All posts by Helen Lynn

Take a photo of yourself as an unreliable cartoon

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/take-a-photo-of-yourself-unreliable-cartoon/

Take a selfie, wait for the image to appear, and behold a cartoon version of yourself. Or, at least, behold a cartoon version of whatever the camera thought it saw. Welcome to Draw This by maker Dan Macnish.

Dan has made code, instructions, and wiring diagrams available to help you bring this beguiling weirdery into your own life.

raspberry pi cartoon polaroid camera

Neural networks, object recognition, and cartoons

One of the fun things about this re-imagined polaroid is that you never get to see the original image. You point, and shoot – and out pops a cartoon; the camera’s best interpretation of what it saw. The result is always a surprise. A food selfie of a healthy salad might turn into an enormous hot dog, or a photo with friends might be photobombed by a goat.

OK. Let’s take this one step at a time.

Pi + camera + button + LED

Draw This uses a Raspberry Pi 3 and a Camera Module, with a button and a useful status LED connected to the GPIO pins via a breadboard. You press the button, and the camera captures a still image while the LED comes on and stays lit for a couple of seconds while the Pi processes the image. So far, so standard Pi camera build.

Interpreting and re-interpreting the camera image

Dan uses Python to process the captured photograph, employing a pre-trained machine learning model from Google to recognise multiple objects in the image. Now he brings the strangeness. The Pi matches the things it sees in the photo with doodles from Google’s huge open-source Quick, Draw! dataset, and generates a new image that represents the objects in the original image as doodles. Then a thermal printer connected to the Pi’s GPIO pins prints the results.

A 28 x 14 grid of kangaroo doodles in dark grey on a white background

Kangaroos from the Quick, Draw! dataset (I got distracted)

Potential for peculiar

Reading about this build leaves me yearning to see its oddest interpretation of a scene, so if you make this and you find it really does turn you or your friend into a goat, please do share that with us.

And as you can see from my kangaroo digression above, there is a ton of potential for bizarro makes that use the Quick, Draw! dataset, object recognition models, or both; it’s not just the marsupials that are inexplicably compelling (I dare you to go and look and see how long it takes you to get back to whatever you were in the middle of). If you’re planning to make this, or something inspired by this, check out Dan’s cartoonify GitHub repo. And tell us all about it in the comments.

The post Take a photo of yourself as an unreliable cartoon appeared first on Raspberry Pi.

Enchanting images with Inky Lines, a Pi‑powered polargraph

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/enchanting-images-inky-lines-pi-powered-polargraph/

A hanging plotter, also known as a polar plotter or polargraph, is a machine for drawing images on a vertical surface. It does so by using motors to control the length of two cords that form a V shape, supporting a pen where they meet. We’ve featured one on this blog before: Norbert “HomoFaciens” Heinz’s video is a wonderfully clear introduction to how a polargraph works and what you have to consider when you’re putting one together.

Today, we look at Inky Lines, by John Proudlock. With it, John is creating a series of captivating and beautiful pieces, and with his most recent work, each rendering of an image is unique.

The Inky Lines plotter draws a flock of seagulls in blue ink on white paper. The print head is suspended near the bottom left corner of the image, as the pen inks the wing of a gull

An evolving project

The project isn’t new – John has been working on it for at least a couple of years – but it is constantly evolving. When we first spotted it, John had just implemented code to allow the plotter to produce mesmeric, spiralling patterns.

A blue spiral pattern featuring overlapping "bubbles"
A dense pink spiral pattern, featuring concentric circles and reminiscent of a mandala
A blue spirograph-type pattern formed of large overlapping squares, each offset from its neighbour by a few degrees, producing a four-spiral-armed "galaxy" shape where lines overlap. The plotter's print head is visible in a corner of the image

But we’re skipping ahead. Let’s go back to the beginning.

From pixels to motor movements

John starts by providing an image, usually no more than 100 pixels wide, to a Raspberry Pi. Custom software that he wrote evaluates the darkness of each pixel and selects a pattern of a suitable density to represent it.

The two cords supporting the plotter’s pen are wound around the shafts of two stepper motors, such that the movement of the motors controls the length of the cords: the program next calculates how much each motor must move in order to produce the pattern. The Raspberry Pi passes corresponding instructions to two motor circuits, which transform the signals to a higher voltage and pass them to the stepper motors. These turn by very precise amounts, winding or unwinding the cords and, very slowly, dragging the pen across the paper.

A Raspberry Pi in a case, with a wide flex connected to a GPIO header
The Inky Lines plotter's print head, featuring cardboard and tape, draws an apparently random squiggle
A large area of apparently random pattern drawn by the plotter

John explains,

Suspended in-between the two motors is a print head, made out of a new 3-d modelling material I’ve been prototyping called cardboard. An old coat hanger and some velcro were also used.

(He’s our kind of maker.)

Unique images

The earlier drawings that John made used a repeatable method to render image files as lines on paper. That is, if the machine drew the same image a number of times, each copy would be identical. More recently, though, he has been using a method that yields random movements of the pen:

The pen point is guided around the image, but moves to each new point entirely at random. Up close this looks like a chaotic squiggle, but from a distance of a couple of meters, the human eye (and brain) make order from the chaos and view an infinite number of shades and a smoother, less mechanical image.

An apparently chaotic squiggle

This method means that no matter how many times the polargraph repeats the same image, each copy will be unique.

A gallery of work

Inky Lines’ website and its Instagram feed offer a collection of wonderful pieces John has drawn with his polargraph, and he discusses the different techniques and types of image that he is exploring.

