Tag Archives: database

Announcing the Winners of the AWS Chatbot Challenge – Conversational, Intelligent Chatbots using Amazon Lex and AWS Lambda

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/announcing-the-winners-of-the-aws-chatbot-challenge-conversational-intelligent-chatbots-using-amazon-lex-and-aws-lambda/

A couple of months ago on the blog, I announced the AWS Chatbot Challenge in conjunction with Slack. The AWS Chatbot Challenge was an opportunity to build a unique chatbot that helped to solve a problem or that would add value for its prospective users. The mission was to build a conversational, natural language chatbot using Amazon Lex and leverage Lex’s integration with AWS Lambda to execute logic or data processing on the backend.

I know that you all have been anxiously waiting to hear announcements of who were the winners of the AWS Chatbot Challenge as much as I was. Well wait no longer, the winners of the AWS Chatbot Challenge have been decided.

May I have the Envelope Please? (The Trumpets sound)

The winners of the AWS Chatbot Challenge are:

  • First Place: BuildFax Counts by Joe Emison
  • Second Place: Hubsy by Andrew Riess, Andrew Puch, and John Wetzel
  • Third Place: PFMBot by Benny Leong and his team from MoneyLion.
  • Large Organization Winner: ADP Payroll Innovation Bot by Eric Liu, Jiaxing Yan, and Fan Yang


Diving into the Winning Chatbot Projects

Let’s take a walkthrough of the details for each of the winning projects to get a view of what made these chatbots distinctive, as well as, learn more about the technologies used to implement the chatbot solution.


BuildFax Counts by Joe Emison

The BuildFax Counts bot was created as a real solution for the BuildFax company to decrease the amount the time that sales and marketing teams can get answers on permits or properties with permits meet certain criteria.

BuildFax, a company co-founded by bot developer Joe Emison, has the only national database of building permits, which updates data from approximately half of the United States on a monthly basis. In order to accommodate the many requests that come in from the sales and marketing team regarding permit information, BuildFax has a technical sales support team that fulfills these requests sent to a ticketing system by manually writing SQL queries that run across the shards of the BuildFax databases. Since there are a large number of requests received by the internal sales support team and due to the manual nature of setting up the queries, it may take several days for getting the sales and marketing teams to receive an answer.

The BuildFax Counts chatbot solves this problem by taking the permit inquiry that would normally be sent into a ticket from the sales and marketing team, as input from Slack to the chatbot. Once the inquiry is submitted into Slack, a query executes and the inquiry results are returned immediately.

Joe built this solution by first creating a nightly export of the data in their BuildFax MySQL RDS database to CSV files that are stored in Amazon S3. From the exported CSV files, an Amazon Athena table was created in order to run quick and efficient queries on the data. He then used Amazon Lex to create a bot to handle the common questions and criteria that may be asked by the sales and marketing teams when seeking data from the BuildFax database by modeling the language used from the BuildFax ticketing system. He added several different sample utterances and slot types; both custom and Lex provided, in order to correctly parse every question and criteria combination that could be received from an inquiry.  Using Lambda, Joe created a Javascript Lambda function that receives information from the Lex intent and used it to build a SQL statement that runs against the aforementioned Athena database using the AWS SDK for JavaScript in Node.js library to return inquiry count result and SQL statement used.

The BuildFax Counts bot is used today for the BuildFax sales and marketing team to get back data on inquiries immediately that previously took up to a week to receive results.

Not only is BuildFax Counts bot our 1st place winner and wonderful solution, but its creator, Joe Emison, is a great guy.  Joe has opted to donate his prize; the $5,000 cash, the $2,500 in AWS Credits, and one re:Invent ticket to the Black Girls Code organization. I must say, you rock Joe for helping these kids get access and exposure to technology.


