Tag Archives: Kinesis Data Analytics

Validate, evolve, and control schemas in Amazon MSK and Amazon Kinesis Data Streams with AWS Glue Schema Registry

Post Syndicated from Brian Likosar original https://aws.amazon.com/blogs/big-data/validate-evolve-and-control-schemas-in-amazon-msk-and-amazon-kinesis-data-streams-with-aws-glue-schema-registry/

Data streaming technologies like Apache Kafka and Amazon Kinesis Data Streams capture and distribute data generated by thousands or millions of applications, websites, or machines. These technologies serve as a highly available transport layer that decouples the data-producing applications from data processors. However, the sheer number of applications producing, processing, routing, and consuming data can make it hard to coordinate and evolve data schemas, like adding or removing a data field, without introducing data quality issues and downstream application failures. Developers often build complex tools, write custom code, or rely on documentation, change management, and Wikis to protect against schema changes. This is quite error prone because it relies too heavily on human oversight. A common solution with data streaming technologies is a schema registry that provides for validation of schema changes to allow for safe evolution as business needs adjust over time.

AWS Glue Schema Registry, a serverless feature of AWS Glue, enables you to validate and reliably evolve streaming data against Apache Avro schemas at no additional charge. Through Apache-licensed serializers and deserializers, the Glue Schema Registry integrates with Java applications developed for Apache Kafka, Amazon Managed Streaming for Apache Kafka (Amazon MSK), Kinesis Data Streams, Apache Flink, Amazon Kinesis Data Analytics for Apache Flink, and AWS Lambda.

This post explains the benefits of using the Glue Schema Registry and provides examples of how to use it with both Apache Kafka and Kinesis Data Streams.

With the Glue Schema Registry, you can eliminate defensive coding and cross-team coordination, improve data quality, reduce downstream application failures, and use a registry that is integrated across multiple AWS services. Each schema can be versioned within the guardrails of a compatibility mode, providing developers the flexibility to reliably evolve schemas. Additionally, the Glue Schema Registry can serialize data into a compressed format, helping you save on data transfer and storage costs.

Although there are many ways to leverage the Glue Schema Registry (including using the API to build your own integrations), in this post, we show two use cases. The Schema Registry is a free feature that can significantly improve data quality and developer productivity. If you use Avro schemas, you should be using the Schema Registry to supplement your solutions built on Apache Kafka (including Amazon MSK) or Kinesis Data Streams. The following diagram illustrates this architecture.

AWS Glue Schema Registry features

Glue Schema Registry has the following features:

  • Schema discovery – When a producer registers a schema change, metadata can be applied as a key-value pair to provide searchable information for administrators or developers. This metadata can indicate the original source of the data (source=MSK_west), the team name to contact (owner=DataEngineering), or AWS tags (environment=Production). You could potentially encrypt a field in your data on the producing client and use metadata to specify to potential consumer clients which public key fingerprint to use for decryption.
  • Schema compatibility – The versioning of each schema is governed by a compatibility mode. If a new version of a schema is requested to be registered that breaks the specified compatibility mode, the request fails and an exception is thrown. Compatibility checks enable developers building downstream applications to have a bounded set of scenarios to build applications against, which helps to prepare for the changes without issue. Commonly used modes are FORWARD, BACKWARD, and FULL. For more information about mode definitions, see Schema Versioning and Compatibility.
  • Schema validation – Glue Schema Registry serializers work to validate that the schema used during data production is compatible. If it isn’t, the data producer receives an exception from the serializer. This ensures that potentially breaking changes are found earlier in development cycles, and can also help prevent unintentional schema changes due to human error.
  • Auto-registration of schemas – If configured to do so, the producer of data can auto-register schema changes as they flow in the data stream. This is especially useful for use cases where the source of the data is change data capture from a database.
  • IAM support – Thanks to integrated AWS Identity and Access Management (IAM) support, only authorized producers can change certain schemas. Furthermore, only those consumers authorized to read the schema can do so. Schema changes are typically performed deliberately and with care, so it’s important to use IAM to control who performs these changes. Additionally, access control to schemas is important in situations where you might have sensitive information included in the schema definition itself. In the examples that follow, IAM roles are inferred via the AWS SDK for Java, so they are inherited from the Amazon Elastic Compute Cloud (Amazon EC2) instance’s role that the application runs in. IAM roles can also be applied to any other AWS service that could contain this code, such as containers or Lambda functions.
  • Integrations and other support – The provided serializers and deserializers are currently for Java clients using Apache Avro for data serialization. The GitHub repo also contains support for Apache Kafka Streams, Apache Kafka Connect, and Apache Flink—all licensed using the Apache License 2.0. We’re already working on additional language and data serialization support, but we need your feedback on what you’d like to see next.
  • Secondary deserializer – If you have already registered schemas in another schema registry, there’s an option for specifying a secondary deserializer when performing schema lookups. This allows for migrations from other schema registries without having to start anew. If the schema ID being used isn’t known to the Glue Schema Registry, it’s looked for in the secondary deserializer.
  • Compression – Using the Avro format already reduces message size due to its compact, binary format. Using a schema registry can further reduce data payload by no longer needing to send and receive schemas with each message. Glue Schema Registry libraries also provide an option for zlib compression, which can reduce data requirements even further by compressing the payload of the message. This varies by use case, but compression can reduce the size of the message significantly.

Example schema

For this post, we use the following schema to begin each of our use cases:

{
 "namespace": "Customer.avro",
 "type": "record",
 "name": "Customer",
 "fields": [
 {"name": "first_name", "type": "string"},
 {"name": "last_name", "type": "string"}
 ]
}

Using AWS Glue Schema Registry with Amazon MSK and Apache Kafka

You can use the following Apache Kafka producer code to produce Apache Avro formatted messages to a topic with the preceding schema:

package com.amazon.gsrkafka;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;
import com.amazonaws.services.schemaregistry.serializers.avro.AWSKafkaAvroSerializer;
import com.amazonaws.services.schemaregistry.serializers.avro.AWSAvroSerializer;
import com.amazonaws.services.schemaregistry.utils.AvroRecordType;
import com.amazonaws.services.schemaregistry.utils.AWSSchemaRegistryConstants;
import org.apache.kafka.common.errors.SerializationException;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.Schema;
import org.apache.avro.Schema.Parser;
import java.util.Properties;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.File;

public class gsrkafka {
private static final Properties properties = new Properties();
private static final String topic = "test";
public static void main(final String[] args) throws IOException {
// Set the default synchronous HTTP client to UrlConnectionHttpClient
System.setProperty("software.amazon.awssdk.http.service.impl", "software.amazon.awssdk.http.urlconnection.UrlConnectionSdkHttpService");
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, AWSKafkaAvroSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, AWSKafkaAvroSerializer.class.getName());
properties.put(AWSSchemaRegistryConstants.AWS_REGION, "us-east-2");
properties.put(AWSSchemaRegistryConstants.REGISTRY_NAME, "liko-schema-registry");
properties.put(AWSSchemaRegistryConstants.SCHEMA_NAME, "customer");
properties.put(AWSSchemaRegistryConstants.COMPATIBILITY_SETTING, Compatibility.FULL);
properties.put(AWSSchemaRegistryConstants.SCHEMA_AUTO_REGISTRATION_SETTING, true);
Schema schema_customer = new Parser().parse(new File("Customer.avsc"));
GenericRecord customer = new GenericData.Record(schema_customer);

try (KafkaProducer<String, GenericRecord> producer = new KafkaProducer<String, GenericRecord>(properties)) {
final ProducerRecord<String, GenericRecord> record = new ProducerRecord<String, GenericRecord>(topic, customer);
customer.put("first_name", "Ada");
customer.put("last_name", "Lovelace");
customer.put("full_name", "Ada Lovelace");
producer.send(record);
System.out.println("Sent message");
Thread.sleep(1000L);

customer.put("first_name", "Sue");
customer.put("last_name", "Black");
customer.put("full_name", "Sue Black");
producer.send(record);
System.out.println("Sent message");
Thread.sleep(1000L);

customer.put("first_name", "Anita");
customer.put("last_name", "Borg");
customer.put("full_name", "Anita Borg");
producer.send(record);
System.out.println("Sent message");
Thread.sleep(1000L);

customer.put("first_name", "Grace");
customer.put("last_name", "Hopper");
customer.put("full_name", "Grace Hopper");
producer.send(record);
System.out.println("Sent message");
Thread.sleep(1000L);

customer.put("first_name", "Neha");
customer.put("last_name", "Narkhede");
customer.put("full_name", "Neha Narkhede");
producer.send(record);
System.out.println("Sent message");
Thread.sleep(1000L);
producer.flush();
System.out.println("Successfully produced 5 messages to a topic called " + topic);
} catch (final InterruptedException | SerializationException e) {
e.printStackTrace();
}
}
}

