Tag Archives: computing education

Supporting beginner programmers in primary school using TIPP&SEE

Post Syndicated from Bobby Whyte original https://www.raspberrypi.org/blog/teaching-programming-in-primary-school-tippsee/

Every young learner needs a successful start to their learning journey in the primary computing classroom. One aspect of this for teachers is to introduce programming to their learners in a structured way. As computing education is introduced in more schools, the need for research-informed strategies and approaches to support beginner programmers is growing. Over recent years, researchers have proposed various strategies to guide teachers and students, such as the block model, PRIMM, and, in the case of this month’s seminar, TIPP&SEE.

A young person smiles while using a laptop.
We need to give all learners a successful start in the primary computing classroom.

We are committed to make computing and creating with digital technologies accessible to all young people, including through our work with educators and researchers. In our current online research seminar series, we focus on computing education for primary-aged children (K–5, ages 5 to 11). In the series’ second seminar, we were delighted to welcome Dr Jean Salac, researcher in the Code & Cognition Lab at the University of Washington.

Dr Jean Salac
Dr Jean Salac

Jean’s work sits across computing education and human-computer interaction, with an emphasis on justice-focused computing for youth. She talked to the seminar attendees about her work on developing strategies to support primary school students learning to program in Scratch. Specifically, Jean described an approach called TIPP&SEE and how teachers can use it to guide their learners through programming activities.

What is TIPP&SEE?

TIPP&SEE is a metacognitive approach for programming in Scratch. The purpose of metacognitive strategies is to help students become more aware of their own learning processes.

The TIPP&SEE learning strategy is a sequence of steps named Title, Instructions, Purpose, Play, Sprites, Events, Explore.
The stages of the TIPP&SEE approach

TIPP&SEE scaffolds students as they learn from example Scratch projects: TIPP (Title, Instructions, Purpose, Play) is a scaffold to read and run a Scratch project, while SEE (Sprites, Events, Explore) is a scaffold to examine projects more deeply and begin to adapt them. 

Using, modifying and creating

TIPP&SEE is inspired by the work of Irene Lee and colleagues who proposed a progressive three-stage approach called Use-Modify-Create. Following that approach, learners move from reading pre-existing programs (“not mine”) to adapting and creating their own programs (“mine”) and gradually increase ownership of their learning.

A diagram of the Use-Create-Modify learning strategy for programming, which involves moving from exploring existing programs to writing your own.
TIPP&SEE builds on the Use-Modify-Create progression.

Proponents of scaffolded approaches like Use-Modify-Create argue that engaging learners in cycles of using existing programs (e.g. worked examples) before they move to adapting and creating new programs encourages ownership and agency in learning. TIPP&SEE builds on this model by providing additional scaffolding measures to support learners.

Impact of TIPP&SEE

Jean presented some promising results from her research on the use of TIPP&SEE in classrooms. In one study, fourth-grade learners (age 9 to 10) were randomly assigned to one of two groups: (i) Use-Modify-Create only (the control group) or (ii) Use-Modify-Create with TIPP&SEE. Jean found that, compared to learners in the control group, learners in the TIPP&SEE group:

  • Were more thorough, and completed more tasks
  • Wrote longer scripts during open-ended tasks
  • Used more learned blocks during open-ended tasks
A graph showing that learners using TIPP&SEE outperformed learners using only Use-Modify-Create in a research study.
The TIPP&SEE group performed better than the control group in assessments

In another study, Jean compared how learners in the TIPP&SEE and control groups performed on several cognitive tests. She found that, in the TIPP&SEE group, students with learning difficulties performed as well as students without learning difficulties. In other words, in the TIPP&SEE group the performance gap was much narrower than in the control group. In our seminar, Jean argued that this indicates the TIPP&SEE scaffolding provides much-needed support to diverse groups of students.

Using TIPP&SEE in the classroom

TIPP&SEE is a multi-step strategy where learners start by looking at the surface elements of a program, and then move on to examining the underlying code. In the TIPP phase, learners first read the title and instructions of a Scratch project, identify its purpose, and then play the project to see what it does.

The TIPP&SEE learning strategy is a sequence of steps named Title, Instructions, Purpose, Play, Sprites, Events, Explore.

In the second phase, SEE, learners look inside the Scratch project to click on sprites and predict what each script is doing. They then make changes to the Scratch code and see how the project’s output changes. By changing parameters, learners can observe which part of the output changes as a result and then reason how each block functions. This practice is called deliberate tinkering because it encourages learners to observe changes while executing programs multiple times with different parameters.

The TIPP&SEE learning strategy is a sequence of steps named Title, Instructions, Purpose, Play, Sprites, Events, Explore.

You can read more of Jean’s research on TIPP&SEE on her website. There’s also a video on how TIPP&SEE can be used, and free lesson resources based on TIPP&SEE are available in Elementary Computing for ALL and Scratch Encore.

Learning about learning in computing education

Jean’s talk highlighted the need for computing to be inclusive and to give equitable access to all learners. The field of computing education is still in its infancy, though our understanding of how young people learn about computing is growing. We ourselves work to deepen our understanding of how young people learn through computing and digital making experiences.

In our own research, we have been investigating similar teaching approaches for programming, including the use of the PRIMM approach in the UK, so we were very interested to learn about different approaches and country contexts. We are grateful to Dr Jean Salac for sharing her work with researchers and teachers alike. Watch the recording of Jean’s seminar to hear more:

Free support for teaching programming and more to primary school learners

If you are looking for more free resources to help you structure your computing lessons:

Join our next seminar

In the next seminar of our online series on primary computing, I will be presenting my research on integrated computing and literacy activities. Sign up now to join us for this session on Tues 7 March:

As always, the seminars will take place online on the first Tuesday of the month at 17:00–18:30 UK time. Hope to see you there!

The post Supporting beginner programmers in primary school using TIPP&SEE appeared first on Raspberry Pi.

Teach your learners with The Computing Curriculum

Post Syndicated from Sway Grantham original https://www.raspberrypi.org/blog/computing-curriculum-lesson-plans/

Computing combines a very broad mixture of concepts and skills. We work to support any school to teach students about the whole of computing and how to create with digital technologies. A key part of this support is The Computing Curriculum.

Two girls code at a desktop computer while a female mentor observes them.
We help schools around the world teach their learners computing.

The Computing Curriculum: Free and comprehensive

The Computing Curriculum is our complete bank of free lesson plans and other resources that offer you everything you need to teach computing lessons to all school-aged learners. It helps you cover the full breadth of computing, including computing systems, programming, creating media, data and information, and societal impacts of digital technology.

The 500 hours of free, downloadable resources within The Computing Curriculum include all the materials you need in your classroom: from lesson plans and slide decks to activity sheets, homework, and assessments. To our knowledge, this is the most comprehensive set of free teaching and learning materials for computing and digital skills in the world.

Two learners and a teacher in a physical computing lesson.
We continuously update The Computing Curriculum to reflect the latest research about this young subject.

Our Curriculum’s resources are based on clear progression and content frameworks we’ve designed, and we continuously update them based on the latest research and feedback from practising teachers. Doing this is particularly important for computing education resources, because computing is a young subject where thoughts and understanding about the best teaching approaches are still evolving.

Computing lesson plans that save time and engage your learners

With The Computing Curriculum, we support educators of all levels of experience. Whether you specialise in computing, or you are a newcomer to the subject, the Curriculum will save you time and help you deliver engaging lessons.

In our 2022 survey of teachers who have used The Computing Curriculum resources:

  • 91% said the Curriculum was effective or very effective at saving teachers time
  • 89% said it was effective or very effective at developing teachers’ subject knowledge
  • 81% said it was effective or very effective at engaging students

The resources are organised as themed units, and they support your computing lesson planning, preparation, and delivery because they are comprehensive as well as adaptable. You are free to use the resources as they are, or adjust them to your context, access to hardware, and learners’ needs and experience level.

A Kenyan child smiles at a computer.
The Computing Curriculum will help you plan and deliver engaging lessons.

One aspect of The Computing Curriculum that will facilitate your teaching is the progression framework on which the resources are based. In creating the resources, we have considered the learning objectives throughout each unit and year group, and throughout the entire schooling period. This progression is detailed in curriculum maps and learning graphs, and you’ll be able to use these documents to plan your lessons and to check your learners’ understanding.

Start teaching with The Computing Curriculum

You can download and use the resources for the year groups you teach computing right now. And please tell us of your experiences using The Computing Curriculum in your classroom, so that we can make the resources even better for educators around the world.

If you are interested in curriculum resources tailored for your region, please contact us via this form. You can find out how we adapted resources from The Computing Curriculum for learners living in a refugee camp in Kenya if you’d like to learn about our approach to tailoring resources.

The post Teach your learners with The Computing Curriculum appeared first on Raspberry Pi.

Combining computing and maths to teach primary learners about variables

Post Syndicated from Katharine Childs original https://www.raspberrypi.org/blog/variables-primary-school-computing-maths-education-seminar/

In our first seminar of 2023, we were delighted to welcome Dr Katie Rich and Carla Strickland. They spoke to us about teaching the programming construct of variables in Grade 3 and 4 (age 8 to 10).

We are hearing from a diverse range of speakers in our current series of monthly online research seminars focused on primary (K-5) computing education. Many of them work closely with educators to translate research findings into classroom practice to make sure that all our younger learners have positive first experiences of learning computing. An important goal of their research is to impact the development of pedagogy, resources, and professional development to support educators to deliver computing concepts with confidence.

Variables in computing and mathematics

Dr Katie Rich (American Institutes of Research) and Carla Strickland (UChicago STEM Education) are both part of a team that worked on a research project called Everyday Computing, which aims to integrate computational thinking into primary mathematics lessons. A key part of the Everyday Computing project was to develop coherent learning resources across a number of school years. During the seminar, Katie and Carla presented on a study in the project that revolved around teaching variables in Grade 3 and 4 (age 8 to 10) by linking this computing concept to mathematical concepts such as area, perimeter, and fractions.

Young person using Scratch.

Variables are used in both mathematics and computing, but in significantly different ways. In mathematics, a variable, often represented by a single letter such as x or y, corresponds to a quantity that stays the same for a given problem. However, in computing, a variable is an identifier used to label data that may change as a computer program is executed. A variable is one of the programming constructs that can be used to generalise programs to make them work for a range of inputs. Katie highlighted that the research team was keen to explore the synergies and tensions that arise when curriculum subjects share terms, as is the case for ‘variable’. 

Defining a learning trajectory

At the start of the project, in order to be able to develop coherent learning resources across school years, the team reviewed research papers related to teaching the programming construct of variables. In the papers, they found a variety of learning goals that related to facts (what learners need to know) and skills (what learners need to be able to do). They grouped these learning goals and arranged the groups into ‘levels of thinking’, which were then mapped onto a learning trajectory to show progression pathways for learning.

Four of the five levels of thinking identified in the study: Data storer, data user, variable user, variable creator.
Four of the five levels of thinking identified in the study: Data Storer, Data User, Variable User, Variable Creator. Click to enlarge.

Learning materials about variables

Carla then shared three practical examples of learning resources their research team created that integrated the programming construct of variables into a maths curriculum. The three activities, described below, form part of a series of lessons called Action Fractions. You can read more about the series of lessons in this research paper.

Robot Boxes is an unplugged activity that is positioned at the Data User level of thinking. It relates to creating instructions for a fictional robot. Learners have to pay attention to different data the robot needs in order to draw a box, such as the length and width, and also to the value that the robot calculates as area of the box. The lesson uses boxes on paper as concrete representations of variables to which learners can physically add values.

""

Ambling Animals is set at the ‘Data Storer’ and ‘Variable Interpreter’ levels of thinking. It includes a Scratch project to help students to locate and compare fractions on number lines. During this lesson, find a variable that holds the value of the animal that represents the larger of two fractions.

""

Adding Fractions draws on facts and skills from the ‘Variable Interpreter’ and ‘Variable Implementer’ levels of thinking and also includes a Scratch project. The Scratch project visualises adding fractions with the same denominator on a number line. The lesson starts to explain why variables are so important in computer programs by demonstrating how using a variable can make code more efficient. 

Takeaways: Cross-curricular teaching, collaborative research

Teaching about the programming construct of variables can be challenging, as it requires young learners to understand abstract ideas. The research Katie and Carla presented shows how integrating these concepts into a mathematics curriculum is one way to highlight tangible uses of variables in everyday problems. The levels of thinking in the learning trajectory provide a structure helping teachers to support learners to develop their understanding and skills; the same levels of thinking could be used to introduce variables in other contexts and curricula.

A learner does physical computing in the primary school classroom.

Many primary teachers use cross-curricular learning to increase children’s engagement and highlight real-world examples. The seminar showed how important it is for teachers to pay attention to terms used across subjects, such as the word ‘variable’, and to explicitly explain a term’s different meanings. Katie and Carla shared a practical example of this when they suggested that computing teachers need to do more to stress the difference between equations such as xy = 45 in maths and assignment statements such as length = 45 in computing.

The Everyday Computing project resources were created by a team of researchers and educators who worked together to translate research findings into curriculum materials. This type of collaboration can be really valuable in driving a research agenda to directly improve learning outcomes for young people in classrooms. 

How can this research influence your classroom practice or other activities as an educator? Let us know your thoughts in the comments. We’ll be continuing to reflect on this question throughout the seminar series.

You can watch Katie’s and Carla’s full presentation here:

Join our seminar series on primary computing education

Our monthly seminar series on primary (K–5) teaching and learning is of interest to a global audience of educators, including those who want to understand the prior learning experiences of older learners.