Hubsy by Andrew Riess, Andrew Puch, and John Wetzel

Hubsy bot was created to redefine and personalize the way users traditionally manage their HubSpot account. HubSpot is a SaaS system providing marketing, sales, and CRM software. Hubsy allows users of HubSpot to create engagements and log engagements with customers, provide sales teams with deals status, and retrieves client contact information quickly. Hubsy uses Amazon Lex’s conversational interface to execute commands from the HubSpot API so that users can gain insights, store and retrieve data, and manage tasks directly from Facebook, Slack, or Alexa.

In order to implement the Hubsy chatbot, Andrew and the team members used AWS Lambda to create a Lambda function with Node.js to parse the users request and call the HubSpot API, which will fulfill the initial request or return back to the user asking for more information. Terraform was used to automatically setup and update Lambda, CloudWatch logs, as well as, IAM profiles. Amazon Lex was used to build the conversational piece of the bot, which creates the utterances that a person on a sales team would likely say when seeking information from HubSpot. To integrate with Alexa, the Amazon Alexa skill builder was used to create an Alexa skill which was tested on an Echo Dot. Cloudwatch Logs are used to log the Lambda function information to CloudWatch in order to debug different parts of the Lex intents. In order to validate the code before the Terraform deployment, ESLint was additionally used to ensure the code was linted and proper development standards were followed.


PFMBot by Benny Leong and his team from MoneyLion

PFMBot, Personal Finance Management Bot,  is a bot to be used with the MoneyLion finance group which offers customers online financial products; loans, credit monitoring, and free credit score service to improve the financial health of their customers. Once a user signs up an account on the MoneyLion app or website, the user has the option to link their bank accounts with the MoneyLion APIs. Once the bank account is linked to the APIs, the user will be able to login to their MoneyLion account and start having a conversation with the PFMBot based on their bank account information.

The PFMBot UI has a web interface built with using Javascript integration. The chatbot was created using Amazon Lex to build utterances based on the possible inquiries about the user’s MoneyLion bank account. PFMBot uses the Lex built-in AMAZON slots and parsed and converted the values from the built-in slots to pass to AWS Lambda. The AWS Lambda functions interacting with Amazon Lex are Java-based Lambda functions which call the MoneyLion Java-based internal APIs running on Spring Boot. These APIs obtain account data and related bank account information from the MoneyLion MySQL Database.


ADP Payroll Innovation Bot by Eric Liu, Jiaxing Yan, and Fan Yang

ADP PI (Payroll Innovation) bot is designed to help employees of ADP customers easily review their own payroll details and compare different payroll data by just asking the bot for results. The ADP PI Bot additionally offers issue reporting functionality for employees to report payroll issues and aids HR managers in quickly receiving and organizing any reported payroll issues.

The ADP Payroll Innovation bot is an ecosystem for the ADP payroll consisting of two chatbots, which includes ADP PI Bot for external clients (employees and HR managers), and ADP PI DevOps Bot for internal ADP DevOps team.

The architecture for the ADP PI DevOps bot is different architecture from the ADP PI bot shown above as it is deployed internally to ADP. The ADP PI DevOps bot allows input from both Slack and Alexa. When input comes into Slack, Slack sends the request to Lex for it to process the utterance. Lex then calls the Lambda backend, which obtains ADP data sitting in the ADP VPC running within an Amazon VPC. When input comes in from Alexa, a Lambda function is called that also obtains data from the ADP VPC running on AWS.

The architecture for the ADP PI bot consists of users entering in requests and/or entering issues via Slack. When requests/issues are entered via Slack, the Slack APIs communicate via Amazon API Gateway to AWS Lambda. The Lambda function either writes data into one of the Amazon DynamoDB databases for recording issues and/or sending issues or it sends the request to Lex. When sending issues, DynamoDB integrates with Trello to keep HR Managers abreast of the escalated issues. Once the request data is sent from Lambda to Lex, Lex processes the utterance and calls another Lambda function that integrates with the ADP API and it calls ADP data from within the ADP VPC, which runs on Amazon Virtual Private Cloud (VPC).

Python and Node.js were the chosen languages for the development of the bots.