Use the following Apache Kafka consumer code to look up the schema information while consuming from a topic to learn the schema details:

package com.amazon.gsrkafka;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.serialization.StringDeserializer;
import com.amazonaws.services.schemaregistry.deserializers.avro.AWSKafkaAvroDeserializer;
import com.amazonaws.services.schemaregistry.deserializers.avro.AWSAvroDeserializer;
import com.amazonaws.services.schemaregistry.utils.AvroRecordType;
import com.amazonaws.services.schemaregistry.utils.AWSSchemaRegistryConstants;
import org.apache.kafka.common.errors.SerializationException;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import java.util.Collections;
import java.util.Properties;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.File;


public class gsrkafka {
private static final Properties properties = new Properties();
private static final String topic = "test";
public static void main(final String[] args) throws IOException {
// Set the default synchronous HTTP client to UrlConnectionHttpClient
System.setProperty("software.amazon.awssdk.http.service.impl", "software.amazon.awssdk.http.urlconnection.UrlConnectionSdkHttpService");
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
properties.put(ConsumerConfig.GROUP_ID_CONFIG, "gsr-client");
properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, AWSKafkaAvroDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, AWSKafkaAvroDeserializer.class.getName());
properties.put(AWSSchemaRegistryConstants.AWS_REGION, "us-east-2");
properties.put(AWSSchemaRegistryConstants.REGISTRY_NAME, "liko-schema-registry");
properties.put(AWSSchemaRegistryConstants.AVRO_RECORD_TYPE, AvroRecordType.GENERIC_RECORD.getName());

try (final KafkaConsumer<String, GenericRecord> consumer = new KafkaConsumer<String, GenericRecord>(properties)) {
consumer.subscribe(Collections.singletonList(topic));
while (true) {
final ConsumerRecords<String, GenericRecord> records = consumer.poll(1000);
for (final ConsumerRecord<String, GenericRecord> record : records) {
final GenericRecord value = record.value();
System.out.println("Received message: value = " + value);
}
			}
} catch (final SerializationException e) {
e.printStackTrace();
}
}
}

Using AWS Glue Schema Registry with Kinesis Data Streams

You can use the following Kinesis Producer Library (KPL) code to publish messages in Apache Avro format to a Kinesis data stream with the preceding schema:

private static final String SCHEMA_DEFINITION = "{"namespace": "Customer.avro",\n"
+ " "type": "record",\n"
+ " "name": "Customer",\n"
+ " "fields": [\n"
+ " {"name": "first_name", "type": "string"},\n"
+ " {"name": "last_name", "type": "string"}\n"
+ " ]\n"
+ "}";

KinesisProducerConfiguration config = new KinesisProducerConfiguration();
config.setRegion("us-west-1")

//[Optional] configuration for Schema Registry.

GlueSchemaRegistryConfiguration schemaRegistryConfig = 
new GlueSchemaRegistryConfiguration("us-west-1");

schemaRegistryConfig.setCompression(true);

config.setGlueSchemaRegistryConfiguration(schemaRegistryConfig);

///Optional configuration ends.

final KinesisProducer producer = 
new KinesisProducer(config);

final ByteBuffer data = getDataToSend();

com.amazonaws.services.schemaregistry.common.Schema gsrSchema = 
new Schema(SCHEMA_DEFINITION, DataFormat.AVRO.toString(), "demoSchema");

ListenableFuture<UserRecordResult> f = producer.addUserRecord(
config.getStreamName(), TIMESTAMP, Utils.randomExplicitHashKey(), data, gsrSchema);

private static ByteBuffer getDataToSend() {
org.apache.avro.Schema avroSchema = 
new org.apache.avro.Schema.Parser().parse(SCHEMA_DEFINITION);

GenericRecord user = new GenericData.Record(avroSchema);
user.put("name", "Emily");
user.put("favorite_number", 32);
user.put("favorite_color", "green");

ByteArrayOutputStream outBytes = new ByteArrayOutputStream();
Encoder encoder = EncoderFactory.get().directBinaryEncoder(outBytes, null);
new GenericDatumWriter<>(avroSchema).write(user, encoder);
encoder.flush();
return ByteBuffer.wrap(outBytes.toByteArray());
}

On the consumer side, you can use the Kinesis Client Library (KCL) (v2.3 or later) to look up schema information while retrieving messages from a Kinesis data stream:

GlueSchemaRegistryConfiguration schemaRegistryConfig = 
new GlueSchemaRegistryConfiguration(this.region.toString());

 GlueSchemaRegistryDeserializer glueSchemaRegistryDeserializer = 
new GlueSchemaRegistryDeserializerImpl(DefaultCredentialsProvider.builder().build(), schemaRegistryConfig);

 RetrievalConfig retrievalConfig = configsBuilder.retrievalConfig().retrievalSpecificConfig(new PollingConfig(streamName, kinesisClient));
 retrievalConfig.glueSchemaRegistryDeserializer(glueSchemaRegistryDeserializer);
 
Scheduler scheduler = new Scheduler(
configsBuilder.checkpointConfig(),
configsBuilder.coordinatorConfig(),
configsBuilder.leaseManagementConfig(),
configsBuilder.lifecycleConfig(),
configsBuilder.metricsConfig(),
configsBuilder.processorConfig(),
retrievalConfig
);

 public void processRecords(ProcessRecordsInput processRecordsInput) {
MDC.put(SHARD_ID_MDC_KEY, shardId);
try {
log.info("Processing {} record(s)", 
processRecordsInput.records().size());
processRecordsInput.records()
.forEach(
r -> 
log.info("Processed record pk: {} -- Seq: {} : data {} with schema: {}", 
r.partitionKey(), r.sequenceNumber(), recordToAvroObj(r).toString(), r.getSchema()));
} catch (Throwable t) {
log.error("Caught throwable while processing records. Aborting.");
Runtime.getRuntime().halt(1);
} finally {
MDC.remove(SHARD_ID_MDC_KEY);
}
 }
 
 private GenericRecord recordToAvroObj(KinesisClientRecord r) {
byte[] data = new byte[r.data().remaining()];
r.data().get(data, 0, data.length);
org.apache.avro.Schema schema = new org.apache.avro.Schema.Parser().parse(r.schema().getSchemaDefinition());
DatumReader datumReader = new GenericDatumReader<>(schema);

BinaryDecoder binaryDecoder = DecoderFactory.get().binaryDecoder(data, 0, data.length, null);
return (GenericRecord) datumReader.read(null, binaryDecoder);
 }

Example of schema evolution

As a producer, let’s say you want to add an additional field to our schema:

{
 "namespace": "Customer.avro",
 "type": "record",
 "name": "Customer",
 "fields": [
 {"name": "first_name", "type": "string"},
 {"name": "last_name", "type": "string"},
 {"name": "full_name", "type": ["string", “null”], “default”: null}
]
}

Regardless of whether you’re following the Apache Kafka or Kinesis Data Streams example, you can use the previously provided producer code to publish new messages using this new schema version with the full_name field. This is simply a concatenation of first_name and last_name.

This schema change added an optional field (full_name), which is indicated by the type field having an option of null in addition to string with a default of null. In adding this optional field, we’ve created a schema evolution. This qualifies as a FORWARD compatible change because the producer has modified the schema and the consumer can read without updating its version of the schema. It’s a good practice to provide a default for a given field. This allows for its eventual removal if necessary. If it’s removed by the producer, the consumer uses the default that it knew for that field from before the removal.

This change is also a BACKWARD compatible change, because if the consumer changes the schema it expects to receive, it can use that default to fill in the value for the field it isn’t receiving. By being both FORWARD and BACKWARD compatible, it is therefore a FULL compatible change. The Glue Schema Registry serializers default to BACKWARD compatible, so we have to add a line declaring it as FULL.

In looking at the full option set, you may find FORWARD_ALL, BACKWARD_ALL, and FULL_ALL. These typically only come into play when you want to change data types for a field whose name you don’t change. The most common observed compatibility mode is BACKWARD, which is why it’s the default.

As a consumer application, however, you don’t want to have to recompile your application to handle the addition of a new field. If you want to reference the customer by full name, that’s your choice in your app instead of being forced to consume the new field and use it. When you consume the new messages you’ve just produced, your application doesn’t crash or have problems, because it’s still using the prior version of the schema, and that schema change is compatible with your application. To experience this in action, run the consumer code in one window and don’t interrupt it. As you run the producer application again, this time with messages following the new schema, you can still see output without issue, thanks to the Glue Schema Registry.

Conclusion

In this post, we discussed the benefits of using the Glue Schema Registry to register, validate, and evolve schemas for data streams as business needs change. We also provided examples of how to use Glue Schema Registry with Apache Kafka and Kinesis Data Streams.

For more information and to get started, see AWS Glue Schema Registry.


About the Authors

Brian Likosar is a Senior Streaming Specialist Solutions Architect at Amazon Web Services. Brian loves helping customers capture value from real-time streaming architectures, because he knows life doesn’t happen in batch. He’s a big fan of open-source collaboration, theme parks, and live music.

 

 

Larry Heathcote is a Senior Product Marketing Manager at Amazon Web Services for data streaming and analytics. Larry is passionate about seeing the results of data-driven insights on business outcomes. He enjoys walking his Samoyed Sasha in the mornings so she can look for squirrels to bark at.

 

 

Building a real-time notification system with Amazon Kinesis Data Streams for Amazon DynamoDB and Amazon Kinesis Data Analytics for Apache Flink

Post Syndicated from Saurabh Shrivastava original https://aws.amazon.com/blogs/big-data/building-a-real-time-notification-system-with-amazon-kinesis-data-streams-for-amazon-dynamodb-and-amazon-kinesis-data-analytics-for-apache-flink/

Amazon DynamoDB helps you capture high-velocity data such as clickstream data to form customized user profiles and Internet of Things (IoT) data so that you can develop insights on sensor activity across various industries, including smart spaces, connected factories, smart packing, fitness monitoring, and more. It’s important to store these data points in a centralized data lake in real time, where they can be transformed, analyzed, and combined with diverse organizational datasets to derive meaningful insights and make predictions.