We continue on Tuesday 7 February at 17.00 UK time, when we will hear from Dr Jean Salac, University of Washington. Jean will present her work in identifying inequities in elementary computing instruction and in developing a learning strategy, TIPP&SEE, to address these inequities. Sign up now, and we will send you a joining link for the session.

The post Combining computing and maths to teach primary learners about variables appeared first on Raspberry Pi.

Gender Balance in Computing — the big picture

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/gender-balance-in-computing-big-picture/

Improving gender balance in computing is part of our work to ensure equitable learning opportunities for all young people. Our Gender Balance in Computing (GBIC) research programme has been the largest effort to date to explore ways to encourage more girls and young women to engage with Computing.

A girl in a university computing classroom.

Commissioned by the Department for Education in England and led by the Raspberry Pi Foundation as part of our National Centre for Computing Education work, the GBIC programme was a collaborative effort involving the Behavioural Insights Team, Apps for Good, and the WISE Campaign.

Gender Balance in Computing ran from 2019 to 2022 and comprised seven studies relating to five different research areas:

  • Teaching Approach:
  • Belonging: Supporting learners to feel that they “belong” in computer science
  • Non-formal Learning: Establishing the connections between in-school and out-of-school computing
  • Relevance: Making computing relatable to everyday life
  • Subject Choice: How computer science is presented to young people as a subject choice 

In December we published the last of seven reports describing the results of the programme. In this blog post I summarise our overall findings and reflect on what we’ve learned through doing this research.

Gender balance in computing is not a new problem

I was fascinated to read a paper by Deborah Butler from 2000 which starts by summarising themes from research into gender balance in computing from the 1980s and 1990s, for example that boys may have access to more role models in computing and may receive more encouragement to pursue the subject, and that software may be developed with a bias towards interests traditionally considered to be male. Butler’s paper summarises research from at least two decades ago — have we really made progress?

A computing classroom filled with learners.

In England, it’s true that making Computing a mandatory subject from age 5 means we have taken great strides forward; the need for young people to make a choice about studying the subject only arises at age 14. However, statistics for England’s externally assessed high-stakes Computer Science courses taken at ages 14–16 (GCSE) and 16–18 (A level) clearly show that, although there is a small upwards trend in the proportion of female students, particularly for A level, gender balance among the students achieving GCSE/A level qualifications remains an issue:

Computer Science qualification (England): In 2018: In 2021: In 2022:
GCSE (age 16) 20.41% 20.77% 21.37%
A level (age 18) 11.74% 14.71% 15.17%
Percentage of girls among the students achieving Computer Science qualifications in England’s secondary schools

What did we do in the Gender Balance in Computing programme?

In GBIC, we carried out a range of research studies involving more than 14,500 pupils and 725 teachers in England. Implementation teams came from the Foundation, Apps For Good, the WISE Campaign, and the Behavioural Insights Team (BIT). A separate team at BIT acted as the independent evaluators of all the studies.

In total we conducted the following studies:

  • Two feasibility studies: Storytelling; Relevance, which led to a full randomised controlled trial (RCT)
  • Five RCTs: Belonging; Peer Instruction; Pair Programming; Relevance, which was preceded by a feasibility study; Non-formal Learning (primary)
  • One quasi-experimental study: Non-formal Learning (secondary)
  • One exploratory research study: Subject Choice (Subject choice evenings and option booklets)

Each study (apart from the exploratory research study) involved a 12-week intervention in schools. Bespoke materials were developed for all the studies, and teachers received training on how to deliver the intervention they were a part of. For the RCTs, randomisation was done at school level: schools were randomly divided into treatment and control groups. The independent evaluators collected both quantitative and qualitative data to ensure that we gained comprehensive insights from the schools’ experiences of the interventions. The evaluators’ reports and our associated blog posts give full details of each study.

The impact of the pandemic

The research programme ran from 2019 to 2022, and as it was based in schools, we faced a lot of challenges due to the coronavirus pandemic. Many research programmes meant to take place in school were cancelled as soon as schools shut during the pandemic.

A learner and a teacher in a computing classroom.

Although we were fortunate that GBIC was allowed to continue, we were not allowed to extend the end date of the programme. Thus our studies were compressed into the period after schools reopened and primarily delivered in the academic year 2021/2022. When schools were open again, the implementation of the studies was affected by teacher and pupil absences, and by schools necessarily focusing on making up some of the lost time for learning.

The overall results of Gender Balance in Computing

Quantitatively, none of the RCTs showed a statistically significant impact on the primary outcome measured, which was different in different trials but related to either learners’ attitudes to computer science or their intention to study computer science. Most of the RCTs showed a positive impact that fell just short of statistical significance. The evaluators went to great lengths to control for pandemic-related attrition, and the implementation teams worked hard to support teachers in still delivering the interventions as designed, but attrition and disruptions due to the pandemic may have played a part in the results.

Woman teacher and female students at a computer

The qualitative research results were more encouraging. Teachers were enthusiastic about the approaches we had chosen in order to address known barriers to gender balance, and the qualitative data indicated that pupils reacted positively to the interventions. One key theme across the Teaching Approach (and other) studies was that girls valued collaboration and teamwork. The data also offered insights that enable us to improve on the interventions.

We designed the studies so they could act as pilots that may be rolled out at a national scale. While we have gained sufficient understanding of what works to be able to run the interventions at a larger scale, two particular learnings shape our view of what a large-scale study should look like:

1. A single intervention may not be enough to have an impact

The GBIC results highlight that there is no quick fix and suggest that we should combine some of the approaches we’ve been trialling to provide a more holistic approach to teaching Computing in an equitable way. We would recommend that schools adopt several of the approaches we’ve tested; the materials associated with each intervention are freely available (see our blog posts for links).

2. Age matters

One of the very interesting overall findings from this research programme was the difference in intent to study Computing between primary school and secondary school learners; fewer secondary school learners reported intent to study the subject further. This difference was observed for both girls and boys, but was more marked for girls, as shown in the graph below. This suggests that we need to double down on supporting children, especially girls, to maintain their interest in Computing as they enter secondary school at age 11. It also points to a need for more longitudinal research to understand more about the transition period from primary to secondary school and how it impacts children’s engagement with computer science and technology in general.

Bar graph showing that in the Gender Balance in Computing research programme, learners intent to continue studying computing was lower in secondary school than primary school, and that this difference  is more pronounced for girls.
Compared to primary school age girls, girls aged 12 to 13 show dramatically reduced intent to continue studying computing.

What’s next?

We think that more time (in excess of 12 weeks) is needed to both deliver the interventions and measure their outcome, as the change in learners’ attitudes may be slow to appear, and we’re hoping to engage in more longitudinal research moving forward.

In a computing classroom, a girl looks at a computer screen.

We know that an understanding of computer science can improve young people’s access to highly skilled jobs involving technology and their understanding of societal issues, and we need that to be available to all. However, gender balance relating to computing and technology is a deeply structural issue that has existed for decades throughout the computing education and workplace ecosystem. That’s why we intend to pursue more work around a holistic approach to improving gender balance, aligning with our ongoing research into making computing education culturally relevant.

Stay in touch

We are very keen to continue to build on our research on gender balance in computing. If you’d like to support us in any way, we’d love to hear from you. To explore the research projects we’re currently involved in, check out our research pages and visit the website of the Raspberry Pi Computing Education Research Centre at the University of Cambridge.

The post Gender Balance in Computing — the big picture appeared first on Raspberry Pi.

Combining research and practice to evaluate and improve computing education in non-formal settings

Post Syndicated from Bonnie Sheppard original https://www.raspberrypi.org/blog/research-practice-evaluate-improve-computing-education-non-formal-settings-seminar/

In the final seminar in our series on cross-disciplinary computing, Dr Tracy Gardner and Rebecca Franks, who work here at the Foundation, described the framework underpinning the Foundation’s non-formal learning pathways. They also shared insights from our recently published literature review about the impact that non-formal computing education has on learners.

Tracy and Rebecca both have extensive experience in teaching computing, and they are passionate about inspiring young learners and broadening access to computing education. In their work here, they create resources and content for learners in coding clubs and young people at home.

How non-formal learning creates opportunities for computing education

UNESCO defines non-formal learning as “institutionalised, intentional, and planned… an addition, alternative, and/or complement to formal education within the process of life-long learning of individuals”. In terms of computing education, this kind of learning happens in after-school programmes or children’s homes as they engage with materials that have been carefully designed by education providers.

At the Raspberry Pi Foundation, we support two global networks of free, volunteer-led coding clubs where regular non-formal learning takes place: Code Club, teacher- and volunteer-led coding clubs for 9- to 13-year-olds taking place in schools in more than160 countries; and CoderDojo, volunteer-led programming clubs for young people aged 7–17 taking place in community venues and offices in 100 countries. Through free learning resources and other support, we enable volunteers to run their club sessions, offering versatile opportunities and creative, inclusive spaces for young people to learn about computing outside of the school curriculum. Volunteers who run Code Clubs or CoderDojos report that participating in the club sessions positively impacts participants’ programming skills and confidence.

Rebecca and Tracy are part of the team here that writes the learning resources young people in Code Clubs and CoderDojos (and beyond) use to learn to code and create technology. 

Helping learners make things that matter to them

Rebecca started the seminar by describing how the team reviewed existing computing pedagogy research into non-formal learning, as well as large amounts of website visitor data and feedback from volunteers, to establish a new framework for designing and creating coding resources in the form of learning paths.

What the Raspberry Pi Foundation takes into account when creating non-formal learning resources: what young people are making, young people's interests, research, user data, our own experiences as educators, the Foundation's other educational offers, ideas of purpose-driven computing.
What the Raspberry Pi Foundation takes into account when creating non-formal learning resources. Click to enlarge.

As Rebecca explained, non-formal learning paths should be designed to bridge the so-called ‘Turing tar-pit’: the gap between what learners want to do, and what they have the knowledge and resources to achieve.

The Raspberry Pi Foundation's non-formal learning resources bridge the so-called Turing tar pit, in which learners get stuck when they feel everything is possible to create, but nothing is easy.

To prevent learners from getting frustrated and ultimately losing interest in computing, learning paths need to:

  • Be beginner-friendly
  • Include scaffolding
  • Support learner’s design skills
  • Relate to things that matter to learners

When Rebecca and Tracy’s team create new learning paths, they first focus on the things that learners want to make. Then they work backwards to bridge the gap between learners’ big ideas and the knowledge and skills needed to create them. To do this, they use the 3…2…1…Make! framework they’ve developed.

An illustration of the 3-2-1 structure of the new Raspberry Pi Foundation coding project paths.
An illustration of the 3…2…1…Make! structure of the new Raspberry Pi Foundation non-formal learning paths.

Learning paths designed according to the framework are made up of three different types of project in a 3-2-1 structure:

  • Three Explore projects to introduce creators to a set of skills and provide step-by-step instructions to help them develop initial confidence
  • Two Design projects to allow creators to practise the skills they learned in the previous Explore projects, and to express themselves creatively while they grow in independence
  • One Invent project where creators use their skills to meet a project brief for a particular audience

You can learn more about the framework in this blog post and this guide for adults who run sessions with young people based on the learning paths. And you can explore the learning paths yourself too.

Rebecca and Tracy’s team have created several new learning pathways based on the 3…2…1…Make! framework and received much positive feedback on them. They are now looking to develop more tools and libraries to support learners, to increase the accessibility of the paths, and also to conduct research into the impact of the framework. 

New literature review of non-formal computing education showcases its positive impact

In the second half of the seminar, Tracy shared what the research literature says about the impact of non-formal learning. She and researchers at the Foundation particularly wanted to find out what the research says about computing education for K–12 in non-formal settings. They systematically reviewed 421 papers, identifying 88 papers from the last seven years that related to empirical research on non-formal computing education for young learners. Based on these 88 papers, they summarised the state of the field in a literature review.

So far, most studies of non-formal computing education have looked at knowledge and skill development in computing, as well as affective factors such as interest and perception. The cognitive impact of non-formal education has been generally positive. The papers Tracy and the research reviewed suggested that regular learning opportunities, such as weekly Code Clubs, were beneficial for learners’ knowledge development, and that active teaching of problem solving skills can lead to learners’ independence.

In the literature review the Raspberry Pi Foundation team conducted, most research studies were university-organised on projects to broaden participation and interest development in immersive multi-day settings.

Non-formal computing education also seems to be beneficial in terms of affective factors (although it is unclear yet whether the benefits remain long-term, since most existing research studies conducted have been short-term ones). For example, out-of-school programmes can lead to more positive perception and increased awareness of computing for learners, and also boost learners’ confidence and self-efficacy if they have had little prior experience of computing. The social aspects of participating in coding clubs should not be underestimated, as learners can develop a sense of belonging and support as they work with their peers and mentors.

The affordances of non-formal computing activities that complement formal education: access and awareness, cultural relevance and equity, practice and personalisation, fun and engagement, community and identity, immediate impact.

The literature review showed that non-formal computing complements formal in-school education in many ways. Not only can Code Clubs and CoderDojos be accessible and equitable spaces for all young people, because the people who run them can tailor learning to the individuals. Coding clubs such as these succeed in making computing fun and engaging by enabling a community to form and allowing learners to make things that are meaningful to them.

What existing studies in non-formal computing aren’t telling us

Another thing the literature review made obvious is that there are big gaps in the existing understanding of non-formal computing education that need to be researched in more detail. For example, most of the studies the papers in the literature review described took place with female students in middle schools in the US.

