All posts by Evan Ackerman

Video Friday: Transferring Human Motion to a Mobile Robot Manipulator

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-transferring-human-motion-to-a-mobile-robotic-manipulator

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau

Let us know if you have suggestions for next week, and enjoy today’s videos.


Skydio’s Dock in a Box Enables Long-Term Autonomy for Drone Applications

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/drones/skydios-dock-in-a-box-enables-longterm-autonomy-for-drone-applications

The word “autonomy” in the context of drones (or really any other robot) can mean a whole bunch of different things. Skydio’s newest drone, which you can read lots more about here, is probably the most autonomous drone that we’ve ever seen, in the sense that it can fly itself while tracking subjects and avoiding obstacles. But as soon as the Skydio 2 lands, it’s completely helpless, dependent on a human to pick it up, pack it into a case, and take it back home to recharge.

For consumer applications, this is not a big deal. But for industry, a big part of the appeal of autonomy is being able to deliver results with a minimum of human involvement, since humans are expensive and almost always busy doing other things.

Today, Skydio is announcing the Skydio 2 Dock, a (mostly) self-contained home base that a Skydio 2 drone can snuggle up inside to relax and recharge in between autonomous missions, meaning that you can set it up almost anywhere and get true long-term full autonomy from your drone.

OpenAI Teaches Robot Hand to Solve Rubik’s Cube

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/robotics-hardware/openai-demonstrates-sim2real-by-with-onehanded-rubiks-cube-solving

In-hand manipulation is a skill that, as far as I’m aware, humans in general don’t actively learn. We just sort of figure it out by doing other, more specific tasks with our fingers and hands. This makes it particularly tricky to teach robots to solve in-hand manipulation tasks because the way we do it is through experimentation and trial and error. Robots can learn through trial and error as well, but since it usually ends up being mostly error, it takes a very, very long time.

Last June, we wrote about OpenAI’s approach to teaching a five-fingered robot hand to manipulate a cube. The method that OpenAI used leveraged the same kind of experimentation and trial and error, but in simulation rather than on robot hardware. For complex tasks that take a lot of finesse, simulation generally translates poorly into real-world skills, but OpenAI made their system super robust by introducing a whole bunch of randomness into the simulation during the training process. That way, even if the simulation didn’t perfectly match reality (which it didn’t), the system could still handle the kinds of variations that it experienced on the real-world hardware.

In a preprint paper published online today, OpenAI has managed to teach its robot hand to solve a much more difficult version of in-hand cube manipulation: single-handed solving of a 3×3 Rubik’s cube. The new work is also based on the idea of solving a problem using advanced simulations and then transferring the solution to a real-world system, or what researchers call “sim2real.” In the paper, OpenAI says the new approach “vastly improved sim2real transfer.”

Labrador Systems Developing Affordable Assistive Robots for the Home

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/home-robots/labrador-systems-developing-affordable-assistive-robots-for-the-home

Developing robots for the home is still a challenge, especially if you want those robots to interact with people and help them do practical, useful things. However, the potential markets for home robots are huge, and one of the most compelling markets is for home robots that can assist humans who need them. Today, Labrador Systems, a startup based in California, is announcing a pre-seed funding round of $2 million (led by SOSV’s hardware accelerator HAX with participation from Amazon’s Alexa Fund and iRobot Ventures, among others) with the goal of expanding development and conducting pilot studies of  “a new [assistive robot] platform for supporting home health.”

Agility Robotics Unveils Upgraded Digit Walking Robot

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/humanoids/agility-robotics-digit-v2-biped-robot

Last time we saw Agility Robotics’ Digit biped, it was picking up a box from a Ford delivery van and autonomously dropping it off on a porch, while at the same time managing to not trip over stairs, grass, or small children. As a demo, it was pretty impressive, but of course there’s an enormous gap between making a video of a robot doing a successful autonomous delivery and letting that robot out into the semi-structured world and expecting it to reliably do a good job.

Agility Robotics is aware of this, of course, and over the last six months they’ve been making substantial improvements to Digit to make it more capable and robust. A new video posted today shows what’s new with the latest version of Digit—Digit v2.

Video Friday: This Humanoid Robot Will Serve You Ice Cream

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-humanoid-robot-roboy-serving-ice-cream

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

Northeast Robotics Colloquium – October 12, 2019 – Philadelphia, Pa., USA
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau

Let us know if you have suggestions for next week, and enjoy today’s videos.