A popular use case in the wind energy sector is to protect wind turbines from wind speed. As per National Wind Watch, every wind turbine has a range of wind speeds, typically 30–55 mph, in which it produces maximum capacity. When wind speed is greater than 70 mph, it’s important to start shutdown to protect the turbine from a high wind storm. Customers often store high-velocity IoT data in DynamoDB and use Amazon Kinesis streaming to extract data and store it in a centralized data lake built on Amazon Simple Storage Service (Amazon S3). To facilitate this ingestion pipeline, you can deploy AWS Lambda functions or write custom code to build a bridge between DynamoDB Streams and Kinesis streaming.

Amazon Kinesis Data Streams for DynamoDB help you to publish item-level changes in any DynamoDB table to a Kinesis data stream of your choice. Additionally, you can take advantage of this feature for use cases that require longer data retention on the stream and fan out to multiple concurrent stream readers. You also can integrate with Amazon Kinesis Data Analytics or Amazon Kinesis Data Firehose to publish data to downstream destinations such as Amazon Elasticsearch Service, Amazon Redshift, or Amazon S3.

In this post, you use Kinesis Data Analytics for Apache Flink (Data Analytics for Flink) and Amazon Simple Notification Service (Amazon SNS) to send a real-time notification when wind speed is greater than 60 mph so that the operator can take action to protect the turbine. You use Kinesis Data Streams for DynamoDB and take advantage of managed streaming delivery of DynamoDB data to other AWS services without having to use Lambda or write and maintain complex code. To process DynamoDB events from Kinesis, you have multiple options: Amazon Kinesis Client Library (KCL) applications, Lambda, and Data Analytics for Flink. In this post, we showcase Data Analytics for Flink, but this is just one of many available options.

Architecture

The following architecture diagram illustrates the wind turbine protection system.

The following architecture diagram illustrates the wind turbine protection system.

In this architecture, high-velocity wind speed data comes from the wind turbine and is stored in DynamoDB. To send an instant notification, you need to query the data in real time and send a notification when the wind speed is greater than the established maximum. To achieve this goal, you enable Kinesis Data Streams for DynamoDB, and then use Data Analytics for Flink to query real-time data in a 60-second tumbling window. This aggregated data is stored in another data stream, which triggers an email notification via Amazon SNS using Lambda when the wind speed is greater than 60 mph. You will build this entire data pipeline in a serverless manner.

Deploying the wind turbine data simulator

To replicate a real-life scenario, you need a wind turbine data simulator. We use Amazon Amplify in this post to deploy a user-friendly web application that can generate the required data and store it in DynamoDB. You must have a GitHub account which will help to fork the Amplify app code and deploy it in your AWS account automatically.

Complete the following steps to deploy the data simulator web application:

  1. Choose the following AWS Amplify link to launch the wind turbine data simulator web app.

  1. Choose Connect to GitHub and provide credentials, if required.

Choose Connect to GitHub and provide credentials, if required.

  1. In the Deploy App section, under Select service role, choose Create new role.
  2. Follow the instructions to create the role amplifyconsole-backend-role.
  3. When the role is created, choose it from the drop-down menu.
  4. Choose Save and deploy.

Choose Save and deploy.

On the next page, the dynamodb-streaming app is ready to deploy.

  1. Choose Continue.

On the next page, the dynamodb-streaming app is ready to deploy.

On the next page, you can see the app build and deployment progress, which might take as many as 10 minutes to complete.

  1. When the process is complete, choose the URL on the left to access the data generator user interface (UI).
  2. Make sure to save this URL because you will use it in later steps.

Make sure to save this URL because you will use it in later steps.

You also get an email during the build process related to your SSH key. This email indicates that the build process created an SSH key on your behalf to connect to the Amplify application with GitHub.

  1. On the sign-in page, choose Create account.

On the sign-in page, choose Create account.

  1. Provide a user name, password, and valid email to which the app can send you a one-time passcode to access the UI.
  2. After you sign in, choose Generate data to generate wind speed data.
  3. Choose the Refresh icon to show the data in the graph.

You can generate a variety of data by changing the range of minimum and maximum speeds and the number of values.

You can generate a variety of data by changing the range of minimum and maximum speeds and the number of values.

To see the data in DynamoDB, choose the DynamoDB icon, note the table name that starts with windspeed-, and navigate to the table in the DynamoDB console.

To see the data in DynamoDB, choose the DynamoDB icon, note the table name that starts with windspeed.

Now that the wind speed data simulator is ready, let’s deploy the rest of the data pipeline.

Deploying the automated data pipeline by using AWS CloudFormation

You use AWS CloudFormation templates to create all the necessary resources for the data pipeline. This removes opportunities for manual error, increases efficiency, and ensures consistent configurations over time. You can view the template and code in the GitHub repository.

  1. Choose Launch with CloudFormation Console:
  2. Choose the US West (Oregon) Region (us-west-2).
  3. For pEmail, enter a valid email to which the analytics pipeline can send notifications.
  4. Choose Next.

For pEmail, enter a valid email to which the analytics pipeline can send notifications.

  1. Acknowledge that the template may create AWS Identity and Access Management (IAM) resources.
  2. Choose Create stack.

This CloudFormation template creates the following resources in your AWS account:

  • An IAM role to provide a trust relationship between Kinesis and DynamoDB to replicate data from DynamoDB to the data stream
  • Two data streams:
    • An input stream to replicate data from DynamoDB
    • An output stream to store aggregated data from the Data Analytics for Flink app
  • A Lambda function
  • An SNS topic to send an email notifications about high wind speeds
  1. When the stack is ready, on the Outputs tab, note the values of both data streams.

When the stack is ready, on the Outputs tab, note the values of both data streams.

Check your email and confirm your subscription to receive notifications. Make sure to check your junk folder if you don’t see the email in your inbox.

Check your email and confirm your subscription to receive notifications.

Now you can use Kinesis Data Streams for DynamoDB, which allows you to have your data in both DynamoDB and Kinesis without having to use Lambda or write custom code.

Enabling Kinesis streaming for DynamoDB

AWS recently launched Kinesis Data Streams for DynamoDB so that you can send data from DynamoDB to Kinesis Data. You can use the AWS Command Line Interface (AWS CLI) or the AWS Management Console to enable this feature.

To enable this feature from the console, complete the following steps:

  1. In the DynamoDB console, choose the table that you created earlier (it begins with the prefix windspeed-).
  2. On the Overview tab, choose Manage streaming to Kinesis.

On the Overview tab, choose Manage streaming to Kinesis.

  1. Choose your input stream.

Choose your input stream.

  1. Choose Enable.

Choose Enable.

  1. Choose Close.

Choose Close.

Make sure that Stream enabled is set to Yes.

Make sure that Stream enabled is set to Yes.

Building the Data Analytics for Flink app for real-time data queries

As part of the CloudFormation stack, the new Data Analytics for Flink application is deployed in the configured AWS Region. When the stack is up and running, you should be able to see the new Data Analytics for Flink application in the configured Region. Choose Run to start the app.

Choose Run to start the app.

When your app is running, you should see the following application graph.

When your app is running, you should see the following application graph.

Review the Properties section of the app, which shows you the input and output streams that the app is using.

Review the Properties section of the app, which shows you the input and output streams that the app is using.

Let’s learn important code snippets of the Flink Java application in next section, which explain how the Flink application reads data from a data stream, aggregates the data, and outputs it to another data stream.

Diving Deep into Flink Java application code:

In the following code, createSourceFromStaticConfig provides all the wind turbine speed readings from the input stream in string format, which we pass to the WindTurbineInputMap map function. This function parses the string into the Tuple3 data type (exp Tuple3<>(turbineID, speed, 1)). All Tuple3 messages are grouped by turbineID to further apply a one-minute tumbling window. The AverageReducer reduce function provides two things: the sum of all the speeds for the specific turbineId in the one-minute window, and a count of the messages for the specific turbineId in the one-minute window. The AverageMap map function takes the output of the AverageReducer reduce function and transforms it into Tuple2 (exp Tuple2<>(turbineId, averageSpeed)). Then all turbineIds are filtered with an average speed greater than 60 and map them to a JSON-formatted message, which we send to the output stream by using the createSinkFromStaticConfig sink function.

final StreamExecutionEnvironment env =
   StreamExecutionEnvironment.getExecutionEnvironment();

DataStream<String> input = createSourceFromStaticConfig(env);

input.map(new WindTurbineInputMap())
   .filter(v -> v.f2 > 0)
   .keyBy(0)
      .window(TumblingProcessingTimeWindows.of(Time.minutes(1)))
   .reduce(new AverageReducer())
   .map(new AverageMap())
   .filter(v -> v.f1 > 60)
   .map(v -> "{ \"turbineID\": \"" + v.f0 + "\", \"avgSpeed\": "+ v.f1 +" }")
   .addSink(createSinkFromStaticConfig());

env.execute("Wind Turbine Data Aggregator");

