All posts by IEEE Spectrum Recent Content full text

Important asphere specifications and their impact on optical performance.

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/important-asphere-specifications-and-their-impact-on-optical-performance

Aspheres as key optical components are true “enablers” in the field of optics and photonics, especially for applications which require light weight and small size. The whitepaper gives an overview of important asphere specifications and the impact they can have on optical performance.

Learn about Aspheres and their specifications and understand how to best use them to optimize performance of your optical system.

Increasing test coverage in hard switching half bridge configurations

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/increasing-test-coverage-in-hard-switching-half-bridge-configurations

Do you have to pay particular attention to proper switching operations to prevent shoot-through events? Learn more.

Setting up complex real-time trigger conditions using the R&S oscilloscopes increases the test coverage & robustness of converter & inverter systems.

The Right Robotic Solution for Your Unique Operation

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/the-right-robotic-solution-for-your-unique-operation

Robotic solutions can help your operation keep up with the demands of today’s changing e-commerce market. Honeywell Robotics is helping DCs evaluate solutions with powerful physics-based simulation tools to ensure that everything works together in an integrated ecosystem.

Put more than a quarter-century of automation expertise to work for you.

Download White Paper

Meet the next generation of quantum analyzers at this Zurich Instruments launch event

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/meet-the-next-generation-of-quantum-analyzers-at-this-zurich-instruments-launch-event

Would you like to improve the readout of your superconducting qubits, increase the fidelity of your quantum algorithm, or scale up your qubit system size? These are the goals that motivated Zurich Instruments to bring to the market the
SHFQA Quantum Analyzer. This virtual launch event will provide a technical overview of the instrument’s capabilities, including the strengths of the SHFQA’s integrated and mixer-calibration-free frequency conversion scheme. Practical instrument demonstrations will then show you how to measure a resonator at 8 GHz with two microwave cables only, and how to perform the readout of 16 qubits in parallel.

Register Now

Prevent and Solve Common Test & Measurement Issues

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/prevent-and-solve-common-test-measurement-issues

With distance learning, students may not have a Professor nearby to help them setup and perform their labs. This leaves the student, the instruments and the device under test at risk. Share this troubleshooting flyer with your EE students to navigate some common issues.

Download Now

Simulation-Driven Design of a Hyperloop Capsule Motor

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/simulationdriven-design-of-a-hyperloop-capsule-motor

The Hyperloop transportation system is composed of a constrained space characterized by a low-pressure environment that is usually represented by tubes/tunnels. The space also houses a dedicated rail responsible for the mechanical constraining of energy-autonomous vehicles (called capsules or pods) carrying a given payload. Hyperloop capsules are expected to be self-propelled and can use the tube’s rail for guidance, magnetic levitation, and propulsion. For an average speed in the order of two to three times larger than high-speed electric trains and a maximum speed in the order of the speed of sound, the Hyperloop is expected to achieve average energy consumption in the range of 30–90 Wh/passenger/km and CO2 emissions in the range of 5–20 g CO2/passenger/km. A key aspect to achieve this performance is the optimal design of the capsule propulsion. A promising solution is represented by the double-sided linear induction motor (DSLIM). The performance of high-speed DSLIM is affected by material properties and geometrical factors.

In this webinar, we describe how to model a DSLIM using the COMSOL Multiphysics® software to provide an accurate estimation of the exerted thrust by the motor. Furthermore, we illustrate how to carry out a simulation-driven optimization to find the best motor configuration in terms of maximum speed. The results of the simulations are compared with measurements carried out in an experimental test bench developed at the Swiss Federal Institute of Technology, Lausanne, within the context of the participation of the EPFLoop team to the 2019 SpaceX Hyperloop pod competition.

Discover how AWS Marketplace seller solutions can help you scale and bring productivity to your SOC

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/discover-how-aws-marketplace-seller-solutions-can-help-you-scale-and-bring-productivity-to-your-soc

You’re Invited!

Join this webinar to learn how AWS customers are using automation and integrated threat intelligence to increase efficiency and scale their cloud security operations center (SOC).

In this webinar:

SANS and AWS Marketplace will explore real-world examples and offer practical guidance to help equip you with the needed visibility and efficiencies to scale. You will learn how to limit alert fatigue while enhancing SOC productivity through automating actionable insights and removing repetitive manual tasks. 

