Tag Archives: Amazon SES

How to prompt users to reset their AWS Managed Microsoft AD passwords proactively

Post Syndicated from Tekena Orugbani original https://aws.amazon.com/blogs/security/how-to-prompt-users-to-reset-their-aws-managed-microsoft-ad-passwords-proactively/

If you’re an AWS Directory Service administrator, you can reset your directory users’ passwords from the AWS console or the CLI when their passwords expire. However, you can improve your efficiency by reducing the number of requests for password resets. You can also help improve the security of your organization by having your users proactively reset their directory passwords before they expire. In this post, I describe the steps you can take to set up a solution to send regular reminders to your AWS Directory Service for Microsoft Active Directory (AWS Managed Microsoft AD) users to prompt them to change their password before it expires. This will help prevent users from being locked out when their passwords expire and also reduce the number of reset requests sent to administrators.

Solution Overview

When users’ passwords expire, they typically contact their directory service administrator to help them reset their password. For security reasons, they then need to reset their password again on their computer so that the administrator has no knowledge of the new password. This process is time-consuming and impacts productivity. In this post, I present a solution to remind users automatically to reset AWS Managed Microsoft AD passwords. The following diagram and description explains how the solution works.
 

Figure 1: Solution architecture

Figure 1: Solution architecture

  1. A script running on an AWS Managed Microsoft AD domain-joined Amazon Elastic Compute Cloud (Amazon EC2) instance (Notification Server) searches the AWS Managed Microsoft AD for all enabled user accounts and retrieves their names, email addresses, and password expiry dates.
  2. Using the permissions of the IAM role attached to the Notification Server, the script obtains the SES SMTP credentials stored in AWS Secrets Manager.
  3. With the SMTP credentials obtained in Step 2, the script then securely connects to Amazon Simple Email Service (Amazon SES.)
  4. Based on your preferences, Amazon SES sends domain password expiry notifications to the users’ mailboxes.

A separate process for updating the SES credentials stored in AWS Secrets Manager occurs as follows:

  1. A CloudWatch rule triggers a Lambda function.
  2. The Lambda function generates new SES SMTP credentials from the SES IAM Username.
  3. The Lambda function then updates AWS Secrets Manager with the new SES credentials.
  4. The Lambda function then deletes the previous IAM access key.

Prerequisites

The instructions in this post assume that you’re familiar with how to create Amazon EC2 for Windows Server instances, use Remote Desktop Protocol (RDP) to log in to the instances, and have completed the following tasks:

  1. Create an AWS Microsoft AD directory.
  2. Join an Amazon EC2 for Windows Server instance to the AWS Microsoft AD domain to use as your Notification Server.
  3. Sign up for Amazon Simple Email Service (Amazon SES).
  4. Remove Amazon EC2 throttling on port 25 for your EC2 instance.
  5. Remove your Amazon SES account from the Amazon SES sandbox so you can also send email to unverified recipients.

Note: You can use your AWS Microsoft Directory management instance as the Notification Server. For the steps below, use any account that is a member of the AWS delegated Administrators’ group.

Summary of the steps

  1. Verify an Amazon SES email address.
  2. Create Amazon SES SMTP credentials.
  3. Store the Amazon SES SMTP credentials in AWS Secrets Manager.
  4. Create an IAM role with read permissions to the secret in AWS Secrets Manager.
  5. Set up and test the notification script.
  6. Set up Windows Task Scheduler.
  7. Configure automatic rotation of the SES Credentials stored in Secrets Manager.

STEP 1: Verify an Amazon SES email address

To prevent unauthorized use, Amazon SES requires that you verify the email address that you use as a “From,” “Source,” “Sender,” or “Return-Path”.

To verify the email address you will use as the sending address, complete the following steps:

  1. Sign in to the Amazon SES console.
  2. In the navigation pane, under Identity Management, select Email Addresses.
  3. Select Verify a New Email Address, and then enter the email address.
  4. Select Verify This Email Address.

An email will be sent to the specified email address with a link to verify the email address. Once you verify the email, you’ll see the Verification Status as verified in the SES console.

In the image below, I have four verified email addresses:
 

Figure 2: Verified email addresses

Figure 2: Verified email addresses

STEP 2: Create Amazon SES SMTP credentials

You must create an Amazon SES SMTP user name and password to access the Amazon SES SMTP interface and send email using the service. To do this, complete the following steps:

  1. Sign in to the Amazon SES console.
  2. In the navigation bar, select SMTP Settings.
  3. In the content pane, make a note of the Server Name as you will use this when sending the email in Step 5. Select Create My SMTP Credentials.
     
    Figure 3: Make a note of the SES SMTP Server Name

    Figure 3: Make a note of the SES SMTP Server Name

  4. Specify a value for the IAM User Name field. Make a note of this IAM User Name as you will need in Step 7 later. In this post, I use the placeholder, ses-smtp-user-eu-west-1, as the user name (as shown below):
     
    Figure 4: Make a note of SES IAM User Name

    Figure 4: Make a note of SES IAM User Name

  5. Select Create.

Make a note of the SMTP Username and SMTP Password you created because you’ll use these in later steps. This is as shown below in my example.
 

Figure 5: Make a note of the SES SMTP Username and SMTP Password

Figure 5: Make a note of the SES SMTP Username and SMTP Password

STEP 3: Store the Amazon SES SMTP credentials in AWS Secrets Manager

In this step, use AWS Secrets Manager to store the Amazon SES SMTP credentials created in Step 2. You will reference this credential when you execute the script in the Notification Server.

Complete the following steps to store the Amazon SES SMTP credentials in AWS Secrets Manager:

  1. Sign in to the AWS Secrets Manager Console.
  2. Select Store a new secret, and then select Other types of secrets.
  3. Under Secret Key/value, enter the Amazon SES SMTP Username in the left box and the Amazon SES SMTP Password in the right box, and then select Next.
     
    Figure 6: Enter the Amazon SES SMTP user name and password

    Figure 6: Enter the Amazon SES SMTP user name and password

  4. In the next screen, enter the string AWS-SES as the name of the secret. Enter an optional description for the secret and add an optional tag and select Next.

    Note: I recommend using AWS-SES as the name of your secret. If you choose to use some other name, you will have to update PowerShell script in Step 5. I also recommend creating the secret in the same region as the Notification Server. If you create your secret in a different region, you will also have to update PowerShell script in Step 5.

     

    Figure 7: Enter "AWS-SES" as the secret name

    Figure 7: Enter “AWS-SES” as the secret name

  5. On next screen, leave the default setting as Disable automatic rotation and select Next. You will come back later in Step 7 where you will use a Lambda function to rotate the secret at specified intervals.
  6. To store the secret, in the last screen, select Store. Now select the secret and make a note of the ARN of the secret as shown in in Figure 8.
     
    Figure 8: Make a note of the Secret ARN

    Figure 8: Make a note of the Secret ARN

Step 4: Create IAM role with permissions to read the secret

Create an IAM role that grants permissions to read the secret created in Step 3. Then, attach this role to the Notification Server to enable your script to read this secret. Complete the following steps:

  1. Log in to the IAM Console.
  2. In the navigation bar, select Policies.
  3. In the content pane, select Create Policy, and then select JSON.
  4. Replace the content with the following snippet while specifying the ARN of the secret you created earlier in step 3:
    
        {
            "Version": "2012-10-17",
            "Statement": {
                "Effect": "Allow",
                "Action": "secretsmanager:GetSecretValue",
                "Resource": "<arn-of-the-secret-created-in-step-3>"
            }
        }                
        

    Here is how it looks in my example after I replace with the ARN of my Secrets Manager secret:
     

    Figure 9: Example policy

    Figure 9: Example policy

  5. Select Review policy.
  6. On the next screen, specify a name for the policy. In my example, I have specified Access-Ses-Secret as the name of the policy. Also specify a description for the policy, and then select Create policy.
  7. In the navigation pane, select Roles.
  8. In the content pane, select Create role.
  9. On the next page, select EC2, and then select Next: Permissions.
  10. Select the policy you created, and then select Next: Tags.
  11. Select Next: Review, provide a name for the role. In my example, I have specified SecretsManagerReadAccessRole as the name. Select Create Role.

Now, complete the following steps to attach the role to the Notification Server:

  1. From the Amazon EC2 Console, select the Notification Server instance.
  2. Select Actions, select Instance Settings, and then select Attach/Replace IAM Role.
     
    Figure 10: Select "Attach/Replace IAM Role"

    Figure 10: Select “Attach/Replace IAM Role”

  3. On the Attach/Replace IAM Role page, choose the role to attach from the drop-down list. For this post, I choose SecretsManagerReadAccessRole and select Apply.

    Here is how it looks in my example:
     

    Figure 11: Example "Attach/Replace IAM Role"

    Figure 11: Example “Attach/Replace IAM Role”

STEP 5: Setup and Test the Notification Script

In this section, you’re going to test the script by sending a sample notification email to an end user to remind the user to change their password. To test the script, log into your Notification Server using your AWS Microsoft Managed AD default Admin account. Then, complete the following steps:

  1. Install the PowerShell Module for Active Directory by opening PowerShell as Administrator and run the following command:

    Install-WindowsFeature -Name RSAT-AD-PowerShell

  2. Download the script to the Notification Server. In my example, I downloaded the script and stored in the location

    c:\scripts\PasswordExpiryNotify.ps1

  3. Create a new user in Active Directory and ensure you enter a valid email address for the new user.

    Note: Make sure to clear the User must change password at next logon check box when creating the user; otherwise, you will get an invalid output from the command in the next step.

    For this example, I created a test user named RandomUser in Active Directory.