The following code demonstrates how the createSourceFromStaticConfig and createSinkFromStaticConfig functions read the input and output stream names from the properties of the Data Analytics for Flink application and establish the source and sink of the streams.

private static DataStream<String> createSourceFromStaticConfig(
   StreamExecutionEnvironment env) throws IOException {
   Map<String, Properties> applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties();
   Properties inputProperties = new Properties();
   inputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, (String) applicationProperties.get("WindTurbineEnvironment").get("region"));
   inputProperties.setProperty(ConsumerConfigConstants.STREAM_INITIAL_POSITION, "TRIM_HORIZON");

   return env.addSource(new FlinkKinesisConsumer<>((String) applicationProperties.get("WindTurbineEnvironment").get("inputStreamName"),
      new SimpleStringSchema(), inputProperties));
}

private static FlinkKinesisProducer<String> createSinkFromStaticConfig() throws IOException {
   Map<String, Properties> applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties();
   Properties outputProperties = new Properties();
   outputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, (String) applicationProperties.get("WindTurbineEnvironment").get("region"));

   FlinkKinesisProducer<String> sink = new FlinkKinesisProducer<>(new
      SimpleStringSchema(), outputProperties);
   sink.setDefaultStream((String) applicationProperties.get("WindTurbineEnvironment").get("outputStreamName"));
   sink.setDefaultPartition("0");
   return sink;
}

In the following code, the WindTurbineInputMap map function parses Tuple3 out of the string message. Additionally, the AverageMap map and AverageReducer reduce functions process messages to accumulate and transform data.

public static class WindTurbineInputMap implements MapFunction<String, Tuple3<String, Integer, Integer>> {
   @Override
   public Tuple3<String, Integer, Integer> map(String value) throws Exception {
      String eventName = JsonPath.read(value, "$.eventName");
      if(eventName.equals("REMOVE")) {
         return new Tuple3<>("", 0, 0);
      }
      String turbineID = JsonPath.read(value, "$.dynamodb.NewImage.deviceID.S");
      Integer speed = Integer.parseInt(JsonPath.read(value, "$.dynamodb.NewImage.value.N"));
      return new Tuple3<>(turbineID, speed, 1);
   }
}

public static class AverageMap implements MapFunction<Tuple3<String, Integer, Integer>, Tuple2<String, Integer>> {
   @Override
   public Tuple2<String, Integer> map(Tuple3<String, Integer, Integer> value) throws Exception {
      return new Tuple2<>(value.f0, (value.f1 / value.f2));
   }
}

public static class AverageReducer implements ReduceFunction<Tuple3<String, Integer, Integer>> {
   @Override
   public Tuple3<String, Integer, Integer> reduce(Tuple3<String, Integer, Integer> value1, Tuple3<String, Integer, Integer> value2) {
      return new Tuple3<>(value1.f0, value1.f1 + value2.f1, value1.f2 + 1);
   }
}

Receiving email notifications of high wind speed

The following screenshot shows an example of the notification email you will receive about high wind speeds.

The following screenshot shows an example of the notification email you will receive about high wind speeds.

To test the feature, in this section you generate high wind speed data from the simulator, which is stored in DynamoDB, and get an email notification when the average wind speed is greater than 60 mph for a one-minute period. You’ll observe wind data flowing through the data stream and Data Analytics for Flink.

To test this feature:

  1. Generate wind speed data in the simulator and confirm that it’s stored in DynamoDB.
  2. In the Kinesis Data Streams console, choose the input data stream, kds-ddb-blog-InputKinesisStream.
  3. On the Monitoring tab of the stream, you can observe the Get records – sum (Count) metrics, which show multiple records captured by the data stream automatically.
  4. In the Kinesis Data Analytics console, choose the Data Analytics for Flink application, kds-ddb-blog-windTurbineAggregator.
  5. On the Monitoring tab, you can see the Last Checkpoint metrics, which show multiple records captured by the Data Analytics for Flink app automatically.
  6. In the Kinesis Data Streams console, choose the output stream, kds-ddb-blog-OutputKinesisStream.
  7. On the Monitoring tab, you can see the Get records – sum (Count) metrics, which show multiple records output by the app.
  8. Finally, check your email for a notification.

If you don’t see a notification, change the data simulator value range between a minimum of 50 mph and maximum of 90 mph and wait a few minutes.

Conclusion

As you have learned in this post, you can build an end-to-end serverless analytics pipeline to get real-time insights from DynamoDB by using Kinesis Data Streams—all without writing any complex code. This allows your team to focus on solving business problems by getting useful insights immediately. IoT and application development have a variety of use cases for moving data quickly through an analytics pipeline, and you can make this happen by enabling Kinesis Data Streams for DynamoDB.

If this blog post helps you or inspires you to solve a problem, we would love to hear about it! The code for this solution is available in the GitHub repository for you to use and extend. Contributions are always welcome!


About the Authors

Saurabh Shrivastava is a solutions architect leader and analytics/machine learning specialist working with global systems integrators. He works with AWS partners and customers to provide them with architectural guidance for building scalable architecture in hybrid and AWS environments. He enjoys spending time with his family outdoors and traveling to new destinations to discover new cultures.

 

 

Sameer Goel is a solutions architect in Seattle who drives customers’ success by building prototypes on cutting-edge initiatives. Prior to joining AWS, Sameer graduated with a Master’s degree with a Data Science concentration from NEU Boston. He enjoys building and experimenting with creative projects and applications.

 

 

Pratik Patel is a senior technical account manager and streaming analytics specialist. He works with AWS customers and provides ongoing support and technical guidance to help plan and build solutions by using best practices, and proactively helps keep customers’ AWS environments operationally healthy.

Real-Time In-Stream Inference with AWS Kinesis, SageMaker & Apache Flink

Post Syndicated from Shawn Sachdev original https://aws.amazon.com/blogs/architecture/realtime-in-stream-inference-kinesis-sagemaker-flink/

As businesses race to digitally transform, the challenge is to cope with the amount of data, and the value of that data diminishes over time. The challenge is to analyze, learn, and infer from real-time data to predict future states, as well as to detect anomalies and get accurate results. In this blog post, we’ll explain the architecture for a solution that can achieve real-time inference on streaming data. We’ll also cover the integration of Amazon Kinesis Data Analytics (KDA) with Apache Flink to asynchronously invoke any underlying services (or databases).

Managed real-time in-stream data inference is quite a mouthful; let’s break it up:

  • In-stream data refers to the capability of processing a data stream that collects, processes, and analyzes data.
  • Real-time inference refers to the ability to use data from the feed to project future state for the underlying data.

Consider a streaming application that captures credit card transactions along with the other parameters (such as source IP to capture the geographic details of the transaction as well as the  amount). This data can then be used to be used to infer fraudulent transactions instantaneously. Compare that to a traditional batch-oriented approach that identifies fraudulent transactions at the end of every business day and generates a report when it’s too late, after bad actors have already committed fraud.

Architecture overview

In this post, we discuss how you can use Amazon Kinesis Data Analytics for Apache Flink (KDA), Amazon SageMaker, Apache Flink, and Amazon API Gateway to address the challenges such as real-time fraud detection on a stream of credit card transaction data. We explore how to build a managed, reliable, scalable, and highly available streaming architecture based on managed services that substantially reduce the operational overhead compared to a self-managed environment. Our particular focus is on how to prepare and run Flink applications with KDA for Apache Flink applications.

The following diagram illustrates this architecture:

Run Apache Flink applications with KDA for Apache Flink applications

In above architecture, data is ingested in AWS Kinesis Data Streams (KDS) using Amazon Kinesis Producer Library (KPL), and you can use any ingestion patterns supported by KDS. KDS then streams the data to an Apache Flink-based KDA application. KDA manages the required infrastructure for Flink, scales the application in response to changing traffic patterns, and automatically recovers from underlying failures. The Flink application is configured to call an API Gateway endpoint using Asynchronous I/O. Residing behind the API Gateway is an AWS SageMaker endpoint, but any endpoints can be used based on your data enrichment needs. Flink distributes the data across one or more stream partitions, and user-defined operators can transform the data stream.

Let’s talk about some of the key pieces of this architecture.

What is Apache Flink?

Apache Flink is an open source distributed processing framework that is tailored to stateful computations over unbounded and bounded datasets. The architecture uses KDA with Apache Flink to run in-stream analytics and uses Asynchronous I/O operator to interact with external systems.

KDA and Apache Flink

KDA for Apache Flink is a fully managed AWS service that enables you to use an Apache Flink application to process streaming data. With KDA for Apache Flink, you can use Java or Scala to process and analyze streaming data. The service enables you to author and run code against streaming sources. KDA provides the underlying infrastructure for your Flink applications. It handles core capabilities like provisioning compute resources, parallel computation, automatic scaling, and application backups (implemented as checkpoints and snapshots).

Flink Asynchronous I/O Operator

Flink Asynchronous I/O Operator

Flink’s Asynchronous I/O operator allows you to use asynchronous request clients for external systems to enrich stream events or perform computation. Asynchronous interaction with the external system means that a single parallel function instance can handle multiple requests and receive the responses concurrently. In most cases this leads to higher streaming throughput. Asynchronous I/O API integrates well with data streams, and handles order, event time, fault tolerance, etc. You can configure this operator to call external sources like databases and APIs. The architecture pattern explained in this post is configured to call API Gateway integrated with SageMaker endpoints.