That means the existing research tells us little about non-formal learning:

  • In other geographic locations
  • In other educational settings, such as primary schools or after-school programmes
  • For a wider spectrum of learners

We would also love to see studies that hone in on:

  • The long-term impact of non-formal learning
  • Which specific factors contribute to positive outcomes
  • Non-formal learning about aspects of computing beyond programming

3…2…1…research!

We’re excited to continue collaborating within the Foundation so that our researchers and our team creating non-formal learning content can investigate the impact of the 3…2…1…Make! framework.

At Coolest Projects, a group of people explore a coding project.
The aim of the 3…2…1…Make! framework is to enable young people to create things and solve problems that matter to them using technology.

This collaboration connects two of our long-term strategic goals: to engage millions of young people in learning about computing and how to create with digital technologies outside of school, and to deepen our understanding of how young people learn about computing and how to create with digital technologies, and to use that knowledge to increase the impact of our work and advance the field of computing education. Based on our research, we will iterate and improve the framework, in order to enable even more young people to realise their full potential through the power of computing and digital technologies. 

Join our seminar series on primary computing education

From January, you can join our new monthly seminar series on primary (K–5) teaching and learning. In this series, we’ll hear insights into how our youngest learners develop their computing knowledge, so whether you’re a volunteer in a coding club, a teacher, a researcher, or simply interested in the topic, we’d love to see you at one of these monthly online sessions.

The first seminar, on Tuesday 10 January at 5pm UK time, will feature researchers and educators Dr Katie Rich and Carla Strickland. They will share findings on how to teach children about variables, one of the most difficult aspects of computing for young learners. Sign up now, and we will send you notifications and joining links for each seminar session.

We look forward to seeing you soon, and to discussing with you how we can apply research results to better support all our learners.

The post Combining research and practice to evaluate and improve computing education in non-formal settings appeared first on Raspberry Pi.

Reflecting on what we teach in computing education and how we teach it

Post Syndicated from James Robinson original https://www.raspberrypi.org/blog/reflecting-on-computing-education-hello-world-special-editions/

Reflecting is important within any line of work, and computing education is no different. Reflective practice is always valuable, whether you support learners in a non-formal setting, such as a Code Club or CoderDojo, or in a more formal environment, such as a school or college. When you reflect, you might for example evaluate a session or lesson and make changes for next time, or consider whether to reorder activities and learning across a longer time period, or even think broadly about what you teach and how you teach it.

Two special editions of Hello World: The big book of computing content, and the big book of computing pedagogy.

This is where our two special editions of Hello World come in: The Big Book of Computing Content and The Big Book of Computing Pedagogy. Both available as free downloads, they help you reflect on what you teach within Computing and how you teach it.

What you teach: The Big Book of Computing Content

Computing is a broad and interdisciplinary subject, and different curricula and courses around the world focus on different aspects of it. For all of us, therefore, computing is framed by the curricula with which we are working and the terms which we’re using to talk about the subject. Over the past years at the Foundation, we have been developing a Computing taxonomy to help describe the different aspects of the subject. The Big Book of Computing Content is based on this taxonomy. The aim of this special edition of Hello World is to illustrate the breadth of Computing, and to model language that describes the different concepts, knowledge, and skills that comprise it.

Cover of The Big Book of Computing Content.
The Big Book of Computing Content explores what we mean by Computing and aims to provide a common language to describe the subject. This book complements our Hello World special edition on pedagogy, introducing research alongside practical articles from teachers.

We have organised this Big Book according to our taxonomy’s 11 content strands and also included progressive learning outcomes for each strand at different stages of learning. These outcomes are not prescriptive; instead they illustrate the wide applications of the subject by highlighting the kinds of knowledge and understanding that learners could develop in each area of Computing.

We hope that The Big Book of Computing Content encourages educators to reflect on all aspects of Computing and how they interconnect, as well as on the language we use to describe Computing. Whether the Big Book helps you to discover new aspects to Computing, to think about the subject differently, or simply to see the differences in how we as educators talk about our subject, the time you spend reflecting is important and valuable.

How you teach: The Big Book of Computing Pedagogy

One part of our work as educators is understanding the breadth of Computing and the specific ideas within it. The other part is reflecting on how we teach the subject: the specific methods, strategies, and practices we can use with our learners. The Big Book of Computing Pedagogy describes a range of teaching approaches framed around our 12 pedagogical principles for teaching Computing. Each research-informed principle either reflects how general-purpose pedagogy applies within Computing or explores pedagogies specific to Computing itself. This Big Book consists of research summaries as well as practical articles from educators which illustrate how you can apply the different pedagogies.

Cover of The Big Book of Computing Pedagogy.
Hello World’s special edition on pedagogy lays out approaches to teaching computing in the classroom. It bridges the gap between research and practice, giving you accessible chunks of research, followed by stories from educators.

Rather than prescribing a set of principles that educators must follow, the aim of The Big Book of Computing Pedagogy is to help you develop your understanding of a range of pedagogical approaches which you can select, apply, and adapt to suit your context.

Reflect to develop your knowledge and agency

Ultimately we want to support all Computing and Computer Science educators to build their understanding of subject matter (that is, content) and pedagogy, or what is called pedagogical content knowledge (PCK, a term popularised by Lee Shulman). Combining your PCK with your grasp of the context of your learners, curricula, and setting will enable you to choose suitable practices for your content and context.

Three computer science educators discuss something at a screen.

We hope that you find the two Big Books to be valuable reference tools to help you and your peers reflect on what it is you mean when you talk about Computing, and on how you teach the concepts, knowledge, and skills within it. Both books are available as free PDF downloads.

We would love to hear examples of how you have used The Big Book of Computing Pedagogy or The Big Book of Computing Content to inform your own teaching practice or to discuss practice with colleagues. Tell us in the comments.

The post Reflecting on what we teach in computing education and how we teach it appeared first on Raspberry Pi.

Using relevant contexts to engage girls in the Computing classroom: Study results

Post Syndicated from Katharine Childs original https://www.raspberrypi.org/blog/gender-balance-in-computing-relevance/

Today we are sharing an evaluation report on another study that’s part of our Gender Balance in Computing research programme. In this study, we investigated the impact of using relevant contexts in classroom programming activities for 12- to 13-year-olds on girls’ and boys’ attitudes towards Computing.

Two female learners code at a computer together.

We have been working on Gender Balance in Computing since 2018, together with partner organisations Behavioural Insights Team, Apps for Good, and WISE, to conduct research studies exploring ways to encourage more girls and young women to engage with Computing in school. The research programme has been funded by the Department for Education, and we deliver it as part of the National Centre for Computing Education. The report we share today is about the penultimate study in the programme.

Components of a Computing curriculum

A typical Computing curriculum is built around content: a list of concepts, knowledge, and skills that will be covered during the course. For some learners, that list will be enough to motivate and engage them in Computing. But other learners require more to engage with the subject, such as context about how they can use the computing skills they learn in the real world. Crucially, this difference between learners is often gendered. Research has shown that many boys become absorbed by the content in Computing courses, whereas for many girls the context for using computing skills is more important, and this context needs to relate to a variety of relevant scenarios where computing can solve problems.

In a computing classroom, a girl laughs at what she sees on the screen.

Developing teaching materials to highlight the relevance of Computing

In the Relevance study, we worked together with colleagues from Apps for Good to create teaching materials that present Computing in contexts that were relevant to pupils’ own interests. To do this, we drew on a research concept called identification. This states that when learners become interested in a topic because it relates to part of their own identity, that makes the subject more personally meaningful to them, which in turn means that they are more likely to continue studying it. In the materials we created, we drew on learners’ identities based on the communities that they belonged to (see image below). The materials asked them to identify the connections they had to their own communities, and to then use this as the context to design and create a mobile phone app.

A slide from a Computing lesson inviting learners to identify the communities they are part of based on their family, beliefs, school, interests, etc.
The intervention materials asked learners to think about the communities they belong to.

“I feel a sense of achievement in Computing when making your ideas a reality makes you proud of your creation, which is rewarding.” (Female learner, Relevance study evaluation report p. 57)

The Relevance research study

Between January 2022 and April 2022, more than 95 secondary schools were part of our study investigating the effect that learning with these resources might have on the attitudes of Year 8 pupils (aged 12–13) towards Computing. We are very grateful to all the schools, pupils, and teachers who took part in this study.

To enable evaluation of the study as a randomised controlled trial, the schools were randomly divided into two groups: a ‘control’ group that taught standard Computing lessons, and a ‘treatment’ group that delivered the intervention materials we had developed. The impact of the intervention was independently evaluated by the Behavioural Insights Team using data collected from pupils via surveys at the start and end of the intervention. The evaluators also collected data while conducting lesson observations, pupil group discussions, teacher interviews, and teacher surveys to understand how the intervention was delivered.

The girls who took part in the intervention chose an interesting range of contexts for their apps, including: 

  • Solving problems in the school community, such as homework timetabling and public transport
  • Interest-based communities, such as melody-making and interior design 
  • Issues in wider communities, such as sea life population and mental health

“I feel like it’s an important subject, and I feel like sea life is at risk right now, and I want to help people realise that.” (Female learner, Relevance study evaluation report p. 60)

“I feel like computing can create apps to do with solving mental health problems, which I think are very important and personally need a lot of improvement on the way we can cope with mental health.” (Female learner, Relevance study evaluation report p. 60)

What we learned from the Relevance study

The start of this blog refers to the core components of a Computing curriculum: concepts, knowledge, and skills. One way of building a curriculum is to list these components and develop a scheme of work which covers them all. However, in a recent computing education paper, researchers present an alternative way: developing curricula around the possible endpoints of learners. For computing, one endpoint could be the economic opportunities of a programming career, but equally, another could be using digital technologies for creative expression. The researchers argue that when learners have the opportunity to use computing as a tool related to personally meaningful contexts, a more diverse group of learners can become engaged in the subject.

A group of young people in a computer science classroom pose for a group photo.

Girls who took part in our Relevance study expressed the importance of creativity. “I think last term we had instructions and you follow them, whereas now it’s like your own ideas and your own creativity and whatever you make,” said one female learner (report, p. 56). The series of lessons where learners designed a prototype of their app was particularly popular among girls because this activity included creative expression. Girls who see themselves as creative align their interests with subjects that allow them to express this part of their identity.

A slide from a Computing lesson inviting learners to design a mobile phone app on paper.
With the intervention materials, learners developed a paper prototype of their app before going on to create code for it.

Based on learner responses to a ‘yes/no’ question about whether they were likely to choose GCSE Computer Science, the evaluators of the study found no statistically significant differences between the students who were part of the treatment and control groups. However, when learners were asked instead to select from a list which subjects they were likely to choose at GCSE, there was a statistically significant difference in the results: girls from schools in the treatment group were more likely to choose GCSE Computer Science as one of their options than girls in the control group. This finding suggests that it would be beneficial to gender balance in Computing if educators who design Computing curricula consider multiple endpoints for learners and include personally meaningful contexts to create learning experiences that are relevant to diverse groups of learners.

Find out more about making computing relevant for your learners

This is the penultimate report to be published about the studies that are part of the Gender Balance in Computing programme. If you would like to stay up-to-date with the programme, you can sign up to our newsletter. Our final report is about a study that explored the role that options booklets and evenings play in students’ subject choice.

The post Using relevant contexts to engage girls in the Computing classroom: Study results appeared first on Raspberry Pi.

Spotlight on primary computing education in our 2023 seminar series

Post Syndicated from Bonnie Sheppard original https://www.raspberrypi.org/blog/primary-computing-education-research-seminar-series-2023/

We are excited to announce our next free online seminars, running monthly from January 2023 and focusing on primary school (K–5) teaching and learning of computing.

Two children code on laptops while an adult supports them.

Our seminars, having covered various topics in computing education over the last three years, will now offer you a close look at current questions and research in primary computing education. Through this series we want to connect research and teaching practice, and further primary computing education across the globe.

Are these seminars for me?

Our upcoming seminars are for everyone interested in computing education, not just for primary school teachers — you are all cordially invited to join us. Previous seminars have been attended by a valuable mix of teachers, volunteers, tech industry professionals, and researchers, all keen to explore how computing education research can be put into practice.

Learner using Scratch on a laptop.

Whether you teach in a classroom, or support learners in a coding club, you will find out how our youngest learners develop their computing knowledge. You’ll also explore with us what this means for your learning context in practical terms.

What you can expect from the online seminars

Each seminar starts with a presenter explaining, in easy-to-understand terms, some recent research they have done. The presentation is followed by a discussion in smaller groups. We then regroup for a Q&A session with the presenter.

Attendees of our previous seminars have said:

“The seminar will be useful in my practice when our coding club starts.”

“I love this initiative, your choice of speakers has been fantastic. You are creating a very valuable CPD resource for Computer Science teachers and educators all over the world. Thank you. 🙏”

“Just wanted to say a huge thank you for organising this. It was brilliant to hear the presentation but also the input from other educators in the breakout room. I currently teach in a department of one, which can be quite lonely, so to join other educators was brilliant and a real encouragement.” 

Learn from specialists to benefit your own learners

Computer science has been taught in universities for many years, and only more recently has the subject been introduced in schools. That means there isn’t a lot of research about computing education for school-aged learners yet, and even less research about how young children of primary school age learn about computing. 

Young learners at computers in a classroom.