  4. In the PowerShell Window, execute the following command to determine the number of days remaining before the password for the user expires. In this example, I run the following to determine the number of days remaining before the RandomUser account password expires:

    (New-TimeSpan -Start ((Get-Date).ToLongDateString()) -End ((Get-ADUser -Identity ‘RandomUser’ -Properties “msDS-UserPasswordExpiryTimeComputed”|Select @{Name=”exp”;Expression={[datetime]::FromFileTime($_.”msDS-UserPasswordExpiryTimeComputed”).tolongdatestring()}}) | Select -ExpandProperty exp)).Days

    In my example, I get “15” as the output.

  5. To test the script, navigate to the location of the script on your Notification Server and execute the following:

    .\PasswordExpiryNotify.ps1 -smtpServer “<SES-SMTP-SERVER-NAME-NOTED-IN-STEP 2> ” -from “<SENDER LABEL> <SES VERIFIED EMAIL ADDRESS>” -NotifyDays <NUMBER OF DAYS>

    In this example, I navigate to c:\scripts\ and execute:

    .\PasswordExpiryNotify.ps1 -smtpServer “email-smtp.eu-west-1.amazonaws.com” -from “IT Servicedesk [email protected]” -NotifyDays 15

A new email will be sent to user’s mailbox. Verify the user has received the email.

Note: I can update these instructions to send multiple email reminders to users. For example, if I want to notify users on three occasions (first notification 15 days before password expiration, then 7 days, and one more when there is only 1 day) I would execute the following:

.\PasswordExpiryNotify.ps1 -smtpServer “email-smtp.eu-west-1.amazonaws.com” -from “IT Servicedesk <[email protected]>” -NotifyDays 1,7,15

Step 6: Set up a Windows Task Scheduler

Now that you have tested the script and confirmed that the solution is working as expected, you can set up a Windows Scheduled Task to execute the script daily. To do this:

  1. Open Task Scheduler.
  2. Right-click Task Scheduler Library, and then select Create Task.
  3. Specify a name for the task.
  4. On the Triggers tab, select New.
  5. Select Daily, and then select OK.
  6. On the Actions tab, select New.
  7. Inside Program/Script, type PowerShell.exe
  8. In the Add arguments (optional) box, type the following command, including the full path to the script.

    “C:\Scripts\PasswordExpiryNotify.ps1 -smtpServer “<SES-SMTP-SERVER-NAME-NOTED-IN-STEP 2>” -from “<SENDER LABEL> <SES VERIFIED EMAIL ADDRESS>” -NotifyDays <DAY,DAY,DAY>

    In my example, I type the following:

    “C:\Scripts\PasswordExpiryNotify.ps1 -smtpServer ’email-smtp.eu-west-1.amazonaws.com’ -from ‘IT Servicedesk [email protected]’ -NotifyDays 1,7,15”

  9. Select OK twice, and then enter your password when prompted to complete the steps.

The script will now run daily at the specified time and will send password expiration email notifications to your AWS Managed Microsoft AD users. In my example, a password expiration reminder email is sent to my AWS Managed Microsoft AD users 15 days before expiration, 7 days before expiration, and then 1 day before expiration.

Here is a sample email:
 

Figure 12: Sample password expiration email

Figure 12: Sample password expiration email

Note: You can edit the script to change the notification message to suit your requirements.

Step 7: Configure automatic update of the SES credentials

In this final section, you’re going to setup the configuration to automatically update the secret (that is, the SES credentials stored in AWS Secrets Manager) at regular intervals. To achieve this, you will use an Amazon Lambda function that will do the following:

  1. Create a new access key using the IAM user you used to create the SES SMTP Credentials in Step 2 (ses-smtp-user-eu-west-1 in my example).
  2. Generate a new SES SMTP User password from the created IAM secret access key.
  3. Update the SES credentials stored in AWS Secrets Manager.
  4. Delete the old IAM access key.

Complete the following steps to enable automatic update of the SES credentials:

First you will create the IAM policy which you will attach to a role that will be assumed by the lambda function. This policy will provide the permissions to create new access keys for the SES IAM user and permissions to update the SES credentials stored in AWS Secrets Manager.

  1. Log in to the IAM Console, and in the navigation bar, select Policies.
  2. In the content pane, select Create Policy, and then select JSON.
  3. Replace the content with the following script while specifying the ARN of the IAM user we used to create the SES SMTP credentials in Step 2 and the ARN of the secret stored in Secrets Manager that you noted in Step 3.
    
        {
            "Version": "2012-10-17",
            "Statement": [
                {
                    "Effect": "Allow",
                    "Action": "iam:*AccessKey*",
                    "Resource": "<arn-of-iam-user-created-in-step-2>"
                },
                {
                    "Effect": "Allow",
                    "Action": "secretsmanager:UpdateSecret",
                    "Resource": "<arn-of-secret-stored-in-secret-manager>"
                }
                ]
        }              
        

    Here is the JSON for the policy in my example:
     

    Figure 13: Example policy

    Figure 13: Example policy

  4. Select Review Policy, and then specify a name and a description for the policy. In my example, I have specified the name of the policy as iam-secretsmanager-access-for-lambda.

    Here is how it looks in my example:
     

    Figure 14: Specify a name and description for the policy

    Figure 14: Specify a name and description for the policy

  5. Select Create Policy

Now, create an IAM role and attach this policy.

  1. In the navigation bar, select Roles and select Create Role.
  2. Under the Choose the service that will use this role, select Lambda, and then select Next: Permissions.
  3. On the next page, select the policy you just created and select Next: Tags. Add an optional tag and select Next: Review.
  4. Specify a name for the role and description, and then select Create role. In my example, I have named the role: LambdaRoleRotatateSesSecret.

Now, you will create a Lambda function that will assume the created role:

  1. Log on to the AWS Lambda console and select Create Function
  2. Specify a name for the function, and then, under Runtime, select Python 3.7.
  3. Under execution role, select User an existing role, and then select the role you created earlier.

    Here are the settings I used in my example:
     

    Figure 15: Settings on the "Create function" page

    Figure 15: Settings on the “Create function” page

  4. Select Create function, copy the following Python code, and then paste it in the Function Code section.
    
        import boto3
        import os      #required to fetch environment variables
        import hmac    #required to compute the HMAC key
        import hashlib #required to create a SHA256 hash
        import base64  #required to encode the computed key
        import sys     #required for system functions
        
        iam = boto3.client('iam')
        sm = boto3.client('secretsmanager')
        
        SES_IAM_USERNAME = os.environ['SES_IAM_USERNAME']
        SECRET_ID = os.environ['SECRET_ID']
        
        def lambda_handler(event, context):
            print("Getting current credentials...")
            old_key = iam.list_access_keys(UserName=SES_IAM_USERNAME)['AccessKeyMetadata'][0]['AccessKeyId']
        
            print("Creating new credentials...")
            new_key = iam.create_access_key(UserName=SES_IAM_USERNAME)
            print("New credentials created...")
            
            smtp_username = '%s' % (new_key['AccessKey']['AccessKeyId'])
            iam_sec_access_key = '%s' % (new_key['AccessKey']['SecretAccessKey'])
            
             
            # These variables are used when calculating the SMTP password.
            message = 'SendRawEmail'
            version = '\x02'
            
            # Compute an HMAC-SHA256 key from the AWS secret access key.
            signatureInBytes = hmac.new(iam_sec_access_key.encode('utf-8'),message.encode('utf-8'),hashlib.sha256).digest()
            # Prepend the version number to the signature.
            signatureAndVersion = version.encode('utf-8') + signatureInBytes
            # Base64-encode the string that contains the version number and signature.
            smtpPassword = base64.b64encode(signatureAndVersion)
            # Decode the string and print it to the console.
            ses_smtp_pass = smtpPassword.decode('utf-8')
            secret_string = '{"%s": "%s"}' % (new_key['AccessKey']['AccessKeyId'], ses_smtp_pass)
            print("Updating credentials in SecretsManager...")
            sm_res = sm.update_secret(
                SecretId=SECRET_ID,
                SecretString=secret_string
                )
            print(sm_res)
            
            print("Deleting old key")
            del_res = iam.delete_access_key(
                UserName=SES_IAM_USERNAME,
                AccessKeyId=old_key
                )
                print(del_res) 
        

    Here is what it will look like:
     

    Figure 16: The Python code pasted in the "Function Code" section

    Figure 16: The Python code pasted in the “Function Code” section

  5. In the Environment variables section, specify the two environment variables required by the Lambda Python code as follows:
    
                SECRET_ID: AWS-SES
                SES_IAM_USERNAME: <SES-IAM-USERNAME-NOTED-IN-STEP 2>  
        

    Here is how my environment variables look:
     

    Figure 17: The Python code pasted in the "Function Code" section page

    Figure 17: The Python code pasted in the “Function Code” section

  6. Select Save.

    You have now created a Lambda function that can update the SES credentials stored in AWS Secrets Manager.

    You will now set up CloudWatch to trigger the Lambda function at scheduled intervals.

  7. Open the Amazon CloudWatch Console.
  8. In the navigation pane, select Rules and, in the content pane, select Create Rule.
  9. Under Event Source, select Schedule, and then select Fixed rate of. Specify how often you would like CloudWatch to trigger the Lambda function. In my example, I have chosen to update the SES credentials every 30 days.
  10. Under Targets, select Add Target, and then select Lambda Function.
  11. In Function, select the Lambda function you just created, and then select Configure details.
     
    Figure 18: Create new CloudWatch rule

    Figure 18: Create new CloudWatch rule

  12. Specify a name for the rule, enter a description, make sure the State check box is selected, and then select Create rule.

The SES credentials stored in AWS Secrets Manager will now be updated based on the scheduled intervals you specified in CloudWatch.

Conclusion

In this post, I showed how you can set up a solution to remind your AWS Directory Service for Microsoft Active Directory users to change their passwords before expiration. I demonstrated how you can achieve this using a combination of a script and Amazon SES. I also showed you how you can configure rotation of the Amazon SES credentials on your preferred schedule.

