Tag Archives: certificates

ACME v2 and Wildcard Certificate Support is Live

Post Syndicated from ris original https://lwn.net/Articles/749291/rss

Let’s Encrypt has announced
that ACMEv2 (Automated Certificate Management Environment) and wildcard
certificate support is live. ACMEv2 is an updated
version of the ACME protocol that has gone through the IETF standards
process. Wildcard
allow you to secure all subdomains of a domain with a
single certificate. (Thanks to Alphonse Ogulla)

E-Mailing Private HTTPS Keys

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/e-mailing_priva.html

I don’t know what to make of this story:

The email was sent on Tuesday by the CEO of Trustico, a UK-based reseller of TLS certificates issued by the browser-trusted certificate authorities Comodo and, until recently, Symantec. It was sent to Jeremy Rowley, an executive vice president at DigiCert, a certificate authority that acquired Symantec’s certificate issuance business after Symantec was caught flouting binding industry rules, prompting Google to distrust Symantec certificates in its Chrome browser. In communications earlier this month, Trustico notified DigiCert that 50,000 Symantec-issued certificates Trustico had resold should be mass revoked because of security concerns.

When Rowley asked for proof the certificates were compromised, the Trustico CEO emailed the private keys of 23,000 certificates, according to an account posted to a Mozilla security policy forum. The report produced a collective gasp among many security practitioners who said it demonstrated a shockingly cavalier treatment of the digital certificates that form one of the most basic foundations of website security.

Generally speaking, private keys for TLS certificates should never be archived by resellers, and, even in the rare cases where such storage is permissible, they should be tightly safeguarded. A CEO being able to attach the keys for 23,000 certificates to an email raises troubling concerns that those types of best practices weren’t followed.

I am croggled by the multiple layers of insecurity here.

BoingBoing post.

Best Practices for Running Apache Kafka on AWS

Post Syndicated from Prasad Alle original https://aws.amazon.com/blogs/big-data/best-practices-for-running-apache-kafka-on-aws/

This post was written in partnership with Intuit to share learnings, best practices, and recommendations for running an Apache Kafka cluster on AWS. Thanks to Vaishak Suresh and his colleagues at Intuit for their contribution and support.

Intuit, in their own words: Intuit, a leading enterprise customer for AWS, is a creator of business and financial management solutions. For more information on how Intuit partners with AWS, see our previous blog post, Real-time Stream Processing Using Apache Spark Streaming and Apache Kafka on AWS. Apache Kafka is an open-source, distributed streaming platform that enables you to build real-time streaming applications.

The best practices described in this post are based on our experience in running and operating large-scale Kafka clusters on AWS for more than two years. Our intent for this post is to help AWS customers who are currently running Kafka on AWS, and also customers who are considering migrating on-premises Kafka deployments to AWS.

AWS offers Amazon Kinesis Data Streams, a Kafka alternative that is fully managed.

Running your Kafka deployment on Amazon EC2 provides a high performance, scalable solution for ingesting streaming data. AWS offers many different instance types and storage option combinations for Kafka deployments. However, given the number of possible deployment topologies, it’s not always trivial to select the most appropriate strategy suitable for your use case.

In this blog post, we cover the following aspects of running Kafka clusters on AWS:

  • Deployment considerations and patterns
  • Storage options
  • Instance types
  • Networking
  • Upgrades
  • Performance tuning
  • Monitoring
  • Security
  • Backup and restore

Note: While implementing Kafka clusters in a production environment, make sure also to consider factors like your number of messages, message size, monitoring, failure handling, and any operational issues.

Deployment considerations and patterns

In this section, we discuss various deployment options available for Kafka on AWS, along with pros and cons of each option. A successful deployment starts with thoughtful consideration of these options. Considering availability, consistency, and operational overhead of the deployment helps when choosing the right option.

Single AWS Region, Three Availability Zones, All Active

One typical deployment pattern (all active) is in a single AWS Region with three Availability Zones (AZs). One Kafka cluster is deployed in each AZ along with Apache ZooKeeper and Kafka producer and consumer instances as shown in the illustration following.

In this pattern, this is the Kafka cluster deployment:

  • Kafka producers and Kafka cluster are deployed on each AZ.
  • Data is distributed evenly across three Kafka clusters by using Elastic Load Balancer.
  • Kafka consumers aggregate data from all three Kafka clusters.

Kafka cluster failover occurs this way:

  • Mark down all Kafka producers
  • Stop consumers
  • Debug and restack Kafka
  • Restart consumers
  • Restart Kafka producers

Following are the pros and cons of this pattern.