A 3 x 3 grid of varied and colourful images from inkylinespolargraph's Instagram feed

They range from holiday photographs, processed to extract particular features and rendered in silhouette, to portraits, made with a single continuous line that can be several hundred metres long, to generative images spirograph images like those pictured above, created by an algorithm rather than rendered from a source image.

The post Enchanting images with Inky Lines, a Pi‑powered polargraph appeared first on Raspberry Pi.

Naturebytes’ weatherproof Pi and camera case

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/naturebytes-weatherproof-pi-and-camera-case/

Naturebytes are making their weatherproof Wildlife Cam Case available as a standalone product for the first time, a welcome addition to the Raspberry Pi ecosystem that should take some of the hassle out of your outdoor builds.

A robin on a bird feeder in a garden with a Naturebytes Wildlife Cam mounted beside it

Weatherproofing digital making projects

People often use Raspberry Pis and Camera Modules for outdoor projects, but weatherproofing your set-up can be tricky. You need to keep water — and tiny creatures — out, but you might well need access for wires and cables, whether for power or sensors; if you’re using a camera, it’ll need something clear and cleanable in front of the lens. You can use sealant, but if you need to adjust anything that you’ve applied it to, you’ll have to remove it and redo it. While we’ve seen a few reasonable options available to buy, the choice has never been what you’d call extensive.

The Naturebytes case

For all these reasons, I was pleased to learn that Naturebytes, the wildlife camera people, are releasing their Wildlife Cam Case as a standalone product for the first time.

Naturebytes case open

The Wildlife Cam Case is ideal for nature camera projects, of course, but it’ll also be useful for anyone who wants to take their Pi outdoors. It has weatherproof lenses that are transparent to visible and IR light, for all your nature observation projects. Its opening is hinged to allow easy access to your hardware, and the case has waterproof access for cables. Inside, there’s a mount for fixing any model of Raspberry Pi and camera, as well as many other components. On top of all that, the case comes with a sturdy nylon strap to make it easy to attach it to a post or a tree.

Naturebytes case additional components

Order yours now!

At the moment, Naturebytes are producing a limited run of the cases. The first batch of 50 are due to be dispatched next week to arrive just in time for the Bank Holiday weekend in the UK, so get them while they’re hot. It’s the perfect thing for recording a timelapse of exactly how quickly the slugs obliterate your vegetable seedlings, and of lots more heartening things that must surely happen in gardens other than mine.

The post Naturebytes’ weatherproof Pi and camera case appeared first on Raspberry Pi.

UK soldiers design Raspberry Pi bomb disposal robot

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/uk-soldiers-design-raspberry-pi-bomb-disposal-robot/

Three soldiers in the British Army have used a Raspberry Pi to build an autonomous robot, as part of their Foreman of Signals course.

Meet The Soldiers Revolutionising Bomb Disposal

Three soldiers from Blandford Camp have successfully designed and built an autonomous robot as part of their Foreman of Signals Course at the Dorset Garrison.

Autonomous robots

Forces Radio BFBS carried a story last week about Staff Sergeant Jolley, Sergeant Rana, and Sergeant Paddon, also known as the “Project ROVER” team. As part of their Foreman of Signals training, their task was to design an autonomous robot that can move between two specified points, take a temperature reading, and transmit the information to a remote computer. The team comments that, while semi-autonomous robots have been used as far back as 9/11 for tasks like finding people trapped under rubble, nothing like their robot and on a similar scale currently exists within the British Army.

The ROVER buggy

Their build is named ROVER, which stands for Remote Obstacle aVoiding Environment Robot. It’s a buggy that moves on caterpillar tracks, and it’s tethered; we wonder whether that might be because it doesn’t currently have an on-board power supply. A demo shows the robot moving forward, then changing its path when it encounters an obstacle. The team is using RealVNC‘s remote access software to allow ROVER to send data back to another computer.

Applications for ROVER

Dave Ball, Senior Lecturer in charge of the Foreman of Signals course, comments that the project is “a fantastic opportunity for [the team] to, even only halfway through the course, showcase some of the stuff they’ve learnt and produce something that’s really quite exciting.” The Project ROVER team explains that the possibilities for autonomous robots like this one are extensive: they include mine clearance, bomb disposal, and search-and-rescue campaigns. They point out that existing semi-autonomous hardware is not as easy to program as their build. In contrast, they say, “with the invention of the Raspberry Pi, this has allowed three very inexperienced individuals to program a robot very capable of doing these things.”

We make Raspberry Pi computers because we want building things with technology to be as accessible as possible. So it’s great to see a project like this, made by people who aren’t techy and don’t have a lot of computing experience, but who want to solve a problem and see that the Pi is an affordable and powerful tool that can help.

The post UK soldiers design Raspberry Pi bomb disposal robot appeared first on Raspberry Pi.

Mayank Sinha’s home security project

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/home-security/

Yesterday, I received an email from someone called Mayank Sinha, showing us the Raspberry Pi home security project he’s been working on. He got in touch particularly because, he writes, the Raspberry Pi community has given him “immense support” with his build, and he wanted to dedicate it to the commmunity as thanks.

Mayank’s project is named Asfaleia, a Greek word that means safety, certainty, or security against threats. It’s part of an honourable tradition dating all the way back to 2012: it’s a prototype housed in a polystyrene box, using breadboards and jumper leads and sticky tape. And it’s working! Take a look.

Asfaleia DIY Home Security System

An IOT based home security system. The link to the code: https://github.com/mayanksinha11/Asfaleia

Home security with Asfaleida

Asfaleia has a PIR (passive infrared) motion sensor, an IR break beam sensor, and a gas sensor. All are connected to a Raspberry Pi 3 Model B, the latter two via a NodeMCU board. Mayank currently has them set up in a box that’s divided into compartments to model different rooms in a house.