If you have comments about this post, submit them in the “Comments” section below. If you have questions or suggestions, please start a new thread on the Amazon SES forum.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Tekena Orugbani

Tekena is a Cloud Support Engineer at the AWS Cape Town office. He has many years of experience working with Windows Systems, virtualization/cloud technologies, and directory services. When he’s not helping customers make the most of their cloud investments, he enjoys hanging out with his family and watching Premier League football (soccer).

Learn About Amazon Pinpoint at Upcoming Events Around the World

Post Syndicated from Hannah Nilsson original https://aws.amazon.com/blogs/messaging-and-targeting/learn-about-amazon-pinpoint-at-upcoming-events/

Connect with the AWS Customer Engagement team at events around the world to learn how our technology can to help you better engage with your customers. Get demos on recent feature releases, discover how you can use Pinpoint for your specific use case, and attend informative sessions to hear how companies around the world are using AWS Customer Engagement solutions to deliver better experiences for their customers. Plus, read below to find out how Amazon Pinpoint and Amazon SES both enable you to create innovative email experiences with the recent AMP Project launch.

AWS Customer Engagement in the news: Amazon SES and Amazon Pinpoint support build the future of email with AMP

The AMP Project’s mission is to enable more user-first experiences on the web, including web-based technology like email. On March 26, the AMP Project announced that they are bringing AMP technology to email in order to give users an interactive, real-time experience that also keeps inboxes safe.

Amazon Pinpoint and Amazon SES both provide out-of-the-box support for AMP for email with no additional configuration. This allows you to easily create experiences for your customers such as  submitting RSVPs to events, filling out questionnaires, browsing catalogs, or responding to comments right within the email.

Read the AMP announcement for more information about these new capabilities. To learn how to use the AMP format with Amazon SES, visit the SES Developer Guide. To learn how to use the AMP format with Amazon Pinpoint, read this Amazon Pinpoint API Reference. View these instructions for more information on how to add AMP to an existing email.

Amazon Pinpoint has been busy building. You can now:

  • Learn how to set up an email preference management web page that enables customers to manage their email subscription preferences. Read now.
  • Learn how to set up a web form that collects information from new customers, and then sends them an SMS message to confirm that they want to receive content from you. Read now.
  • Use Amazon Pinpoint in the US West (Oregon), EU (Frankfurt), and EU (Ireland) regions in addition to the US East (Virginia) region. Learn more.
  • Deliver voice messages to your users with Amazon Pinpoint Voice. Learn more.
  • Set up campaigns that auto-send messages to your customers when they take specific actions. Learn more.
  • Detect and understand issues impacting your email deliverability with the Amazon Pinpoint Deliverability Dashboard. Learn more. 

Meet an Amazon Pinpoint expert at these upcoming events. We will teach you how to take advantage of recent updates so that you can create better engagement experiences for your customers. Plus, we can give you an inside look on what’s on our roadmap, and we’ll be giving out custom Pinpoint swag!

AWS Summit, Singapore 

April 10, 2019
Singapore Expo Convention & Exhibition Centre
Amazon Pinpoint will host an informative session about our Customer Engagement solutions at the AWS Singapore Summit. In this session, we will describe how AWS enables companies to better understand and engage their customers with personalized, timely, and relevant communications on multiple channels. You will also learn how Disney Streaming Services is using Amazon Pinpoint to engage their users.
Register for the Summit here.

“Mobile Days” at the AWS San Francisco Loft   

April 24, 2019 
AWS San Francisco Loft
Join us for an engaging day of discussion and education. Amazon Pinpoint experts will host the following sessions:

  • 2:30pm – 3:30pm: How Do You Measure Customer Success? Featuring Amazon Pinpoint. 
  • 3:30pm – 4:30pm: Using ML to Create Enhance Your Marketing. Featuring Amazon Pinpoint and Amazon Personalize. 

Space for this event is limited, please reserve your seat here.

AWS Summit, Sydney

May 1-2, 2019
International Convention Centre (ICC), Darling Harbour, Sydney
Don’t miss the customer engagement session on April 30th. This session, part of Amazon’s Innovation Day event, features a keynote address by Neil Lindsay, Vice President of Global Marketing at Amazon. The session explores how AWS technologies power organizations that deliver customer-centric innovations. Learn about how Australia’s largest brands and digital agencies use AWS technologies to engage customers, build new business models, and transform customer experiences.
Register for the Summit here

AWS Summit, Mumbai

May 15, 2019
Bombay Exhibition Center, Mumbai
The Amazon Pinpoint team will be at the “Ask an Expert” booth. Stop by to meet the team, ask questions, and pick up Amazon Pinpoint swag!
Register for the summit here

The intersection of Customer Engagement and Data Science

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/messaging-and-targeting/the-intersection-of-customer-engagement-and-data-science/

On the Messaging and Targeting team, we’re constantly inspired by the new and novel ways that customers use our services. For example, last year we took an in-depth look at a customer who built a fully featured email marketing platform based on Amazon SES and other AWS Services.

This week, our friends on the AWS Machine Learning team published a blog post that brings together the worlds of data science and customer engagement. Their solution uses Amazon SageMaker (a platform for building and deploying machine learning models) to create a system that makes purchasing predictions based on customers’ past behaviors. It then uses Amazon Pinpoint to send campaigns to customers based on these predictions.

The blog post is an interesting read that includes a primer on the process of creating a useful Machine Learning solution. It then goes in-depth, discussing the real-world considerations that are involved in implementing the solution.

Take a look at their post, Amazon Pinpoint campaigns driven by machine learning on Amazon SageMaker, on the AWS Machine Learning Blog.

RDS for Oracle: Extending Outbound Network Access to use SSL/TLS

Post Syndicated from Surya Nallu original https://aws.amazon.com/blogs/architecture/rds-for-oracle-extending-outbound-network-access-to-use-ssltls/

In December 2016, we launched the Outbound Network Access functionality for Amazon RDS for Oracle, enabling customers to use their RDS for Oracle database instances to communicate with external web endpoints using the utl_http and utl tcp packages, and sending emails through utl_smtp. We extended the functionality by adding the option of using custom DNS servers, allowing such outbound network accesses to make use of any DNS server a customer chooses to use. These releases enabled HTTP, TCP and SMTP communication originating out of RDS for Oracle instances – limited to non-secure (non-SSL) mediums.

To overcome the limitation over SSL connections, we recently published a whitepaper, that guides through the process of creating customized Oracle wallet bundles on your RDS for Oracle instances. By making use of such wallets, you can now extend the Outbound Network Access capability to have external communications happen over secure (SSL/TLS) connections. This opens up new use cases for your RDS for Oracle instances.

With the right set of certificates imported into your RDS for Oracle instances (through Oracle wallets), your database instances can now:

  • Communicate with a HTTPS endpoint: Using utl_http, access a resource such as https://status.aws.amazon.com/robots.txt
  • Download files from Amazon S3 securely: Using a presigned URL from Amazon S3, you can now download any file over SSL
  • Extending Oracle Database links to use SSL: Database links between RDS for Oracle instances can now use SSL as long as the instances have the SSL option installed
  • Sending email over SMTPS:
    • You can now integrate with Amazon SES to send emails from your database instances and any other generic SMTPS with which the provider can be integrated

These are just a few high-level examples of new use cases that have opened up with the whitepaper. As a reminder, always ensure to have best security practices in place when making use of Outbound Network Access (detailed in the whitepaper).

About the Author

Surya Nallu is a Software Development Engineer on the Amazon RDS for Oracle team.

The Amazon SES Blog is now the AWS Messaging and Targeting Blog

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/messaging-and-targeting/the-amazon-ses-blog-is-now-the-aws-messaging-and-targeting-blog/

Regular visitors to this blog may have noticed that its name has changed from the Amazon SES Blog to the AWS Messaging and Targeting Blog. The Amazon SES team has been working closely with the Amazon Pinpoint team in recent months, so we decided to create a single source of information for both products.

If you’re a dedicated Amazon SES user, don’t worry—Amazon SES isn’t going anywhere. However, as the goals of our two teams started to overlap more and more, we realized that we had lots of ideas for blog posts that would be relevant to users of both products.

If you’re not familiar with Amazon Pinpoint yet, allow us to make a brief introduction. Amazon Pinpoint was originally created to help mobile app developers analyze the ways that their customers used their apps, and to send mobile push messages to those users. Over time, the capabilities of Amazon Pinpoint grew to include the ability to send transactional messages (such as order confirmations, welcome messages, and one-time passwords), segment your audience, schedule campaign execution, and send messages using other channels (including SMS and email). In short, Amazon Pinpoint helps you deliver the right message to the right customers at the right time using the right channel.

In the past, this blog focused mainly on providing information about new features and common issues. Our new blog will include that same information, as well as practical tips, industry best practices, and the exciting things our customers have done using Amazon SES and Amazon Pinpoint. We hope you enjoy it!

If you have any questions, or if there’s anything you’d like to see us cover in the blog, please let us know in the comments section.

Troubleshooting event publishing issues in Amazon SES

Post Syndicated from Dustin Taylor original https://aws.amazon.com/blogs/ses/troubleshooting-event-publishing-issues-in-amazon-ses/

Over the past year, we’ve released several features that make it easier to track the metrics that are associated with your Amazon SES account. The first of these features, launched in November of last year, was event publishing.

Initially, event publishing let you capture basic metrics related to your email sending and publish them to other AWS services, such as Amazon CloudWatch and Amazon Kinesis Data Firehose. Some examples of these basic metrics include the number of emails that were sent and delivered, as well as the number that bounced or received complaints. A few months ago, we expanded this feature by adding engagement metrics—specifically, information about the number of emails that your customers opened or engaged with by clicking links.

As a former Cloud Support Engineer, I’ve seen Amazon SES customers do some amazing things with event publishing, but I’ve also seen some common issues. In this article, we look at some of these issues, and discuss the steps you can take to resolve them.