That’s why we are excited to invite you to learn with us as we hear from international primary computing research teams who share their knowledge in our online seminars:

  • Tuesday 10 January 2023: Kicking off our series are Dr Katie Rich and Carla Strickland from Chicago with a seminar on how they developed new instructional materials for teaching variables in primary school. They will specifically focus on how they combined research with classroom realities, and share experiences of using their new materials in class. 
  • Tuesday 7 February 2023: Dr Jean Salac from the University of Washington is particularly interested in identifying and addressing inequities in the computing classroom, and will speak about a new learning strategy that has been found to improve students’ understanding of computing concepts and to increase equal access to computing.
  • Tuesday 7 March 2023: Our own Dr Bobby Whyte from the Raspberry Pi Foundation will share practical examples of how primary computing can be integrated into literacy education. He will specifically look at storytelling elements within computing education and discuss the benefits of combining competency areas.
  • May 2023: Information coming soon
  • Tuesday 6 June 2023: In a collaborative seminar, Aim Unahalekhaka from Tufts University in Massachusetts will first present her research into how children learn coding through ScratchJr. Participants are encouraged to bring a tablet or device with ScratchJr to then look at practical project evaluations and teaching strategies that can help young learners create purposefully.
  • Tuesday 12 September 2023: Joining us from the University of Passau in Germany, Luisa Greifenstein will speak about how to give children appropriate feedback that encourages positive attitudes towards computing education. In particular, she will be looking at the effects of different feedback strategies and present a new Scratch tool that offers automated feedback.
  • October 2023: Information coming soon
  • Tuesday 7 November 2023: We are delighted to be joined by Dr Aman Yadav from Michigan State University who will focus on computational thinking and its value for primary schooling. In his seminar, he will not only discuss the unique opportunities for computational thinking in primary school but also discuss findings from a recent project that focused on teachers’ perspectives. 

Sign up now to attend the seminars

All our seminars start at 17:00 UK time (18:00 CET / 12:00 noon ET / 9:00 PT) and take place in an online format. Sign up now to receive a calendar invitation and the link to join on the day of each seminar.

We look forward to seeing you soon, and to discussing with you how we can apply research results to better support all our learners.

The post Spotlight on primary computing education in our 2023 seminar series appeared first on Raspberry Pi.

Out now: Hello World’s special edition on Computing content

Post Syndicated from Gemma Coleman original https://www.raspberrypi.org/blog/hello-world-special-edition-computing-content/

Hello World, our free magazine for computing and digital making educators, has just published its second special edition: The Big Book of Computing Content.

Cover of The Big Book of Computing Content.

A special edition on the content we teach in the Computing classroom

While Hello World‘s first special edition, The Big Book of Computing Pedagogy, focused on how we can teach Computing, this new book is about what we mean by Computing. It aims to demonstrate the breadth of knowledge and skills contained within this constantly evolving subject.

We have structured the new special edition around our taxonomy for formal Computing education, to which we map all our formal education resources. Originally we developed the taxonomy when we started work in the consortium setting up and delivering England’s National Centre for Computing Education, and specifically when we designed the 500 hours of classroom materials in the Teach Computing Curriculum.

The Raspberry Pi Foundation's computing content taxonomy, made of 11 strands: effective use of tools, safety and security, design and development, impact of technology, computing systems, networks, creating media, algorithms and data structures, programming, data and information, artificial intelligence.
The 11 strands of Computing content in our taxonomy.

Our Computing taxonomy comprises eleven strands and aims to categorise Computing conceptual knowledge and skills to both demonstrate the breadth of Computing as a discipline, and to provide a common language to describe the different areas of study and competencies.

The Big Book of Computing Content complements our first Hello World special edition and follows the same principle of introducing readers to up-to-date research, followed by our favourite stories from past Hello World issues by educators who put that content into practice. For each of the eleven strands in our taxonomy, we also present a table of learning outcomes, which provides examples of knowledge and skills that learners from ages 5 to 19 could develop at each stage of their formal computing education. 

Your thoughts on The Big Book of Computing Content

Hello World’s first special edition was very popular around the world, with educators setting up Big Book of Computing Pedagogy reading groups, leaders using the book to support pre-service teachers, and even of an upcoming translation into Thai.

We’ve already started to hear similar stories about The Big Book of Computing Content from Hello World readers, including CSEdResearch dedicating their Computer Science Education Discussion Group to all things Big Book of Computing Content in its first week of publication.

A tweet about Hello World's special edition The Big Book of Computing Content.

We’d love to hear from more educators about how you are using this new special edition, and how it complements your reading of the first Big Book.

You can also subscribe now to get each new Hello World — whether regular issue or special edition — straight to your digital inbox, for free! And if you’re based in the UK and do paid or voluntary work in education, you can subscribe for free print issues.

PS Have you listened to our Hello World podcast yet? Listen and subscribe wherever you get your podcasts.

The post Out now: Hello World’s special edition on Computing content appeared first on Raspberry Pi.

Non-formal learning activities: What do we know and how do we apply it to computing?

Post Syndicated from Katharine Childs original https://www.raspberrypi.org/blog/gender-balance-in-computing-non-formal-learning/

At the Raspberry Pi Foundation, we engage young people in learning about computing and creating with digital technologies. We do this not only by developing curricula for formal education and introducing tens of thousands of children around the world to coding at home, but also through supporting non-formal learning activities such as Code Club and CoderDojo.

A teacher watches two female learners code in Code Club session in the classroom.
Code Clubs are after-school coding clubs.

To find out what works in non-formal computing learning, we’ve conducted two research projects recently: a systematic literature review, and a set of two interventions that were applied and evaluated as part of our Gender Balance in Computing programme. In this blog, we outline these two research projects.

What is non-formal learning?

When you think of young people learning computing, do you think of schools, classrooms, and curricula? You’d be right that lots of computing education for young people takes place in classrooms as part of national curricula. However, a lot of learning can take place outside of formal schooling. When we talk about non-formal computing education, we mean structured or semi-structured learning environments such as clubs or community groups, often set up by volunteers. These may take place in a school, library, or community venue; but we’ve also heard of some of our communities running non-formal learning activities on buses, in fire stations, or at football grounds  — there really is no limit to where learning can happen.

A CoderDojo coding session for young people.
CoderDojos are community-based coding clubs and some take place in offices.

It’s harder to assess the impact and effectiveness of non-formal computing activities than formal computing education: we have to think outside of the traditional measures such as grades and formal exams or assessments. Instead, we estimate outcomes according to measures such as level of participant engagement, attendance, attrition rates, and changes in participants’ attitudes towards computing. We have previously also piloted non-formal assessments such as quizzes and found that these were well-received by adult facilitators and children alike. 

Project 1: Researching the impact of non-formal computing education

Earlier this year, we conducted a systematic literature review into computing education for K–12 learners in non-formal settings. We identified 88 relevant research studies, which we read, compared, and synthesised to provide an overview of what is already known about the effectiveness of non-formal computing activities and to identify opportunities for further research. 

Our analysis looked for common themes within existing studies and suggested some benefits that non-formal learning offers, including: 

  • Access to advanced and innovative topics
  • Awareness about computing careers 
  • The chance to personalise projects according to learner interests
  • The opportunity for learners to progress at their own pace
  • The chance for learners to develop a sense of community through peers and role models

We presented this research at an international computing education conference called ICER 2022, and you can read about it in our open-access paper in the ICER conference proceedings.

A tweet about a presentation about non-formal learning at the ICER 2022 conference.

Project 2: Making links between non-formal learning and formal computing study skills 

One particularly interesting characteristic of non-formal learning is that it tends to attract a broader range of learners than formal computing lessons. For example, a 2019 survey found that about 40% of the young people who attend Code Clubs were female. This is a high percentage compared with the proportion of girls among the learners choosing Computer Science GCSE in England, which is currently around 20%. We believe this points to an opportunity to capitalise on girls’ interest in learning activities outside of the classroom, and we hope to use non-formal activities to encourage more girls to take an interest in formal computer science education.

Two learners from Code Club at Hillside School.
Code Clubs are well-attended by girls.

As part of our Gender Balance in Computing research programme in England, we worked with Apps for Good and the Behavioual Insights Team (BIT) to run two interventions in school-based non-formal settings, for which we adapted non-formal resources and used behavioural science concepts to strengthen the links the resources make between non-formal learning and studying computing more formally. One intervention ran in secondary schools for learners aged 13–14 years old, who used an adapted Apps for Good course, and the other ran in primary school for learners aged 8–11 year olds, who took part in Code Clubs using adapted versions of our projects.

A tweet from a school participating in a research project related to non-formal learning.

The interventions were evaluated independently by a separate team from BIT, based on data from surveys completed by learners before and after the interventions, and interviews with teachers and learners. This data was analysed by the independent team to explore the impact the interventions had on learners’ attitudes towards computing and intention to study the subject in the future. 

What did we learn from these research projects? 

Our literature review concluded that future research in this area would benefit from experimenting with a variety of approaches to designing, and measuring the impact of, computing activities in a non-formal setting. For example, this could include comparing the short-term and long-term impact of specific interventions, aiming to cater for different types of participants, and offering different types of learning experiences.

A girl codes at a laptop while a woman looks on during a Code Club session.

In these two Gender Balance in Computing interventions, there was limited statistical evidence of an improvement in participants’ attitude towards computing or in their stated intention to study computer programming in the future. The independent evaluators recommended that the learning content that was created for the interventions could be adapted further to make the link between non-formal and formal learning even more salient. On the other hand, as is often the case with research, some interesting themes — ones that we weren’t looking for — emerged from the data, including: 

  • In the secondary school intervention, there was a small, positive change in girls’ attitudes toward computing when they saw that it was relevant to real-world problems
  • In the primary school intervention, some teachers also reported an increased confidence to pursue computing among girls who had used the adapted Code Club resources, and they highlighted the importance of positive female role models in computing

In both projects, the findings suggest that it is beneficial for learners to participate in non-formal learning activities that link to real-world situations, and that this could be particularly beneficial for girls to help them see computing as a subject that is relevant to their own interests and goals. Another common theme in both projects is that non-formal learning activities play an important role in showing what a “computer person” looks like and who belongs in computing. This suggests there’s a need for a diverse range of volunteers to run non-formal computing activities, and that we should make sure that non-formal learning resources include representations of a diverse range of learners.

Computing classroom with woman teacher and young students at laptops doing Scratch coding.

Undertaking these research projects has provided evidence that the work the Foundation does is on the right track and suggested opportunities to use these themes in our future non-formal work and resources. 

Find out more about our work on non-formal computing education

More information about research projects at the Raspberry Pi Foundation and our newly launched Raspberry Pi Computing Education Research Centre can be found on our research pages and on the Research Centre’s website.

The post Non-formal learning activities: What do we know and how do we apply it to computing? appeared first on Raspberry Pi.

Building a maths curriculum for a world shaped by computing

Post Syndicated from Bobby Whyte original https://www.raspberrypi.org/blog/maths-curriculum-conrad-wolfram-computing-ai-research-seminar/

In the penultimate seminar in our series on cross-disciplinary computing, we were delighted to host Conrad Wolfram (European co-founder/CEO of Wolfram Research).

Conrad Wolfram.
Conrad Wolfram

Conrad has been an influential figure in the areas of AI, data science, and computation for over 30 years. The company he co-founded, Wolfram Research, develops computational technologies including the Wolfram programming language, which is used by the Mathematica and WolframAlpha programs. In the seminar, Conrad spoke about his work on developing a mathematics curriculum “for the AI age”.

In a computing classroom, a girl laughs at what she sees on the screen.

Computation is everywhere

In his talk, Conrad began by talking about the ubiquity of computation. He explained how computation (i.e. an operation that follows conditions to give a defined output) has transformed our everyday lives and led to the development of entire new sub-disciplines, such as computational medicine, computational marketing, and even computational agriculture. He then used the WolframAlpha tool to give several practical examples of applying high-level computation to problem-solving in different areas.

A line graph comparing the population of the UK with the number of sheep in New Zealand.
Yes, there are more people in the UK than sheep in New Zealand.

The power of computation for mathematics

Conrad then turned his attention to the main question of his talk: if computation has also changed real-world mathematics, how should school-based mathematics teaching respond? He suggested that, as computation has impacted all aspects of our daily lives, school subjects should be reformed to better prepare students for the careers of the future.

A diagram indicating that hand calculating takes up a lot of time in current maths classes.
Hand calculation methods are time-consuming.

His biggest criticism was the use of hand calculation methods in mathematics teaching. He proposed that a mathematics curriculum that “assumes computers exist” and uses computers (rather than humans) to compute answers would better support students to develop a deep understanding of mathematical concepts and principles. In other words, if students spent less time doing hand-calculation methods, they could devote more time to more complex problems.

What does computational problem-solving look like?

One interesting aspect of Conrad’s talk was how he modelled the process of solving problems using computation. In all of the example problems, he outlined that computational problem-solving follows the same four-step process:

  1. Define the question: Students think about the scope and details of the problem and define answerable questions to tackle.
  2. Abstract to computable form: Using the information provided, students translate the question into a precise abstract form, such as a diagram or algorithm, so that it can be solved by a computer-based agent.
  3. Computer answers: Using the power of computation, students solve the abstract question and resolve any issues during the computation process.
  4. Interpret results: Students reinterpret and recontextualise the abstract answer to derive useful results. If problems emerge, students refine or fix their work.

Depending on the problem, the process can be repeated multiple times until the desired solution is reached. Rather than being proposed as a static list of outcomes, the process was presented by Conrad as an iterative cycle than resembles an “ascending helix”:

A helix representing the iterative cycle of computational problem-solving.
The problem-solving ‘helix’ model.