Pros Cons
  • Highly available
  • Can sustain the failure of two AZs
  • No message loss during failover
  • Simple deployment


  • Very high operational overhead:
    • All changes need to be deployed three times, one for each Kafka cluster
    • Maintaining and monitoring three Kafka clusters
    • Maintaining and monitoring three consumer clusters

A restart is required for patching and upgrading brokers in a Kafka cluster. In this approach, a rolling upgrade is done separately for each cluster.

Single Region, Three Availability Zones, Active-Standby

Another typical deployment pattern (active-standby) is in a single AWS Region with a single Kafka cluster and Kafka brokers and Zookeepers distributed across three AZs. Another similar Kafka cluster acts as a standby as shown in the illustration following. You can use Kafka mirroring with MirrorMaker to replicate messages between any two clusters.

In this pattern, this is the Kafka cluster deployment:

  • Kafka producers are deployed on all three AZs.
  • Only one Kafka cluster is deployed across three AZs (active).
  • ZooKeeper instances are deployed on each AZ.
  • Brokers are spread evenly across all three AZs.
  • Kafka consumers can be deployed across all three AZs.
  • Standby Kafka producers and a Multi-AZ Kafka cluster are part of the deployment.

Kafka cluster failover occurs this way:

  • Switch traffic to standby Kafka producers cluster and Kafka cluster.
  • Restart consumers to consume from standby Kafka cluster.

Following are the pros and cons of this pattern.

Pros Cons
  • Less operational overhead when compared to the first option
  • Only one Kafka cluster to manage and consume data from
  • Can handle single AZ failures without activating a standby Kafka cluster
  • Added latency due to cross-AZ data transfer among Kafka brokers
  • For Kafka versions before 0.10, replicas for topic partitions have to be assigned so they’re distributed to the brokers on different AZs (rack-awareness)
  • The cluster can become unavailable in case of a network glitch, where ZooKeeper does not see Kafka brokers
  • Possibility of in-transit message loss during failover

Intuit recommends using a single Kafka cluster in one AWS Region, with brokers distributing across three AZs (single region, three AZs). This approach offers stronger fault tolerance than otherwise, because a failed AZ won’t cause Kafka downtime.

Storage options

There are two storage options for file storage in Amazon EC2:

Ephemeral storage is local to the Amazon EC2 instance. It can provide high IOPS based on the instance type. On the other hand, Amazon EBS volumes offer higher resiliency and you can configure IOPS based on your storage needs. EBS volumes also offer some distinct advantages in terms of recovery time. Your choice of storage is closely related to the type of workload supported by your Kafka cluster.

Kafka provides built-in fault tolerance by replicating data partitions across a configurable number of instances. If a broker fails, you can recover it by fetching all the data from other brokers in the cluster that host the other replicas. Depending on the size of the data transfer, it can affect recovery process and network traffic. These in turn eventually affect the cluster’s performance.

The following table contrasts the benefits of using an instance store versus using EBS for storage.

Instance store EBS
  • Instance storage is recommended for large- and medium-sized Kafka clusters. For a large cluster, read/write traffic is distributed across a high number of brokers, so the loss of a broker has less of an impact. However, for smaller clusters, a quick recovery for the failed node is important, but a failed broker takes longer and requires more network traffic for a smaller Kafka cluster.
  • Storage-optimized instances like h1, i3, and d2 are an ideal choice for distributed applications like Kafka.


  • The primary advantage of using EBS in a Kafka deployment is that it significantly reduces data-transfer traffic when a broker fails or must be replaced. The replacement broker joins the cluster much faster.
  • Data stored on EBS is persisted in case of an instance failure or termination. The broker’s data stored on an EBS volume remains intact, and you can mount the EBS volume to a new EC2 instance. Most of the replicated data for the replacement broker is already available in the EBS volume and need not be copied over the network from another broker. Only the changes made after the original broker failure need to be transferred across the network. That makes this process much faster.



Intuit chose EBS because of their frequent instance restacking requirements and also other benefits provided by EBS.

Generally, Kafka deployments use a replication factor of three. EBS offers replication within their service, so Intuit chose a replication factor of two instead of three.

Instance types

The choice of instance types is generally driven by the type of storage required for your streaming applications on a Kafka cluster. If your application requires ephemeral storage, h1, i3, and d2 instances are your best option.

Intuit used r3.xlarge instances for their brokers and r3.large for ZooKeeper, with ST1 (throughput optimized HDD) EBS for their Kafka cluster.

Here are sample benchmark numbers from Intuit tests.

Configuration Broker bytes (MB/s)
  • r3.xlarge
  • ST1 EBS
  • 12 brokers
  • 12 partitions


Aggregate 346.9

If you need EBS storage, then AWS has a newer-generation r4 instance. The r4 instance is superior to R3 in many ways:

  • It has a faster processor (Broadwell).
  • EBS is optimized by default.
  • It features networking based on Elastic Network Adapter (ENA), with up to 10 Gbps on smaller sizes.
  • It costs 20 percent less than R3.