Watch Astrobee’s First Autonomous Flight on the International Space Station

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/space-robots/watch-astrobees-first-autonomous-flight-on-the-international-space-station

NASA’s Astrobee robots have come a long, long way since we first met them at NASA Ames back in 2017. In fact, they’ve made it all the way to the International Space Station: Bumble, Honey, and Queen Bee are up there right now. While Honey and Queen Bee are still packed away in a case (and quite unhappy about it, I would imagine), Bumble has been buzzing around, getting used to its new home. To be ready to fly solo, all Bumble needed was some astronaut-assisted mapping of its environment, and last month, the little robotic cube finally embarked on its first fully autonomous ISS adventure.

Video Friday: Caltech’s Drone With Legs Takes First Steps

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-caltech-leonardo-bipedal-robot-with-thrusters

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau

Let us know if you have suggestions for next week, and enjoy today’s videos.


How NASA Will Grapple and Refuel a Satellite in Low Earth Orbit

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/tech-talk/aerospace/satellites/how-nasa-will-grapple-and-refuel-a-satellite-in-low-earth-orbit

For the foreseeable future, access to space will remain very expensive. Even with tricks like reusing rockets or launching from balloons and giant airplanes, it still costs thousands of dollars per kilogram to put something into low Earth orbit. And once you’ve put something up there, that thing is generally on its own (with very few exceptions), and hopefully does what it needs to until it runs out of fuel, at which point most satellites are completely useless.

This is, overall, an extraordinarily inefficient system. NASA would like to change this, and thinks that putting gas stations and repair shops in space would be an absolutely smashing idea. A few satellite servicing programs are (more or less) underway, and earlier this year, we visited the Robotic Operations Center at NASA’s Goddard Space Flight Center in Maryland to learn more.

Skydio’s New Drone Is Smaller, Even Smarter, and (Almost) Affordable

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/drones/skydios-new-drone-is-smaller-even-smarter-and-almost-affordable

When Skydio announced the R1 in early 2018, it was one of the most incredible drones we’d ever seen. It’s been a year and a half, and in the fast-paced world of drones, the Skydio R1 is somehow still, by a huge margin, the most intelligent and capable drone in existence, offering a level of autonomy that would be impressive even if it was a one-off research project, which it wasn’t, because you could buy one for US $2,500.

The R1, though, was really not intended to be a consumer drone in the sense that it wasn’t a direct competitor to the likes of DJI, which has overwhelmingly dominated the consumer drone space since the early days of consumer drones. Rather, the R1 was meant to demonstrate exactly what Skydio was capable of, offering the chosen few who could justify paying for one a magical experience that couldn’t be found anywhere else.

Today, Skydio is announcing their second drone: the Skydio 2. The Skydio 2 takes everything that made the R1 so amazing, and squeezes it into something smaller, smarter, and at $999, alarmingly close to affordable.

NASA Hiring Engineers to Develop “Next Generation Humanoid Robot”

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/space-robots/nasa-hiring-engineers-to-develop-next-generation-humanoid-robot

It’s been nearly six years since NASA unveiled Valkyrie, a state-of-the-art full-size humanoid robot. After the DARPA Robotics Challenge, NASA has continued to work with Valkyrie at Johnson Space Center, and has also provided Valkyrie robots to several different universities. Although it’s not a new platform anymore (six years is a long time in robotics), Valkyrie is still very capable, with plenty of potential for robotics research. 

With that in mind, we were caught by surprise when over the last several months, Jacobs, a Dallas-based engineering company that appears to provide a wide variety of technical services to anyone who wants them, has posted several open jobs in need of roboticists in the Houston, Texas, area who are interested in working with NASA on “the next generation of humanoid robot.”

Video Friday: Boston Dynamics’ Atlas Robot Shows Off New Gymnastics Skills

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-boston-dynamics-atlas-humanoid-robot-new-gymnastics-skills

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, Calif., USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau

Let us know if you have suggestions for next week, and enjoy today’s videos.


U.S. Military, Looking to Automate Post-Disaster Damage Recognition, Seeks a Winning Formula

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/tech-talk/computing/software/defense-department-launches-disastrous-computer-vision-contest

It seems like natural disasters are happening more and more frequently these days. Worse still, we seem ill prepared to deal with them. Even if it’s something we can see coming, like a hurricane, the path to recovery is often a confused mess as first responders scramble to figure out where to allocate resources. Remote sensing technology can help with this, but the current state of the art comes down to comparing aerial before-and-after images from disaster scenes by hand and trying to identify which locations were hit hardest.

To help with this problem, the Defense Innovation Unit (a sort of tech accelerator inside the Department of Defense) is sponsoring a challenge called xView2. Its goal: to develop a computer vision algorithm that can automate the process of detecting and labeling damage based on differences in before-and-after photos. And like all good challenges, there’s a big pile of money at the end for whoever manages to do the best job of it.