The ADP PI bot ecosystem has the following functional groupings:

Employee Functionality

  • Summarize Payrolls
  • Compare Payrolls
  • Escalate Issues
  • Evolve PI Bot

HR Manager Functionality

  • Bot Management
  • Audit and Feedback

DevOps Functionality

  • Reduce call volume in service centers (ADP PI Bot).
  • Track issues and generate reports (ADP PI Bot).
  • Monitor jobs for various environment (ADP PI DevOps Bot)
  • View job dashboards (ADP PI DevOps Bot)
  • Query job details (ADP PI DevOps Bot)



Let’s all wish all the winners of the AWS Chatbot Challenge hearty congratulations on their excellent projects.

You can review more details on the winning projects, as well as, all of the submissions to the AWS Chatbot Challenge at: https://awschatbot2017.devpost.com/submissions. If you are curious on the details of Chatbot challenge contest including resources, rules, prizes, and judges, you can review the original challenge website here:  https://awschatbot2017.devpost.com/.

Hopefully, you are just as inspired as I am to build your own chatbot using Lex and Lambda. For more information, take a look at the Amazon Lex developer guide or the AWS AI blog on Building Better Bots Using Amazon Lex (Part 1)

Chat with you soon!


Analyzing AWS Cost and Usage Reports with Looker and Amazon Athena

Post Syndicated from Dillon Morrison original https://aws.amazon.com/blogs/big-data/analyzing-aws-cost-and-usage-reports-with-looker-and-amazon-athena/

This is a guest post by Dillon Morrison at Looker. Looker is, in their own words, “a new kind of analytics platform–letting everyone in your business make better decisions by getting reliable answers from a tool they can use.” 

As the breadth of AWS products and services continues to grow, customers are able to more easily move their technology stack and core infrastructure to AWS. One of the attractive benefits of AWS is the cost savings. Rather than paying upfront capital expenses for large on-premises systems, customers can instead pay variables expenses for on-demand services. To further reduce expenses AWS users can reserve resources for specific periods of time, and automatically scale resources as needed.

The AWS Cost Explorer is great for aggregated reporting. However, conducting analysis on the raw data using the flexibility and power of SQL allows for much richer detail and insight, and can be the better choice for the long term. Thankfully, with the introduction of Amazon Athena, monitoring and managing these costs is now easier than ever.

In the post, I walk through setting up the data pipeline for cost and usage reports, Amazon S3, and Athena, and discuss some of the most common levers for cost savings. I surface tables through Looker, which comes with a host of pre-built data models and dashboards to make analysis of your cost and usage data simple and intuitive.

Analysis with Athena

With Athena, there’s no need to create hundreds of Excel reports, move data around, or deploy clusters to house and process data. Athena uses Apache Hive’s DDL to create tables, and the Presto querying engine to process queries. Analysis can be performed directly on raw data in S3. Conveniently, AWS exports raw cost and usage data directly into a user-specified S3 bucket, making it simple to start querying with Athena quickly. This makes continuous monitoring of costs virtually seamless, since there is no infrastructure to manage. Instead, users can leverage the power of the Athena SQL engine to easily perform ad-hoc analysis and data discovery without needing to set up a data warehouse.

After the data pipeline is established, cost and usage data (the recommended billing data, per AWS documentation) provides a plethora of comprehensive information around usage of AWS services and the associated costs. Whether you need the report segmented by product type, user identity, or region, this report can be cut-and-sliced any number of ways to properly allocate costs for any of your business needs. You can then drill into any specific line item to see even further detail, such as the selected operating system, tenancy, purchase option (on-demand, spot, or reserved), and so on.


By default, the Cost and Usage report exports CSV files, which you can compress using gzip (recommended for performance). There are some additional configuration options for tuning performance further, which are discussed below.


If you want to follow along, you need the following resources:

Enable the cost and usage reports

First, enable the Cost and Usage report. For Time unit, select Hourly. For Include, select Resource IDs. All options are prompted in the report-creation window.

The Cost and Usage report dumps CSV files into the specified S3 bucket. Please note that it can take up to 24 hours for the first file to be delivered after enabling the report.