Note: It’s always best practice to check for the latest changes in instance types.


The network plays a very important role in a distributed system like Kafka. A fast and reliable network ensures that nodes can communicate with each other easily. The available network throughput controls the maximum amount of traffic that Kafka can handle. Network throughput, combined with disk storage, is often the governing factor for cluster sizing.

If you expect your cluster to receive high read/write traffic, select an instance type that offers 10-Gb/s performance.

In addition, choose an option that keeps interbroker network traffic on the private subnet, because this approach allows clients to connect to the brokers. Communication between brokers and clients uses the same network interface and port. For more details, see the documentation about IP addressing for EC2 instances.

If you are deploying in more than one AWS Region, you can connect the two VPCs in the two AWS Regions using cross-region VPC peering. However, be aware of the networking costs associated with cross-AZ deployments.


Kafka has a history of not being backward compatible, but its support of backward compatibility is getting better. During a Kafka upgrade, you should keep your producer and consumer clients on a version equal to or lower than the version you are upgrading from. After the upgrade is finished, you can start using a new protocol version and any new features it supports. There are three upgrade approaches available, discussed following.

Rolling or in-place upgrade

In a rolling or in-place upgrade scenario, upgrade one Kafka broker at a time. Take into consideration the recommendations for doing rolling restarts to avoid downtime for end users.

Downtime upgrade

If you can afford the downtime, you can take your entire cluster down, upgrade each Kafka broker, and then restart the cluster.

Blue/green upgrade

Intuit followed the blue/green deployment model for their workloads, as described following.

If you can afford to create a separate Kafka cluster and upgrade it, we highly recommend the blue/green upgrade scenario. In this scenario, we recommend that you keep your clusters up-to-date with the latest Kafka version. For additional details on Kafka version upgrades or more details, see the Kafka upgrade documentation.

The following illustration shows a blue/green upgrade.

In this scenario, the upgrade plan works like this:

  • Create a new Kafka cluster on AWS.
  • Create a new Kafka producers stack to point to the new Kafka cluster.
  • Create topics on the new Kafka cluster.
  • Test the green deployment end to end (sanity check).
  • Using Amazon Route 53, change the new Kafka producers stack on AWS to point to the new green Kafka environment that you have created.

The roll-back plan works like this:

  • Switch Amazon Route 53 to the old Kafka producers stack on AWS to point to the old Kafka environment.

For additional details on blue/green deployment architecture using Kafka, see the re:Invent presentation Leveraging the Cloud with a Blue-Green Deployment Architecture.

Performance tuning

You can tune Kafka performance in multiple dimensions. Following are some best practices for performance tuning.

 These are some general performance tuning techniques:

  • If throughput is less than network capacity, try the following:
    • Add more threads
    • Increase batch size
    • Add more producer instances
    • Add more partitions
  • To improve latency when acks =-1, increase your num.replica.fetches value.
  • For cross-AZ data transfer, tune your buffer settings for sockets and for OS TCP.
  • Make sure that num.io.threads is greater than the number of disks dedicated for Kafka.
  • Adjust num.network.threads based on the number of producers plus the number of consumers plus the replication factor.
  • Your message size affects your network bandwidth. To get higher performance from a Kafka cluster, select an instance type that offers 10 Gb/s performance.

For Java and JVM tuning, try the following:

  • Minimize GC pauses by using the Oracle JDK, which uses the new G1 garbage-first collector.
  • Try to keep the Kafka heap size below 4 GB.


Knowing whether a Kafka cluster is working correctly in a production environment is critical. Sometimes, just knowing that the cluster is up is enough, but Kafka applications have many moving parts to monitor. In fact, it can easily become confusing to understand what’s important to watch and what you can set aside. Items to monitor range from simple metrics about the overall rate of traffic, to producers, consumers, brokers, controller, ZooKeeper, topics, partitions, messages, and so on.

For monitoring, Intuit used several tools, including Newrelec, Wavefront, Amazon CloudWatch, and AWS CloudTrail. Our recommended monitoring approach follows.

For system metrics, we recommend that you monitor:

  • CPU load
  • Network metrics
  • File handle usage
  • Disk space
  • Disk I/O performance
  • Garbage collection
  • ZooKeeper

For producers, we recommend that you monitor:

  • Batch-size-avg
  • Compression-rate-avg
  • Waiting-threads
  • Buffer-available-bytes
  • Record-queue-time-max
  • Record-send-rate
  • Records-per-request-avg

For consumers, we recommend that you monitor:

  • Batch-size-avg
  • Compression-rate-avg
  • Waiting-threads
  • Buffer-available-bytes
  • Record-queue-time-max
  • Record-send-rate
  • Records-per-request-avg


Like most distributed systems, Kafka provides the mechanisms to transfer data with relatively high security across the components involved. Depending on your setup, security might involve different services such as encryption, Kerberos, Transport Layer Security (TLS) certificates, and advanced access control list (ACL) setup in brokers and ZooKeeper. The following tells you more about the Intuit approach. For details on Kafka security not covered in this section, see the Kafka documentation.