A shallow box divided into four labelled "rooms", all containing electronic components

All the best prototypes have sticky tape or rubber bands

If the IR sensors detect motion or a broken beam, the webcam takes a photo and emails it to the build’s owner, and the build also calls their phone (I like your ringtone, Mayank). If the gas sensor detects a leak, the system activates an exhaust fan via a small relay board, and again the owner receives a phone call. The build can also authenticate users via face and fingerprint recognition. The software that runs it all is written in Python, and you can see Mayank’s code on GitHub.

Of prototypes and works-in-progess

Reading Mayank’s email made me very happy yesterday. We know that thousands of people in our community give a great deal of time and effort to help others learn and make things, and it is always wonderful to see an example of how that support is helping someone turn their ideas into reality. It’s great, too, to see people sharing works-in-progress, as well as polished projects! After all, the average build is more likely to feature rubber bands and Tupperware boxes than meticulously designed laser-cut parts or expert joinery. Mayank’s YouTube channel shows earlier work on this and another Pi project, and I hope he’ll continue to document his builds.

So here’s to Raspberry Pi projects big, small, beginner, professional, endlessly prototyped, unashamedly bodged, unfinished or fully working, shonky or shiny. Please keep sharing them all!

The post Mayank Sinha’s home security project appeared first on Raspberry Pi.

Augmented-reality projection lamp with Raspberry Pi and Android Things

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/augmented-reality-projector/

If your day has been a little fraught so far, watch this video. It opens with a tableau of methodically laid-out components and then shows them soldered, screwed, and slotted neatly into place. Everything fits perfectly; nothing needs percussive adjustment. Then it shows us glimpses of an AR future just like the one promised in the less dystopian comics and TV programmes of my 1980s childhood. It is all very soothing, and exactly what I needed.

Android Things – Lantern

Transform any surface into mixed-reality using Raspberry Pi, a laser projector, and Android Things. Android Experiments – http://experiments.withgoogle.com/android/lantern Lantern project site – http://nordprojects.co/lantern check below to make your own ↓↓↓ Get the code – https://github.com/nordprojects/lantern Build the lamp – https://www.hackster.io/nord-projects/lantern-9f0c28

Creating augmented reality with projection

We’ve seen plenty of Raspberry Pi IoT builds that are smart devices for the home; they add computing power to things like lights, door locks, or toasters to make these objects interact with humans and with their environment in new ways. Nord ProjectsLantern takes a different approach. In their words, it:

imagines a future where projections are used to present ambient information, and relevant UI within everyday objects. Point it at a clock to show your appointments, or point to speaker to display the currently playing song. Unlike a screen, when Lantern’s projections are no longer needed, they simply fade away.

Lantern is set up so that you can connect your wireless device to it using Google Nearby. This means there’s no need to create an account before you can dive into augmented reality.

Lantern Raspberry Pi powered projector lamp

Your own open-source AR lamp

Nord Projects collaborated on Lantern with Google’s Android Things team. They’ve made it fully open-source, so you can find the code on GitHub and also download their parts list, which includes a Pi, an IKEA lamp, an accelerometer, and a laser projector. Build instructions are at hackster.io and on GitHub.

This is a particularly clear tutorial, very well illustrated with photos and GIFs, and once you’ve sourced and 3D-printed all of the components, you shouldn’t need a whole lot of experience to put everything together successfully. Since everything is open-source, though, if you want to adapt it — for example, if you’d like to source a less costly projector than the snazzy one used here — you can do that too.

components of Lantern Raspberry Pi powered augmented reality projector lamp

The instructions walk you through the mechanical build and the wiring, as well as installing Android Things and Nord Projects’ custom software on the Raspberry Pi. Once you’ve set everything up, an accelerometer connected to the Pi’s GPIO pins lets the lamp know which surface it is pointing at. A companion app on your mobile device lets you choose from the mini apps that work on that surface to select the projection you want.

The designers are making several mini apps available for Lantern, including the charmingly named Space Porthole: this uses Processing and your local longitude and latitude to project onto your ceiling the stars you’d see if you punched a hole through to the sky, if it were night time, and clear weather. Wouldn’t you rather look at that than deal with the ant problem in your kitchen or tackle your GitHub notifications?

What would you like to project onto your living environment? Let us know in the comments!

The post Augmented-reality projection lamp with Raspberry Pi and Android Things appeared first on Raspberry Pi.

This is a really lovely Raspberry Pi tricorder

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/raspberry-pi-tricorder-prop/

At the moment I’m spending my evenings watching all of Star Trek in order. Yes, I have watched it before (but with some really big gaps). Yes, including the animated series (I’m up to The Terratin Incident). So I’m gratified to find this beautiful The Original Series–style tricorder build.

Star Trek Tricorder with Working Display!

At this year’s Replica Prop Forum showcase, we meet up once again wtih Brian Mix, who brought his new Star Trek TOS Tricorder. This beautiful replica captures the weight and finish of the filming hand prop, and Brian has taken it one step further with some modern-day electronics!

A what now?

If you don’t know what a tricorder is, which I guess is faintly possible, the easiest way I can explain is to steal words that Liz wrote when Recantha made one back in 2013. It’s “a made-up thing used by the crew of the Enterprise to measure stuff, store data, and scout ahead remotely when exploring strange new worlds, seeking out new life and new civilisations, and all that jazz.”