A curriculum for a world with AI

In the later stages of his talk, Conrad talked about the development of a new computational curriculum to better define what a modern mathematics curriculum might look like. The platform that hosts the curriculum, named Computer-Based Math (or CBM), outlines the need to integrate computational thinking into mathematics in schools. For instance, one of the modules, How Fast Could I Cycle Stage 7 Of The An Post Rás?, asks students to develop a computational solution to a real-world problem. Following the four-step problem-solving process, students apply mathematical models, computational tools, and real-world data to generate a valid solution:

A module from Wolfram Research’s Computer-Based Maths curriculum.
Sample module from Computer-Based Math. Click to enlarge.

Some future challenges he remarked on included how a computer-based mathematics curriculum could be integrated with existing curricula or qualifications, at what ages computational mathematics should be taught, and what assessment, training, and hardware would be needed to support teachers to deliver such a curriculum. 

Conrad concluded the talk by arguing that the current need for computational literacy is similar to the need for mass literacy and pondering whether the UK could lead the push towards a new computational curriculum suitable for learners who grow up with AI technologies. This point provided food for thought during our discussion section, especially for teachers interested in embedding computation into their lessons, and for researchers thinking about the impact of AI in different fields. We’re grateful to Conrad for speaking about his work and mission — long may it continue!

You can catch up on Conrad’s talk with his slides and the talk’s recording:

More to explore

Conrad’s book, The Math(s) Fix: An Education Blueprint for the AI Age, gives more details on how he thinks data science, AI, and computation could be embedded into the modern maths curriculum.

You can also explore Wolfram Research’s Computer-Based Maths curriculum, which offers learning materials to help teachers embed computation in their maths lessons. 

Finally, try out Wolfram’s tools to solve everyday problems using computation. For example, you might ask WolframAlpha data-rich questions, which the tool converts from text input into a computable problem using natural language processing. (Two of my favourite example questions are: “How old was Leonardo when the Mona Lisa was painted?” and “What was the weather like when I was born?”)

Join our next seminar

In the final seminar of our series on cross-curricular computing, we welcome Dr Tracy Gardner and Rebecca Franks (Raspberry Pi Foundation) to present their ongoing work on computing education in non-formal settings. Sign up now to join us for this session on Tues 8 November:

We will shortly be announcing the theme of a brand-new series of research seminars starting in January 2023. The seminars will take place online on the first Tuesday of the month at 17:00–18:30 UK time.

The post Building a maths curriculum for a world shaped by computing appeared first on Raspberry Pi.

Girls’ sense of belonging in the Computing classroom: Study results

Post Syndicated from Katharine Childs original https://www.raspberrypi.org/blog/gender-balance-in-computing-sense-of-belonging/

We’re sharing the fourth evaluation report on projects in our Gender Balance in Computing research programme today. This is a programme we’ve been running, with partner organisations, as part of the National Centre for Computing Education, funded by the Department for Education in England. The programme’s overall goal is to identify ways to encourage more young women to study Computer Science.

A girl in a university computing classroom.

Like the previous reports on our Storytelling, Pair Programming, and Peer Instruction projects, this new report was compiled by independent evaluators from the Behavioural Insights Team (BIT). It concerns a study conducted with learners aged 9 to 10 and examining two approaches aimed at improving girls’ sense of belonging in computing.

The importance of belonging in computing

A growing body of research suggests that girls’ interest and motivation is linked to the sense of belonging that they feel when experiencing and studying STEM subjects. When girls see themselves represented in computing by identifying role models, they are more likely to value the subject in their studies and future careers. Parents and wider family members also play an important role in amplifying the message that girls belong in computing through the way that they talk about the subject.

Two learners do physical computing in the primary school classroom.

The Belonging study was structured as two distinct but related interventions designed to improve girls’ sense of belonging, each following a different approach. WISE and a team at BIT (separate to the team evaluating the study) were responsible for the design, delivery, and implementation of the two interventions, while we provided overall programme management and recruited schools.

Interventions to encourage girls’ sense of belonging

This study was conducted from September 2021 to February 2022 as a randomised controlled trial (RCT) where participating schools were randomly divided into three groups: two treatment groups which each delivered one of the two interventions to their Year 5 learners, and one control group, which taught Computing to their Year 5 learners in their usual way throughout the duration of the study.

The intervention designed by WISE was titled ‘My Skills My Life’ and was aimed at girls’ self-identification. The design included ten lessons that highlighted the importance of computing and STEM and how these fields impact our lives. The lessons also introduced pupils to female role models working in professions relating closely to computing.

A word search activity related to computing-related jobs.
A word search activity from the My Skills My Life lesson titled ‘My Dream Job’. The purpose of this activity was to introduce a variety of STEM and computing careers.

A core component was a lesson midway through the intervention, where schools in the treatment group held a ‘real-life role model’ session with female role models from the computing industry. In this session, volunteer role models shared their day-to-day work experiences and discussed some fundamental concepts and perceptions related to their role. To do so, the role models first received support and training from the schools based on material provided by WISE. WISE also provided additional training and guidance on resource usage and how to talk about computing careers to make them more understandable and relatable to children.

A tweet about a lesson with a femal computing role model.

In addition to the lesson content and training, WISE created a role model booklet with information on 72 women currently working in computing and associated industries. These women had volunteered to be included in the booklet and to also speak to pupils potentially interested in computing. The main purpose of presenting these role-models was to let the primary pupils meet women who are happy and successful in computing careers.

“I loved learning about [role model name]’s job during the day. It was so cool.”

– Primary school pupil (report, p. 50)

The other intervention in the trial, designed by BIT, was called ‘Code Stars’. This intervention ran over 12 weeks. Schools involved in it first delivered a stand-alone, one-off lesson on artificial intelligence (AI).

A slide from the AI-themed lesson from the Code Stars intervention.
A slide from the AI-themed lesson from the Code Stars intervention. 

After the lesson, the pupils completed a homework task, engaging with their parents or carers. This was followed by a set of regular conversation prompts to encourage parents to have discussions with their children about computing in general and the AI lesson in particular. The original plan was for BIT to implement these conversation prompts, but due to COVID-19-related challenges, teachers had to take the responsibility of sending the prompts. At the end of the intervention, teachers conducted a follow-up lesson.

“Some parents did not want to support their children due to their own lack of confidence. Others did not see it as important as doing the weekly Maths and English homework.”

– Teacher participating in the Code Stars intervention (report, p. 55)

Results and recommendations from the intervention evaluations

These two separate but related approaches aimed at increasing girls’ sense of membership in the computing community and to improve their and their parents’ engagement. The overall impact was evaluated using a mixed method approach; this included case studies, online teacher surveys, parent interviews, pupil surveys, lesson observations, and pupil focus groups.

The impact evaluation did not find conclusive evidence of either intervention having an impact on female pupils’ attitudes towards computing or their intention to study computing in the future. However, the stated intention of girls to study computing was 5.6 percentage points higher in the Code Stars intervention group than in the control group. This difference was statistically significant in some, although not all, of the analysis run; this means we cannot rule out that this result was due to chance, rather than due to the intervention.

One male and two female teenagers at a computer

In addition, qualitative data collected from teachers suggested that the My Skills My Life intervention delivery was very well received and needed only minor adjustments, although this did not translate into evidence of impact on the measured pupil outcomes. Teachers also appreciated the level of detail in the My Skills My Life lesson plans, and the Code Stars intervention was described as fun and engaging.

The independent evaluators of this research study have recommended refinements to each of the interventions to improve their delivery and potential impact, along with suggested evaluation strategies for any future replications of the interventions. 

Want to find out more about increasing girls’ sense of belonging in computing?  

We are very grateful to all the schools, pupils, and teachers who took part in this project. If you would like to stay up-to-date with the Gender Balance in Computing programme, you can sign up to our newsletter. We will also share reports on the other projects within the programme that have explored: 

  • The links between non-formal and formal Computing 
  • The impact of using Computing to solve real-world problems
  • The role that GCSE Options booklets and Subject Choice evenings can play in promoting gender balance in computing

The post Girls’ sense of belonging in the Computing classroom: Study results appeared first on Raspberry Pi.

A taxonomy of Computing content for education

Post Syndicated from James Robinson original https://www.raspberrypi.org/blog/taxonomy-computing-content-computer-science-education/

Supporting educators to provide high-quality computing education has always been integral to our mission. In 2018, we began creating more learning resources for formal education settings. The UK government had recently announced future investment in supporting computing educators. Schools in England were offering the national Computing curriculum established in 2014. (In the USA, a more common term for prescribed education content is ‘standards’.)

England’s Computing curriculum requires that all learners be taught the subject between ages 5 and 16, and it consists of only 25 statements outlining expectations for learners. To accompany this curriculum, we started developing a framework to help us describe the subject of Computing, and in particular the common threads running through it.

A 2012 report by the Royal Society presented the breadth of computing by dividing it into three areas: information technology, computer science, and digital literacy. Although this goes some way to describe computing as a discipline, in our view this model creates artificial divides between aspects of the subject according to whether they are seen as more or less technical. Our more holistic view of computing recognises that concepts and skills within the subject are far more interconnected.

Principles for our taxonomy

When we set out to develop our framework, the goal was to provide a way to look at and describe the subject of Computing as a set of interconnected topics; the framework doesn’t define standards or curricula. There are, of course, many ways of organising the subject matter, implemented through exam specifications, textbooks, schemes of learning, and various progression guides. For our framework, we reviewed examples of each of these, from England and beyond, and decided on some organisational principles:

  • Our framework should describe the whole of Computing, incorporating computer science, information technology, and digital literacy
  • The framework should be applicable across primary and secondary education, meaning it should be useful for categorising the knowledge encountered by all learners, from five-year-olds to our oldest secondary school students
  • While inspired by England’s national curriculum, the framework should be independent of any particular exam specification and capable of adaptation to new curricula
  • The framework should represent Computing as a discipline that combines a broad mixture of concepts and skills 

Developing the taxonomy

Following these principles, we identified ten content themes, or strands, that thread through a learner’s journey in Computing education. We call this framework representing the knowledge and skills that make up the subject our Computing taxonomy. As the Foundation is part of the consortium that established the National Centre for Computing Education in England, our taxonomy became a cornerstone of the work of the Centre, providing a common language to describe Computing in English schools.

The Raspberry Pi Foundation's computing content taxonomy, made of 11 strands: effective use of tools, safety and security, design and development, impact of technology, computing systems, networks, creating media, algorithms and data structures, programming, data and information, artificial intelligence.
The 11 content strands we’ve identified for the subject of Computing.

Computing is, of course, a constantly evolving field and as such, our taxonomy evolves with it. Since 2018 we’ve iterated our taxonomy to incorporate new things we’ve learned, for example relating to the rapid developments of artificial intelligence (AI) technology in recent years. AI now is a significant area of study and represented as its own strand in our current taxonomy, bringing the number of strands up to eleven:

  • Effective use of tools
  • Safety and security
  • Design and development
  • Impact of technology
  • Computing systems
  • Networks
  • Creating media
  • Algorithms and data structures
  • Programming
  • Data and information
  • Artificial intelligence

Given the interconnected nature of Computing, we embrace a best-fit approach to content categorisation, choosing the most appropriate strand(s) for each idea. In developing our Computing taxonomy, we determined that four of the strands (the horizontal strands in the diagram) were best taught interwoven with the others, in context rather than as discrete topics. A good example of this is the strand ‘Safety and security’, which focuses on supporting learners to realise the benefits of digital technology without putting themselves and others at risk. While it would be possible to teach this strand as one discrete set of lessons, revisiting it throughout a learner’s journey provides regular reinforcement as well as grounding in the context of other strands.

Within the strands, we have also identified progressive learning outcomes for each stage of learning. These learning outcomes are illustrative of the kinds of knowledge and understanding that learners could develop in each area of Computing. They are not prescriptive and instead aim to illustrate the wide applications of the discipline.

Coming soon: The Big Book of Computing Content

On 24 October, we will publish The Big Book of Computing Content. Framed by our taxonomy, The Big Book of Computing Content presents our work so far in describing the diverse range of concepts and skills that comprise Computing. It also includes the illustrative learning outcomes we’ve identified.

Cover of The Big Book of Computing Content.

This will be the second special edition of Hello World, our free magazine for computing educators. The new Big Book complements our first special edition, The Big Book of Computing Pedagogy, in which we lay out 12 key principles for teaching the subject.

The Big Book of Computing Content will be available in print and as a free PDF download; if you subscribe now, you’ll receive the PDF in your inbox on publication day.

Share your thoughts on our taxonomy

We hope our taxonomy and the new Big Book enable you to reflect on the breadth of Computing and resonate with your teaching. Please share your reflections, in the comments below or by tagging us on social media, if you’d like to help us develop the taxonomy further.

The post A taxonomy of Computing content for education appeared first on Raspberry Pi.

Data ethics for computing education through ballet and biometrics

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/data-ethics-computing-education-ballet-biometrics-research-seminar/

For our seminar series on cross-disciplinary computing, it was a delight to host Genevieve Smith-Nunes this September. Her research work involving ballet and augmented reality was a perfect fit for our theme.

Genevieve Smith-Nunes.
Genevieve Smith-Nunes

Genevieve has a background in classical ballet and was also a computing teacher for several years before starting Ready Salted Code, an educational initiative around data-driven dance. She is now coming to the end of her doctoral studies at the University of Cambridge, in which she focuses on raising awareness of data ethics using ballet and brainwave data as narrative tools, working with student Computing teachers.