Configure the S3 bucket and files for Athena querying

In addition to the CSV file, AWS also creates a JSON manifest file for each cost and usage report. Athena requires that all of the files in the S3 bucket are in the same format, so we need to get rid of all these manifest files. If you’re looking to get started with Athena quickly, you can simply go into your S3 bucket and delete the manifest file manually, skip the automation described below, and move on to the next section.

To automate the process of removing the manifest file each time a new report is dumped into S3, which I recommend as you scale, there are a few additional steps. The folks at Concurrency labs wrote a great overview and set of scripts for this, which you can find in their GitHub repo.

These scripts take the data from an input bucket, remove anything unnecessary, and dump it into a new output bucket. We can utilize AWS Lambda to trigger this process whenever new data is dropped into S3, or on a nightly basis, or whatever makes most sense for your use-case, depending on how often you’re querying the data. Please note that enabling the “hourly” report means that data is reported at the hour-level of granularity, not that a new file is generated every hour.

Following these scripts, you’ll notice that we’re adding a date partition field, which isn’t necessary but improves query performance. In addition, converting data from CSV to a columnar format like ORC or Parquet also improves performance. We can automate this process using Lambda whenever new data is dropped in our S3 bucket. Amazon Web Services discusses columnar conversion at length, and provides walkthrough examples, in their documentation.

As a long-term solution, best practice is to use compression, partitioning, and conversion. However, for purposes of this walkthrough, we’re not going to worry about them so we can get up-and-running quicker.

Set up the Athena query engine

In your AWS console, navigate to the Athena service, and click “Get Started”. Follow the tutorial and set up a new database (we’ve called ours “AWS Optimizer” in this example). Don’t worry about configuring your initial table, per the tutorial instructions. We’ll be creating a new table for cost and usage analysis. Once you walked through the tutorial steps, you’ll be able to access the Athena interface, and can begin running Hive DDL statements to create new tables.

One thing that’s important to note, is that the Cost and Usage CSVs also contain the column headers in their first row, meaning that the column headers would be included in the dataset and any queries. For testing and quick set-up, you can remove this line manually from your first few CSV files. Long-term, you’ll want to use a script to programmatically remove this row each time a new file is dropped in S3 (every few hours typically). We’ve drafted up a sample script for ease of reference, which we run on Lambda. We utilize Lambda’s native ability to invoke the script whenever a new object is dropped in S3.

For cost and usage, we recommend using the DDL statement below. Since our data is in CSV format, we don’t need to use a SerDe, we can simply specify the “separatorChar, quoteChar, and escapeChar”, and the structure of the files (“TEXTFILE”). Note that AWS does have an OpenCSV SerDe as well, if you prefer to use that.