Encryption at rest

For EBS-backed EC2 instances, you can enable encryption at rest by using Amazon EBS volumes with encryption enabled. Amazon EBS uses AWS Key Management Service (AWS KMS) for encryption. For more details, see Amazon EBS Encryption in the EBS documentation. For instance store–backed EC2 instances, you can enable encryption at rest by using Amazon EC2 instance store encryption.

Encryption in transit

Kafka uses TLS for client and internode communications.


Authentication of connections to brokers from clients (producers and consumers) to other brokers and tools uses either Secure Sockets Layer (SSL) or Simple Authentication and Security Layer (SASL).

Kafka supports Kerberos authentication. If you already have a Kerberos server, you can add Kafka to your current configuration.


In Kafka, authorization is pluggable and integration with external authorization services is supported.

Backup and restore

The type of storage used in your deployment dictates your backup and restore strategy.

The best way to back up a Kafka cluster based on instance storage is to set up a second cluster and replicate messages using MirrorMaker. Kafka’s mirroring feature makes it possible to maintain a replica of an existing Kafka cluster. Depending on your setup and requirements, your backup cluster might be in the same AWS Region as your main cluster or in a different one.

For EBS-based deployments, you can enable automatic snapshots of EBS volumes to back up volumes. You can easily create new EBS volumes from these snapshots to restore. We recommend storing backup files in Amazon S3.

For more information on how to back up in Kafka, see the Kafka documentation.


In this post, we discussed several patterns for running Kafka in the AWS Cloud. AWS also provides an alternative managed solution with Amazon Kinesis Data Streams, there are no servers to manage or scaling cliffs to worry about, you can scale the size of your streaming pipeline in seconds without downtime, data replication across availability zones is automatic, you benefit from security out of the box, Kinesis Data Streams is tightly integrated with a wide variety of AWS services like Lambda, Redshift, Elasticsearch and it supports open source frameworks like Storm, Spark, Flink, and more. You may refer to kafka-kinesis connector.

If you have questions or suggestions, please comment below.

Additional Reading

If you found this post useful, be sure to check out Implement Serverless Log Analytics Using Amazon Kinesis Analytics and Real-time Clickstream Anomaly Detection with Amazon Kinesis Analytics.

About the Author

Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.



AskRob: Does Tor let government peek at vuln info?

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/03/askrob-does-tor-let-government-peek-at.html

On Twitter, somebody asked this question:

The question is about a blog post that claims Tor privately tips off the government about vulnerabilities, using as proof a “vulnerability” from October 2007 that wasn’t made public until 2011.
The tl;dr is that it’s bunk. There was no vulnerability, it was a feature request. The details were already public. There was no spy agency involved, but the agency that does Voice of America, and which tries to protect activists under foreign repressive regimes.