Why dance and computing?

You may be surprised that there are links between dance, particularly ballet, and computing. Genevieve explained that classical ballet has a strict repetitive routine, using rule-based choreography and algorithms. Her work on data-driven dance had started at the time of the announcement of the new Computing curriculum in England, when she realised the lack of gender balance in her computing classroom. As an expert in both ballet and computing, she was driven by a desire to share the more creative elements of computing with her learners.

Two photographs of data-driven ballets.
Two of Genevieve’s data-driven ballet dances: [arra]stre and [PAIN]byte

Genevieve has been working with a technologist and a choreographer for several years to develop ballets that generate biometric data and include visualisation of such data — hence her term ‘data-driven dance’. This has led to her developing a second focus in her PhD work on how Computing students can discuss questions of ethics based on the kind of biometric and brainwave data that Genevieve is collecting in her research. Students need to learn about the ethical issues surrounding data as part of their Computing studies, and Genevieve has been working with student teachers to explore ways in which her research can be used to give examples of data ethics issues in the Computing curriculum.

Collecting data during dances

Throughout her talk, Genevieve described several examples of dances she had created. One example was [arra]stre, a project that involved a live performance of a dance, plus a series of workshops breaking down the computer science theory behind the performance, including data visualisation, wearable technology, and images triggered by the dancers’ data.

A presentation slide describing technologies necessary for motion capture of ballet.

Much of Genevieve’s seminar was focused on the technologies used to capture movement data from the dancers and the challenges this involves. For example, some existing biometric tools don’t capture foot movement — which is crucial in dance — and also can’t capture movements when dancers are in the air. For some of Genevieve’s projects, dancers also wear headsets that allow collection of brainwave data.

A presentation slide describing technologies necessary for turning motion capture data into 3D models.

Due to interruptions to her research design caused by the COVID-19 pandemic, much of Genevieve’s PhD research took place online via video calls. New tools had to be created to capture dance performances within a digital online setting. Her research uses webcams and mobile phones to record the biometric data of dancers at 60 frames per second. A number of processes are then followed to create a digital representation of the dance: isolating the dancer in the raw video; tracking the skeleton data; using post pose estimation machine learning algorithms; and using additional software to map the joints to the correct place and rotation.

A presentation slide describing technologies necessary turning a 3D computer model into an augmented reality object.

Are your brainwaves personal data?

It’s clear from Genevieve’s research that she is collecting a lot of data from her research participants, particularly the dancers. The projects include collecting both biometric data and brainwave data. Ethical issues tied to brainwave data are part of the field of neuroethics, which comprises the ethical questions raised by our increasing understanding of the biology of the human brain.

A graph of brainwaves placed next to ethical questions related to brainwave data.

Teaching learners to be mindful about how to work with personal data is at the core of the work that Genevieve is doing now. She mentioned that there are a number of ethics frameworks that can be used in this area, and highlighted the UK government’s Data Ethics Framework as being particularly straightforward with its three guiding principles of transparency, accountability, and fairness. Frameworks such as this can help to guide a classroom discussion around the security of the data, and whether the data can be used in discriminatory ways.

Brainwave data visualisation using the Emotiv software.
Brainwave data visualisation using the Emotiv software.

Data ethics provides lots of material for discussion in Computing classrooms. To exemplify this, Genevieve recorded her own brainwaves during dance, research, and rest activities, and then shared the data during workshops with student computing teachers. In our seminar Genevieve showed two visualisations of her own brainwave data (see the images above) and discussed how the student computing teachers in her workshops had felt that one was more “personal” than the other. The same brainwave data can be presented as a spreadsheet, or a moving graph, or an image. Student computing teachers felt that the graph data (shown above) felt more medical, and more like permanent personal data than the visualisation (shown above), but that the actual raw spreadsheet data felt the most personal and intrusive.

Watch the recording of Genevieve’s seminar to see her full talk:

You can also access her slides and the links she shared in her talk.

More to explore

There are a variety of online tools you can use to explore augmented reality: for example try out Posenet with the camera of your device.

Genevieve’s seminar used the title ME++, which refers to the data self and the human self: both are important and of equal value. Genevieve’s use of this term is inspired by William J. Mitchell’s book Me++: The Cyborg Self and the Networked City. Within his framing, the I in the digital world is more than the I of the physical world and highlights the posthuman boundary-blurring of the human and non-human. 

Genevieve’s work is also inspired by Luciani Floridi’s philosophical work, and his book Ethics of Information might be something you want to investigate further. You can also read ME++ Data Ethics of Biometrics Through Ballet and AR, a paper by Genevieve about her doctoral work

Join our next seminar

In our final two seminars for this year we are exploring further aspects of cross-disciplinary computing. Just this week, Conrad Wolfram of Wolfram Technologies joined us to present his ideas on maths and a core computational curriculum. We will share a summary and recording of his talk soon.

On 2 November, Tracy Gardner and Rebecca Franks from our team will close out this series by presenting work we have been doing on computing education in non-formal settings. Sign up now to join us for this session:

We will shortly be announcing the theme of a brand-new series of seminars starting in January 2023.  

The post Data ethics for computing education through ballet and biometrics appeared first on Raspberry Pi.

Take part in our research study to develop culturally relevant Computing resources for primary schools

Post Syndicated from Katharine Childs original https://www.raspberrypi.org/blog/adapting-culturally-relevant-computing-resources-primary-school-research-study/

We are looking for primary schools in England to get involved in our new research study investigating how to adapt Computing resources to make them culturally relevant for pupils. In a project in 2021, we created guidelines that included ideas about how teachers can modify Computing lessons so they are culturally relevant for their learners. In this new project, we will work closely with primary teachers to explore this adaptation process.

In a computing classroom, a boy looks down at a keyboard.
Designing equitable and authentic learning experiences requires a conscious effort to take into account the characteristics of all learners and their social environments.

This project will help increase the education community’s understanding of ways to widen participation in Computing. The need to do this is demonstrated (as only one example among many) by the fact that in England’s 2017 GCSE Computer Science cohort, Black students were the most underrepresented group. We will investigate how resources adapted to be culturally relevant might influence students’ ideas about computing and contribute to their sense of identity as a “computer person”.

In a computing classroom, two girls concentrate on their programming task.
We need to work to enable a more diverse group of learners to feel that they belong in computing, encouraging them to choose to continue with it as a discipline in qualifications and careers.

This study is funded by the Cognizant Foundation and we are grateful for their generous support. Since 2018, the Cognizant Foundation has worked to ensure that all individuals have equitable opportunities to thrive in the jobs driving the future. Their work aligns with our mission to enable young people to realise their full potential through the power of computing and digital technologies.

What will taking part in the project involve? 

This project about culturally adapted resources will take place between October 2022 and July 2023. It draws from ideas on how to bridge the gap between academic research and classroom teaching, and we are looking for 12 primary teachers to work closely with our researchers and content writers in three phases using a tested co-creation model.

Two children code on laptops while an adult supports them.
We will work closely with a group of teacher so we can learn from each other.

By taking part, you will gain an excellent understanding of culturally relevant pedagogy and develop your knowledge and skills in delivering culturally responsive Computing lessons. We will value your expertise and your insights into what works in your classroom, and we will listen to your ideas.

Phase 1 (November 2022) 

We will kick off the project with a day-long workshop on 2 November at our head office in Cambridge, which will bring all the participating teachers together. (Funding is available for participating schools to cover supply costs and teachers’ travel costs.) In the workshop, we will first explore what culturally relevant and responsive computing means. Then we will work together to look at a half-term unit of work of Computing lessons and identify how it could be adapted. After the workshop day, we will produce an adapted version of the unit of work based on the teachers’ input and ideas.

Phase 2 (February to March 2023)

In the Spring Term, teachers will deliver the adapted unit of work to their class in the second half of the term. Through a survey before and after the set of lessons, students will be asked about their views of computing. Throughout this time, the research team will be available for online support. We may also visit your school to carry out an observation of one of the lessons. 

Phase 3 (April to May 2023) 

During this phase, the research team will ask participating teachers about their experiences, and about whether and how they further adapted the lessons. Teachers will likely spend 2 to 3 hours in either April or May sharing their insights and recommendations. After this phase, we will analyse the findings from the study and share the results both with the participating teachers and the wider computing education community.

Who are we looking for to take part in this study?

For this study, we are looking for primary teachers who teach Computing to Year 4 or Year 5 pupils in a school in England

  • You may be a generalist primary class teacher who teaches all subjects to your year group, or you may be a specialist primary Computing teacher 
  • To take part, your pupils will need access to desktop or laptop computers in the Spring Term, but your school will not need any specialist hardware or software
  • You will need to attend the in-person workshop in Cambridge on Wednesday 2 November and commit to the project for the rest of the 2022/2023 academic year; funding is available for participating schools to cover supply costs and teachers’ travel costs
  • Your headteacher will need to support your participation in the study

We will give preference to: 

  • Schools where more than one teacher can take part 
  • Schools with culturally diverse catchment areas 
  • Teachers who are familiar with our free Teach Computing Curriculum resources for Year 4 or Year 5

Apply today to get involved

If you are an interested teacher, please apply to take part in this project by the closing date of Monday 26 September. If you have any questions, email us at [email protected].

The post Take part in our research study to develop culturally relevant Computing resources for primary schools appeared first on Raspberry Pi.

Repair cafés in computing education | Hello World #19

Post Syndicated from Katharine Childs original https://www.raspberrypi.org/blog/repair-cafes-computing-education-hello-world-19/

Many technology items are disposed of each year, either because they are broken, are no longer needed, or have been upgraded. Researchers from Germany have identified this as an opportunity to develop a scheme of work for Computing, while at the same time highlighting the importance of sustainability in hardware and software use. They hypothesised that by repairing defective devices, students would come to understand better how these devices work, and therefore meet some of the goals of their curriculum.

A smartphone with the back cover taken off so it can be repaired.

The research team visited three schools in Germany to deliver Computing lessons based around the concept of a repair café, where defective items are repaired or restored rather than thrown away. This idea was translated into a series of lessons about using and repairing smartphones. Learners first of all explored the materials used in smartphones and reflected on their personal use of these devices. They then spent time moving around three repair workstations, examining broken smartphones and looking at how they could be repaired or repurposed. Finally, learners reflected on their own ecological footprint and what they had learnt about digital hardware and software.

An educational repair café

In the classroom, repair workstations were set up for three different categories of activity: fixing cable breaks, fixing display breaks, and tinkering to upcycle devices. Each workstation had a mentor to support learners in investigating faults themselves by using the question prompt, “Why isn’t this feature or device working?” At the display breaks and cable breaks workstations, a mentor was on hand to provide guidance with further questions about the hardware and software used to make the smartphone work. On the other hand, the tinkering workstation offered a more open-ended approach, asking learners to think about how a smartphone could be upcycled to be used for a different purpose, such as a bicycle computer. It was interesting to note that students visited each of the three workstations equally.

Two girls solder physical computing components in a workshop.
Getting hands-on with hardware through physical computing activities can be very engaging for learners.

The feedback from the participants showed there had been a positive impact in prompting learners to think about the sustainability of their smartphone use. Working with items that were already broken also gave them confidence to explore how to repair the technology. This is a different type of experience from other Computing lessons, in which devices such as laptops or tablets are provided and are expected to be carefully looked after. The researchers also asked learners to complete a questionnaire two weeks after the lessons, and this showed that 10 of the 67 participants had gone on to repair another smartphone after taking part in the lessons.

Links to computing education

The project drew on a theory called duality reconstruction that has been developed by a researcher called Carsten Schulte. This theory argues that in computing education, it is equally important to teach learners about the function of a digital device as about the structure. For example, in the repair café lessons, learners discovered more about the role that smartphones play in society, as well as experimenting with broken smartphones to find out how they work. This brought a socio-technical perspective to the lessons that helped make the interaction between the technology and society more visible.

A young girl solders something at a worktop while a man looks over her shoulder.
It’s important to make sure young people know how to work safely with electronic and physical computing components.

Using this approach in the Computing classroom may seem counter-intuitive when compared to the approach of splitting the curriculum into topics and teaching each topic sequentially. However, the findings from this project suggest that learners understand better how smartphones work when they also think about how they are manufactured and used. Including societal implications of computing can provide learners with useful contexts about how computing is used in real-world problem-solving, and can also help to increase learners’ motivation for studying the subject.

Working together

The final aspect of this research project looked at collaborative problem-solving. The lessons were structured to include time for group work and group discussion, to acknowledge and leverage the range of experiences among learners. At the workstations, learners formed small groups to carry out repairs. The paper doesn’t mention whether these groups were self-selecting or assigned, but the researchers did carry out observations of group behaviours in order to evaluate whether the collaboration was effective. In the findings, the ideal group size for the repair workstation activity was either two or three learners working together. The researchers noticed that in groups of four or more learners, at least one learner would become disinterested and disengaged. Some groups were also observed taking part in work that wasn’t related to the task, and although no further details are given about the nature of this, it is possible that the groups became distracted.

The findings from this project suggest that learners understand better how smartphones work when they also think about how they are manufactured and used.

Further investigation into effective pedagogies to set group size expectations and maintain task focus would be helpful to make sure the lessons met their learning objectives. This research was conducted as a case study in a small number of schools, and the results indicate that this approach may be more widely helpful. Details about the study can be found in the researchers’ paper (in German).