identity_LineItemId String,
identity_TimeInterval String,
bill_InvoiceId String,
bill_BillingEntity String,
bill_BillType String,
bill_PayerAccountId String,
bill_BillingPeriodStartDate String,
bill_BillingPeriodEndDate String,
lineItem_UsageAccountId String,
lineItem_LineItemType String,
lineItem_UsageStartDate String,
lineItem_UsageEndDate String,
lineItem_ProductCode String,
lineItem_UsageType String,
lineItem_Operation String,
lineItem_AvailabilityZone String,
lineItem_ResourceId String,
lineItem_UsageAmount String,
lineItem_NormalizationFactor String,
lineItem_NormalizedUsageAmount String,
lineItem_CurrencyCode String,
lineItem_UnblendedRate String,
lineItem_UnblendedCost String,
lineItem_BlendedRate String,
lineItem_BlendedCost String,
lineItem_LineItemDescription String,
lineItem_TaxType String,
product_ProductName String,
product_accountAssistance String,
product_architecturalReview String,
product_architectureSupport String,
product_availability String,
product_bestPractices String,
product_cacheEngine String,
product_caseSeverityresponseTimes String,
product_clockSpeed String,
product_currentGeneration String,
product_customerServiceAndCommunities String,
product_databaseEdition String,
product_databaseEngine String,
product_dedicatedEbsThroughput String,
product_deploymentOption String,
product_description String,
product_durability String,
product_ebsOptimized String,
product_ecu String,
product_endpointType String,
product_engineCode String,
product_enhancedNetworkingSupported String,
product_executionFrequency String,
product_executionLocation String,
product_feeCode String,
product_feeDescription String,
product_freeQueryTypes String,
product_freeTrial String,
product_frequencyMode String,
product_fromLocation String,
product_fromLocationType String,
product_group String,
product_groupDescription String,
product_includedServices String,
product_instanceFamily String,
product_instanceType String,
product_io String,
product_launchSupport String,
product_licenseModel String,
product_location String,
product_locationType String,
product_maxIopsBurstPerformance String,
product_maxIopsvolume String,
product_maxThroughputvolume String,
product_maxVolumeSize String,
product_maximumStorageVolume String,
product_memory String,
product_messageDeliveryFrequency String,
product_messageDeliveryOrder String,
product_minVolumeSize String,
product_minimumStorageVolume String,
product_networkPerformance String,
product_operatingSystem String,
product_operation String,
product_operationsSupport String,
product_physicalProcessor String,
product_preInstalledSw String,
product_proactiveGuidance String,
product_processorArchitecture String,
product_processorFeatures String,
product_productFamily String,
product_programmaticCaseManagement String,
product_provisioned String,
product_queueType String,
product_requestDescription String,
product_requestType String,
product_routingTarget String,
product_routingType String,
product_servicecode String,
product_sku String,
product_softwareType String,
product_storage String,
product_storageClass String,
product_storageMedia String,
product_technicalSupport String,
product_tenancy String,
product_thirdpartySoftwareSupport String,
product_toLocation String,
product_toLocationType String,
product_training String,
product_transferType String,
product_usageFamily String,
product_usagetype String,
product_vcpu String,
product_version String,
product_volumeType String,
product_whoCanOpenCases String,
pricing_LeaseContractLength String,
pricing_OfferingClass String,
pricing_PurchaseOption String,
pricing_publicOnDemandCost String,
pricing_publicOnDemandRate String,
pricing_term String,
pricing_unit String,
reservation_AvailabilityZone String,
reservation_NormalizedUnitsPerReservation String,
reservation_NumberOfReservations String,
reservation_ReservationARN String,
reservation_TotalReservedNormalizedUnits String,
reservation_TotalReservedUnits String,
reservation_UnitsPerReservation String,
resourceTags_userName String,
resourceTags_usercostcategory String  

      ESCAPED BY '\\'

    LOCATION 's3://<<your bucket name>>';

Once you’ve successfully executed the command, you should see a new table named “cost_and_usage” with the below properties. Now we’re ready to start executing queries and running analysis!

Start with Looker and connect to Athena

Setting up Looker is a quick process, and you can try it out for free here (or download from Amazon Marketplace). It takes just a few seconds to connect Looker to your Athena database, and Looker comes with a host of pre-built data models and dashboards to make analysis of your cost and usage data simple and intuitive. After you’re connected, you can use the Looker UI to run whatever analysis you’d like. Looker translates this UI to optimized SQL, so any user can execute and visualize queries for true self-service analytics.

Major cost saving levers

Now that the data pipeline is configured, you can dive into the most popular use cases for cost savings. In this post, I focus on:

  • Purchasing Reserved Instances vs. On-Demand Instances
  • Data transfer costs
  • Allocating costs over users or other Attributes (denoted with resource tags)

On-Demand, Spot, and Reserved Instances

Purchasing Reserved Instances vs On-Demand Instances is arguably going to be the biggest cost lever for heavy AWS users (Reserved Instances run up to 75% cheaper!). AWS offers three options for purchasing instances:

  • On-Demand—Pay as you use.
  • Spot (variable cost)—Bid on spare Amazon EC2 computing capacity.
  • Reserved Instances—Pay for an instance for a specific, allotted period of time.

When purchasing a Reserved Instance, you can also choose to pay all-upfront, partial-upfront, or monthly. The more you pay upfront, the greater the discount.

