplished by first enabling the use of all AWS Organization features from the Organization’s master account and then having each member account authorize this change to the Organization. Finally, we will continue to support creating new Organizations that support only the Consolidated Billing capabilities. Customers that wish to only use the centralized billing features can continue to do so, without allowing the master account administrators to enforce the advanced policy controls on member accounts in the Organization.

An AWS account is a container for AWS resources.

The Master account is the management hub for the Organization and is also the payer account for all of the AWS accounts in the Organization. The Master account can invite existing accounts to join the Organization, and can also create new accounts.

Member accounts are the non-Master accounts in the Organization.

An Organizational Unit (OU) is a container for a set of AWS accounts. OUs can be arranged into a hierarchy that can be up to five levels deep. The top of the hierarchy of OUs is also known as the Administrative Root.

A Service Control Policy (SCP) is a set of controls that the Organization’s Master account can apply to the Organization, selected OUs, or to selected accounts. When applied to an OU, the SCP applies to the OU and to any other OUs beneath it in the hierarchy. The SCP or SCPs in effect for a member account specify the permissions that are granted to the root user for the account. Within the account, IAM users and roles can be used as usual. However, regardless of how permissive the user or the role might be, the effective set of permissions will never extend beyond what is defined in the SCP. You can use this to exercise fine-grained control over access to AWS services and API functions at the account level.

An Invitation is used to ask an AWS account to join an Organization. It must be accepted within 15 days, and can be extended via email address or account ID. Up to 20 Invitations can be outstanding at any given time. The invitation-based model allows you to start from a Master account and then bring existing accounts into the fold. When an Invitation is accepted, the account joins the Organization and all applicable policies become effective. Once the account has joined the Organization, you can move it to the proper OU.

AWS Organizations is appropriate when you want to create strong isolation boundaries between the AWS accounts that you manage. However, keep in mind that AWS resources (EC2 instances, S3 buckets, and so forth) exist within a particular AWS account and cannot be moved from one account to another. You do have access to many different cross-account AWS features including VPC peering, AMI sharing, EBS snapshot sharing, RDS snapshot sharing, cross-account email sending, delegated access via IAM roles, cross-account S3 bucket permissions, and cross-acount access in the AWS Management Console.

Like consolidated billing, AWS Organizations also provides several benefits when it comes to the use of EC2 and RDS Reserved Instances. For billing purposes, all of the accounts in the Organization are treated as if they are one account and can receive the hourly cost benefit of an RI purchased by any other account in the same Organization (in order for this benefit to be applied as expected, the Availability Zone and other attributes of the RI must match the attributes of the EC2 or RDS instance).

Creating an Organization
Let’s create an Organization from the Console, create some Organizational Units, and then create some accounts. I start by clicking on Create organization:

Then I choose ENABLE ALL FEATURES and click on Create organization:

My Organization is ready in seconds:

I can create a new account by clicking on Add account, and then selecting Create account:

Then I supply the details (the IAM role is created in the new account and grants enough permissions for the account to be customized after creation):

Here’s what the console looks like after I have created Dev, Test, and Prod accounts:

At this point all of the accounts are at the top of the hierarchy:

In order to add some structure, I click on Organize accounts, select Create organizational unit (OU), and enter a name:

I do the same for a second OU:

Then I select the Prod account, click on Move accounts, and choose the Operations OU:

Next, I move the Dev and Test accounts into the Development OU:

At this point I have four accounts (my original one plus the three that I just created) and two OUs. The next step is to create one or more Service Control Policies by clicking on Policies and selecting Create policy. I can use the Policy Generator or I can copy an existing SCP and then customize it. I’ll use the Policy Generator. I give my policy a name and make it an Allow policy:

Then I use the Policy Generator to construct a policy that allows full access to EC2 and S3, and the ability to run (invoke) Lambda functions:

Remember, that this policy defines the full set of allowable actions within the account. In order to allow IAM users within the account to be able to use these actions, I would still need to create suitable IAM policies and attach them to the users (all within the member account). I click on Create policy and my policy is ready:

Then I create a second policy for development and testing. This one also allows access to AWS CodeCommit, AWS CodeBuild, AWS CodeDeploy, and AWS CodePipeline:

Let’s recap. I have created my accounts and placed them into OUs. I have created a policy for the OUs. Now I need to enable the use of policies, and attach the policy to the OUs. To enable the use of policies, I click on Organize accounts and select Home (this is not the same as the root because Organizations was designed to support multiple, independent hierarchies), and then click on the checkbox in the Root OU. Then I look to the right, expand the Details section, and click on Enable:

Ok, now I can put all of the pieces together! I click on the Root OU to descend in to the hierarchy, and then click on the checkbox in the Operations OU. Then I expand the Control Policies on the right and click on Attach policy:

Then I locate the OperationsPolicy and click on Attach:

Finally, I remove the FullAWSAccess policy:

I can also attach the DevTestPolicy to the Development OU.

All of the operations that I described above could have been initiated from the AWS Command Line Interface (CLI) or by making calls to functions such as CreateOrganization, CreateAccount, CreateOrganizationalUnit, MoveAccount, CreatePolicy, AttachPolicy, and InviteAccountToOrganization. To see the CLI in action, read Announcing AWS Organizations: Centrally Manage Multiple AWS Accounts.

Best Practices for Use of AWS Organizations
Before I wrap up, I would like to share some best practices for the use of AWS Organizations:

Master Account – We recommend that you keep the Master Account free of any operational AWS resources (with one exception). In addition to making it easier for you to make high-quality control decision, this practice will make it easier for you to understand the charges on your AWS bill.

CloudTrail – Use AWS CloudTrail (this is the exception) in the Master Account to centrally track all AWS usage in the Member accounts.

Least Privilege – When setting up policies for your OUs, assign as few privileges as possible.

Organizational Units – Assign policies to OUs rather than to accounts. This will allow you to maintain a better mapping between your organizational structure and the level of AWS access needed.

Testing – Test new and modified policies on a single account before scaling up.

Automation – Use the APIs and a AWS CloudFormation template to ensure that every newly created account is configured to your liking. The template can create IAM users, roles, and policies. It can also set up logging, create and configure VPCs, and so forth.

Learning More
Here are some resources that will help you to get started with AWS Organizations:

Things to Know
AWS Organizations is available today in all AWS regions except China (Beijing) and AWS GovCloud (US) and is available to you at no charge (to be a bit more precise, the service endpoint is located in US East (Northern Virginia) and the SCPs apply across all relevant regions). All of the accounts must be from the same seller; you cannot mix AWS and AISPL (the local legal Indian entity that acts as a reseller for AWS services accounts in India) in the same Organization.

We have big plans for Organizations, and are currently thinking about adding support for multiple payers, control over allocation of Reserved Instance discounts, multiple hierarchies, and other control policies. As always, your feedback and suggestions are welcome.