The issue is that Tor traffic looks like Tor traffic, making it easy to block/censor, or worse, identify users. Over the years, Tor has added features to make it look more and more like normal traffic, like the encrypted traffic used by Facebook, Google, and Apple. Tors improves this bit-by-bit over time, but short of actually piggybacking on website traffic, it will always leave some telltale signature.
An example showing how we can distinguish Tor traffic is the packet below, from the latest version of the Tor server:
Had this been Google or Facebook, the names would be something like “www.google.com” or “facebook.com”. Or, had this been a normal “self-signed” certificate, the names would still be recognizable. But Tor creates randomized names, with letters and numbers, making it distinctive. It’s hard to automate detection of this, because it’s only probably Tor (other self-signed certificates look like this, too), which means you’ll have occasional “false-positives”. But still, if you compare this to the pattern of traffic, you can reliably detect that Tor is happening on your network.
This has always been a known issue, since the earliest days. Google the search term “detect tor traffic”, and set your advanced search dates to before 2007, and you’ll see lots of discussion about this, such as this post for writing intrusion-detection signatures for Tor.
Among the things you’ll find is this presentation from 2006 where its creator (Roger Dingledine) talks about how Tor can be identified on the network with its unique network fingerprint. For a “vulnerability” they supposedly kept private until 2011, they were awfully darn public about it.
The above blogpost claims Tor kept this vulnerability secret until 2011 by citing this message. It’s because Levine doesn’t understand the terminology and is just blindly searching for an exact match for “TLS normalization”. Here’s an earlier proposed change for the long term goal of to “make our connection handshake look closer to a regular HTTPS [TLS] connection”, from February 2007. Here is another proposal from October 2007 on changing TLS certificates, from days after the email discussion (after they shipped the feature, presumably).
What we see here is here is a known problem from the very beginning of the project, a long term effort to fix that problem, and a slow dribble of features added over time to preserve backwards compatibility.
Now let’s talk about the original train of emails cited in the blogpost. It’s hard to see the full context here, but it sounds like BBG made a feature request to make Tor look even more like normal TLS, which is hinted with the phrase “make our funders happy”. Of course the people giving Tor money are going to ask for improvements, and of course Tor would in turn discuss those improvements with the donor before implementing them. It’s common in project management: somebody sends you a feature request, you then send the proposal back to them to verify what you are building is what they asked for.
As for the subsequent salacious paragraph about “secrecy”, that too is normal. When improving a problem, you don’t want to talk about the details until after you have a fix. But note that this is largely more for PR than anything else. The details on how to detect Tor are available to anybody who looks for them — they just aren’t readily accessible to the layman. For example, Tenable Networks announced the previous month exactly this ability to detect Tor’s traffic, because any techy wanting to would’ve found the secrets how to. Indeed, Teneble’s announcement may have been the impetus for BBG’s request to Tor: “can you fix it so that this new Tenable feature no longer works”.
To be clear, there are zero secret “vulnerability details” here that some secret spy agency could use to detect Tor. They were already known, and in the Teneble product, and within the grasp of any techy who wanted to discover them. A spy agency could just buy Teneble, or copy it, instead of going through this intricate conspiracy.


The issue isn’t a “vulnerability”. Tor traffic is recognizable on the network, and over time, they make it less and less recognizable. Eventually they’ll just piggyback on true HTTPS and convince CloudFlare to host ingress nodes, or something, making it completely undetectable. In the meanwhile, it leaves behind fingerprints, as I showed above.
What we see in the email exchanges is the normal interaction of a donor asking for a feature, not a private “tip off”. It’s likely the donor is the one who tipped off Tor, pointing out Tenable’s product to detect Tor.
Whatever secrets Tor could have tipped off to the “secret spy agency” were no more than what Tenable was already doing in a shipping product.

Update: People are trying to make it look like Voice of America is some sort of intelligence agency. That’s a conspiracy theory. It’s not a member of the American intelligence community. You’d have to come up with a solid reason explaining why the United States is hiding VoA’s membership in the intelligence community, or you’d have to believe that everything in the U.S. government is really just some arm of the C.I.A.

Preparing for AWS Certificate Manager (ACM) Support of Certificate Transparency

Post Syndicated from Jonathan Kozolchyk original https://aws.amazon.com/blogs/security/how-to-get-ready-for-certificate-transparency/


Starting April 30, 2018, Google Chrome will require all publicly trusted certificates to be logged in at least two Certificate Transparency logs. This means that any certificate issued that is not logged will result in an error message in Google Chrome. Beginning April 24, 2018, Amazon will log all new and renewed certificates in at least two public logs unless you disable Certificate Transparency logging.

Without Certificate Transparency, it can be difficult for a domain owner to know if an unexpected certificate was issued for their domain. Under the current system, no record is kept of certificates being issued, and domain owners do not have a reliable way to identify rogue certificates.

To address this situation, Certificate Transparency creates a cryptographically secure log of each certificate issued. Domain owners can search the log to identify unexpected certificates, whether issued by mistake or malice. Domain owners can also identify Certificate Authorities (CAs) that are improperly issuing certificates. In this blog post, I explain more about Certificate Transparency and tell you how to prepare for it.

How does Certificate Transparency work?

When a CA issues a publicly trusted certificate, the CA must submit the certificate to one or more Certificate Transparency log servers. The Certificate Transparency log server responds with a signed certificate timestamp (SCT) that confirms the log server will add the certificate to the list of known certificates. The SCT is then embedded in the certificate and delivered automatically to a browser. The SCT is like a receipt that proves the certificate was published into the Certificate Transparency log. Starting April 30, Google Chrome will require an SCT as proof that the certificate was published to a Certificate Transparency log in order to trust the certificate without displaying an error message.

What is Amazon doing to support Certificate Transparency?

Certificate Transparency is a good practice. It enables AWS customers to be more confident that an unauthorized certificate hasn’t been issued by a CA. Beginning on April 24, 2018, Amazon will log all new and renewed certificates in at least two Certificate Transparency logs unless you disable Certificate Transparency logging.