Attendees of this webinar will learn how to:

  • Structure a cloud SOC to scale through technology
  • Integrate threat intelligence into security workflows
  • Utilize automated triaging and action playbooks
  • Leverage AWS services and seller solutions in AWS Marketplace to help achieve these goals

Register Now

Introducing Calibre nmLVS-Recon – A new paradigm for circuit verification

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/introducing-calibre-nmlvsrecon-a-new-paradigm-for-circuit-verification

Each year, at least 50% of tapeouts are late, with physical and circuit verification closure a significant contributing factor. Mentor incorporated the know-how of our industry-leading Calibre nmLVS sign-off tool with lessons learned from customers to create an innovative smart engine specifically engineered to help design teams find and fix high-impact systemic errors early in the design flow. As part of our growing suite of early-stage design verification technologies, the Calibre nmLVS-Recon tool enables designers to accelerate early-stage design analysis and debug cycles, and reduce the time needed to reach tapeout. We explain the concept behind our innovative technology, and introduce the first Calibre nmLVS-Recon use model – short isolation analysis.

The Next Pandemic

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/static/the-next-pandemic

COVID-19 has galvanized tech communities. The tens of billions we’re spending on vaccines, antivirals, tests, robots, and devices are transforming how we’ll respond to future outbreaks of infectious disease.

intro illustration of COVID-19 spreading over globes

1. Grand Biomedical Challenges

engineers with ventilators

2. Testing, Tracing, and Modeling

magnifying glass looking at a COVID-19 molecule illustration

3. Tech Takes on COVID-19

An airplane cabin being de contaminated using an UV light device

From top: Photo: JPL-Caltech/NASA; illustration: StoryTK; photo: Honeywell Aerospace

Designing Thermal Management Systems for Electronics Through Simulations

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/designing_thermal_management_systems_for_electronics_through_simulations

The impact of increasingly powerful electronics on our society cannot be overstated. These more powerful electronics produce significant heat that must be dissipated to prevent premature component failure. Engineers that design electronics face a significant thermal management challenge. Electrical engineers frequently seek to increase the power of critical components, and keeping these components cool represents a significant design challenge. This design task becomes even more challenging when the cooling systems rely on natural convection instead of forced convection from fans, due to the relatively short life expectancy of fans.

One solution to this engineering challenge is to use multiphysics software tools to improve the accuracy of the engineer’s calculations in comparison to analytic and single-physics simulation solutions. These simulations include heat generated by the component, airflow around the component, and radiative heat transfer between the component and the surroundings. Heat generation due to resistive heating in the board can be included with heat generated from components to determine the heat generated within the system. Airflow through the system due to either forced or natural convection can also be analyzed. For many systems, radiation must be considered for accurate temperature predictions due to the large amount of heat transfer that occurs via this mechanism in many electronic designs.

In this presentation, guest speakers Kyle Koppenhoefer and Joshua Thomas from AltaSim Technologies will discuss the development of an electronics cooling problem subjected to a complex thermal environment. The webinar will also include a live demo in the COMSOL Multiphysics® software and a Q&A session.

Satellite Mission Planning – the R&S®SLP Satellite Link Planner and the R&S®CSM Communication System Monitoring

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/satellite_mission_planning_the_r_s

Planning of satellite communication links or even whole networks is a very demanding task. In the first part of this webinar, we will present our software for satellite link planning that supports the user in a convenient way but takes into the account all relevant sources of impact. In the second part of the webinar, we will demonstrate our solution for monitoring satellite networks, either at one site or distributed worldwide. In addition, we will put focus on the identification of interference coming from unwanted satellite signals or terrestrial sources. We will also show how to make interfering signals that lie underneath the wanted satellite carrier visible.

Attendees of the webinar will learn about:

• The sources of impact affecting satellite links

• How to plan satellite links or whole satellite networks

• The best way to monitor your satellite connections automated and reliably

• How to detect and identify interferences

Unlock Wireless Test Capabilities On Your RF Gear

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/unlock_wireless_test_capabilities_on_your_rf_gear

Discover how easy it is to update your instrument to test the latest wireless standards.

We’re offering 30-day software trials that evolve test capabilities on your signal analyzers and signal generators. Automatically generate or analyze signals for many wireless applications.