A brief history of Picorders

We’ve seen other Raspberry Pi–based realisations of this iconic device. Recantha’s LEGO-cased tricorder delivered some authentic functionality, including temperature sensors, an ultrasonic distance sensor, a photosensor, and a magnetometer. Michael Hahn’s tricorder for element14’s Sci-Fi Your Pi competition in 2015 packed some similar functions, along with Original Series audio effects, into a neat (albeit non-canon) enclosure.

Brian Mix’s Original Series tricorder

Brian Mix’s tricorder, seen in the video above from Tested at this year’s Replica Prop Forum showcase, is based on a high-quality kit into which, he discovered, a Raspberry Pi just fits. He explains that the kit is the work of the late Steve Horch, a special effects professional who provided props for later Star Trek series, including the classic Deep Space Nine episode Trials and Tribble-ations.

A still from an episode of Star Trek: Deep Space Nine: Jadzia Dax, holding an Original Series-sylte tricorder, speaks with Benjamin Sisko

Dax, equipped for time travel

This episode’s plot required sets and props — including tricorders — replicating the USS Enterprise of The Original Series, and Steve Horch provided many of these. Thus, a tricorder kit from him is about as close to authentic as you can possibly find unless you can get your hands on a screen-used prop. The Pi allows Brian to drive a real display and a speaker: “Being the geek that I am,” he explains, “I set it up to run every single Original Series Star Trek episode.”

Even more wonderful hypothetical tricorders that I would like someone to make

This tricorder is beautiful, and it makes me think how amazing it would be to squeeze in some of the sensor functionality of the devices depicted in the show. Space in the case is tight, but it looks like there might be a little bit of depth to spare — enough for an IMU, maybe, or a temperature sensor. I’m certain the future will bring more Pi tricorder builds, and I, for one, can’t wait. Please tell us in the comments if you’re planning something along these lines, and, well, I suppose some other sci-fi franchises have decent Pi project potential too, so we could probably stand to hear about those.

If you’re commenting, no spoilers please past The Animated Series S1 E11. Thanks.

The post This is a really lovely Raspberry Pi tricorder appeared first on Raspberry Pi.

Whimsical builds and messing things up

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/whimsical-builds-and-messing-things-up/

Today is the early May bank holiday in England and Wales, a public holiday, and while this blog rarely rests, the Pi Towers team does. So, while we take a day with our families, our friends, and/or our favourite pastimes, I thought I’d point you at a couple of features from HackSpace magazine, our monthly magazine for makers.

To my mind, they go quite well with a deckchair in the garden, the buzz of a lawnmower a few houses down, and a view of the weeds I ought to have dealt with by now, but I’m sure you’ll find your own ambience.

Make anything with pencils – HackSpace magazine

If you want a unique piece of jewellery to show your love for pencils, follow Peter Brown’s lead. Peter glued twelve pencils together in two rows of six. He then measured the size of his finger and drilled a hole between the glued pencils using a drill bit.

First off, pencils. It hadn’t occurred to me that you could make super useful stuff like a miniature crossbow and a catapult out of pencils. Not only can you do this, you can probably go ahead and do it right now: all you need is a handful of pencils, some rubber bands, some drawing pins, and a bulldog clip (or, as you might prefer, some push pins and a binder clip). The sentence that really leaps out at me here is “To keep a handful of boys aged three to eleven occupied during a family trip, Marie decided to build mini crossbows to help their target practice.” The internet hasn’t helped me find out much about Marie, but I am in awe of her.

If you haven’t wandered off to make a stationery arsenal by now, read Lucy Rogers‘ reflections on making a right mess of things. I hope you do, because I think it’d be great if more people coped better with the fact that we all, unavoidably, fail. You probably won’t really get anywhere without a few goes where you just completely muck it all up.

A ceramic mug, broken into several pieces on the floor

Never mind. We can always line a plant pot with them.
“In Pieces” by dusk-photography / CC BY

This true of everything. Wet lab work and gardening and coding and parenting. And everything. You can share your heroic failures in the comments, if you like, as well as any historic weaponry you have fashioned from the contents of your desk tidy.

The post Whimsical builds and messing things up appeared first on Raspberry Pi.

A hedgehog cam or two

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/a-hedgehog-cam-or-two/

Here we are, hauling ourselves out of the Christmas and New Year holidays and into January proper. It’s dawning on me that I have to go back to work, even though it’s still very cold and gloomy in northern Europe, and even though my duvet is lovely and warm. I found myself envying beings that hibernate, and thinking about beings that hibernate, and searching for things to do with hedgehogs. And, well, the long and the short of it is, today’s blog post is a short meditation on the hedgehog cam.

A hedgehog in a garden, photographed in infrared light by a hedgehog cam

Success! It’s a hedgehog!
Photo by Andrew Wedgbury

Hedgehog watching

Someone called Barker has installed a Raspberry Pi–based hedgehog cam in a location with a distant view of a famous Alp, and as well as providing live views by visible and infrared light for the dedicated and the insomniac, they also make a sped-up version of the previous night’s activity available. With hedgehogs usually being in hibernation during January, you mightn’t see them in any current feed — but don’t worry! You’re guaranteed a few hedgehogs on Barker’s website, because they have also thrown in some lovely GIFs of hoggy (and foxy) divas that their camera captured in the past.

A Hedgehog eating from a bowl on a patio, captured by a hedgehog cam

Nom nom nom!
GIF by Barker’s Site

Build your own hedgehog cam

For pointers on how to replicate this kind of setup, you could do worse than turn to Andrew Wedgbury’s hedgehog cam write-up. Andrew’s Twitter feed reveals that he’s a Cambridge local, and there are hints that he was behind RealVNC’s hoggy mascot for Pi Wars 2017.