Please refer code at kda-flink-ml, a sample Flink application with implementation of Asynchronous I/O operator to call an external Sagemaker endpoint via API Gateway. Below is the snippet of code of StreamingJob.java from sample Flink application.

DataStream<HttpResponse<RideRequest>> predictFareResponse =
            // Asynchronously call predictFare Endpoint
            AsyncDataStream.unorderedWait(
                predictFareRequests,
                new Sig4SignedHttpRequestAsyncFunction<>(predictFareEndpoint, apiKeyHeader),
                30, TimeUnit.SECONDS, 20
            )
            .returns(newTypeHint<HttpResponse<RideRequest>() {});

The operator code above requires following inputs:

  1. An input data stream
  2. An implementation of AsyncFunction that dispatches the requests to the external system
  3. Timeout, which defines how long an asynchronous request may take before it considered failed
  4. Capacity, which defines how many asynchronous requests may be in progress at the same time

How Amazon SageMaker fits into this puzzle

In our architecture we are proposing a SageMaker endpoint for inferencing that is invoked via API Gateway, which can detect fraudulent transactions.

Amazon SageMaker is a fully managed service that provides every developer and data scientist with the ability to build, train, and deploy machine learning (ML) models quickly. SageMaker removes the heavy lifting from each step of the machine learning process to make it easier to build and develop high quality models. You can use these trained models in an ingestion pipeline to make real-time inferences.

You can set up persistent endpoints to get predictions from your models that are deployed on SageMaker hosting services. For an overview on deploying a single model or multiple models with SageMaker hosting services, see Deploy a Model on SageMaker Hosting Services.

Ready for a test drive

To help you get started, we would like to introduce an AWS Solution: AWS Streaming Data Solution for Amazon Kinesis (Option 4) that is available as a single-click cloud formation template to assist you in quickly provisioning resources to get your real-time in-stream inference pipeline up and running in a few minutes. In this solution we leverage AWS Lambda, but that can be switched with a SageMaker endpoint to achieve the architecture discussed earlier in this post. You can also leverage the pre-built AWS Solutions Construct, which implements an Amazon API Gateway connected to an Amazon SageMaker endpoint pattern that can replace AWS Lambda in the below solution. See the implementation guide for this solution.

The following diagram illustrates the architecture for the solution:

architecture for the solution

Conclusion

In this post we explained the architecture to build a managed, reliable, scalable, and highly available application that is capable of real-time inferencing on a data stream. The architecture was built using KDS, KDA for Apache Flink, Apache Flink, and Amazon SageMaker. The architecture also illustrates how you can use managed services so that you don’t need to spend time provisioning, configuring, and managing the underlying infrastructure. Instead, you can spend your time creating insights and inference from your data.

We also talked about the AWS Streaming Data Solution for Amazon Kinesis, which is an AWS vetted solution that provides implementations for applications you can automatically deploy directly into your AWS account. The solution automatically configures the AWS services necessary to easily capture, store, process, and infer from streaming data.

Unified serverless streaming ETL architecture with Amazon Kinesis Data Analytics

Post Syndicated from Ram Vittal original https://aws.amazon.com/blogs/big-data/unified-serverless-streaming-etl-architecture-with-amazon-kinesis-data-analytics/

Businesses across the world are seeing a massive influx of data at an enormous pace through multiple channels. With the advent of cloud computing, many companies are realizing the benefits of getting their data into the cloud to gain meaningful insights and save costs on data processing and storage. As businesses embark on their journey towards cloud solutions, they often come across challenges involving building serverless, streaming, real-time ETL (extract, transform, load) architecture that enables them to extract events from multiple streaming sources, correlate those streaming events, perform enrichments, run streaming analytics, and build data lakes from streaming events.

In this post, we discuss the concept of unified streaming ETL architecture using a generic serverless streaming architecture with Amazon Kinesis Data Analytics at the heart of the architecture for event correlation and enrichments. This solution can address a variety of streaming use cases with various input sources and output destinations. We then walk through a specific implementation of the generic serverless unified streaming architecture that you can deploy into your own AWS account for experimenting and evolving this architecture to address your business challenges.

Overview of solution

As data sources grow in volume, variety, and velocity, the management of data and event correlation become more challenging. Most of the challenges stem from data silos, in which different teams and applications manage data and events using their own tools and processes.

Modern businesses need a single, unified view of the data environment to get meaningful insights through streaming multi-joins, such as the correlation of sensory events and time-series data. Event correlation plays a vital role in automatically reducing noise and allowing the team to focus on those issues that really matter to the business objectives.

To realize this outcome, the solution proposes creating a three-stage architecture:

  • Ingestion
  • Processing
  • Analysis and visualization

The source can be a varied set of inputs comprising structured datasets like databases or raw data feeds like sensor data that can be ingested as single or multiple parallel streams. The solution envisions multiple hybrid data sources as well. After it’s ingested, the data is divided into single or multiple data streams depending on the use case and passed through a preprocessor (via an AWS Lambda function). This highly customizable processor transforms and cleanses data to be processed through analytics application. Furthermore, the architecture allows you to enrich data or validate it against standard sets of reference data, for example validating against postal codes for address data received from the source to verify its accuracy. After the data is processed, it’s sent to various sink platforms depending on your preferences, which could range from storage solutions to visualization solutions, or even stored as a dataset in a high-performance database.

The solution is designed with flexibility as a key tenant to address multiple, real-world use cases. The following diagram illustrates the solution architecture.

The architecture has the following workflow:

  1. We use AWS Database Migration Service (AWS DMS) to push records from the data source into AWS in real time or batch. For our use case, we use AWS DMS to fetch records from an on-premises relational database.
  2. AWS DMS writes records to Amazon Kinesis Data Streams. The data is split into multiple streams as necessitated through the channels.
  3. A Lambda function picks up the data stream records and preprocesses them (adding the record type). This is an optional step, depending on your use case.
  4. Processed records are sent to the Kinesis Data Analytics application for querying and correlating in-application streams, taking into account Amazon Simple Storage Service (Amazon S3) reference data for enrichment.

Solution walkthrough

For this post, we demonstrate an implementation of the unified streaming ETL architecture using Amazon RDS for MySQL as the data source and Amazon DynamoDB as the target. We use a simple order service data model that comprises orders, items, and products, where an order can have multiple items and the product is linked to an item in a reference relationship that provides detail about the item, such as description and price.

We implement a streaming serverless data pipeline that ingests orders and items as they are recorded in the source system into Kinesis Data Streams via AWS DMS. We build a Kinesis Data Analytics application that correlates orders and items along with reference product information and creates a unified and enriched record. Kinesis Data Analytics outputs output this unified and enriched data to Kinesis Data Streams. A Lambda function consumer processes the data stream and writes the unified and enriched data to DynamoDB.

To launch this solution in your AWS account, use the GitHub repo.

Prerequisites

Before you get started, make sure you have the following prerequisites:

Setting up AWS resources in your account

To set up your resources for this walkthrough, complete the following steps:

  1. Set up the AWS CDK for Java on your local workstation. For instructions, see Getting Started with the AWS CDK.
  2. Install Maven binaries for Java if you don’t have Maven installed already.
  3. If this is the first installation of the AWS CDK, make sure to run cdk bootstrap.
  4. Clone the following GitHub repo.
  5. Navigate to the project root folder and run the following commands to build and deploy:
    1. mvn compile
    2. cdk deploy UnifiedStreamETLCommonStack UnifiedStreamETLDataStack UnifiedStreamETLProcessStack

Setting up the orders data model for CDC

In this next step, you set up the orders data model for change data capture (CDC).

  1. On the Amazon Relational Database Service (Amazon RDS) console, choose Databases.
  2. Choose your database and make sure that you can connect to it securely for testing using bastion host or other mechanisms (not detailed in scope of this post).
  3. Start MySQL Workbench and connect to your database using your DB endpoint and credentials.
  4. To create the data model in your Amazon RDS for MySQL database, run orderdb-setup.sql.
  5. On the AWS DMS console, test the connections to your source and target endpoints.
  6. Choose Database migration tasks.
  7. Choose your AWS DMS task and choose Table statistics.
  8. To update your table statistics, restart the migration task (with full load) for replication.
  9. From your MySQL Workbench session, run orders-data-setup.sql to create orders and items.
  10. Verify that CDC is working by checking the Table statistics

Setting up your Kinesis Data Analytics application

To set up your Kinesis Data Analytics application, complete the following steps:

  1. Upload the product reference products.json to your S3 bucket with the logical ID prefix unifiedBucketId (which was previously created by cdk deploy).

You can now create a Kinesis Data Analytics application and map the resources to the data fields.