Before we begin

This post assumes that your Amazon SES account is already out of the sandbox, that you’ve verified an identity (such as an email address or domain), and that you have the necessary permissions to use Amazon SES and the service that you’ll publish event data to (such as Amazon SNS, CloudWatch, or Kinesis Data Firehose).

We also assume that you’re familiar with the process of creating configuration sets and specifying event destinations for those configuration sets. For more information, see Using Amazon SES Configuration Sets in the Amazon SES Developer Guide.

Amazon SNS event destinations

If you want to receive notifications when events occur—such as when recipients click a link in an email, or when they report an email as spam—you can use Amazon SNS as an event destination.

Occasionally, customers ask us why they’re not receiving notifications when they use an Amazon SNS topic as an event destination. One of the most common reasons for this issue is that they haven’t configured subscriptions for their Amazon SNS topic yet.

A single topic in Amazon SNS can have one or more subscriptions. When you subscribe to a topic, you tell that topic which endpoints (such as email addresses or mobile phone numbers) to contact when it receives a notification. If you haven’t set up any subscriptions, nothing will happen when an email event occurs.

For more information about setting up topics and subscriptions, see Getting Started in the Amazon SNS Developer Guide. For information about publishing Amazon SES events to Amazon SNS topics, see Set Up an Amazon SNS Event Destination for Amazon SES Event Publishing in the Amazon SES Developer Guide.

Kinesis Data Firehose event destinations

If you want to store your Amazon SES event data for the long term, choose Amazon Kinesis Data Firehose as a destination for Amazon SES events. With Kinesis Data Firehose, you can stream data to Amazon S3 or Amazon Redshift for storage and analysis.

The process of setting up Kinesis Data Firehose as an event destination is similar to the process for setting up Amazon SNS: you choose the types of events (such as deliveries, opens, clicks, or bounces) that you want to export, and the name of the Kinesis Data Firehose stream that you want to export to. However, there’s one important difference. When you set up a Kinesis Data Firehose event destination, you must also choose the IAM role that Amazon SES uses to send event data to Kinesis Data Firehose.

When you set up the Kinesis Data Firehose event destination, you can choose to have Amazon SES create the IAM role for you automatically. For many users, this is the best solution—it ensures that the IAM role has the appropriate permissions to move event data from Amazon SES to Kinesis Data Firehose.

Customers occasionally run into issues with the Kinesis Data Firehose event destination when they use an existing IAM role. If you use an existing IAM role, or create a new role for this purpose, make sure that the role includes the firehose:PutRecord and firehose:PutRecordBatch permissions. If the role doesn’t include these permissions, then the Amazon SES event data isn’t published to Kinesis Data Firehose. For more information, see Controlling Access with Amazon Kinesis Data Firehose in the Amazon Kinesis Data Firehose Developer Guide.

CloudWatch event destinations

By publishing your Amazon SES event data to Amazon CloudWatch, you can create dashboards that track your sending statistics in real time, as well as alarms that notify you when your event metrics reach certain thresholds.

The amount that you’re charged for using CloudWatch is based on several factors, including the number of metrics you use. In order to give you more control over the specific metrics you send to CloudWatch—and to help you avoid unexpected charges—you can limit the email sending events that are sent to CloudWatch.

When you choose CloudWatch as an event destination, you must choose a value source. The value source can be one of three options: a message tag, a link tag, or an email header. After you choose a value source, you then specify a name and a value. When you send an email using a configuration set that refers to a CloudWatch event destination, it only sends the metrics for that email to CloudWatch if the email contains the name and value that you specified as the value source. This requirement is commonly overlooked.

For example, assume that you chose Message Tag as the value source, and specified “CategoryId” as the dimension name and “31415” as the dimension value. When you want to send events for an email to CloudWatch, you must specify the name of the configuration set that uses the CloudWatch destination. You must also include a tag in your message. The name of the tag must be “CategoryId” and the value must be “31415”.

For more information about adding tags and email headers to your messages, see Send Email Using Amazon SES Event Publishing in the Amazon SES Developer Guide. For more information about adding tags to links, see Amazon SES Email Sending Metrics FAQs in the Amazon SES Developer Guide.

Troubleshooting event publishing for open and click data

Occasionally, customers ask why they’re not seeing open and click data for their emails. This issue most often occurs when the customer only sends text versions of their emails. Because of the way Amazon SES tracks open and click events, you can only see open and click data for emails that are sent as HTML. For more information about how Amazon SES modifies your emails when you enable open and click tracking, see Amazon SES Email Sending Metrics FAQs in the Amazon SES Developer Guide.

The process that you use to send HTML emails varies based on the email sending method you use. The Code Examples section of the Amazon SES Developer Guide contains examples of several methods of sending email by using the Amazon SES SMTP interface or an AWS SDK. All of the examples in this section include methods for sending HTML (as well as text-only) emails.

If you encounter any issues that weren’t covered in this post, please open a case in the Support Center and we’d be more than happy to assist.

About the Amazon Trust Services Migration

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/ses/669-2/

Amazon Web Services is moving the certificates for our services—including Amazon SES—to use our own certificate authority, Amazon Trust Services. We have carefully planned this change to minimize the impact it will have on your workflow. Most customers will not have to take any action during this migration.

About the Certificates

The Amazon Trust Services Certificate Authority (CA) uses the Starfield Services CA, which has been valid since 2005. The Amazon Trust Services certificates are available in most major operating systems released in the past 10 years, and are also trusted by all modern web browsers.

If you send email through the Amazon SES SMTP interface using a mail server that you operate, we recommend that you confirm that the appropriate certificates are installed. You can test whether your server trusts the Amazon Trust Services CAs by visiting the following URLs (for example, by using cURL):

If you see a message stating that the certificate issuer is not recognized, then you should install the appropriate root certificate. You can download individual certificates from https://www.amazontrust.com/repository. The process of adding a trusted certificate to your server varies depending on the operating system you use. For more information, see “Adding New Certificates,” below.

AWS SDKs and CLI

Recent versions of the AWS SDKs and the AWS CLI are not impacted by this change. If you use an AWS SDK or a version of the AWS CLI released prior to February 5, 2015, you should upgrade to the latest version.

Potential Issues

If your system is configured to use a very restricted list of root CAs (for example, if you use certificate pinning), you may be impacted by this migration. In this situation, you must update your pinned certificates to include the Amazon Trust Services CAs.

Adding New Root Certificates

The following sections list the steps you can take to install the Amazon Root CA certificates on your systems if they are not already present.

macOS

To install a new certificate on a macOS server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. At the command prompt, type the following command to install the certificate: sudo security add-trusted-cert -d -r trustRoot -k /Library/Keychains/System.keychain /path/to/certificatename.crt, replacing /path/to/certificatename.crt with the full path to the certificate file.

Windows Server

To install a new certificate on a Windows server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. At the command prompt, type the following command to install the certificate: certutil -addstore -f "ROOT" c:\path\to\certificatename.crt, replacing c:\path\to\certificatename.crt with the full path to the certificate file.

Ubuntu

To install a new certificate on an Ubuntu (or similar) server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. Copy the certificate file to the directory /usr/local/share/ca-certificates/
  4. At the command prompt, type the following command to update the certificate authority store: sudo update-ca-certificates

Red Hat Enterprise Linux/Fedora/CentOS

To install a new certificate on a Red Hat Enterprise Linux (or similar) server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. Copy the certificate file to the directory /etc/pki/ca-trust/source/anchors/
  4. At the command line, type the following command to enable dynamic certificate authority configuration: sudo update-ca-trust force-enable
  5. At the command line, type the following command to update the certificate authority store: sudo update-ca-trust extract

To learn more about this migration, see How to Prepare for AWS’s Move to Its Own Certificate Authority on the AWS Security Blog.

Protect your Reputation with Email Pausing and Configuration Set Metrics

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/ses/protect-your-reputation-with-email-pausing-and-configuration-set-metrics/

In August, we launched the reputation dashboard, which helps you track important metrics that could impact your ability to send emails. By monitoring the metrics in this dashboard, you can protect your sender reputation, which can increase the likelihood that the emails you send will reach your customers’ inboxes.

Today, we’re launching two features that build upon the capabilities of the reputation dashboard. The first is the ability to temporarily pause email sending, either at the configuration set level, or across your entire Amazon SES account. The second is the ability to export reputation metrics for individual configuration sets.

Email Pausing

Today’s update includes new API operations that can temporarily pause your ability to send email using Amazon SES. To disable email sending across your entire Amazon SES account, you can use the UpdateAccountSendingEnabled operation. To pause sending only for emails sent using a specific configuration set, you can use the UpdateConfigurationSetSendingEnabled operation.

Email pausing is helpful because Amazon SES uses automatic enforcement policies. If the bounce or complaint rates for your account are too high, your account is automatically placed on probation. If the bounce or complaint issues continue after the probation period has ended, your account may be suspended.

With email pausing, you can temporarily halt your ability to send email before your account is placed on probation. While your ability to send email is paused, you can identify the issues that were causing your account to register high bounce or complaint rates. You can then resume sending after the issues are resolved.

Email pausing helps ensure that your ability to send email using Amazon SES is not interrupted because of enforcement issues. It helps ensure that your sender reputation won’t be damaged by mistakes or unforeseen issues.

You can learn more about the UpdateAccountSendingEnabled and UpdateConfigurationSetSendingEnabled operations in the Amazon Simple Email Service API Reference.

Configuration Set Reputation Metrics

Amazon SES automatically publishes the bounce and complaint rates for your account to Amazon CloudWatch. In CloudWatch, you can monitor these metrics over time, and create alarms that notify you when your reputation metrics cross certain thresholds.