If your company has been using AWS for some time now, you should have a good sense of your overall instance usage on a per-month or per-day basis. Rather than paying for these instances On-Demand, you should try to forecast the number of instances you’ll need, and reserve them with upfront payments.

The total amount of usage with Reserved Instances versus overall usage with all instances is called your coverage ratio. It’s important not to confuse your coverage ratio with your Reserved Instance utilization. Utilization represents the amount of reserved hours that were actually used. Don’t worry about exceeding capacity, you can still set up Auto Scaling preferences so that more instances get added whenever your coverage or utilization crosses a certain threshold (we often see a target of 80% for both coverage and utilization among savvy customers).

Calculating the reserved costs and coverage can be a bit tricky with the level of granularity provided by the cost and usage report. The following query shows your total cost over the last 6 months, broken out by Reserved Instance vs other instance usage. You can substitute the cost field for usage if you’d prefer. Please note that you should only have data for the time period after the cost and usage report has been enabled (though you can opt for up to 3 months of historical data by contacting your AWS Account Executive). If you’re just getting started, this query will only show a few days.


	DATE_FORMAT(from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate),'%Y-%m') AS "cost_and_usage.usage_start_month",
	COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0) AS "cost_and_usage.total_unblended_cost",
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_reserved_unblended_cost",
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.percent_spend_on_ris",
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'Non RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_non_reserved_unblended_cost",
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'Non RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.percent_spend_on_non_ris"
FROM aws_optimizer.cost_and_usage  AS cost_and_usage

	(((from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) >= ((DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))) AND (from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) < ((DATE_ADD('month', 6, DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))))))

The resulting table should look something like the image below (I’m surfacing tables through Looker, though the same table would result from querying via command line or any other interface).

With a BI tool, you can create dashboards for easy reference and monitoring. New data is dumped into S3 every few hours, so your dashboards can update several times per day.

It’s an iterative process to understand the appropriate number of Reserved Instances needed to meet your business needs. After you’ve properly integrated Reserved Instances into your purchasing patterns, the savings can be significant. If your coverage is consistently below 70%, you should seriously consider adjusting your purchase types and opting for more Reserved instances.

Data transfer costs

One of the great things about AWS data storage is that it’s incredibly cheap. Most charges often come from moving and processing that data. There are several different prices for transferring data, broken out largely by transfers between regions and availability zones. Transfers between regions are the most costly, followed by transfers between Availability Zones. Transfers within the same region and same availability zone are free unless using elastic or public IP addresses, in which case there is a cost. You can find more detailed information in the AWS Pricing Docs. With this in mind, there are several simple strategies for helping reduce costs.

First, since costs increase when transferring data between regions, it’s wise to ensure that as many services as possible reside within the same region. The more you can localize services to one specific region, the lower your costs will be.

Second, you should maximize the data you’re routing directly within AWS services and IP addresses. Transfers out to the open internet are the most costly and least performant mechanisms of data transfers, so it’s best to keep transfers within AWS services.

Lastly, data transfers between private IP addresses are cheaper than between elastic or public IP addresses, so utilizing private IP addresses as much as possible is the most cost-effective strategy.

The following query provides a table depicting the total costs for each AWS product, broken out transfer cost type. Substitute the “lineitem_productcode” field in the query to segment the costs by any other attribute. If you notice any unusually high spikes in cost, you’ll need to dig deeper to understand what’s driving that spike: location, volume, and so on. Drill down into specific costs by including “product_usagetype” and “product_transfertype” in your query to identify the types of transfer costs that are driving up your bill.

	cost_and_usage.lineitem_productcode  AS "cost_and_usage.product_code",
	COALESCE(SUM(cost_and_usage.lineitem_unblendedcost), 0) AS "cost_and_usage.total_unblended_cost",
	COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_data_transfer_cost",
	COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer-In')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_inbound_data_transfer_cost",
	COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer-Out')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_outbound_data_transfer_cost"
FROM aws_optimizer.cost_and_usage  AS cost_and_usage

	(((from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) >= ((DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))) AND (from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) < ((DATE_ADD('month', 6, DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))))))

When moving between regions or over the open web, many data transfer costs also include the origin and destination location of the data movement. Using a BI tool with mapping capabilities, you can get a nice visual of data flows. The point at the center of the map is used to represent external data flows over the open internet.