  1. On the Amazon Kinesis console, choose Analytics Application.
  2. Choose Create application.
  3. For Runtime, choose SQL.
  4. Connect the streaming data created using the AWS CDK as a unified order stream.
  5. Choose Discover schema and wait for it to discover the schema for the unified order stream. If discovery fails, update the records on the source Amazon RDS tables and send streaming CDC records.
  6. Save and move to the next step.
  7. Connect the reference S3 bucket you created with the AWS CDK and uploaded with the reference data.
  8. Input the following:
    1. “products.json” on the path to the S3 object
    2. Products on the in-application reference table name
  9. Discover the schema, then save and close.
  10. Choose SQL Editor and start the Kinesis Data Analytics application.
  11. Edit the schema for SOURCE_SQL_STREAM_001 and map the data resources as follows:
Column NameColumn TypeRow Path
orderIdINTEGER$.data.orderId
itemIdINTEGER$.data.orderId
itemQuantityINTEGER$.data.itemQuantity
itemAmountREAL$.data.itemAmount
itemStatusVARCHAR$.data.itemStatus
COL_timestampVARCHAR$.metadata.timestamp
recordTypeVARCHAR$.metadata.table-name
operationVARCHAR$.metadata.operation
partitionkeytypeVARCHAR$.metadata.partition-key-type
schemanameVARCHAR$.metadata.schema-name
tablenameVARCHAR$.metadata.table-name
transactionidBIGINT$.metadata.transaction-id
orderAmountDOUBLE$.data.orderAmount
orderStatusVARCHAR$.data.orderStatus
orderDateTimeTIMESTAMP$.data.orderDateTime
shipToNameVARCHAR$.data.shipToName
shipToAddressVARCHAR$.data.shipToAddress
shipToCityVARCHAR$.data.shipToCity
shipToStateVARCHAR$.data.shipToState
shipToZipVARCHAR$.data.shipToZip

 

  1. Choose Save schema and update stream samples.

When it’s complete, verify for 1 minute that nothing is in the error stream. If an error occurs, check that you defined the schema correctly.

  1. On your Kinesis Data Analytics application, choose your application and choose Real-time analytics.
  2. Go to the SQL results and run kda-orders-setup.sql to create in-application streams.
  3. From the application, choose Connect to destination.
  4. For Kinesis data stream, choose unifiedOrderEnrichedStream.
  5. For In-application stream, choose ORDER_ITEM_ENRICHED_STREAM.
  6. Choose Save and Continue.

Testing the unified streaming ETL architecture

You’re now ready to test your architecture.

  1. Navigate to your Kinesis Data Analytics application.
  2. Choose your app and choose Real-time analytics.
  3. Go to the SQL results and choose Real-time analytics.
  4. Choose the in-application stream ORDER_ITEM_ENRCIHED_STREAM to see the results of the real-time join of records from the order and order item streaming Kinesis events.
  5. On the Lambda console, search for UnifiedStreamETLProcess.
  6. Choose the function and choose Monitoring, Recent invocations.
  7. Verify the Lambda function run results.
  8. On the DynamoDB console, choose the OrderEnriched table.
  9. Verify the unified and enriched records that combine order, item, and product records.

The following screenshot shows the OrderEnriched table.

Operational aspects

When you’re ready to operationalize this architecture for your workloads, you need to consider several aspects:

  • Monitoring metrics for Kinesis Data Streams: GetRecords.IteratorAgeMilliseconds, ReadProvisionedThroughputExceeded, and WriteProvisionedThroughputExceeded
  • Monitoring metrics available for the Lambda function, including but not limited to Duration, IteratorAge, Error count and success rate (%), Concurrent executions, and Throttles
  • Monitoring metrics for Kinesis Data Analytics (millisBehindLatest)
  • Monitoring DynamoDB provisioned read and write capacity units
  • Using the DynamoDB automatic scaling feature to automatically manage throughput

We used the solution architecture with the following configuration settings to evaluate the operational performance:

  • Kinesis OrdersStream with two shards and Kinesis OrdersEnrichedStream with two shards
  • The Lambda function code does asynchronous processing with Kinesis OrdersEnrichedStream records in concurrent batches of five, with batch size as 500
  • DynamoDB provisioned WCU is 3000, RCU is 300

We observed the following results:

  • 100,000 order items are enriched with order event data and product reference data and persisted to DynamoDB
  • An average of 900 milliseconds latency from the time of event ingestion to the Kinesis pipeline to when the record landed in DynamoDB

The following screenshot shows the visualizations of these metrics.

Cleaning up

To avoid incurring future charges, delete the resources you created as part of this post (the AWS CDK provisioned AWS CloudFormation stacks).

Conclusion

In this post, we designed a unified streaming architecture that extracts events from multiple streaming sources, correlates and performs enrichments on events, and persists those events to destinations. We then reviewed a use case and walked through the code for ingesting, correlating, and consuming real-time streaming data with Amazon Kinesis, using Amazon RDS for MySQL as the source and DynamoDB as the target.

Managing an ETL pipeline through Kinesis Data Analytics provides a cost-effective unified solution to real-time and batch database migrations using common technical knowledge skills like SQL querying.


About the Authors

Ram Vittal is an enterprise solutions architect at AWS. His current focus is to help enterprise customers with their cloud adoption and optimization journey to improve their business outcomes. In his spare time, he enjoys tennis, photography, and movies.

 

 

 

 

Akash Bhatia is a Sr. solutions architect at AWS. His current focus is helping customers achieve their business outcomes through architecting and implementing innovative and resilient solutions at scale.

 

 

Automatically updating AWS WAF Rule in real time using Amazon EventBridge

Post Syndicated from Adam Cerini original https://aws.amazon.com/blogs/security/automatically-updating-aws-waf-rule-in-real-time-using-amazon-eventbridge/

In this post, I demonstrate a method for collecting and sharing threat intelligence between Amazon Web Services (AWS) accounts by using AWS WAF, Amazon Kinesis Data Analytics, and Amazon EventBridge. AWS WAF helps protect against common web exploits and gives you control over which traffic can reach your application.

Attempted exploitation blocked by AWS WAF provides a data source on potential attackers that can be shared proactively across AWS accounts. This solution can be an effective way to block traffic known to be malicious across accounts and public endpoints. AWS WAF managed rules provide an easy way to mitigate and record the details of common web exploit attempts. This solution will use the Admin protection managed rule for demonstration purposes.

In this post you will see references to the Sender account and the Receiver account. There is only one receiver in this example, but the receiving process can be duplicated multiple times across multiple accounts. This post walks through how to set up the solution. You’ll notice there is also an AWS CloudFormation template that makes it easy to test the solution in your own AWS account. The diagram in figure 1 illustrates how this architecture fits together at a high level.
 

Figure 1: Architecture diagram showing the activity flow of traffic blocked on the Sender AWS WAF

Figure 1: Architecture diagram showing the activity flow of traffic blocked on the Sender AWS WAF

Prerequisites

You should know how to do the following tasks:

Extracting threat intelligence

AWS WAF logs using a Kinesis Data Firehose delivery stream. This allows you to not only log to a destination S3 bucket, but also act on the stream in real time using a Kinesis Data Analytics Application. The following SQL code demonstrates how to extract any unique IP addresses that have been blocked by AWS WAF. While this example returns all blocked IPs, more complex SQL could be used for a more granular result. The full list of log fields is included in the documentation.


CREATE OR REPLACE STREAM "wafstream" (
 "clientIp" VARCHAR(16),
 "action" VARCHAR(8),
 "time_stamp" TIMESTAMP
 );

CREATE OR REPLACE PUMP "WAFPUMP" as
INSERT INTO "wafstream" (
"clientIp",
"action",
"time_stamp"
) 

Select STREAM DISTINCT "clientIp", "action", FLOOR(WAF_001.ROWTIME TO MINUTE) as "time_stamp"
FROM "WAF_001"
WHERE "action" = 'BLOCK';

Proactively blocking unwanted traffic

After extracting the IP addresses involved in the abnormal traffic, you will want to proactively block those IPs on your other web facing resources. You can accomplish this in a scalable way using Amazon EventBridge. After the Kinesis Application extracts the IP address, it will use an AWS Lambda function to call PutEvents on an EventBridge event bus. This process will create the event pattern, which is used to determine when to trigger an event bus rule. This example uses a simple pattern, which acts on any event with a source of “custom.waflogs” as shown in Figure 2. A more complex pattern could be used to for finer grain control of when a rule triggers.
 

Figure 2: EventBridge Rule creation

Figure 2: EventBridge Rule creation

Once the event reaches the event bus, the rule will forward the event to an event bus in “Receiver” account, where a second rule will trigger to call a Lambda function to update a WAF IPSet. A Web ACL rule is used to block all traffic sourcing from an IP address contained in the IPSet.

Test the solution by using AWS CloudFormation

Now that you’ve walked through the design of this solution, you can follow these instructions to test it in your own AWS account by using CloudFormation stacks.

To deploy using CloudFormation

  1. Launch the stack to provision resources in the Receiver account.
  2. Provide the account ID of the Sender account. This will correctly configure the permissions for the EventBridge event bus.
  3. Wait for the stack to complete, and then capture the event bus ARN from the output tab.