We recognize that there can be times when our customers do not want to log certificates. For example, if you are building a website for an unreleased product and have registered the subdomain, newproduct.example.com, requesting a logged certificate for your domain will make it publicly known that the new product is coming. Certificate Transparency logging also can expose server hostnames that you want to keep private. Hostnames such as payments.example.com can reveal the purpose of a server and provide attackers with information about your private network. These logs do not contain the private key for your certificate. For these reasons, you will be able to disable Certificate Transparency logging on a per-certificate basis using the ACM APIs or with the AWS CLI, starting on March 27, 2018. Doing so will lead to errors in Google Chrome, which may be preferable to exposing the information. We will share instructions on the AWS Security Blog about how to disable Certificate Transparency logging as we get closer to March 27, 2018.


Beginning April 24, 2018, ACM will begin logging all new and renewed certificates by default. If you don’t want a certificate to be logged, you’ll be able to opt out using the AWS API or CLI. However, for Google Chrome to trust the certificate, all issued or imported certificates must have the SCT information embedded in them by April 30, 2018.

If you have comments about this blog post, submit them in the “Comments” section below. If you have questions, start a new thread in the ACM forum.

– Jonathan

Interested in additional AWS Security news? Follow the AWS Security Blog on Twitter.

Security updates for Wednesday

Post Syndicated from ris original https://lwn.net/Articles/747711/rss

Security updates have been issued by Arch Linux (libmspack), Debian (zziplib), Fedora (ca-certificates, firefox, freetype, golang, krb5, libreoffice, monit, patch, plasma-workspace, ruby, sox, tomcat, and zziplib), openSUSE (dovecot22, glibc, GraphicsMagick, libXcursor, mbedtls, p7zip, SDL_image, SDL2_image, sox, and transfig), Red Hat (chromium-browser), and Ubuntu (cups, libvirt, and qemu).

Security updates for Thursday

Post Syndicated from jake original https://lwn.net/Articles/747344/rss

Security updates have been issued by Debian (jackson-databind, leptonlib, libvorbis, python-crypto, and xen), Fedora (apache-commons-email, ca-certificates, libreoffice, libxml2, mujs, p7zip, python-django, sox, and torbrowser-launcher), openSUSE (libreoffice), SUSE (libreoffice), and Ubuntu (advancecomp, erlang, and freetype).

Astro Pi Mission Zero: your code is in space

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/astro-pi-mission-zero-day/

Every school year, we run the European Astro Pi challenge to find the next generation of space scientists who will program two space-hardened Raspberry Pi units, called Astro Pis, living aboard the International Space Station.

Italian ESA Astronaut Paolo Nespoli with the Astro Pi units. Image credit ESA.

Astro Pi Mission Zero

The 2017–2018 challenge included the brand-new non-competitive Mission Zero, which guaranteed that participants could have their code run on the ISS for 30 seconds, provided they followed the rules. They would also get a certificate showing the exact time period during which their code ran in space.

Astro Pi Mission Zero logo

We asked participants to write a simple Python program to display a personalised message and the air temperature on the Astro Pi screen. No special hardware was needed, since all the code could be written in a web browser using the Sense HAT emulator developed in partnership with Trinket.

Scott McKenzie on Twitter

Students coding #astropi emulator to scroll a message to astronauts on @Raspberry_Pi in space this summer. Try it here: https://t.co/0KURq11X0L #Rm9Parents #CSforAll #ontariocodes

And now it’s time…

We received over 2500 entries for Mission Zero, and we’re excited to announce that tomorrow all entries with flight status will be run on the ISS…in SPAAACE!

There are 1771 Python programs with flight status, which will run back-to-back on Astro Pi VIS (Ed). The whole process will take about 14 hours. This means that everyone will get a timestamp showing 1 February, so we’re going to call this day Mission Zero Day!

Part of each team’s certificate will be a map, like the one below, showing the exact location of the ISS while the team’s code was running.

The grey line is the ISS orbital path, the red marker shows the ISS’s location when their code was running. Produced using Google Static Maps API.

The programs will be run in the same sequence in which we received them. For operational reasons, we can’t guarantee that they will run while the ISS flies over any particular location. However, if you have submitted an entry to Mission Zero, there is a chance that your code will run while the ISS is right overhead!

Go out and spot the station

Spotting the ISS is a great activity to do by yourself or with your students. The station looks like a very fast-moving star that crosses the sky in just a few minutes. If you know when and where to look, and it’s not cloudy, you literally can’t miss it.

Source Andreas Möller, Wikimedia Commons.

The ISS passes over most ground locations about twice a day. For it to be clearly visible though, you need darkness on the ground with sunlight on the ISS due to its altitude. There are a number of websites which can tell you when these visible passes occur, such as NASA’s Spot the Station. Each of the sites requires you to give your location so it can work out when visible passes will occur near you.

Visible ISS pass star chart from Heavens Above, on which familiar constellations such as the Plough (see label Ursa Major) can be seen.