With today’s update, you can also publish reputation metrics for individual configuration sets to CloudWatch. This feature gives you additional information about the messages you send using Amazon SES. For example, if you send all of your marketing emails using one configuration set, and your transactional emails using a different configuration set, you can view distinct reputation metrics for each type of email.

Because we anticipate that this feature will lead to the creation of many new configuration sets, we’re increasing the maximum number of configuration sets you can create from 50 to 10,000.

For more information about exporting reputation metrics for configuration sets, see Exporting Reputation Metrics for a Configuration Set to CloudWatch in the Amazon Simple Email Service Developer Guide.

Automating These Features

You can use AWS services—including Amazon SNS, AWS Lambda, and Amazon CloudWatch—to create a solution that automatically pauses email sending for your account when your overall reputation metrics cross a certain threshold. Or, to minimize disruption to your email sending program, you can pause email sending for a specific configuration set when the metrics for that configuration set cross a threshold. The following image illustrates the processes that occur when you implement these solutions.

A flow diagram that illustrates a solution for automatically pausing Amazon SES email sending. Amazon SES provides reputation metrics to CloudWatch. If those metrics exceed a threshold, a CloudWatch alarm is triggered, which triggers an SNS topic. The SNS topic sends notifications (email, SMS), and executes a Lambda function, which pauses email sending in SES.

For more information on both of these solutions, see Automatically Pausing Email Sending in the Amazon Simple Email Service Developer Guide.

We’re always looking for ways to help safeguard the reputation you’ve worked hard to build. If you have suggestions, questions, or comments, we’d love to hear from you in the comments below, or in the Amazon SES Forum.

These features are now available in the following AWS Regions: US West (Oregon), US East (N. Virginia), and EU (Ireland).

Just in Case You Missed It: Catching Up on Some Recent AWS Launches

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/just-in-case-you-missed-it-catching-up-on-some-recent-aws-launches/

So many launches and cloud innovations, that you simply may not believe.  In order to catch up on some service launches and features, this post will be a round-up of some cool releases that happened this summer and through the end of September.

The launches and features I want to share with you today are:

  • AWS IAM for Authenticating Database Users for RDS MySQL and Amazon Aurora
  • Amazon SES Reputation Dashboard
  • Amazon SES Open and Click Tracking Metrics
  • Serverless Image Handler by the Solutions Builder Team
  • AWS Ops Automator by the Solutions Builder Team

Let’s dive in, shall we!

AWS IAM for Authenticating Database Users for RDS MySQL and Amazon Aurora

Wished you could manage access to your Amazon RDS database instances and clusters using AWS IAM? Well, wish no longer. Amazon RDS has launched the ability for you to use IAM to manage database access for Amazon RDS for MySQL and Amazon Aurora DB.

What I like most about this new service feature is, it’s very easy to get started.  To enable database user authentication using IAM, you would select a checkbox Enable IAM DB Authentication when creating, modifying, or restoring your DB instance or cluster. You can enable IAM access using the RDS console, the AWS CLI, and/or the Amazon RDS API.

After configuring the database for IAM authentication, client applications authenticate to the database engine by providing temporary security credentials generated by the IAM Security Token Service. These credentials can be used instead of providing a password to the database engine.

You can learn more about using IAM to provide targeted permissions and authentication to MySQL and Aurora by reviewing the Amazon RDS user guide.

Amazon SES Reputation Dashboard

In order to aid Amazon Simple Email Service customers’ in utilizing best practice guidelines for sending email, I am thrilled to announce we launched the Reputation Dashboard to provide comprehensive reporting on email sending health. To aid in proactively managing emails being sent, customers now have visibility into overall account health, sending metrics, and compliance or enforcement status.

The Reputation Dashboard will provide the following information:

  • Account status: A description of your account health status.
    • Healthy – No issues currently impacting your account.
    • Probation – Account is on probation; Issues causing probation must be resolved to prevent suspension
    • Pending end of probation decision – Your account is on probation. Amazon SES team member must review your account prior to action.
    • Shutdown – Your account has been shut down. No email will be able to be sent using Amazon SES.
    • Pending shutdown – Your account is on probation and issues causing probation are unresolved.
  • Bounce Rate: Percentage of emails sent that have bounced and bounce rate status messages.
  • Complaint Rate: Percentage of emails sent that recipients have reported as spam and complaint rate status messages.
  • Notifications: Messages about other account reputation issues.

Amazon SES Open and Click Tracking Metrics

Another exciting feature recently added to Amazon SES is support for Email Open and Click Tracking Metrics. With Email Open and Click Tracking Metrics feature, SES customers can now track when email they’ve sent has been opened and track when links within the email have been clicked.  Using this SES feature will allow you to better track email campaign engagement and effectiveness.

How does this work?

When using the email open tracking feature, SES will add a transparent, miniature image into the emails that you choose to track. When the email is opened, the mail application client will load the aforementioned tracking which triggers an open track event with Amazon SES. For the email click (link) tracking, links in email and/or email templates are replaced with a custom link.  When the custom link is clicked, a click event is recorded in SES and the custom link will redirect the email user to the link destination of the original email.

You can take advantage of the new open tracking and click tracking features by creating a new configuration set or altering an existing configuration set within SES. After choosing either; Amazon SNS, Amazon CloudWatch, or Amazon Kinesis Firehose as the AWS service to receive the open and click metrics, you would only need to select a new configuration set to successfully enable these new features for any emails you want to send.

AWS Solutions: Serverless Image Handler & AWS Ops Automator

The AWS Solution Builder team has been hard at work helping to make it easier for you all to find answers to common architectural questions to aid in building and running applications on AWS. You can find these solutions on the AWS Answers page. Two new solutions released earlier this fall on AWS Answers are  Serverless Image Handler and the AWS Ops Automator.
Serverless Image Handler was developed to provide a solution to help customers dynamically process, manipulate, and optimize the handling of images on the AWS Cloud. The solution combines Amazon CloudFront for caching, AWS Lambda to dynamically retrieve images and make image modifications, and Amazon S3 bucket to store images. Additionally, the Serverless Image Handler leverages the open source image-processing suite, Thumbor, for additional image manipulation, processing, and optimization.

AWS Ops Automator solution helps you to automate manual tasks using time-based or event-based triggers to automatically such as snapshot scheduling by providing a framework for automated tasks and includes task audit trails, logging, resource selection, scaling, concurrency handling, task completion handing, and API request retries. The solution includes the following AWS services:

  • AWS CloudFormation: a templates to launches the core framework of microservices and solution generated task configurations
  • Amazon DynamoDB: a table which stores task configuration data to defines the event triggers, resources, and saves the results of the action and the errors.
  • Amazon CloudWatch Logs: provides logging to track warning and error messages
  • Amazon SNS: topic to send messages to a subscribed email address to which to send the logging information from the solution

Have fun exploring and coding.

Tara

AWS Online Tech Talks – November 2017

Post Syndicated from Sara Rodas original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-november-2017/

Leaves are crunching under my boots, Halloween is tomorrow, and pumpkin is having its annual moment in the sun – it’s fall everybody! And just in time to celebrate, we have whipped up a fresh batch of pumpkin spice Tech Talks. Grab your planner (Outlook calendar) and pencil these puppies in. This month we are covering re:Invent, serverless, and everything in between.

November 2017 – Schedule

Noted below are the upcoming scheduled live, online technical sessions being held during the month of November. Make sure to register ahead of time so you won’t miss out on these free talks conducted by AWS subject matter experts.

Webinars featured this month are:

Monday, November 6

Compute

9:00 – 9:40 AM PDT: Set it and Forget it: Auto Scaling Target Tracking Policies

Tuesday, November 7

Big Data

9:00 – 9:40 AM PDT: Real-time Application Monitoring with Amazon Kinesis and Amazon CloudWatch

Compute

10:30 – 11:10 AM PDT: Simplify Microsoft Windows Server Management with Amazon Lightsail

Mobile

12:00 – 12:40 PM PDT: Deep Dive on Amazon SES What’s New

Wednesday, November 8

Databases

10:30 – 11:10 AM PDT: Migrating Your Oracle Database to PostgreSQL

Compute

12:00 – 12:40 PM PDT: Run Your CI/CD Pipeline at Scale for a Fraction of the Cost

Thursday, November 9

Databases

10:30 – 11:10 AM PDT: Migrating Your Oracle Database to PostgreSQL

Containers

9:00 – 9:40 AM PDT: Managing Container Images with Amazon ECR

Big Data

12:00 – 12:40 PM PDT: Amazon Elasticsearch Service Security Deep Dive

Monday, November 13

re:Invent

10:30 – 11:10 AM PDT: AWS re:Invent 2017: Know Before You Go

5:00 – 5:40 PM PDT: AWS re:Invent 2017: Know Before You Go

Tuesday, November 14

AI

9:00 – 9:40 AM PDT: Sentiment Analysis Using Apache MXNet and Gluon

10:30 – 11:10 AM PDT: Bringing Characters to Life with Amazon Polly Text-to-Speech

IoT

12:00 – 12:40 PM PDT: Essential Capabilities of an IoT Cloud Platform

Enterprise

2:00 – 2:40 PM PDT: Everything you wanted to know about licensing Windows workloads on AWS, but were afraid to ask

Wednesday, November 15

Security & Identity

9:00 – 9:40 AM PDT: How to Integrate AWS Directory Service with Office365

Storage

10:30 – 11:10 AM PDT: Disaster Recovery Options with AWS

Hands on Lab

12:30 – 2:00 PM PDT: Hands on Lab: Windows Workloads

Thursday, November 16

Serverless

9:00 – 9:40 AM PDT: Building Serverless Websites with [email protected]

Hands on Lab

12:30 – 2:00 PM PDT: Hands on Lab: Deploy .NET Code to AWS from Visual Studio

– Sara

Amazon SES Now Supports DMARC Validation and Reporting for Incoming Email

Post Syndicated from Nic Webb original https://aws.amazon.com/blogs/ses/amazon-ses-now-supports-dmarc-validation-and-reporting-for-incoming-email/

Amazon SES now adds DMARC verdicts to incoming emails, and publishes aggregate DMARC reports to domain owners. These two new features will help combat email spoofing and phishing, making the email ecosystem a safer and more secure place.