Repair café start-up tips

If you’re thinking about setting up a repair café in your school to promote sustainable computing, either as a formal or informal learning activity, here are ideas on where to begin:

  • Connect with a network of repair cafés in your region; a great place to start is repaircafe.org
  • Ask for volunteers from your local community to act as mentors
  • Use video tutorials to learn about common faults and how to fix them
  • Value upcycling as much as repair — both lead to more sustainable uses of digital devices
  • Look for opportunities to solve problems in groups and promote teamwork

Discover more in Hello World

This article is from our free computing education magazine Hello World. Every issue is written by educators for educators and packed with resources, ideas, and insights to inspire your learners and your own classroom practice.

Cover of issue 19 of Hello World magazine.

For more about computing education in the context of sustainability, climate change, and environmental impact, download issue 19 of Hello World, which focuses on these topics.

You can subscribe to Hello World for free to never miss a digital issue, and if you’re an educator in the UK, a print subscription will get you free print copies in the post.

PS If you’re interested in facilitating productive classroom discussions with your learners about ethical, legal, cultural, and environmental concerns surrounding computer science, take a look at our free online course ‘Impacts of Technology: How To Lead Classroom Discussions’.

The post Repair cafés in computing education | Hello World #19 appeared first on Raspberry Pi.

A peer instruction approach for engaging girls in the Computing classroom: Study results

Post Syndicated from Katharine Childs original https://www.raspberrypi.org/blog/gender-balance-in-computing-peer-instruction-approach-engaging-girls/

Today, we are publishing the third report of our findings from our Gender Balance in Computing research programme. This report shares the outcomes from the Peer Instruction project, which is the last in our set of three interventions that has explored teaching approaches to engage more girls in computing.

In a computing classroom, a smiling girl raises her hand.

The premise of the teaching approach research is that the way Computing is taught may not always match the teaching approaches to which girls are most likely to respond positively [1]. As with the Storytelling project and the Pair Programming project, this project aimed to find new contexts and approaches to help increase the number of girls choosing to study and work in computing. 

What is peer instruction? 

Peer instruction is a structured, collaborative teaching approach. It has been shown to be an effective pedagogy for novice programmers and those studying computer science at a university level because the interactive, cooperative activities help learners to perceive the topics as less stressful and less difficult [2]. 

Multiple-choice questions (MCQs) and peer conversations about the question answers are at the core of the peer instruction approach. Through talking to each other about MCQs, pupils can deepen their understanding about why a particular concept or fact is correct, and correct any misconceptions.

A diagram showing The five stages of the peer instruction teaching approach covered in a computing lesson: based on a misconception focused multiple-choice question, stage 1 is solo response, stage 2 is peer discussion, stage 3 is peer response, stage 4 is sharing results, stage 5 is class discussion. Optional steps are pre-instruction and follow-up multiple-choice question.
The five stages of the peer instruction teaching approach covered in a Computing lesson.

In England, the Computing curriculum at Key Stage 3 (ages 11–14) introduces learners to some new concepts, such as data representation, and moves learners to text-based programming languages. Towards the end of this Key Stage, learners will make choices about the subjects that they go onto study for GCSEs. These choices are influenced by learners’ attitudes towards the subject, and so we decided to trial whether the peer instruction teaching approach might lead to more positive attitudes towards Computing among girls.

The Peer Instruction intervention

The initial pilot of this trial ran from January to March 2020 with 15 secondary schools. We then used teacher feedback to develop resources to use in a full randomised controlled trial which ran from October 2021 to February 2022 in more than 60 secondary schools in England. Due to the COVID-19 pandemic, we changed our original plan to run face-to-face training and instead developed an online course to train teachers in the peer instruction approach. After taking part in the training, the teachers delivered 12 weeks of Computing lessons in data representation and Python programming. The two six-week units of work covered computing concepts for Key Stage 3 learners such as: 

  • Understanding how numbers can be represented in binary format
  • Understanding how data of various types can be represented and manipulated digitally in the form of binary digits
  • Using a text-based programming language to solve a variety of computational problems 

The study was run as a randomised controlled trial where participating schools were randomly divided into two groups. Schools in the treatment group used the peer instruction resources, and schools in the control group taught their normal Computing lessons. The independent evaluators from the Behavioural Insights Team used pupil surveys to measure the impact of the resources and supported this with lesson observations and teacher interviews to better understand the  themes emerging from the data. 

“I think peer instruction lessons are actually better than the normal lessons because you can ask other people around you to help more.”

– Female pupil who took part in the peer instruction lessons (report, p. 45)

Findings from the evaluation

The outcome measures of the peer instruction approach evaluation were quantitative data obtained from Year 8 pupils (aged 12 to 13) via pre- and post-surveys about the pupils’ stated intent to select Computer Science as a GCSE subject, and attitudes towards Computing as captured by the Student Computer Science Attitude Survey (SCSAS). When compared with the control group, the treatment group did not show a statistically significant increase in stated intent or positive attitudes towards Computing. This is a really valuable finding to help us build our understanding of what works in computing education. 

The evaluation report contains some useful suggestions on how peer instruction methods could be improved in the secondary classroom: 

  • Emphasise the importance of the stages of the peer instruction approach throughout the supporting materials. Our support for teachers changed from an in-person training day in stage one to an online course in stage two, and this impacted how much we could model the peer instruction steps that involve pupil discussion. This teaching approach differs from the traditional approach of asking learners to put their hands up to answer questions, and we believe that face-to-face training for teachers would be the best way to explore stage two of peer instruction. The importance of the discussion steps in peer instruction were further emphasised in the report: “The interviewed girls similarly reported that they preferred working in a group (as opposed to answering questions individually) as they were able to hear from people who had different ideas to them and check their answers.” So the discussion steps in peer instruction need careful thought when being delivered.
  • It may be useful to combine the peer instruction approach with other strategies. Although only a small number of girls taking part were interviewed, their feedback about the peer instruction lessons was very positive. The evaluation suggests that a multi-faceted approach to addressing gender balance is needed, given that the lack of girls in computing is indicative of a substantive societal issue, which decades of initiatives and research have attempted to address. The evaluators suggested that combining this pedagogy with other strategies, such as linking Computing to real-world problem-solving (another topic we explored in the Gender Balance in Computing programme), may have a cumulatively positive effect. 

“Year 8 is too late” 

At the start of both the Pair Programming and Peer Instruction projects, pupils were asked the same set of questions about their attitudes towards Computing via the Student Computer Science Attitude Survey (SCSAS). The mean scores from the survey results suggest that there is a small gender gap in attitudes at primary school. Boys feel slightly more confident and interested in Computing than girls. By secondary school, this gap has widened, as shown in the graph below:

Graph of the SCSAS scores to show the differences between boys’ and girls’ mean scores (out of 4) when asked about their attitudes towards computing at Year 4/6 and at year 8. Boys state a more positive attitude on average, and the difference between girls' and boys' attitudes in larger in Year 8.
Graph of the SCSAS scores to show the differences between boys’ and girls’ mean scores (out of 4) when asked about their attitudes towards Computing at Year 4/6 and at year 8.

In both projects, pupils were also asked about their intentions to continue studying Computing. In the Pair Programming project, the participating pupils (in Year 4/6) were asked whether they wanted to study Computing in the future, whereas the Year 8 pupils taking part in the Peer Instruction project were asked whether they intended to choose Computer Science as a GCSE subject. We cannot compare these two sets of answers directly, but there is general indication that as girls progress through stages of education, they begin to decide that Computing is not a subject for them. The independent evaluators commented that “it is striking that the gap between genders widens to such an extent over this 2- to 4-year time period, and that the overall proportions of pupils intending to continue to study Computing decreases to such an extent” (p. 15 of the report).  

“These findings show a clear difference in attitudes towards learning Computing between primary and secondary learners. It really makes the adage ‘Year 8 is too late’ very true, and it is important to think carefully about what happens between Year 6 and Year 8 to make sure that Computing is a subject which engages all learners.”

– Sue Sentance, Chief Learning Officer, Raspberry Pi Foundation

Want to find out more about peer instruction?  

  • Download our Big Book of Computing Pedagogy (available as a free online download) and find out more about peer instruction on pages 56 and 57.
  • Read the evaluation report of the peer instruction intervention.
  • Try the free training course on peer instruction used in this project. This course links to our research materials used by teachers as part of the intervention. 

We are very grateful to all the schools, pupils, and teachers who took part in this project. If you would like to stay up-to-date with the Gender Balance in Computing programme, you can sign up to our newsletter. We will also share reports on the other projects within the programme that have explored: 

  • Pupils’ sense of belonging in Computing 
  • The links between non-formal and formal Computing 
  • The impact of using Computing to solve real-world problems

[1] Goode, J., Estrella, R., & Margolis, J. (2008). Lost in Translation: Gender and High School Computer Science. In Cohoon, J, & Aspray, W. (Eds.) Women and Information Technology. Cambridge, MA: The MIT Press. https://doi.org/https://doi.org/10.7551/mitpress/7272.003.0005

[2] Herman, G. L., & Azad, S. (2020, February). A comparison of peer instruction and collaborative problem solving in a computer architecture course. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education. Association for Computing Machinery, New York, NY, USA. pp. 461–467. https://dl.acm.org/doi/10.1145/3328778.3366819

The post A peer instruction approach for engaging girls in the Computing classroom: Study results appeared first on Raspberry Pi.

Using e-textiles to deliver equitable computing lessons and broaden participation

Post Syndicated from Katharine Childs original https://www.raspberrypi.org/blog/using-e-textiles-to-deliver-equitable-computing-lessons-and-broaden-participation/

In our current series of research seminars, we are exploring how computing can be connected to other subjects using cross-disciplinary approaches. In July 2022, our speakers were Professor Yasmin Kafai from the University of Pennsylvania and Elaine Griggs, an award-winning teacher from Pembroke High School, Massachusetts, and we heard about their use of e-textiles to engage learners and broaden participation in computing. 

Professor Yasmin Kafai illustrated her research with a wonderful background made up of young people’s e-textile projects

Building new clubhouses

The spaces where young people learn about computing have sometimes been referred to as clubhouses to relate them to the places where sports or social clubs meet. A computing clubhouse can be a place where learners come together to take part in computing activities and gain a sense of community. However, as Yasmin pointed out, research has found that computing clubhouses have also often been dominated by electronics and robotics activities. This has led to clubhouses being perceived as exclusive spaces for only the young people who share those interests.

Yasmin’s work is motivated by the idea of building new clubhouses that include a wide range of computing interests, with a specific focus on spaces for e-textile activities, to show that diverse uses of computing are valued. 

At Coolest Projects, a group of people explore a coding project.
A group of young people share their projects at Coolest Projects

Yasmin’s research into learning through e-textiles has taken place in formal computing lessons in high schools in America, by developing and using a unit from the Exploring Computer Science curriculum called “Stitching the Loop”. In the seminar, we were fortunate to be joined by Elaine, a computer science and robotics teacher who has used the scheme of work in her classroom. Elaine’s learners have designed wearable electronic textile projects with microcontrollers, sensors, LEDs, and conductive thread. With these materials, learners have made items such as paper circuits, wristbands, and collaborative banners, as shown in the examples below. 

alt=""
 Items created by learners in the e-textile units of work

Teaching approaches for equity-oriented learning

The hands-on, project-based approach in the e-textile unit has many similarities with the principles underpinning the work we do at the Raspberry Pi Foundation. However, there were also two specific teaching approaches that were embedded in Elaine’s teaching in order to promote equitable learning in the computing classroom: 

  1. Prioritising time for learners to design their artefacts at the start of the activity.
  2. Reflecting on learning through the use of a digital portfolio.  

Making time for design

As teachers with a set of learning outcomes to deliver, we can often feel a certain pressure to structure lessons so that our learners spend the most time on activities that we feel will deliver those outcomes. I was very interested to hear how in these e-textile projects, there was a deliberate choice to foreground the aesthetics. When learners spent time designing their artefacts and could link it to their own interests, they had a sense of personal ownership over what they were making, which encouraged them to persevere and overcome any difficulties with sewing, code, or electronics. 

Title: Process of making your project.   Learner's reflection: One main challenge that I faced while making this project was setting up my circuit diagram. I had trouble setting up where all my lights were gonna be placed at, and I had trouble color coding where the negatives and positives would be at. I sketched about 6 different papers and the 6th page was the one that came out fine because all of the other ones had negative and positive crossings which was not gonna help the program work, so I was finally able to get my diagram correct.
Spending time on design helped this learner to persevere with problem-solving

My personal reflection was that creating a digital textiles project based on a set template could be considered the equivalent of teaching programming by copying code. Both approaches would increase the chances of a successful output, but wouldn’t necessarily increase learners’ understanding of computing concepts, nor encourage learners to perceive computing as a subject where everyone belongs. I was inspired by the insights shared at the seminar about how prioritising design time can lead to more diverse representations of making. 

Reflecting on learning using a digital portfolio

Elaine told us that learners were encouraged to create a digital portfolio which included photographs of the different stages of their project, examples of their code, and reflections on the problems that they had solved during the project. In the picture below, the learner has shared both the ‘wrong’ and ‘right’ versions of their code, along with an explanation of how they debugged the error. 

A student portfolio with the title 'Coding Challenge'. The wrong code is on the left-hand side and the right code is on the right. The student has included an explanation beneath the wrong code: This is the wrong code. The problem I had was that I was putting the semicolon outside of the bracket. But the revision I needed was putting the semicolon inside of the bracket. That problem was a hard one to see because it is a very minor problem and most people wouldn't have caught it.
A learner’s example of debugging code from their portfolio

Yasmin explained the equity-oriented theories underpinning the digital portfolio teaching approach. The learners’ reflections allowed deeper understanding of the computing and electronics concepts involved and helped to balance the personalised nature of their artefacts with the need to meet learning goals.