A personal favourite of mine is Heavens Above. It’s slightly more fiddly to use than other sites, but it produces brilliant star charts that show you precisely where to look in the sky. This is how it works:

  1. Go to www.heavens-above.com
  2. To set your location, click on Unspecified in the top right-hand corner
  3. Enter your location (e.g. Cambridge, United Kingdom) into the text box and click Search
  4. The map should change to the correct location — scroll down and click Update
  5. You’ll be taken back to the homepage, but with your location showing at the top right
  6. Click on ISS in the Satellites section
  7. A table of dates will now show, which are the upcoming visible passes for your location
  8. Click on a row to view the star chart for that pass — the line is the path of the ISS, and the arrow shows direction of travel
  9. Be outside in cloudless weather at the start time, look towards the direction where the line begins, and hope the skies stay clear

If you go out and do this, then tweet some pictures to @raspberry_pi, @astro_pi, and @esa. Good luck!

More Astro Pi

Mission Zero certificates will be arriving in participants’ inboxes shortly. We would like to thank everyone who participated in Mission Zero this school year, and we hope that next time you’ll take it one step further and try Mission Space Lab.

Mission Zero and Mission Space Lab are two really exciting programmes that young people of all ages can take part in. If you would like to be notified when the next round of Astro Pi opens for registrations, sign up to our mailing list here.

The post Astro Pi Mission Zero: your code is in space appeared first on Raspberry Pi.

AWS Updated Its ISO Certifications and Now Has 67 Services Under ISO Compliance

Post Syndicated from Chad Woolf original https://aws.amazon.com/blogs/security/aws-updated-its-iso-certifications-and-now-has-67-services-under-iso-compliance/

ISO logo

AWS has updated its certifications against ISO 9001, ISO 27001, ISO 27017, and ISO 27018 standards, bringing the total to 67 services now under ISO compliance. We added the following 29 services this cycle:

Amazon Aurora Amazon S3 Transfer Acceleration AWS [email protected]
Amazon Cloud Directory Amazon SageMaker AWS Managed Services
Amazon CloudWatch Logs Amazon Simple Notification Service AWS OpsWorks Stacks
Amazon Cognito Auto Scaling AWS Shield
Amazon Connect AWS Batch AWS Snowball Edge
Amazon Elastic Container Registry AWS CodeBuild AWS Snowmobile
Amazon Inspector AWS CodeCommit AWS Step Functions
Amazon Kinesis Data Streams AWS CodeDeploy AWS Systems Manager (formerly Amazon EC2 Systems Manager)
Amazon Macie AWS CodePipeline AWS X-Ray
Amazon QuickSight AWS IoT Core

For the complete list of services under ISO compliance, see AWS Services in Scope by Compliance Program.

AWS maintains certifications through extensive audits of its controls to ensure that information security risks that affect the confidentiality, integrity, and availability of company and customer information are appropriately managed.

You can download copies of the AWS ISO certificates that contain AWS’s in-scope services and Regions, and use these certificates to jump-start your own certification efforts:

AWS does not increase service costs in any AWS Region as a result of updating its certifications.

To learn more about compliance in the AWS Cloud, see AWS Cloud Compliance.

– Chad

Pioneers winners: only you can save us

Post Syndicated from Erin Brindley original https://www.raspberrypi.org/blog/pioneers-winners-only-you-can-save-us/

She asked for help, and you came to her aid. Pioneers, the winners of the Only you can save us challenge have been picked!

Can you see me? Only YOU can save us!

I need your help. This is a call out for those between 11- and 16-years-old in the UK and Republic of Ireland. Something has gone very, very wrong and only you can save us. I’ve collected together as much information for you as I can. You’ll find it at http://www.raspberrypi.org/pioneers.

The challenge

In August we intercepted an emergency communication from a lonesome survivor. She seemed to be in quite a bit of trouble, and asked all you young people aged 11 to 16 to come up with something to help tackle the oncoming crisis, using whatever technology you had to hand. You had ten weeks to work in teams of two to five with an adult mentor to fulfil your mission.

The judges

We received your world-saving ideas, and our savvy survivor pulled together a ragtag bunch of apocalyptic experts to help us judge which ones would be the winning entries.

Dr Shini Somara

Dr Shini Somara is an advocate for STEM education and a mechanical engineer. She was host of The Health Show and has appeared in documentaries for the BBC, PBS Digital, and Sky. You can check out her work hosting Crash Course Physics on YouTube.

Prof Lewis Dartnell is an astrobiologist and author of the book The Knowledge: How to Rebuild Our World From Scratch.

Emma Stephenson has a background in aeronautical engineering and currently works in the Shell Foundation’s Access to Energy and Sustainable Mobility portfolio.