What is DMARC?

DMARC stands for Domain-based Message Authentication, Reporting, and Conformance. The DMARC standard was designed to prevent malicious actors from sending messages that appear to be from legitimate senders. Domain owners can tell email receivers how to handle unauthenticated messages that appear to be from their domains. The DMARC standard also specifies certain reports that email senders and receivers send to each other. The cooperative nature of this reporting process helps improve the email authentication infrastructure.

How does Amazon SES Implement DMARC?

When you receive an email message through Amazon SES, the headers of that message will include a DMARC policy verdict alongside the DKIM and SPF verdicts (both of which are already present). This additional information helps you verify the authenticity of all email messages you receive.

Messages you receive through Amazon SES will contain one of the following DMARC verdicts:

  • PASS – The message passed DMARC authentication.
  • FAIL – The message failed DMARC authentication.
  • GRAY – The sending domain does not have a DMARC policy.
  • PROCESSING_FAILED – An issue occurred that prevented Amazon SES from providing a DMARC verdict.

If the DMARC verdict is FAIL, Amazon SES will also provide information about the sending domain’s DMARC settings. In this situation, you will see one of the following verdicts:

  • NONE – The owner of the sending domain requests that no specific action be taken on messages that fail DMARC authentication.
  • QUARANTINE – The owner of the sending domain requests that messages that fail DMARC authentication be treated by receivers as suspicious.
  • REJECT – The owner of the sending domain requests that messages that fail DMARC authentication be rejected.

In addition to publishing the DMARC verdict on each incoming message, Amazon SES now sends DMARC aggregate reports to domain owners. These reports help domain owners identify systemic authentication failures, and avoid potential domain spoofing attacks.

Note: Domain owners only receive aggregate information about emails that do not pass DMARC authentication. These reports, known as RUA reports, only include information about the IP addresses that send unauthenticated emails to you. These reports do not include information about legitimate email senders.

How do I configure DMARC?

As is the case with SPF and DKIM, domain owners must publish their DMARC policies as DNS records for their domains. For more information about setting up DMARC, see Complying with DMARC Using Amazon SES in the Amazon SES Developer Guide.

DMARC reporting is now available in the following AWS Regions: US West (Oregon), US East (N. Virginia), and EU (Ireland). You can find more information about the dmarcVerdict and dmarcPolicy objects in the Amazon SES Developer Guide. The Developer Guide also includes a sample Lambda function that you can use to bounce incoming emails that fail DMARC authentication.

Introducing Email Templates and Bulk Sending

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/ses/introducing-email-templates-and-bulk-sending/

The Amazon SES team is excited to announce our latest update, which includes two related features that help you send personalized emails to large groups of customers. This post discusses these features, and provides examples that you can follow to start using these features right away.

Email templates

You can use email templates to create the structure of an email that you plan to send to multiple recipients, or that you will use again in the future. Each template contains a subject line, a text part, and an HTML part. Both the subject and the email body can contain variables that are automatically replaced with values specific to each recipient. For example, you can include a {{name}} variable in the body of your email. When you send the email, you specify the value of {{name}} for each recipient. Amazon SES then automatically replaces the {{name}} variable with the recipient’s first name.

Creating a template

To create a template, you use the CreateTemplate API operation. To use this operation, pass a JSON object with four properties: a template name (TemplateName), a subject line (SubjectPart), a plain text version of the email body (TextPart), and an HTML version of the email body (HtmlPart). You can include variables in the subject line or message body by enclosing the variable names in two sets of curly braces. The following example shows the structure of this JSON object.

{
  "TemplateName": "MyTemplate",
  "SubjectPart": "Greetings, {{name}}!",
  "TextPart": "Dear {{name}},\r\nYour favorite animal is {{favoriteanimal}}.",
  "HtmlPart": "<h1>Hello {{name}}</h1><p>Your favorite animal is {{favoriteanimal}}.</p>"
}

Use this example to create your own template, and save the resulting file as mytemplate.json. You can then use the AWS Command Line Interface (AWS CLI) to create your template by running the following command: aws ses create-template --cli-input-json mytemplate.json

Sending an email created with a template

Now that you have created a template, you’re ready to send email that uses the template. You can use the SendTemplatedEmail API operation to send email to a single destination using a template. Like the CreateTemplate operation, this operation accepts a JSON object with four properties. For this operation, the properties are the sender’s email address (Source), the name of an existing template (Template), an object called Destination that contains the recipient addresses (and, optionally, any CC or BCC addresses) that will receive the email, and a property that refers to the values that will be replaced in the email (TemplateData). The following example shows the structure of the JSON object used by the SendTemplatedEmail operation.

{
  "Source": "[email protected]",
  "Template": "MyTemplate",
  "Destination": {
    "ToAddresses": [ "[email protected]" ]
  },
  "TemplateData": "{ \"name\":\"Alejandro\", \"favoriteanimal\": \"zebra\" }"
}

Customize this example to fit your needs, and then save the resulting file as myemail.json. One important note: in the TemplateData property, you must use a blackslash (\) character to escape the quotes within this object, as shown in the preceding example.

When you’re ready to send the email, run the following command: aws ses send-templated-email --cli-input-json myemail.json

Bulk email sending

In most cases, you should use email templates to send personalized emails to several customers at the same time. The SendBulkTemplatedEmail API operation helps you do that. This operation also accepts a JSON object. At a minimum, you must supply a sender email address (Source), a reference to an existing template (Template), a list of recipients in an array called Destinations (within which you specify the recipient’s email address, and the variable values for that recipient), and a list of fallback values for the variables in the template (DefaultTemplateData). The following example shows the structure of this JSON object.

{
  "Source":"[email protected]",
  "ConfigurationSetName":"ConfigSet",
  "Template":"MyTemplate",
  "Destinations":[
    {
      "Destination":{
        "ToAddresses":[
          "[email protected]"
        ]
      },
      "ReplacementTemplateData":"{ \"name\":\"Anaya\", \"favoriteanimal\":\"yak\" }"
    },
    {
      "Destination":{ 
        "ToAddresses":[
          "[email protected]"
        ]
      },
      "ReplacementTemplateData":"{ \"name\":\"Liu\", \"favoriteanimal\":\"water buffalo\" }"
    },
    {
      "Destination":{
        "ToAddresses":[
          "[email protected]"
        ]
      },
      "ReplacementTemplateData":"{ \"name\":\"Shirley\", \"favoriteanimal\":\"vulture\" }"
    },
    {
      "Destination":{
        "ToAddresses":[
          "[email protected]"
        ]
      },
      "ReplacementTemplateData":"{}"
    }
  ],
  "DefaultTemplateData":"{ \"name\":\"friend\", \"favoriteanimal\":\"unknown\" }"
}

This example sends unique emails to Anaya ([email protected]), Liu ([email protected]), Shirley ([email protected]), and a fourth recipient ([email protected]), whose name and favorite animal we didn’t specify. Anaya, Liu, and Shirley will see their names in place of the {{name}} tag in the template (which, in this example, is present in both the subject line and message body), as well as their favorite animals in place of the {{favoriteanimal}} tag in the message body. The DefaultTemplateData property determines what happens if you do not specify the ReplacementTemplateData property for a recipient. In this case, the fourth recipient will see the word “friend” in place of the {{name}} tag, and “unknown” in place of the {{favoriteanimal}} tag.

Use the example to create your own list of recipients, and save the resulting file as mybulkemail.json. When you’re ready to send the email, run the following command: aws ses send-bulk-templated-email --cli-input-json mybulkemail.json

Other considerations

There are a few limits and other considerations when using these features:

  • You can create up to 10,000 email templates per Amazon SES account.
  • Each template can be up to 10 MB in size.
  • You can include an unlimited number of replacement variables in each template.
  • You can send email to up to 50 destinations in each call to the SendBulkTemplatedEmail operation. A destination includes a list of recipients, as well as CC and BCC recipients. Note that the number of destinations you can contact in a single call to the API may be limited by your account’s maximum sending rate. For more information, see Managing Your Amazon SES Sending Limits in the Amazon SES Developer Guide.

We look forward to seeing the amazing things you create with these new features. If you have any questions, please leave a comment on this post, or let us know in the Amazon SES forum.

Announcing the Reputation Dashboard

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/ses/announcing-the-reputation-dashboard/

The Amazon SES team is pleased to announce the addition of a reputation dashboard to the Amazon SES console. This new feature helps you track issues that could impact the sender reputation of your Amazon SES account.

What information does the reputation dashboard provide?

Amazon SES users must maintain bounce and complaint rates below a certain threshold. We put these rules in place to protect the sender reputations of all Amazon SES users, and to prevent Amazon SES from being used to deliver spam or malicious content. Users with very high rates of bounces or complaints may be put on probation. If the bounce or complaint rates are not within acceptable limits by the end of the probation period, these accounts may be shut down completely.

Previous versions of Amazon SES provided basic sending metrics, including information about bounces and complaints. However, the bounce and complaint metrics in this dashboard only included information for the past few days of email sent from your account, as opposed to an overall rate.

The new reputation dashboard provides overall bounce and complaint rates for your entire account. This enables you to more closely monitor the health of your account and adjust your email sending practices as needed.

Can’t I just calculate these values myself?

Because each Amazon SES account sends different volumes of email at different rates, we do not calculate bounce and complaint rates based on a fixed time period. Instead, we use a representative volume of email. This representative volume is the basis for the bounce and complaint rate calculations.