Analysis by tags

AWS provides the option to apply custom tags to individual resources, so you can allocate costs over whatever customized segment makes the most sense for your business. For a SaaS company that hosts software for customers on AWS, maybe you’d want to tag the size of each customer. The following query uses custom tags to display the reserved, data transfer, and total cost for each AWS service, broken out by tag categories, over the last 6 months. You’ll want to substitute the cost_and_usage.resourcetags_customersegment and cost_and_usage.customer_segment with the name of your customer field.


SELECT *, DENSE_RANK() OVER (ORDER BY z___min_rank) as z___pivot_row_rank, RANK() OVER (PARTITION BY z__pivot_col_rank ORDER BY z___min_rank) as z__pivot_col_ordering FROM (
SELECT *, MIN(z___rank) OVER (PARTITION BY "cost_and_usage.product_code") as z___min_rank FROM (
SELECT *, RANK() OVER (ORDER BY CASE WHEN z__pivot_col_rank=1 THEN (CASE WHEN "cost_and_usage.total_unblended_cost" IS NOT NULL THEN 0 ELSE 1 END) ELSE 2 END, CASE WHEN z__pivot_col_rank=1 THEN "cost_and_usage.total_unblended_cost" ELSE NULL END DESC, "cost_and_usage.total_unblended_cost" DESC, z__pivot_col_rank, "cost_and_usage.product_code") AS z___rank FROM (
SELECT *, DENSE_RANK() OVER (ORDER BY CASE WHEN "cost_and_usage.customer_segment" IS NULL THEN 1 ELSE 0 END, "cost_and_usage.customer_segment") AS z__pivot_col_rank FROM (
	cost_and_usage.lineitem_productcode  AS "cost_and_usage.product_code",
	cost_and_usage.resourcetags_customersegment  AS "cost_and_usage.customer_segment",
	COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0) AS "cost_and_usage.total_unblended_cost",
	1.0 * (COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.percent_spend_data_transfers_unblended",
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'Non RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.unblended_percent_spend_on_ris"
FROM aws_optimizer.cost_and_usage_raw  AS cost_and_usage

	(((from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) >= ((DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))) AND (from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) < ((DATE_ADD('month', 6, DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))))))
GROUP BY 1,2) ww
) bb WHERE z__pivot_col_rank <= 16384
) aa
) xx
) zz
 WHERE z___pivot_row_rank <= 500 OR z__pivot_col_ordering = 1 ORDER BY z___pivot_row_rank

The resulting table in this example looks like the results below. In this example, you can tell that we’re making poor use of Reserved Instances because they represent such a small portion of our overall costs.

Again, using a BI tool to visualize these costs and trends over time makes the analysis much easier to consume and take action on.


Saving costs on your AWS spend is always an iterative, ongoing process. Hopefully with these queries alone, you can start to understand your spending patterns and identify opportunities for savings. However, this is just a peek into the many opportunities available through analysis of the Cost and Usage report. Each company is different, with unique needs and usage patterns. To achieve maximum cost savings, we encourage you to set up an analytics environment that enables your team to explore all potential cuts and slices of your usage data, whenever it’s necessary. Exploring different trends and spikes across regions, services, user types, etc. helps you gain comprehensive understanding of your major cost levers and consistently implement new cost reduction strategies.

Note that all of the queries and analysis provided in this post were generated using the Looker data platform. If you’re already a Looker customer, you can get all of this analysis, additional pre-configured dashboards, and much more using Looker Blocks for AWS.