Currently sifting through the entries with the other judges of #makeyourideas with @raspberrypifoundation @_raspberrypi_

151 Likes, 3 Comments – Shini Somara (@drshinisomara) on Instagram: “Currently sifting through the entries with the other judges of #makeyourideas with…”

The winners

Our survivor is currently putting your entries to good use repairing, rebuilding, and defending her base. Our judges chose the following projects as outstanding examples of world-saving digital making.

Theme winner: Computatron

Raspberry Pioneers 2017 – Nerfus Dislikus Killer Robot

This is our entry to the pioneers ‘Only you can save us’ competition. Our team name is Computatrum. Hope you enjoy!

Are you facing an unknown enemy whose only weakness is Nerf bullets? Then this is the robot for you! We loved the especially apocalyptic feel of the Computatron’s cleverly hacked and repurposed elements. The team even used an old floppy disc mechanism to help fire their bullets!

Technically brilliant: Robot Apocalypse Committee

Pioneers Apocalypse 2017 – RationalPi

Thousands of lines of code… Many sheets of acrylic… A camera, touchscreen and fingerprint scanner… This is our entry into the Raspberry Pi Pioneers2017 ‘Only YOU can Save Us’ theme. When zombies or other survivors break into your base, you want a secure way of storing your crackers.

The Robot Apocalypse Committee is back, and this time they’ve brought cheese! The crew designed a cheese- and cracker-dispensing machine complete with face and fingerprint recognition to ensure those rations last until the next supply drop.

Best explanation: Pi Chasers

Tala – Raspberry Pi Pioneers Project

Hi! We are PiChasers and we entered the Raspberry Pi Pionners challenge last time when the theme was “Make it Outdoors!” but now we’ve been faced with another theme “Apocolypse”. We spent a while thinking of an original thing that would help in an apocolypse and decided upon a ‘text-only phone’ which uses local radio communication rather than cellular.

This text-based communication device encased in a tupperware container could be a lifesaver in a crisis! And luckily, the Pi Chasers produced an excellent video and amazing GitHub repo, ensuring that any and all survivors will be able to build their own in the safety of their base.

Most inspiring journey: Three Musketeers

Pioneers Entry – The Apocalypse

Pioneers Entry Team Name: The Three Musketeers Team Participants: James, Zach and Tom

We all know that zombies are terrible at geometry, and the Three Musketeers used this fact to their advantage when building their zombie security system. We were impressed to see the team working together to overcome the roadblocks they faced along the way.

We appreciate what you’re trying to do: Zombie Trolls

Zombie In The Middle

Uploaded by CDA Bodgers on 2017-12-01.

Playing piggy in the middle with zombies sure is a unique way of saving humankind from total extinction! We loved this project idea, and although the Zombie Trolls had a little trouble with their motors, we’re sure with a little more tinkering this zombie-fooling contraption could save us all.

Most awesome

Our judges also wanted to give a special commendation to the following teams for their equally awesome apocalypse-averting ideas:

  • PiRates, for their multifaceted zombie-proofing defence system and the high production value of their video
  • Byte them Pis, for their beautiful zombie-detecting doormat
  • Unatecxon, for their impressive bunker security system
  • Team Crompton, for their pressure-activated door system
  • Team Ernest, for their adventures in LEGO

The prizes

All our winning teams have secured exclusive digital maker boxes. These are jam-packed with tantalising tech to satisfy all tinkering needs, including:

Our theme winners have also secured themselves a place at Coolest Projects 2018 in Dublin, Ireland!

Thank you to everyone who got involved in this round of Pioneers. Look out for your awesome submission swag arriving in the mail!

The post Pioneers winners: only you can save us appeared first on Raspberry Pi.

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/741158/rss

Security updates have been issued by CentOS (postgresql), Debian (firefox-esr, kernel, libxcursor, optipng, thunderbird, wireshark, and xrdp), Fedora (borgbackup, ca-certificates, collectd, couchdb, curl, docker, erlang-jiffy, fedora-arm-installer, firefox, git, linux-firmware, mupdf, openssh, thunderbird, transfig, wildmidi, wireshark, xen, and xrdp), Mageia (firefox and optipng), openSUSE (erlang, libXfont, and OBS toolchain), Oracle (kernel), Slackware (openssl), and SUSE (kernel and OBS toolchain).

Let’s Encrypt looks forward to 2018

Post Syndicated from corbet original https://lwn.net/Articles/741019/rss

The Let’s Encrypt project, working
to encrypt as much web traffic as possible, looks
to the coming year. “First, we’re planning to introduce
an ACME v2 protocol API endpoint and support for wildcard certificates
along with it. Wildcard certificates will be free and available globally
just like our other certificates. We are planning to have a public test API
endpoint up by January 4, and we’ve set a date for the full launch:
Tuesday, February 27.