Why do we use representative volume in our calculations? Let’s imagine that you sent 1,000 emails one week, and 5 of them bounced. If we only considered a week of email sending, your metrics look good. Now imagine that the next week you only sent 5 emails, and one of them bounced. Suddenly, your bounce rate jumps from half a percent to 20%, and your account is automatically placed on probation. This example may be an extreme case, but it illustrates the reason that we don’t use fixed time periods when calculating bounce and complaint rates.

When you open the new reputation dashboard, you will see bounce and complaint rates calculated using the representative volume for your account. We automatically recalculate these rates every time you send email through Amazon SES.

What else can I do with these metrics?

The Bounce and Complaint Rate metrics in the reputation dashboard are automatically sent to Amazon CloudWatch. You can use CloudWatch to create dashboards that track your bounce and complaint rates over time, and to create alarms that send you notifications when these metrics cross certain thresholds. To learn more, see Creating Reputation Monitoring Alarms Using CloudWatch in the Amazon SES Developer Guide.

How can I see the reputation dashboard?

The reputation dashboard is now available to all Amazon SES users. To view the reputation dashboard, sign in to the Amazon SES console. On the left navigation menu, choose Reputation Dashboard. For more information, see Monitoring Your Sender Reputation in the Amazon SES Developer Guide.

We hope you find the information in the reputation dashboard to be useful in managing your email sending programs and campaigns. If you have any questions or comments, please leave a comment on this post, or let us know in the Amazon SES forum.

New – SES Dedicated IP Pools

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/new-ses-dedicated-ip-pools/

Today we released Dedicated IP Pools for Amazon Simple Email Service (SES). With dedicated IP pools, you can specify which dedicated IP addresses to use for sending different types of email. Dedicated IP pools let you use your SES for different tasks. For instance, you can send transactional emails from one set of IPs and you can send marketing emails from another set of IPs.

If you’re not familiar with Amazon SES these concepts may not make much sense. We haven’t had the chance to cover SES on this blog since 2016, which is a shame, so I want to take a few steps back and talk about the service as a whole and some of the enhancements the team has made over the past year. If you just want the details on this new feature I strongly recommend reading the Amazon Simple Email Service Blog.

What is SES?

So, what is SES? If you’re a customer of Amazon.com you know that we send a lot of emails. Bought something? You get an email. Order shipped? You get an email. Over time, as both email volumes and types increased Amazon.com needed to build an email platform that was flexible, scalable, reliable, and cost-effective. SES is the result of years of Amazon’s own work in dealing with email and maximizing deliverability.

In short: SES gives you the ability to send and receive many types of email with the monitoring and tools to ensure high deliverability.

Sending an email is easy; one simple API call:

import boto3
ses = boto3.client('ses')
ses.send_email(
    Source='[email protected]',
    Destination={'ToAddresses': ['[email protected]']},
    Message={
        'Subject': {'Data': 'Hello, World!'},
        'Body': {'Text': {'Data': 'Hello, World!'}}
    }
)

Receiving and reacting to emails is easy too. You can set up rulesets that forward received emails to Amazon Simple Storage Service (S3), Amazon Simple Notification Service (SNS), or AWS Lambda – you could even trigger a Amazon Lex bot through Lambda to communicate with your customers over email. SES is a powerful tool for building applications. The image below shows just a fraction of the capabilities:

Deliverability 101

Deliverability is the percentage of your emails that arrive in your recipients’ inboxes. Maintaining deliverability is a shared responsibility between AWS and the customer. AWS takes the fight against spam very seriously and works hard to make sure services aren’t abused. To learn more about deliverability I recommend the deliverability docs. For now, understand that deliverability is an important aspect of email campaigns and SES has many tools that enable a customer to manage their deliverability.

Dedicated IPs and Dedicated IP pools

When you’re starting out with SES your emails are sent through a shared IP. That IP is responsible for sending mail on behalf of many customers and AWS works to maintain appropriate volume and deliverability on each of those IPs. However, when you reach a sufficient volume shared IPs may not be the right solution.

By creating a dedicated IP you’re able to fully control the reputations of those IPs. This makes it vastly easier to troubleshoot any deliverability or reputation issues. It’s also useful for many email certification programs which require a dedicated IP as a commitment to maintaining your email reputation. Using the shared IPs of the Amazon SES service is still the right move for many customers but if you have sustained daily sending volume greater than hundreds of thousands of emails per day you might want to consider a dedicated IP. One caveat to be aware of: if you’re not sending a sufficient volume of email with a consistent pattern a dedicated IP can actually hurt your reputation. Dedicated IPs are $24.95 per address per month at the time of this writing – but you can find out more at the pricing page.

Before you can use a Dedicated IP you need to “warm” it. You do this by gradually increasing the volume of emails you send through a new address. Each IP needs time to build a positive reputation. In March of this year SES released the ability to automatically warm your IPs over the course of 45 days. This feature is on by default for all new dedicated IPs.

Customers who send high volumes of email will typically have multiple dedicated IPs. Today the SES team released dedicated IP pools to make managing those IPs easier. Now when you send email you can specify a configuration set which will route your email to an IP in a pool based on the pool’s association with that configuration set.

One of the other major benefits of this feature is that it allows customers who previously split their email sending across several AWS accounts (to manage their reputation for different types of email) to consolidate into a single account.

You can read the documentation and blog for more info.

Announcing Dedicated IP Pools

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/ses/announcing-dedicated-ip-pools/

The Amazon SES team is pleased to announce that you can now create groups of dedicated IP addresses, called dedicated IP pools, for your email sending activities.

Prior to the availability of this feature, if you leased several dedicated IP addresses to use with Amazon SES, there was no way to specify which dedicated IP address to use for a specific email. Dedicated IP pools solve this problem by allowing you to send emails from specific IP addresses.

This post includes information and procedures related to dedicated IP pools.

What are dedicated IP pools?

In order to understand dedicated IP pools, you should first be familiar with the concept of dedicated IP addresses. Customers who send large volumes of email will typically lease one or more dedicated IP addresses to use when sending mail from Amazon SES. To learn more, see our blog post about dedicated IP addresses.

If you lease several dedicated IP addresses for use with Amazon SES, you can organize these addresses into groups, called pools. You can then associate each pool with a configuration set. When you send an email that specifies a configuration set, that email will be sent from the IP addresses in the associated pool.

When should I use dedicated IP pools?

Dedicated IP pools are especially useful for customers who send several different types of email using Amazon SES. For example, if you use Amazon SES to send both marketing emails and transactional emails, you can create a pool for marketing emails and another for transactional emails.

By using dedicated IP pools, you can isolate the sender reputations for each of these types of communications. Using dedicated IP pools gives you complete control over the sender reputations of the dedicated IP addresses you lease from Amazon SES.

How do I create and use dedicated IP pools?

There are two basic steps for creating and using dedicated IP pools. First, create a dedicated IP pool in the Amazon SES console and associate it with a configuration set. Next, when you send email, be sure to specify the configuration set associated with the IP pool you want to use.

For step-by-step procedures, see Creating Dedicated IP Pools in the Amazon SES Developer Guide.

Will my email sending process change?

If you do not use dedicated IP addresses with Amazon SES, then your email sending process will not change.

If you use dedicated IP pools, your email sending process may change slightly. In most cases, you will need to specify a configuration set in the emails you send. To learn more about using configuration sets, see Specifying a Configuration Set When You Send Email in the Amazon SES Developer Guide.

Any dedicated IP addresses that you lease that are not part of a dedicated IP pool will automatically be added to a default pool. If you send email without specifying a configuration set that is associated with a pool, then that email will be sent from one of the addresses in the default pool.

Dedicated IP pools are now available in the following AWS Regions: us-west-2 (Oregon), us-east-1 (Virginia), and eu-west-1 (Ireland).

We hope you enjoy this feature. If you have any questions or comments, please leave a comment on this post, or let us know in the Amazon SES Forum.

Open and Click Tracking Have Arrived

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/ses/open-and-click-tracking-have-arrived/

We’re pleased to announce the addition of open and click tracking metrics to Amazon SES. These metrics will help you measure the effectiveness of the email campaigns you send using Amazon SES.

We’re also adding the ability to publish email sending metrics to Amazon Simple Notification Service (Amazon SNS) using event publishing. This feature gives you greater control over the sending notifications you receive through Amazon SNS.

What’s new in this release?

When you send an email using Amazon SES, we now collect metrics related to opens and clicks. Opens, in this sense, refers to the number of users who successfully received your email and opened it in their email clients; clicks refers to the number of users who received an email and clicked one or more links in it.

Additionally, you can now use event publishing to push email sending notifications—including open and click notifications—using Amazon SNS. Previously, you could send account-level notifications through Amazon SNS. These notifications were pretty limited: you could only receive notifications about bounces, complaints, and deliveries, and you would receive notifications about all of these events across your entire Amazon SES account. Now you can use event publishing to send notifications about deliveries, opens, clicks, bounces, and complaints. Furthermore, you can set up event publishing so that you only receive notifications about emails sent using the configuration sets you specify in those emails.

Why should I use open and click tracking?

Whether you are sending marketing emails, transactional emails, or notifications, you need to know how effective your communications are. The email sending metrics feature of Amazon SES gives you data about entire email response funnel—the total number of emails that were sent, bounced, viewed, and clicked. You can then transform those insights into action.

For example, the open and click tracking feature can help you identify the customers who are most interested in receiving the messages you send. By narrowing down your list of recipients and focusing on your most engaged customers, you can save money (by sending fewer messages), improve the response rates of your marketing campaigns (by targeting only the customers who are most interested in what you have to say), and protect your sender reputation (by reducing the number of bounces and complaints against your sending domain).

How do I enable open and click tracking?

If you’ve set up Sending Metrics in the past, then you can easily add open and click tracking to your existing configuration sets. On the Configuration Sets page, choose the configuration set that contains your sending event destination; edit the event destination, check the boxes for Open and Click (as shown in the image below), and then choose Save.