Choose from our more popular applications:

  • Bluetooth ®
  • WLAN 802.11
  • Vector Modulation Analysis
  • And more

Get More From Your Automotive Electronics Test Investment

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/get_more_from_your_automotive_electronics_test_investment

Keysight Automotive

Explore the powerful software behind Keysight’s high-precision hardware and discover how to meet emerging automotive electronics test requirements, while driving higher ROI from your existing hardware. Let Keysight help you cross the finish line ahead of your competition. Jump-start your automotive innovation today with a complimentary software trial

How to Improve Threat Detection and Hunting in the AWS Cloud Using the MITRE ATT&CK Matrix

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/how_to_improve_threat_detection_and_hunting_in_the_aws_cloud

SANS and AWS Marketplace will discuss the exercise of applying MITRE’s ATT&CK Matrix to the AWS Cloud. They will also explore how to enhance threat detection and hunting in an AWS environment to maintain a strong security posture.

Virtual Automotive Tech Days

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/virtual_automotive_tech_days

Key Auto

Learn about automotive design, test and measurement tips anytime, anywhere. Join our experts as they cover the latest topics including: Delivering Quiet Power to Automotive Electronics and Challenges and Solutions of Advanced Automotive Radar System Design. Explore these topics and more at your convenience.

Engineering the 5G World Just Got Easier

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/engineering_the_5g_world_just_got_easier

Keysight Ebook

When it comes to 5G, Keysight wrote the book.

Engineering the 5G World provides the information you need to master the complexities of 5G and bring your products to market successfully. Whether you’re designing chipsets, components, devices, or base stations or bringing 5G networks online, we’ve got you covered.

Download your complimentary copy.

Remote Threats: Insider Risk and the Remote Work Paradigm

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/remote_threats_insider_risk_and_the_remote_work_paradigm

It’s a new world for businesses everywhere. For small and medium sized companies who thrive on in-person relationships and customer interaction, it’s a difficult transition to an all remote- stay at home workforce. That’s on top of whether your business model can sustain some level of operation, revenue generation, and customer retention.

For those companies who can continue to operate at some level, the current environment creates numerous opportunities for a bad actor to exploit your employees, or for a bad employee to steal from your company. Join us in this webinar to discuss strategies that will help protect your company now by learning the indicators professionals look for in potential problem employees and review the motivations that drive employees to cross the line. You will be equipped with strategies and questions you should ask your leadership to better protect you company in these unprecedented times.  

IEEE Top Programming Languages: Design, Methods, and Data Sources 2020

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/static/ieee-top-programming-languages-design-methods-and-data-sources-2020

The IEEE Spectrum Top Programming Languages app synthesizes 11 metrics from eight sources to arrive at an overall ranking of language popularity. The sources cover contexts that include social chatter, open-source code production, and job postings. Below, you’ll find information about how we choose which languages to track and the data sources we use to do it.

What We Track

Starting from a list of over 300 programming languages gathered from GitHub, we looked at the volume of results found on Google when we searched for each one using the template “X programming” where “X” is the name of the language. We filtered out languages that had a very low number of search results and then went through the remaining entries by hand to narrow them down to the most interesting. We labeled each language according to whether or not it finds significant use in one or more of the following categories: Web, mobile, enterprise/desktop, or embedded environments.

Our final set of 52 languages includes names familiar to most computer users, such as Java, stalwarts like Cobol and Fortran, and languages that thrive in niches, like Haskell. We gauged the popularity of each using 11 metrics across eight sources in the following ways:

Google Search

We measured the number of hits for each language by using Google’s API to search for the template “X programming.” This number indicates the volume of online information resources about each programming language. We took the measurement in April 2020, so it represents a snapshot of the Web at that particular moment in time. This measurement technique is also used by the oft-cited TIOBE rankings.

Google Trends

We measured the index of each language as reported by Google Trends using the template “X programming” in April 2020. This number indicates the demand for information about the particular language, because Google Trends measures how often people search for the given term. As it measures searching activity rather than information availability, Google Trends can be an early cue to up-and-coming languages. Our methodology here is similar to that of the Popularity of Programming Language (PYPL) ranking.

Twitter

We measured the number of hits on Twitter for the template “X programming” for the 12 months ending April 2020 using the Twitter Search API. This number indicates the amount of chatter on social media for the language and reflects the sharing of online resources like news articles or books, as well as physical social activities such as hackathons.