Yasmin also emphasised how important it was for learners to take part in a series of projects so that they encountered computing and electronics concepts more than once. In this way, reflective journalling can be seen as an equitable teaching approach because it helps to move learners on from their initial engagement into more complex projects. Thinking back to the clubhouse model, it is equally important for learners to be valued for their complex e-textile projects as it is for their complex robotics projects, and so portfolios of a series of e-textile projects show that a diverse range of learners can be successful in computing at the highest levels. 

Try e-textiles with your learners

alt=""
Science and nature models made with an RPF project

If you’re thinking about ways of introducing e-textile activities to your learners, there are some useful resources here: 

  • The Exploring Computer Science page contains all the information and resources relating to the “Stitching the Loop” electronic textiles unit. You can also find the video that Yasmin and Elaine shared during the seminar. 
  • For e-textiles in a non-formal learning space, the StitchFest webpage has lots of information about an e-textile hackathon that took place in 2014, designed to broaden participation and perceptions in computing. 
  • 3D LED science display with Scratch” is a project that combines using LEDs with science and nature to create a 3D installation. This project is from the Raspberry Pi Foundation’s “Physical computing with Scratch and the Raspberry Pi” projects pathway.

Looking forward to our next free seminar

We’re having a short break in the seminar series but will be back in September when we’ll be continuing to find out more about cross-disciplinary approaches to computing.

In our next seminar on Tuesday 6 September 2022 at 17:00–18:30 BST / 12:00–13:30 EST / 9:00–10:30 PST / 18:00–19:30 CEST, we’ll be hearing all about the links between computing and dance, with our speaker Genevieve Smith-Nunes (University of Cambridge). Genevieve will be speaking about data ethics for the computing classroom through biometrics, ballet, and augmented reality (AR) which promises to be a fascinating perspective on bringing computing to new audiences.

The post Using e-textiles to deliver equitable computing lessons and broaden participation appeared first on Raspberry Pi.

What we learnt from the CSTA 2022 Annual Conference

Post Syndicated from James Robinson original https://www.raspberrypi.org/blog/what-we-learnt-from-the-csta-2022-annual-conference/

From experience, being connected to a community of fellow computing educators is really important, especially given that some members of the community may be the only computing educator in their school, district, or country. These professional connections enable educators to share and learn from each other, develop their practice, and importantly reduce any feelings of isolation.

It was great to see the return of the Computer Science Teachers Association (CSTA) Annual Conference to an in-person event this year, and I was really excited to be able to attend.

A teacher attending Picademy laughs as she works through an activity

Our small Raspberry Pi Foundation team headed to Chicago for four and a half days of meetups, professional development, and conversations with educators from all across the US and around the world. Over the week our team ran workshops, delivered a keynote talk, gave away copies of Hello World magazine, and signed up many new subscribers. You too can subscribe to Hello World magazine for free at helloworld.cc/subscribe.

We spoke to so many educators about all parts of the Raspberry Pi Foundation’s work, with a particular focus on the Hello World magazine and podcast, and of course The Big Book of Computing Pedagogy. In collaboration with CSTA, we were really proud to be able to provide all attendees with their own physical copy of this very special edition. 

It was genuinely exciting to see how pleased attendees were to receive their copy of The Big Book of Computing Pedagogy. So many came to talk to us about how they’d used the digital copy already and their plans for using the book for training and development initiatives in their schools and districts. We gave away every last spare copy we had to teachers who wanted to share the book with their colleagues who couldn’t attend.

Don’t worry if you couldn’t make it to the conference, The Big Book of Computing Pedagogy is available as a free PDF, which due to its Creative Commons licence you are welcome to print for yourself.

Another goal for us at CSTA was to support and encourage new authors to the magazine in order to ensure that Hello World continues to be the magazine for computing educators, by computing educators. Anyone can propose an article idea for Hello World by completing this form. We’re confident that every computing educator out there has at least one story to tell, lessons or learnings to share, or perhaps a cautionary tale of something that failed.

We’ll review any and all ideas and will support you to craft your idea into a finished article. This is exactly what we began to do at the conference with our workshop for writers led by Gemma Coleman, our fantastic Hello World Editor. We’re really excited to see these ideas flourish into full-blown articles over the coming weeks and months.

Our week culminated in a keynote talk delivered by Sue, Jane, and James, exploring how we developed our 12 pedagogy principles that underpin The Big Book of Computing Pedagogy, as well as much of the content we create at the Raspberry Pi Foundation. These principles are designed to describe a set of approaches that educators can add to their toolkit, giving them a shared language and the agency to select when and how they employ each approach. This was something we explored with teachers in our final breakout session where teachers applied these principles to describe a lesson or activity of their own.

We found the experience extremely valuable and relished the opportunity to talk about teaching and learning with educators and share our work. We are incredibly grateful to the entire CSTA team for organising a fantastic conference and inviting us to participate.

Discover more with Hello World — for free

Cover of issue 19 of Hello World magazine.

Subscribe now to get each new Hello World straight to your digital inbox, for free! And if you’re based in the UK and do paid or unpaid work in education, you can subscribe for free print issues.

The post What we learnt from the CSTA 2022 Annual Conference appeared first on Raspberry Pi.

Are you technocentric? Shifting from technology to people

Post Syndicated from Jane Waite original https://www.raspberrypi.org/blog/technocentrism-shifting-from-technology-to-people-computing-education-pratim-sengupta-research-seminar/

When we teach children and young people about computing, do we consider how the subject has developed over time, how it relates to our students’ lives, and importantly, what our values are? Professor Pratim Sengupta shared some of the research he and his colleagues have been working on related to these questions in our June 2022 research seminar.

Pratim Sengupta.
Prof. Pratim Sengupta

Pratim revealed a complex landscape where we as educators can be easily trapped by what may seem like good intentions, thereby limiting learning and excluding some students. His presentation, entitled Computational heterogeneity in STEM education, introduced me to the concept of technocentrism and profoundly impacted my thinking about the essence of programming and how I research it. In this blog post, particularly for those unable to attend this stimulating seminar, I give my simplified view of the rich philosophy shared by Pratim, and my fledgling steps to admit to my technocentrism and overcome it.

Our seminars on teaching cross-disciplinary computing

Between May 2022 and November 2022, we are hosting a new series of free research seminars about teaching computing in different ways and in different contexts. This second seminar of the series was well attended with participants from the USA, Asia, Africa, and Europe, including teachers, researchers, and industry professionals, who contributed to a lively and thought-provoking discussion.

Two teachers and a group of learners are gathered around a laptop screen.

Pratim is a learning scientist based in Canada with a long and distinguished career. He has studied how to teach computational modelling in K-12 STEM classrooms and investigates the complexity of learning. Grounded in working with teachers and students, he brings together computing, science, education, and social justice. Based on his work at Northwestern University, Vanderbilt University, and now with the Mind, Matter and Media lab at the University of Calgary, Pratim has published hundreds of academic papers over some 20 years. Pratim and his team challenge how we focus on making technological artefacts — code for code’s sake — in computing education, and refocuses us on the human experience of coding and learning to code.

What is technocentrism?

Pratim started the seminar by giving us an overview of some of the key ideas that underpin the way that computing is usually taught in schools, including technocentrism (Figure 1).

Pratim Sengupta's summary of technocentrism: device-centred approaches for pedagogy and computational design; ignores teaching, social and institutional infrastructures, cultural histories; transparency or universality of code as symbolic power; recursive methods for education research, experience measured by being folded back onto devices; leads to symbolic violence, misrecognition of experience, muting and omission of voices, affect and moral dimensions of experience.
Figure 1: The features of technocentrism, a way of thinking about how we teach computing, particularly programming (Sengupta, 2022). Click to enlarge.

I have come to a simplified understanding of technocentrism. To me, it appears to be a way of looking at how we learn about computer science, where one might:

  • Focus on the finished product (e.g. a computer program), rather than thinking about the people who create, learn about, or use a program
  • Ignore the context and the environment, rather than paying attention to the history, the political situation, and the social context of the task at hand
  • View computing tasks as being implemented (enacted) by writing code, rather than seeing computing activities as rich and complex jumbles of meaning-making and communication that involve people using chatter, images, and lots of gestures
  • Anchor learning in concepts and skills, rather than placing the values and viewpoints of learners at the heart of teaching 

Examples of technocentrism and how to overcome it

Pratim recounted several research activities that he and his team have engaged with. These examples highlight instances of potential technocentrism and investigate how we might overcome it.

In the first example research activity, Pratim explained how in maths and physics lessons, middle school students were asked to develop models to solve time and distance problems. Rather than immediately coding a potential solution, the researcher and teacher supported the learners to spend much time developing a shared perspective to understand and express the problems first. Students grappled with different ways of representing the context, including graphs and diagrams (see Figure 2). Gradually and carefully, teachers shifted students to recognise what was important and what was not, to move them toward a meaningful language to describe and solve the problems.

Research results from Pratim Sengupta showing students' graph designs and how much time they spent on various activities during the graphing task.
Figure 2: Two graphs from students showing different representations of a context, and a researcher’s bar chart representing how students’ shared understanding emerged over time (Sengupta, 2022). Click to enlarge.

In a second example research activity, students were asked to build a machine that draws shapes using sensors, motors, and code. Rather than jumping straight to a solution, the students spent time with authentic users of their machines. Throughout the process, students worked with others, expressing the context through physical movement, clarifying their thoughts by drawing diagrams, and finding the sweet spot between coding, engineering design, and maths (see Figure 3).

Research results from Pratim Sengupta showing images documenting a physical computing design activity and how learners explained their design.
Figure 3:  Students used physical movements and user guides to be with others and publicly share and experience the task with authentic users (Sengupta, 2022). Click to enlarge.

In a third example research activity, racial segregation of US communities was discussed with pre-service teachers. The predominately white teachers found talking about the topic very difficult at the beginning of the activity. To overcome this hesitancy, teachers were first asked to work with a simulation that modelled the process of segregation through abstracted dots (or computational agents), a transitional other. Following this hypothetical representation, the context was then recontextualised through a map of real data points of the ethnicity of residents in an area of the US. This kind of map is called a Racial Dot Map based on US census data. When the teachers were able to interpret the link between the abstracted dot simulation and the real-world data they were able to talk about racism and segregation in a way they could not do before. The initial simulation and the recontextualisation were a pedagogical tool to reveal racism and provide a space where students felt comfortable discussing their values and beliefs that would otherwise have remained implicit.

Pratim Sengupta explains a research activity with predominantly white pre-service teachers who learned to discuss racism and segregation through a transitional othering activity using maps and graphing census data.
Figure 4: To facilitate discussion of racial segregation, a simulation was used that bridges abstracted dots and real people, giving pre-service teachers a space to reflect on discrimination  (Sengupta, 2022). Click to enlarge.

My takeaways

Pratim shared four implications of this research for computing pedagogy (see Figure 5).

Pratim Sengupta presents the pedagogical implications of shifting from technocentrism to perspectival heterogeneity in education: code as utterances and intertext; heterogeneity and tranformation of representational genres, code lives in translation; teachers' voice needs to be centred in system and activity design and classroom work, researchers must listen; uncertainty and ambiguity play central roles, recognition takes time.
Figure 5: Pratim’s four implications for pedagogy. Click to enlarge

As a researcher of pedagogy, these points provide takeaways that I can relate to my own research practice:

  • Code is a voice within an experience rather than symbols at a point in time. For example, when I listen to students predicting what a snippet of code will do, I think of the active nature of each carefully chosen command and how for each student, the code corresponds with them differently.
  • Code lives as a translation bridging many dimensions, such as data representation, algorithms, syntax, and user views. This statement resonates deeply with my liking of Carsten Schultes’s block model [1] but extends to include the people involved.
  • We should listen carefully and attentively to teachers, rather than making assumptions about what happens in classrooms. Teachers create new ideas. This takeaway is very important and reminds me about the trust and relationships built between teachers and researchers and how important it is to listen.
  • Uncertainty and ambiguity exist in learning, and this can take time to recognise. This final point makes me smile. As a developer, teacher, and researcher, I have found dealing with ambiguity hard at various points in my career. Still, over time, I think I am getting better at seeing it and celebrating it. 

Listening to Pratim share his research on the teaching and learning of computing and the pitfalls of technocentrism has made me think deeply about how I view computer science as a subject and do research about it. I have shared some of my reflections in this blog, and I plan to incorporate the underlying theory and ideas in my ongoing research projects.

If you would like to find out more about Pratim’s work, please look over his slides, watch his presentation, read the upcoming chapter in our seminar proceedings, or respond to this blog by leaving a comment so we can discuss!

Join our next seminar

We have another four seminars in our current series on cross-disciplinary computing

At our next seminar on 12 July 2022 at 17:00–18:30 BST / 12:00–13:30 EDT / 9:00–10:30 PDT / 18:00–19:30 CEST, we will welcome Prof. Yasmin Kafai and Elaine Griggs, who are going to present research on introductory equity-oriented computer science with electronic textiles for high school students.

We look forward to meeting you there.


[1] You can learn more in the Hello World article where our Chief Learning Officer Sue Sentance talks about the block model.

The post Are you technocentric? Shifting from technology to people appeared first on Raspberry Pi.