How does open and click tracking work?

Amazon SES makes very minor changes to your emails in order to make open and click tracking work. At the bottom of each message, we insert a 1 pixel by 1 pixel transparent GIF image. Each email includes a unique link to this image file; when the image is opened, we can tell exactly which message was opened and by whom.

To track clicks, we set up a redirect for each link in the message. When a recipient clicks a link, they are sent to an Amazon SES server, and are immediately forwarded to the destination address. As with open tracking, each of these redirect links is unique, allowing us to easily determine which recipient clicked the link, when they clicked it, and the email from which they arrived at the link.

Can I disable click tracking?

You can disable click tracking by adding a special tag to the anchor tags in your HTML. For example, if you were linking to the AWS home page, a normal anchor link would look something like this:

<a href="https://aws.amazon.com/">Amazon Web Services</a>

To disable click tracking for that same link, you would modify to look like this:

<a ses:no-track href="https://aws.amazon.com/">Amazon Web Services</a>

Because the ses:no-track attribute is non-standard HTML, we automatically remove it from the version of the email that arrives in your recipients’ inboxes.

How do I use event publishing with Amazon SNS?

If you’ve set up event destinations in the past, then the process of setting up an Amazon SNS event destination will be very familiar. You can add an Amazon SNS destination to an existing configuration set, or create a new configuration set that uses Amazon SNS as its event destination. To learn more, see “Set Up an Amazon SNS Event Destination for Amazon SES Event Publishing” in our Developer Guide.

We’re excited about this release. Let us know what you think of these new features in the SES Forum, or in the comments for this post.

Guest post: How EmailOctopus built an email marketing platform using Amazon SES

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/ses/guest-post-how-emailoctopus-built-an-email-marketing-platform-using-amazon-ses/

The following guest post was written by Tom Evans, COO of EmailOctopus.


Our product, EmailOctopus, grew from a personal need. We were working on another business venture, and as our email subscriber base grew, the costs of using the larger email service providers became prohibitively expensive for an early-stage startup.

At this point we were already using Amazon SES to send sign up confirmations to our users. We loved Amazon SES’ low pricing and high deliverability, but being a transactional email service, we missed some tracking features offered by our marketing provider. We decided to develop a simple interface to make it easier for us to build and track the performance of marketing emails on top of the Amazon SES platform.

After sharing our accomplishments with other founders, and with no other SaaS solutions on the market that met the same need, we began to turn our basic script into a polished email marketing application. We named our application EmailOctopus. Over 4 years later, and with over 1.5 billion emails delivered through Amazon SES, our mission remains the same: to make contacting your customers as easy and inexpensive as possible.

EmailOctopus is now a fully fledged platform, with thousands of users sending marketing campaigns every day. Our platform integrates directly with our customers’ AWS accounts and provides them with an easy-to-use front end on top of the SES platform. EmailOctopus users can upload or register subscribers who have opted into their correspondence (through an import or one of our many integrations), then send a one-off campaign or an automated marketing series, all while closely tracking the performance of those emails and allowing the recipients to opt-out.

Scaling EmailOctopus to handle millions of emails per day

Building an email marketing platform from scratch has presented a number of challenges, both technical and operational. EmailOctopus has quickly grown from a side project to a mature business that has sent over 1.5 billion emails through Amazon SES.

One of the biggest challenges of our growth has been dealing with a rapidly expanding database. Email marketing generates a huge amount of data. We log every view, bounce, click, spam report, open and unsubscribe for every email sent through our platform. A single campaign can easily generate over 1 million of these events.

Our event processing system sits on a number of microservices spread over EC2 and Lambda, which allows us to selectively scale our services based on demand. Figure 1, below, demonstrates just how irregular this demand is. We save over $500 a month using an on-demand serverless model.

Figure 1. Number of events processed over time.

This model helps us manage our costs and ensures we only pay for the computing power we need.  We rely heavily on CloudFormation scripts to edit that infrastructure; these scripts allow every change to be version-controlled and propagated across all of our environments. In preparing for this blog post, we took a look at how that template had changed over the years—we’d forgotten just how much it had evolved. As our user base grew from 1 customer to 10,000, a single EC2 instance writing to a MySQL database just didn’t cut it. We now rely on a large portion of the AWS suite to reliably consume our event data, as illustrated in Figure 2, below.

Figure 2. Our current event processing infrastructure.

Operationally, our business has needed to make changes to scale too. Processes that worked fine with a handful of clients do not work so well with 10,000 users. We pride ourselves on providing our customers with a superior and personal service; to maintain that commitment, we dedicate 10% of our development time to improving our internal tools. One of these projects resulted in a dashboard which quickly provides us with detailed information on each user and their journey through the platform. The days of asking our support team to assemble database queries are long gone!

What makes EmailOctopus + SES different from the competition?

Amazon SES uses proprietary content filtering technologies and monitors the status of its services rigorously. This means that you’re likely to see increased deliverability on your communication, while saving up to 10x on your current email marketing costs. EmailOctopus pricing plans range from $0 to $109 per month (depending on the number of recipients you need to store), and the cost of sending email through Amazon SES is also very low: you pay nothing for the first 62,000 emails you send through Amazon SES each month, and $0.10 per 1,000 emails after that. Need to send a million emails in a month? You can do it for less than $100 with EmailOctopus + Amazon SES.

Our easy-to-use interface and integrations make it easy to add new subscribers, and our email templates help you create trackable, beautiful, responsive emails. We even offer trigger-based automated email delivery—perfect for onboarding new customers.

I’m ready to get started!

Great! We’ve made it easy to start using EmailOctopus with Amazon SES. First, if you don’t already have one, create an Amazon Web Services account. Once you’ve done that, head over to our website and create an EmailOctopus account. From there, we’ll walk you through the quick and easy process of linking the two services together.

If you’ve never used Amazon SES before, you will also need to provide some information about the types of communication you plan to send. This important step in the process ensures that all new Amazon SES users are reputable, and that they will not have a negative impact on other users who send email through Amazon SES. Once you’ve finished that step, you’ll be ready to start sending emails using EmailOctopus and Amazon SES.

To learn more about what EmailOctopus can do for your business, visit our website at https://emailoctopus.com.

 

Creating a Daily Dashboard to Track Bounces and Complaints

Post Syndicated from Rubem De Lima Savordelli original https://aws.amazon.com/blogs/ses/creating-a-daily-dashboard-to-track-bounces-and-complaints/

Bounce and complaint rates can have a negative impact on your sender reputation, and a bad sender reputation makes it less likely that the emails you send will reach your recipients’ inboxes. Further, if your bounce or complaint rate is too high, we may have to suspend your Amazon SES account to protect other users. For these reasons, it is very important that you have a process in place to remove email addresses that have bounced or complained from your recipient list.

This article includes background information about bounces and complaints. It also discusses a sample solution that you can use to keep track of the bounce and complaint notifications that you receive.

What is a Bounce?

A bounce occurs when a message cannot be delivered to the intended recipient. There are two types of bounces:

  • A hard bounce occurs when a persistent issue prevents the message from being delivered. Hard bounces can occur when the recipient’s email address does not exist or the receiving domain does not exist. When an email hard bounces, it means that the recipient did not receive the message, and Amazon SES will no longer attempt to deliver the message.
  • A soft bounce occurs when a temporary issue prevents a message from being delivered. Soft bounces can occur when the recipient’s mailbox is full, when the connection to the receiving email server times out, or when there are too many simultaneous connections to the receiving mail server. When an email soft bounces, Amazon will attempt to redeliver it. If the issue persists, Amazon SES will stop trying to deliver the message, and the soft bounce will be converted to a hard bounce.

To learn more about bounces, see the Amazon SES Bounce FAQ in the Amazon SES Developer Guide.

What is a Complaint?

When an email recipient clicks the Mark as Spam (or similar) button in his or her email client, the ISP records the event as a complaint. If the emails that you send generate too many of these complaint events, the ISP may conclude that you’re sending spam. Many ISPs provide feedback loops, in which the ISP provides you with information about the message that generated the complaint event.

For more information about complaints, see the Amazon SES Complaint FAQ in the Amazon SES Developer Guide.

Building a Daily Dashboard

We recently added a section to the Amazon SES Developer Guide that documents the process of creating a daily bounce and complaint tracking dashboard. You can find the procedures for creating this daily dashboard at http://docs.aws.amazon.com/ses/latest/DeveloperGuide/bouncecomplaintdashboard.html.

This solution uses several AWS components—including Simple Notification Service (SNS), Simple Queue Service (SQS), Identity and Access Management (IAM), Simple Storage Service (S3), Lambda, and CloudWatch—to create a dashboard that is emailed to you every day. The daily dashboard, illustrated in the following image, contains a list of the messages that generated bounces and complaints over the past 24 hours.

This solution uses SNS to track bounce and complaint notifications. Those notifications are then collected in an SQS queue. A CloudWatch trigger initiates a Lambda function, which collects the notification events from SQS, processes them, publishes a dashboard to an S3 bucket, and sends you an email when the dashboard is ready to view. The following image illustrates the architecture of this solution.

When you receive the daily dashboard, you should use it to remove the addresses that hard bounced or complained from your recipient list. This measure will help protect your deliverability and inbox placement rates.

This solution is just one method of tracking the bounces and complaints that you receive when sending email using Amazon SES. We hope you find this sample solution useful. If you have any questions about this solution, please leave a comment below, or start a discussion in the Amazon SES forum.

AWS Week in Review – March 6, 2017

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-week-in-review-march-6-2017/

This edition includes all of our announcements, content from all of our blogs, and as much community-generated AWS content as I had time for!

Monday

March 6

Tuesday

March 7

Wednesday

March 8

Thursday

March 9

Friday

March 10

Saturday

March 11

Sunday

March 12

Jeff;