GitHub

GitHub is a site where programmers can collaboratively store repositories of code. Using the GitHub API and GitHub tags, we measured two things for the 12 months ending April 2020: (1) the number of new repositories created for each language, and (2) the number of active repositories for each language, where “active” means that someone has edited the code in a particular repository. The number of new repositories measures fresh activity around the language, whereas the number of active repositories measures the ongoing interest in developing each language.

Stack Overflow

Stack Overflow is a popular site where programmers can ask questions about coding. We measured the number of questions posted that mention each language for the 12 months ending April 2020. Each question is tagged with the languages under discussion, and these tags are used to tabulate our measurements using the Stack Exchange API.

Reddit

Reddit is a news and information site where users post links and comments. On Reddit we measured the number of posts mentioning each of the languages, using the template “X programming” from June 2019 to June 2020 across any subreddit on the site. We collected data using the Reddit API.

Hacker News

Hacker News is a news and information site where users post comments and links to news about technology. We measured the number of posts that mentioned each of the languages using the template “X programming” for the 12 months ending April 2020. Just like those used by the websites Topsy, Stack Overflow, and Reddit, this metric also captures social activity and information sharing around the various languages. We used the Algolia Search API.

CareerBuilder

We measured the demand for different programming languages on the CareerBuilder job site. We measure the number of fresh job openings (those that are less than 30 days old) on the U.S. site that mention the language. Because some of the languages we track could be ambiguous in plain text—such as D, Go, J, Processing, and R—we use strict matching of the form “X programming” for these languages. For other languages we use a search string composed of “X AND programming,” which allows us to capture a broader range of relevant postings. We collected data in July 2020 using the CareerBuilder API, courtesy of CareerBuilder, which gave us access now that the API no longer publicly provides this information

IEEE Job Site

We measured the demand for different programming languages in job postings on the IEEE Job Site. Because some of the languages we track could be ambiguous in plain text—such as D, Go, J, Processing, and R—we use strict matching of the form “X programming” for these languages. For other languages we use a search string composed of “X AND programming,” which allows us to capture a broader range of relevant postings. Because no externally exposed API exists for the IEEE Job Site, we extracted data using an internal custom-query tool in May 2020.

IEEE Xplore Digital Library

IEEE maintains a digital library with over 3.6 million conference and journal articles covering a range of scientific and engineering disciplines. We measured the number of articles that mention each of the languages in the template “X programming” for the years 2019 and 2020. This metric captures the prevalence of the different programming languages as used and referenced in scholarship. We collected data using the IEEE Xplore API.

APTs Use Coronavirus as a Lure

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/apts_use_coronavirus_as_a_lure

Malwarebytes

Threat actors are closely monitoring public events happening around the world, and quickly employing those themes in attack vectors to take advantage of the opportunity. That said, various Advanced Persistent Threat (APT) groups are using the coronavirus pandemic as a theme in several malicious campaigns.

By using social engineering tactics such as spam and spear phishing with COVID-19 as a lure, cybercriminals and threat actors increase the likelihood of a successful attack. In this paper, we:

  • Provide an overview of several different APT groups using coronavirus as a lure.
  • Categorize APT groups according to techniques used to spam or send phishing emails.
  • Describe various attack vectors, timeline of campaigns, and malicious payloads deployed.
  • Analyze use of COVID-19 lure and code execution.
  • Get ready to dig into the details of each APT group, their origins, what they’re known for and their latest strike. 

3D Cable Modeling in COMSOL Multiphysics®

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/3d_cable_modeling_in_comsol_multiphysics

COMSOL Sub

Tune into this webinar to learn more about 3D cable modeling. The models can be used to virtually test, design, and optimize cable systems based on accurate multiphysics simulation techniques.

We will demonstrate and discuss best practices to set up models and run simulations. Examples will cover the computation of inductive and thermal cable properties. Topics include:

  • Geometry creation and meshing
  • Setting up twisted armor periodicity
  • Evaluating currents and magnetic losses in the armor
  • Heating and thermal effects

The live demo in the COMSOL Multiphysics® software will lead you through the typical steps to simulate 3D cables using a high-voltage submarine cable as an example. You can ask questions throughout the webinar or at the end during the Q&A session.