RealVNC on Twitter

Another day at the office: testing our #PiWars mascot using a @Raspberry_Pi 3, #VNC Connect and @4tronix_uk Picon Zero. Name suggestions? https://t.co/iYY3xAX9Bk

Our infrared bird box and time-lapse camera resources will also set you well on the way towards your own custom wildlife camera. For a kit that wraps everything up in a weatherproof enclosure made with love, time, and serious amounts of design and testing, take a look at Naturebytes’ wildlife cam kit.

Or, if you’re thinking that a robot mascot is more dependable than real animals for the fluffiness you need in order to start your January with something like productivity and with your soul intact, you might like to put your own spin on our robot buggy.

Happy 2018

While we’re on the subject of getting to grips with the new year, do take a look at yesterday’s blog post, in which we suggest a New Year’s project that’s different from the usual resolutions. However you tackle 2018, we wish you an excellent year of creative computing.

The post A hedgehog cam or two appeared first on Raspberry Pi.

Pimoroni’s ‘World’s Thinnest Raspberry Pi 3’

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/pimoroni-thinnest-pi/

The Raspberry Pi is not a chunky computer. Nonetheless, tech treasure merchants Pimoroni observed that at almost 20mm tall, it’s still a little on the large side for some applications. So, in their latest live-streamed YouTube Bilge Tank episode, they stripped a Pi 3 down to the barest of bones.

Pimoroni Thinnest Raspberry Pi 3 desoldered pi

But why?

The Raspberry Pi is easy to connect to peripherals. Grab a standard USB mouse, keyboard, and HDMI display, plug them in, and you’re good to go.

desoldered pi

But it’s possible to connect all these things without the bulky ports, if you’re happy to learn how, and you’re in possession of patience and a soldering iron. You might want to do this if, after prototyping your project using the Pi’s standard ports, you want to embed it as a permanent part of a slimmed-down final build. Safely removing the USB ports, the Ethernet port and GPIO pins lets you fit your Pi into really narrow spaces.

As Jon explains:

A lot of the time people want to integrate a Raspberry Pi into a project where there’s a restricted amount of space. but they still want the power of the Raspberry Pi 3’s processor

While the Raspberry Pi Zero and Zero W are cheaper and have a smaller footprint, you might want to take advantage of the greater power the Pi 3 offers.

How to slim down a Raspberry Pi 3

Removing components is a matter of snipping in the right places and desoldering with a hot air gun and a solder sucker, together with the judicious application of brute force. I should emphasise, as the Pimoroni team do, that this is something you should only do with care, after making sure you know what you’re doing.

Pimoroni Thinnest Raspberry Pi 3 desoldered pi

The project was set to take half an hour, though Jon and Sandy ended up taking slightly more time than planned. You can watch the entire process below.

Bilge Tank 107 – The World’s Slimmest Raspberry Pi 3

This week, we attempt to completely strip down a Raspberry Pi 3, removing the USB, Ethernet, HDMI, audio jack, CSI/DSI connectors, and GPIO header in an audacious attempt to create the world’s slimmest Raspberry Pi 3 (not officially ratified by the Guinness Book of World Records).

If Pimoroni’s video has given you ideas, you’ll also want to check out N-O-D-E‘s recent Raspberry Pi 3 Slim build. N-O-D-E takes a similar approach, and adds new micro USB connectors to one end of the board for convenience. If you decide to give something like this a go, please let us know how it went: tell us in the comments, or on Raspberry Pi’s social channels.

The post Pimoroni’s ‘World’s Thinnest Raspberry Pi 3’ appeared first on Raspberry Pi.

Open source energy monitoring using Raspberry Pi

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/open-source-energy-monitoring-raspberry-pi/

OpenEnergyMonitor, who make open-source tools for energy monitoring, have been using Raspberry Pi since we launched in 2012. Like Raspberry Pi, they manufacture their hardware in Wales and send it to people all over the world. We invited co-founder Glyn Hudson to tell us why they do what they do, and how Raspberry Pi helps.

Hi, I’m Glyn from OpenEnergyMonitor. The OpenEnergyMonitor project was founded out of a desire for open-source tools to help people understand and relate to their use of energy, their energy systems, and the challenge of sustainable energy.

Photo: an emonPi energy monitoring unit in an aluminium case with an aerial and an LCD display, a mobile phone showing daily energy use as a histogram, and a bunch of daffodils in a glass bottle

The next 20 years will see a revolution in our energy systems, as we switch away from fossil fuels towards a zero-carbon energy supply.

By using energy monitoring, modelling, and assessment tools, we can take an informed approach to determine the best energy-saving measures to apply. We can then check to ensure solutions achieve their expected performance over time.

We started the OpenEnergyMonitor project in 2009, and the first versions of our energy monitoring system used an Arduino with Ethernet Shield, and later a Nanode RF with an embedded Ethernet controller. These early versions were limited by a very basic TCP/IP stack; running any sort of web application locally was totally out of the question!

I can remember my excitement at getting hold of the very first version of the Raspberry Pi in early 2012. Within a few hours of tearing open the padded envelope, we had Emoncms (our open-source web logging, graphing, and visualisation application) up and running locally on the Raspberry Pi. The Pi quickly became our web-connected base station of choice (emonBase). The following year, 2013, we launched the RFM12Pi receiver board (now updated to RFM69Pi). This allowed the Raspberry Pi to receive data via low-power RF 433Mhz from our emonTx energy monitoring unit, and later from our emonTH remote temperature and humidity monitoring node.