    This stack creates the following resources:

    • An AWS WAF v2 web ACL
    • An IPSet which will be used to contain the IP addresses to block
    • An AWS WAF rule that will block IP addresses contained in the IPSet
    • A Lambda function to update the IPSet
    • An IAM policy and execution role for the Lambda function
    • An event bus
    • An event bus rule that will trigger the Lambda function
  4. Switch to the Sender account. This should be the account you used in step 2 of this procedure.
  5. Provide the ARN of the event bus that was captured in step 3. This stack will provision the following resources in your account:
    • A virtual private cloud (VPC) with public and private subnets
    • Route tables for the VPC resources
    • An Application Load Balancer (ALB) with a fixed response rule
    • A security group that allows ingress traffic on port 80 to the ALB
    • A web ACL with the AWS Managed Rule for Admin Protection enabled
    • An S3 bucket for AWS WAF logs
    • A Kinesis Data Firehose delivery stream
    • A Kinesis Data Analytics application
    • An EventBridge event bus
    • An event bus rule
    • A Lambda function to send information to the Receiver account event bus
    • A custom CloudFormation resource which enables WAF logging and starts the Kinesis Application
    • An IAM policy and execution role that allows a Lamba function to put events into the event bus
    • An IAM policy and role to allow the custom CloudFormation resource to enable WAF logging and start the Kinesis Application
    • An IAM policy and role that allows the Kinesis Firehose to put logs into S3
    • An IAM policy that allows the WAF Web ACL to put records into the Firehose
    • An IAM policy and role that allows the Kinesis Application to invoke a Lambda function and log to CloudWatch
    • An IAM policy and role that allows the “Sender” account to put events in the “Receiver” event bus

After the CloudFormation stack completes, you should test your environment. To test the solution, check the output tab for the DNS name of the Application Load Balancer and run the following command:

curl ALBDNSname/admin

You should be able to check the Receiver account’s AWS WAF IPSet named WAFBlockIPset and find your IP.

Conclusion

This example is intentionally simple to clearly demonstrate how each component works. You can take these principles and apply them to your own environment. Layering the Amazon managed rules with your own custom rules is the best way to get started with AWS WAF. This example shows how you can use automation to update your WAF rules without needing to rely on humans. A more complete solution would source log data from each Web ACL and update an active IP Set in each account to protect all resources. As seen in Figure 3, a more complete implementation would send all logs in a region to a centralized Kinesis Firehose to be processed by the Kinesis Analytics Application, EventBridge would be used to update a local IPset as well as forward the event to other accounts event buses for processing.
 

Figure 3: Updating across accounts

Figure 3: Updating across accounts

You can also add additional targets to the event bus to do things such as send to a Simple Notification Service topic for notifications, or run additional automation. To learn more about AWS WAF web ACLs, visit the AWS WAF Developer Guide. Using Amazon EventBridge opens up the possibility to send events to partner integrations. Customers or APN Partners like PagerDuty or Zendesk can enrich this solution by taking actions such as automatically opening a ticket or starting an incident. To learn more about the power of Amazon EventBridge, see the EventBridge User Guide.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on the AWS WAF forum or contact AWS Support.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Adam Cerini

Adam is a Senior Solutions Architect with Amazon Web Services. He focuses on helping Public Sector customers architect scalable, secure, and cost effective systems. Adam holds 5 AWS certifications including AWS Certified Solutions Architect – Professional and AWS Certified Security – Specialist.

Enhanced monitoring and automatic scaling for Apache Flink

Post Syndicated from Karthi Thyagarajan original https://aws.amazon.com/blogs/big-data/enhanced-monitoring-and-automatic-scaling-for-apache-flink/

Thousands of developers use Apache Flink to build streaming applications to transform and analyze data in real time. Apache Flink is an open-source framework and engine for processing data streams. It’s highly available and scalable, delivering high throughput and low latency for the most demanding stream-processing applications. Monitoring and scaling your applications is critical to keep your applications running successfully in a production environment.

Amazon Kinesis Data Analytics reduces the complexity of building and managing Apache Flink applications. Amazon Kinesis Data Analytics manages the underlying Apache Flink components that provide durable application state, metrics and logs, and more. Kinesis Data Analytics recently announced new Amazon CloudWatch metrics and the ability to create custom metrics to provide greater visibility into your application.

In this post, we show you how to easily monitor and automatically scale your Apache Flink applications with Amazon Kinesis Data Analytics. We walk through three examples. First, we create a custom metric in the Kinesis Data Analytics for Apache Flink application code. Second, we use application metrics to automatically scale the application. Finally, we share a CloudWatch dashboard for monitoring your application and recommend metrics that you can alarm on.

Custom metrics

Kinesis Data Analytics uses Apache Flink’s metrics system to send custom metrics to CloudWatch from your applications. For more information, see Using Custom Metrics with Amazon Kinesis Data Analytics for Apache Flink.

We use a basic word count program to illustrate the use of custom metrics. The following code shows how to extend RichFlatMapFunction to track the number of words it sees. This word count is then surfaced via the Flink metrics API.

private static final class Tokenizer extends RichFlatMapFunction<String, Tuple2<String, Integer>> {
     
            private transient Counter counter;
     
            @Override
            public void open(Configuration config) {
                this.counter = getRuntimeContext().getMetricGroup()
                        .addGroup("kinesisanalytics")
                        .addGroup("Service", "WordCountApplication")
                        .addGroup("Tokenizer")
                        .counter("TotalWords");
            }
     
            @Override
            public void flatMap(String value, Collector<Tuple2<String, Integer>>out) {
                // normalize and split the line
                String[] tokens = value.toLowerCase().split("\\W+");
     
                // emit the pairs
                for (String token : tokens) {
                    if (token.length() > 0) {
                        counter.inc();
                        out.collect(new Tuple2<>(token, 1));
                    }
                }
            }
        }

Custom metrics emitted through the Flink metrics API are forwarded to CloudWatch metrics by Kinesis Data Analytics for Apache Flink. The following screenshot shows the word count metric in CloudWatch.

Custom automatic scaling

This section describes how to implement an automatic scaling solution for Kinesis Data Analytics for Apache Flink based on CloudWatch metrics. You can configure Kinesis Data Analytics for Apache Flink to perform CPU-based automatic scaling. However, you can automatically scale your application based on something other than CPU utilization. To perform custom automatic scaling, use Application Auto Scaling with the appropriate metric.

For applications that read from a Kinesis stream source, you can use the metric millisBehindLatest. This captures how far behind your application is from the head of the stream.

A target tracking policy is one of two scaling policy types offered by Application Auto Scaling. You can specify a threshold value around which to vary the degree of parallelism of your Kinesis Data Analytics application. The following sample code on GitHub configures Application Auto Scaling when millisBehindLatest for the consuming application exceeds 1 minute. This increases the parallelism, which increases the number of KPUs.

The following diagram shows how Application Auto Scaling, used with Amazon API Gateway and AWS Lambda, scales a Kinesis Data Analytics application in response to a CloudWatch alarm.

The sample code includes examples for automatic scaling based on the target tracking policy and step scaling policy.

Automatic scaling solution components

The following is a list of key components used in the automatic scaling solution. You can find these components in the AWS CloudFormation template in the GitHub repo accompanying this post.

  • Application Auto Scaling scalable target – A scalable target is a resource that Application Auto Scaling can scale in and out. It’s uniquely identified by the combination of resource ID, scalable dimension, and namespace. For more information, see RegisterScalableTarget.
  • Scaling policy – The scaling policy defines how your scalable target should scale. As described in the PutScalingPolicy, Application Auto Scaling supports two policy types: TargetTrackingScaling and StepScaling. In addition, you can configure a scheduled scaling action using Application Auto Scaling. If you specify TargetTrackingScaling, Application Auto Scaling also creates corresponding CloudWatch alarms for you.
  • API Gateway – Because the scalable target is a custom resource, we have to specify an API endpoint. Application Auto Scaling invokes this to perform scaling and get information about the current state of our scalable resource. We use an API Gateway and Lambda function to implement this endpoint.
  • Lambda – API Gateway invokes the Lambda function. This is called by Application Auto Scaling to perform the scaling actions. It also fetches information such as current scale value and returns information requested by Application Auto Scaling.

Additionally, you should be aware of the following:

  • When scaling out or in, this sample only updates the overall parallelism. It doesn’t adjust parallelism or KPU.
  • When scaling occurs, the Kinesis Data Analytics application experiences downtime.
  • The throughput of a Flink application depends on many factors, such as complexity of processing and destination throughput. The step-scaling example assumes a relationship between incoming record throughput and scaling. The millisBehindLatest metric used for target tracking automatic scaling works the same way.
  • We recommend using the default scaling policy provided by Kinesis Data Analytics for CPU-based scaling, the target tracking auto scaling policy for the millisBehindLatest metric, and a step scaling auto scaling policy for a metric such as numRecordsInPerSecond. However, you can use any automatic scaling policy for the metric you choose.

CloudWatch operational dashboard

Customers often ask us about best practices and the operational aspects of Kinesis Data Analytics for Apache Flink. We created a CloudWatch dashboard that captures the key metrics to monitor. We categorize the most common metrics in this dashboard with the recommended statistics for each metric.