Swappable Flying Batteries Keep Drones Aloft Almost Forever

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/drones/swappable-flying-batteries-keep-drones-aloft-almost-forever

Battery power is a limiting factor for robots everywhere, but it’s particularly problematic for drones, which have to make an awkward tradeoff between the amount of battery they carry, the amount of other more useful stuff they carry, and how long they can spend in the air. Consumer drones seem to have settled around about a third of their overall mass in battery, resulting in flight times of 20 to 25 minutes at best, before you have to bring the drone back for a battery swap. And if whatever the drone was supposed to be doing depended on it staying in the air, then you’re pretty much out of luck.

When much larger aircraft have this problem, and in particular military aircraft which sometimes need to stay on-station for long periods of time, the solution is mid-air refueling—why send an aircraft all the way back to its fuel source when you can instead bring the fuel source to the aircraft? It’s easier to do this with liquid fuel than it is with batteries, of course, but researchers at UC Berkeley have come up with a clever solution: You just give the batteries wings. Or, in this case, rotors.

Video Friday: Roller-Skating Quadruped Has Best of Both Worlds Mobility

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-92019

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, CA, USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau

Let us know if you have suggestions for next week, and enjoy today’s videos.


This “Useless” Social Robot Wants to Succeed Where Others Failed

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/home-robots/kiki-social-home-robot

The recent high profile failures of some home social robots (and the companies behind them) have made it even more challenging than it was before to develop robots in that space. And it was challenging enough to begin with—making a robot that can autonomous interact with random humans in their homes over a long period of time for a price that people can afford is extraordinarily difficult. However, the massive amount of initial interest in robots like Jibo, Kuri, Vector, and Buddy prove that people do want these things, or at least think they do, and while that’s the case, there’s incentive for other companies to give social home robots a try.

One of those companies is Zoetic, founded in 2107 by Mita Yun and Jitu Das, both ex-Googlers. Their robot, Kiki, is more or less exactly what you’d expect from a social home robot: It’s cute, white, roundish, has big eyes, promises that it will be your “robot sidekick,” and is not cheap: It’s on Kicksterter for $800. Kiki is among what appears to be a sort of tentative second wave of social home robots, where designers have (presumably) had a chance to take everything that they learned from the social home robot pioneers and use it to make things better this time around.

Stochastic Robots Use Randomness to Achieve More Complex Goals

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/robotics-hardware/georgia-tech-smarticles-stochastic-robot-swarm

The idea behind swarm robots is to replace discrete, expensive, breakable uni-tasking components with a whole bunch of much simpler, cheaper, and replaceable robots that can work together to do the same sorts of tasks. Unfortunately, all of those swarm robots end up needing their own computing and communications and stuff if you want to get them to do what you want them to do. 

A different approach to swarm robotics is to use a swarm of much cheaper robots that are far less intelligent. In fact, they may not have to be intelligent at all, if you can rely on their physical characteristics to drive them instead. These swarms are “stochastic,” meaning that their motions are randomly determined, but if you’re clever and careful, you can still get them to do specific things.   

Georgia Tech has developed some little swarm robots called “smarticles” that can’t really do much at all on their own, but once you put them together into a jumble, their randomness can actually accomplish something.

FarmWise Raises $14.5 Million to Teach Giant Robots to Grow Our Food

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/industrial-robots/farmwise-raises-145-million-to-teach-giant-robots-to-grow-our-food

We humans spend most of our time getting hungry or eating, which must be really inconvenient for the people who have to produce food for everyone. For a sustainable and tasty future, we’ll need to make the most of what we’ve got by growing more food with less effort, and that’s where the robots can help us out a little bit.

FarmWise, a California-based startup, is looking to enhance farming efficiency by automating everything from seeding to harvesting, starting with the worst task of all: weeding. And they’ve just raised US $14.5 million to do it.

Video Friday: Watch This Robot Dog Explore an Underground Tunnel Autonomously

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-robots-explore-tunnels-darpa-subt

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, CA, USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau

Let us know if you have suggestions for next week, and enjoy today’s videos.


Water Jet Powered Drone Takes Off With Explosions

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/automaton/robotics/drones/water-jet-powered-drone-takes-off-with-explosions

At ICRA 2015, the Aerial Robotics Lab at the Imperial College London presented a concept for a multimodal flying swimming robot called AquaMAV. The really difficult thing about a flying and swimming robot isn’t so much the transition from the first to the second, since you can manage that even if your robot is completely dead (thanks to gravity), but rather the other way: going from water to air, ideally in a stable and repetitive way. The AquaMAV concept solved this by basically just applying as much concentrated power as possible to the problem, using a jet thruster to hurl the robot out of the water with quite a bit of velocity to spare.

In a paper appearing in Science Robotics this week, the roboticists behind AquaMAV present a fully operational robot that uses a solid-fuel powered chemical reaction to generate an explosion that powers the robot into the air.