Diagram: communication between OpenEnergyMonitor monitoring units, base station and web interface

In 2015 we went all-in with Raspberry Pi when we launched the emonPi, an all-in-one Raspberry Pi energy monitoring unit, via Kickstarter. Thanks to the hard work of the Raspberry Pi Foundation, the emonPi has enjoyed several upgrades: extra processing power from the Raspberry Pi 2, then even more power and integrated wireless LAN thanks to the Raspberry Pi 3. With all this extra processing power, we have been able to build an open software stack including Emoncms, MQTT, Node-RED, and openHAB, allowing the emonPi to function as a powerful home automation hub.

Screenshot: Emoncms Apps interface to emonPi home automation hub, with histogram of daily electricity use

Emoncms Apps interface to emonPi home automation hub

Inspired by the Raspberry Pi Foundation, we manufacture and assemble our hardware in Wales, UK, and ship worldwide via our online store.

All of our work is fully open source. We believe this is a better way of doing things: we can learn from and build upon each other’s work, creating better solutions to the challenges we face. Using Raspberry Pi has allowed us to draw on the expertise and work of many other projects. With lots of help from our fantastic community, we have built an online learning resource section of our website to help others get started: it covers things like basic AC power theory, Arduino, and the bigger picture of sustainable energy.

To learn more about OpenEnergyMonitor systems, take a look at our Getting Started User Guide. We hope you’ll join our community.

The post Open source energy monitoring using Raspberry Pi appeared first on Raspberry Pi.

A live-streaming Raspberry Pi nest cam: your essential Easter Monday viewing

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/live-streaming-raspberry-pi-nest-cam/

It’s Easter Monday, a public holiday here in the UK, and Pi Towers is still and silent. Even the continuous flight augering piler on the massive building site next door is, for a time, quiet. So here is the briefest of posts, to share with you a Raspberry Pi cam live-streaming from a blue tit nest in Alan McCullagh‘s parents’ garden in Kilkenny, Ireland. You’ll need to have Flash installed to watch.

BirdBoxKK1

BirdBoxKK1 @ USTREAM: . Birds

The eggs are expected to hatch 14 days after the last laid egg, and the mother was still laying on Thursday, so check in towards the end of the month to catch a first glimpse of the chicks. Alan’s set-up is based on our Infrared Bird Box learning resource; tell us in the comments if you’ve made something similar, or if you plan to.

The post A live-streaming Raspberry Pi nest cam: your essential Easter Monday viewing appeared first on Raspberry Pi.

An affordable ocular fundus camera

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/an-affordable-ocular-fundus-camera/

The ocular fundus is the interior surface of the eye, and an ophthalmologist can learn a lot about a patient’s health by examining it. However, there’s a problem: an ocular fundus camera can’t capture a useful image unless the eye is brightly lit, but this makes the pupil constrict, obstructing the camera’s view. Ophthalmologists use pupil-dilating eye drops to block the eye’s response to light, but these are uncomfortable and can cause blurred vision for several hours. Now, researchers at the University of Illinois at Chicago have built a Raspberry Pi-based fundus camera that can take photos of the retina without the need for eye drops.

Dr Bailey Shen and co-author Dr Shizuo Mukai made their camera with a Raspberry Pi 2 and a Pi NoIR Camera Module, a version of the Camera Module that does not have an infrared filter. They used a small LCD touchscreen display and a lithium battery, holding the ensemble together with tape and rubber bands. They also connected a button and a dual infrared/white light LED to the Raspberry Pi’s GPIO pins.

When the Raspberry Pi boots, a Python script turns on the infrared illumination from the LED and displays the camera view on the screen. The iris does not respond to infrared light, so in a darkened room the operator is able to position the camera and a separate condensing lens to produce a clear image of the patient’s fundus. When they’re satisfied with the image, the operator presses the button. This turns off the infrared light, produces a flash of white light, and captures a colour image of the fundus before the iris can respond and constrict the pupil.

This isn’t the first ocular fundus camera to use infrared/white light to focus and obtain images without eye drops, but it is less bulky and distinctly cheaper than existing equipment, which can cost thousands of dollars. The total cost of all the parts is $185, and all but one are available as off-the-shelf components. The exception is the dual infrared/white light LED, a prototype which the researchers explain is a critical part of the equipment. Using an infrared LED and a white LED side by side doesn’t yield consistent results. We’d be glad to see the LED available on the market, both to support this particular application, and because we bet there are plenty of other builds that could use one!

Read more in Science Daily, in an article exploring the background to the project. The article is based on the researchers’ recent paper, presenting the Raspberry Pi ocular fundus camera in the Journal of Ophthalmology. The journal is an open access publication, so if you think this build is as interesting as I do, I encourage you to read the researchers’ presentation of their work, its possibilities and its limitations. They also provide step-by-step instructions and a parts list to help others to replicate and build on their work.

It’s beyond brilliant to see researchers and engineers using the Raspberry Pi to make medical and scientific work cheaper and more accessible. Please tell us about your favourite applications, or the applications you’d develop in your fantasy lab or clinic, in the comments.

The post An affordable ocular fundus camera appeared first on Raspberry Pi.

International Women’s Day: Girls at Code Club

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/international-womens-day-2017/

On International Women’s Day and every day, Raspberry Pi and Code Club are determined to support girls and women to fulfil their potential in the field of computing.

Code Club provides computing opportunities for kids aged nine to eleven within their local communities, and 40 percent of the children attending our 5000-plus UK clubs are girls. Code Club aims to inspire them to get excited about computer science and digital making, and to help them develop the skills and knowledge to succeed.