This GitHub repo contains a CloudFormation template to deploy the dashboard for any Kinesis Data Analytics for Apache Flink application. You can also deploy a demo application with the dashboard. The dashboard includes the following:

  • Application health metrics:
    • Use uptime to see how long the job has been running without interruption and downtime to determine if a job failed to run. Non-zero downtime can indicate issues with your application.
    • Higher-than-normal job restarts can indicate an unhealthy application.
    • Checkpoint information size, duration, and number of failed checkpoints can help you understand application health and progress. Increasing checkpoint duration values can signify application health problems like backpressure and the inability to keep up with input data. Increasing checkpoint size over time can point to an infinitely growing state that can lead to out-of-memory errors.
  • Resource utilization metrics:
    • You can check the CPU and heap memory utilization along with the thread count. You can also check the garbage collection time taken across all Flink task managers.
  • Flink application progress metrics:
    • numRecordsInPerSecond and numRecordsOutPerSecond show the number of records accepted and emitted per second.
    • numLateRecordsDropped shows the number of records this operator or task has dropped due to arriving late.
    • Input and output watermarks are valid only when using event time semantics. You can use the difference between these two values to calculate event time latency.
  • Source metrics:
    • The Kinesis Data Streams-specific metric millisBehindLatest shows that the consumer is behind the head of the stream, indicating how far behind current time the consumer is. We used this metric to demonstrate Application Auto Scaling earlier in this post.
    • The Kafka-specific metric recordsLagMax shows the maximum lag in terms of number of records for any partition in this window.

The dashboard contains useful metrics to gauge the operational health of a Flink application. You can modify the threshold, configure additional alarms, and add other system or custom metrics to customize the dashboard for your use. The following screenshot shows a section of the dashboard.

Summary

In this post, we covered how to use the enhanced monitoring features for Kinesis Data Analytics for Apache Flink applications. We created custom metrics for an Apache Flink application within application code and emitted it to CloudWatch. We also used Application Auto Scaling to scale an application. Finally, we shared a CloudWatch dashboard to monitor the operational health of Kinesis Data Analytics for Apache Flink applications. For more information about using Kinesis Data Analytics, see Getting Started with Amazon Kinesis Data Analytics.


About the Authors

Karthi Thyagarajan is a Principal Solutions Architect on the Amazon Kinesis team.

 

 

 

 

Deepthi Mohan is a Sr. TPM on the Amazon Kinesis Data Analytics team.

ICYMI: Season one of Sessions with SAM

Post Syndicated from Eric Johnson original https://aws.amazon.com/blogs/compute/icymi-season-one-of-sessions-with-sam/

Developers tell us they want to know how to easily build and manage their serverless applications. In 2017 AWS announced AWS Serverless Application Model (SAM) to help with just that. To help developers learn more about SAM, I created a weekly Twitch series called Sessions with SAM. Each session focuses on a specific serverless task or service. It demonstrates deploying and managing that task using infrastructure as code (IaC) with SAM templates. This post recaps each session of the first season to prepare you for Sessions with SAM season two, starting August 13.

Sessions with SAM

Sessions with SAM

What is SAM

AWS SAM is an open source framework designed for building serverless applications. The framework provides shorthand syntax to quickly declare AWS Lambda functions, Amazon DynamoDB tables and more. Additionally, SAM is not limited to serverless resources and can also declare any standard AWS CloudFormation resource. With around 20 lines of code, a developer can create an application with an API, logic, and database layer with the proper permissions in place.

Example of using SAM templates to generate infrastructure

20 Lines of code

By using infrastructure as code to manage and deploy serverless applications, developers gain several advantages. You can version the templates and rollback when necessary. They can be parameterized for flexibility across multiple environments. They can be shared with development teams for consistency across developer environments.

Sessions

The code and linked videos are listed with the session. See the YouTube playlist and GitHub repository for the entire season.

Session one: JWT authorizers on Amazon API Gateway

In this session, I cover building an application backend using JWT authorizers with the new Amazon API Gateway HTTP API. We also discussed building an application with multiple routes and the ability to change the authorization requirements per route.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/http-api

Video: https://youtu.be/klOScYEojzY

Session two: Amazon Cognito authentication

In this session, I cover building an Amazon Cognito template for authentication. This includes the user management component with user pools and user groups in addition to a hosted authentication workflow with an app client.

Building an Amazon Cognito authentication provider

Building an Amazon Cognito authentication provider

We also discussed using custom pre-token Lambda functions to modify the JWT token issued by Amazon Cognito. This custom token allows you to insert custom scopes based on the Amazon Cognito user groups. These custom scopes are then used to customize the authorization requirements for the individual routes.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/cognito

Video: https://youtu.be/nBtWCjKd72M

Session three: Building a translation app with Amazon EventBridge

I covered using AWS SAM to build a basic translation and sentiment app centered around Amazon EventBridge. The SAM template created three Lambda functions, a custom EventBridge bus, and an HTTP API endpoint.

Architecture for serverless translation application

Architecture for serverless translation application

Requests from HTTP API endpoint are put into the custom EventBridge bus via the endpoint Lambda function. Based on the type of request, either the translate function or the sentiment function is invoked. The AWS SAM template manages all the infrastructure in addition to the permissions to invoke the Lambda functions and access Amazon Translate and Amazon Comprehend.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/eventbridge

Video: https://youtu.be/73R02KufLac

Session four: Building an Amazon Kinesis Data Firehose for ingesting website access logs

In this session, I covered building an Amazon Kinesis Data Firehose for ingesting large amounts of data. This particular application is designed for access logs generated from API Gateway. The logs are first stored to an Amazon DynamoDB data base for immediate processing. Next, the logs are sent through a Kinesis Data Firehose and stored in an Amazon S3 bucket for later processing.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/kinesis-firehose

Video: https://youtu.be/jdTBtaxs0hA

Session five: Analyzing API Gateway logs with Amazon Kinesis Data Analytics

Continuing from session 4, I discussed configuring API Gateway access logs to use the Kinesis Data Firehose built in the previous session. I also demonstrate an Amazon Kinesis data analytics application for near-real-time analytics of your access logs.

Example of Kinesis Data Analytics in SAM

Example of Kinesis Data Analytics in SAM

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/kinesis-firehose

Video: https://youtu.be/ce0v-q9EVTQ

Session six: Managing Amazon SQS with AWS SAM templates

I demonstrated configuring an Amazon Simple Queue Service (SQS) queue and the queue policy to control access to the queue. We also discuss allowing cross-account and external resources to access the queue. I show how to identify the proper principal resources for building the proper AWS IAM policy templates.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/SQS

Video: https://youtu.be/q2rbHMyJBDY

Session seven: Creating canary deploys for Lambda functions

In this session, I cover canary and linear deployments for serverless applications. We discuss how canary releases compare to linear releases and how they can be customized. We also spend time discussing pre-traffic and post-traffic tests and how rollbacks are handled when one of these tests fails.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/safe-deploy

Video: https://youtu.be/RE4r_6edaXc

Session eight: Configuring custom domains for Amazon API Gateway endpoints

In session eight I configured custom domains for API Gateway REST and HTTP APIs. The demonstration included the option to pass in an Amazon Route 53 zone ID or AWS Certificate Manager (ACM) certificate ARN. If either of these are missing, then the template built a zone or SSL cert respectively.

Working with Amazon Route 53 zones

Working with Amazon Route 53 zones

We discussed how to use declarative and imperative methods in our templates. We also discussed how to use a single domain across multiple APIs, regardless of they are REST or HTTP APIs.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/custom-domains

Video: https://youtu.be/4uXEGNKU5NI

Session nine: Managing AWS Step Functions with AWS SAM

In this session I was joined by fellow Senior Developer Advocate, Rob Sutter. Rob and I demonstrated managing and deploying AWS Step Functions using the new Step Functions support built into SAM. We discussed how SAM offers definition substitutions to pass data from the template into the state machine configuration.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/step-functions

Video: https://youtu.be/BguUgdZwymQ

Session ten: Using Amazon EFS with Lambda functions in SAM

Joined by Senior Developer Advocate, James Beswick, we covered configuring Amazon Elastic File System (EFS) as a storage option for Lambda functions using AWS SAM. We discussed the Amazon VPC requirements in configuring for EFS. James also walked through using the AWS Command Line Interface (CLI) to aid in configuration of the VPC.

Code: https://github.com/aws-samples/aws-lambda-efs-samples

Video: https://youtu.be/up1op216trk

Session eleven: Ask the experts

This session introduced you to some of our SAM experts. Jeff Griffiths, Senior Product Manager, and Alex Woods, Software Development Engineer, joined me in answering live audience questions. WE discussed best practices for local development and debugging, Docker networking, CORS configurations, roadmap features and more.

SAM experts panel

SAM experts panel

Video: https://youtu.be/2JRa8MugPCY

Session twelve: Managing .Net Lambda function in AWS SAM and Stackery

In this final session of the season, I was joined by Stackery CTO and serverless hero, Chase Douglas. Chase demonstrated using Stackery and AWS SAM to build and deploy .Net Core Lambda functions. We discuss how Stackery’s editor allows developers to visually design a serverless application and how it uses SAM templates under the hood.

Stackery visual editor

Stackery visual editor

Code only examples

In addition to code examples with each video session, the repo includes developer-requested code examples. In this section, I demonstrate how to build an access log pipeline for HTTP API or use the SAM build command to compile Swift for Lambda functions.

Conclusion

Sessions with SAM helps developers bootstrap their serverless applications with instructional video and ready-made IaC templates. From JWT authorizers to EFS storage solutions, over 15 AWS services are represented in SAM templates. The first season of live videos supplements these templates with best practices explained and real developer questions answered.

Season two of Sessions with SAM starts August 13. The series will continue the pattern of explaining best practices, providing usable starter templates, and having some fun along the way.

#ServerlessForEveryone