Big Birthday Bash Code Club Raspberry Pi Bag

Code Club’s broad appeal

From the very beginning, Code Club was designed to appeal equally to girls and boys. Co-founder Clare Sutcliffe describes how she took care to avoid anything that evoked gendered stereotypes:

When I was first designing Code Club – its brand, tone of voice and content – it was all with a gender-neutral feel firmly in mind. Anything that felt too gendered was ditched.

The resources that children use are selected to have broad appeal, engaging a wide range of interests. Code Club’s hosts and volunteers provide an environment that is welcoming and supportive.

Two girls coding at Code Club

A crucial challenge for the future is to sustain an interest in computing in girls as they enter their teenage years. As in other areas of science, technology, engineering and maths; early success for girls doesn’t yet feed through into pursuing higher qualifications or entering related careers in large numbers. What can we all do to make sure that interested and talented young women know that this exciting field is for them?

The post International Women’s Day: Girls at Code Club appeared first on Raspberry Pi.

Astro Pi: Goodnight, Mr Tim

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/astro-pi-goodnight-mr-tim/

On Saturday, British ESA astronaut Tim Peake returned to Earth after six months on the International Space Station. During his time in orbit, he did a huge amount of work to share the excitement of his trip with young people and support education across the curriculum: as part of this, he used our two Astro Pi computers, Izzy and Ed, to run UK school students’ code and play their music in space. But what lies ahead for the pair now Tim’s mission, Principia, is complete?

Watch Part 4 of the Story of Astro Pi!

The Story of Astro Pi – Part 4: Goodnight, Mr Tim

As British ESA astronaut Tim Peake’s mission comes to an end, what will become of Ed and Izzy, our courageous Astro Pis? Find out more at astro-pi.org/about/mission/ Narration by Fran Scott: franscott.co.uk

Ed and Izzy will remain on the International Space Station until 2022, and they have exciting work ahead of them. Keep an eye on this blog and on our official magazine, The MagPi, for news!

The post Astro Pi: Goodnight, Mr Tim appeared first on Raspberry Pi.

Astro Pi: In Space, No One Can Hear You Code

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/astro-pi-space-no-one-can-hear-you-code/

British ESA astronaut Tim Peake has been on board the International Space Station with our Astro Pi units, Izzy and Ed, for exactly six months today. As Tim prepares to return to Earth this Saturday, we bring you the third part of their animated adventures: when our two spacefaring Raspberry Pi computers run into a problem even their hero Robonaut can’t fix, who can help them?

No Title

No Description

During his time in space, Tim has been using Ed and Izzy to run apps, carry out science experiments and play music designed and coded by UK school students, and he’s taken some great photos of them on the station:

Education

No Description

Both computers have also spent some weeks in a flight recorder mode, saving sensor readings to a database every ten seconds, and we’ve made these space data available to everyone to download and analyse. Take a look at our Flight Data Analysis resource to explore what they recorded as they orbited our planet.

Ed and Izzy will say goodbye to Tim when he returns from space this Saturday; you’ll be able to watch him land. Our Astro Pi units will stay on board the ISS until 2022, and we hope we’ll soon be able to share exciting news about what they’ll be doing next. Stay tuned!

The post Astro Pi: In Space, No One Can Hear You Code appeared first on Raspberry Pi.

Recantha’s Raspberry Pi music box

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/recanthas-raspberry-pi-music-box/

Mike Horne, aka Recantha, co-organises the Cambridge Raspberry Jam and Pi Wars, not to mention some amazing parties. He also makes things, most recently this excellent Pi-powered music box. It probably isn’t what you thought of when you read the words “music box”.

Raspberry Pi Music Box

A Raspberry Pi 2 with a whole load of buttons and plenty of Adafruit boards from makersify.com playing synthesized sounds via a FluidSynth Python library. Code at: https://github.com/recantha/musicbox

As you’ll know if you’re a regular reader of this blog, we’ve a particular soft spot for musical instruments that use a Raspberry Pi, and The Music Box is a lovely example. Inside that eBay-tacular wooden box is a Pi 2, an Adafruit Perma-Proto HAT, and a lot of wiring that Mike can’t get a better picture of because, as with many of the best hacks, it’ll all spill out if he opens the lid too far (but you can see a bit more of it in the video). Seven of the coloured buttons on the lid form a keyboard designed to fit Mike’s hand; the square one in the middle turns power to the instrument on and off, and the three potentiometers control volume, choice of instrumental sound effect, and the pitch of the music box’s range. A pair of buttons on the side of the box allow you to shut down or reboot the Pi.

You’ll find all Mike’s code for The Music Box on GitHub, so you can adapt it for your own creations. He writes,

The software is a mixture of GPIO Zero, standard Python and the pyFluidSynth library which communicates with FluidSynth, a synthesiser that plays sound fonts. I loaded thirty-two different sound fonts and it will be easy enough to add more as I can just drop them into the folder and the software will automatically load them… GPIO Zero is the hero here, with its built-in multi-threaded event handlers and MCP3008 support.

Read more on Mike’s blog, and tell us about your own favourite musical hacks – your own, or someone else’s – in the comments!

The post Recantha’s Raspberry Pi music box appeared first on Raspberry Pi.

Build your own Raspberry Pi terrarium controller

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/build-your-own-raspberry-pi-terrarium-controller/

Tom Bennet grows Nepenthes, tropical carnivorous plants that I know by the name of pitcher plants. To stay healthy they need a temperature- and humidity-controlled environment, and Tom ensures this by housing them in a terrarium controlled by a Raspberry Pi 3 and Energenie’s Pi-mote starter kit, which provides an easy way to control mains electrical sockets from a Pi. He has written step-by-step instructions to help you build your own terrarium controller, the first such guide we’ve seen for this particular application.

A terrarium in a cuboid glass tank with fluorescent lighting, containing six Nepenthes plants of various species

Nepenthes plants of various species in Tom Bennet’s Pi-controlled terrarium. Photo by Tom Bennet

Tom’s terrarium controller doesn’t only monitor and regulate temperature, humidity and light, three of the four main variables in a terrarium (the fourth, he explains, is water, and because terrariums tend to be nearly or completely sealed, this requires only infrequent intervention). It also logs data from its sensors to Internet-of-Things data platform ThingSpeak, which offers real-time data visualisation and alerts.

Line chart plotting terrarium temperature and humidity over a 24-hour period

24 hours’ worth of temperature and humidity data for Tom’s terrarium

One of the appealing aspects of this project, as Tom observes, is its capacity for extension. You could quite easily add a soil moisture sensor or, particularly for a terrarium that houses reptiles rather than plants, a camera module, as well as using the online data logs in all kinds of ways.

The very clear instructions include a full and costed bill of materials consisting of off-the-shelf parts that come to less than £90/$125 including the Pi. There are helpful photographs and wiring diagrams, straightforward explanations, practical advice, and Python scripts that can easily be adapted to meet the demands of different habitats and ambient conditions. Thank you for writing such a useful guide, Tom; we’re certain it will help plenty of other people set up their own Pi-controlled terrariums!

The post Build your own Raspberry Pi terrarium controller appeared first on Raspberry Pi.

Minecraft Pi (and more) over VNC

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/minecraft-pi-and-more-over-vnc/

RealVNC have released a free alpha (testing) version of VNC for Raspberry Pi that lets you remotely view and control everything on your Pi, including Minecraft, from a different computer. It works on every generation of Raspberry Pi, including Pi Zero. Here’s a demo:

VNC for Raspberry Pi alpha – playing Minecraft

With the VNC for Raspberry Pi alpha, you can play Minecraft, access the Pi’s text console and switch between workspaces – all over a VNC connection. We’ve also added hardware acceleration, making connections faster and smoother. To try it out, visit RealVNC’s GitHub: https://github.com/RealVNC/raspi-preview.

Previously, it hasn’t been possible to view software that uses a directly rendered overlay – such as Minecraft, the camera module preview and OMXPlayer – over a VNC connection. It’s a feature that lots of people have long wished for, not least because it means that schools and other organisations can use existing equipment, such as laptops, as displays for their Raspberry Pis, so it’s fantastic to see a VNC server that supports it.

Our Head of Curriculum Development, Marc Scott, has spent some time taking a look, and he was impressed:

The performance was great, once the settings had been played with a little, and set-up was easy just by following the instructions on the GitHub repo: https://github.com/RealVNC/raspi-preview#startVnc.

Once this is perfected, it will certainly be fantastic for teachers and students, who will be able to use their existing ICT infrastructure to connect and control their Raspberry Pis.

It’s fair to say the new version has been well received by the Raspberry Pi community so far:

CovAndWarksRaspiJam on Twitter

@RealVNC THIS IS AMAZING!pic.twitter.com/WReVGiRaUl

We’ve been looking forward to this since RealVNC tantalised us with a cracking demo at our fourth birthday party in March, and we’re delighted to see it out there. In releasing a public alpha, RealVNC are hoping for your feedback to help them make it as good as possible, so download it, give it a go and tell them what you think!

The post Minecraft Pi (and more) over VNC appeared first on Raspberry Pi.

A Raspberry Pi + IKEA arcade table to make yourself

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/raspberry-pi-ikea-arcade-table-make-yourself/

Barely a month slips by at the moment without my ordering some new flat-packed goodies from IKEA. Our family, still gradually settling into the house we moved into just before our eldest was born, goes about its book-savouring, toy-categorising, craft-supply-hoarding life within a sturdy framework of TROFAST, EKBY and BESTÅ. The really great thing is that much of this furniture lends itself to modification, and spannerspencer‘s PIK3A Gaming Table, using a Raspberry Pi and the iconic LACK side table, is a wonderful example.

PIK3A gaming table - a glossy red IKEA LACK table with inlaid monitor, joystick and buttons

Shiny retrogaming loveliness

The build instructions over at element14 are generously illustrated with photographs, bringing this project within reach of people who don’t have a ton of experience, but are happy to chuck some time at it. (If I give this one a go, I’ll probably start by getting a couple of tables so that I have a back-up. The mods to the table don’t need any fancy tools – just a drill, a Stanley knife and a hole saw – but these are the steps at greatest risk of mistakes you can’t undo.) The tutorial takes you through everything from cutting the table so as to avoid too many repeat attempts, to mounting and wiring up the controls, to the code you need to run on the Arduino and how to upload it.

Cutting holes in an IKEA LACK table for buttons and other controls

Holes much neater than the ones I will cut

You can buy a new LACK table for £6 in the UK, although the nice red glossy version in the pictures will set you back a whole £2 more. A Raspberry Pi, an Arduino Leonardo, an old LCD monitor, some cheap computer speakers, a joystick, buttons, cables and connectors, and a power supply complete the bill of materials for this build. If you want to make it extra beautiful or simply catproof it, you can add a sheet of acrylic to protect the monitor, as spannerspencer has. He’s also included a panel mount USB port to make it easy to add USB peripherals later.

A cat standing on a PIK3A gaming table protected with a sheet of transparent acrylic

PIK3A, with added catproofing

The PIK3A Gaming Table went down a storm over at element14, and its successor, the PIK3A Mark II two-player gaming table (using a LACK TV bench) is proving pretty popular too. Give them a go!

The post A Raspberry Pi + IKEA arcade table to make yourself appeared first on Raspberry Pi.