About the Author

Dillon Morrison leads the Platform Ecosystem at Looker. He enjoys exploring new technologies and architecting the most efficient data solutions for the business needs of his company and their customers. In his spare time, you’ll find Dillon rock climbing in the Bay Area or nose deep in the docs of the latest AWS product release at his favorite cafe (“Arlequin in SF is unbeatable!”).




AWS Summit New York – Summary of Announcements

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-summit-new-york-summary-of-announcements/

Whew – what a week! Tara, Randall, Ana, and I have been working around the clock to create blog posts for the announcements that we made at the AWS Summit in New York. Here’s a summary to help you to get started:

Amazon Macie – This new service helps you to discover, classify, and secure content at scale. Powered by machine learning and making use of Natural Language Processing (NLP), Macie looks for patterns and alerts you to suspicious behavior, and can help you with governance, compliance, and auditing. You can read Tara’s post to see how to put Macie to work; you select the buckets of interest, customize the classification settings, and review the results in the Macie Dashboard.

AWS GlueRandall’s post (with deluxe animated GIFs) introduces you to this new extract, transform, and load (ETL) service. Glue is serverless and fully managed, As you can see from the post, Glue crawls your data, infers schemas, and generates ETL scripts in Python. You define jobs that move data from place to place, with a wide selection of transforms, each expressed as code and stored in human-readable form. Glue uses Development Endpoints and notebooks to provide you with a testing environment for the scripts you build. We also announced that Amazon Athena now integrates with Amazon Glue, as does Apache Spark and Hive on Amazon EMR.

AWS Migration Hub – This new service will help you to migrate your application portfolio to AWS. My post outlines the major steps and shows you how the Migration Hub accelerates, tracks,and simplifies your migration effort. You can begin with a discovery step, or you can jump right in and migrate directly. Migration Hub integrates with tools from our migration partners and builds upon the Server Migration Service and the Database Migration Service.

CloudHSM Update – We made a major upgrade to AWS CloudHSM, making the benefits of hardware-based key management available to a wider audience. The service is offered on a pay-as-you-go basis, and is fully managed. It is open and standards compliant, with support for multiple APIs, programming languages, and cryptography extensions. CloudHSM is an integral part of AWS and can be accessed from the AWS Management Console, AWS Command Line Interface (CLI), and through API calls. Read my post to learn more and to see how to set up a CloudHSM cluster.

Managed Rules to Secure S3 Buckets – We added two new rules to AWS Config that will help you to secure your S3 buckets. The s3-bucket-public-write-prohibited rule identifies buckets that have public write access and the s3-bucket-public-read-prohibited rule identifies buckets that have global read access. As I noted in my post, you can run these rules in response to configuration changes or on a schedule. The rules make use of some leading-edge constraint solving techniques, as part of a larger effort to use automated formal reasoning about AWS.

CloudTrail for All Customers – Tara’s post revealed that AWS CloudTrail is now available and enabled by default for all AWS customers. As a bonus, Tara reviewed the principal benefits of CloudTrail and showed you how to review your event history and to deep-dive on a single event. She also showed you how to create a second trail, for use with CloudWatch CloudWatch Events.

Encryption of Data at Rest for EFS – When you create a new file system, you now have the option to select a key that will be used to encrypt the contents of the files on the file system. The encryption is done using an industry-standard AES-256 algorithm. My post shows you how to select a key and to verify that it is being used.

Watch the Keynote
My colleagues Adrian Cockcroft and Matt Wood talked about these services and others on the stage, and also invited some AWS customers to share their stories. Here’s the video:



Launch – AWS Glue Now Generally Available

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/launch-aws-glue-now-generally-available/

Today we’re excited to announce the general availability of AWS Glue. Glue is a fully managed, serverless, and cloud-optimized extract, transform and load (ETL) service. Glue is different from other ETL services and platforms in a few very important ways.

First, Glue is “serverless” – you don’t need to provision or manage any resources and you only pay for resources when Glue is actively running. Second, Glue provides crawlers that can automatically detect and infer schemas from many data sources, data types, and across various types of partitions. It stores these generated schemas in a centralized Data Catalog for editing, versioning, querying, and analysis. Third, Glue can automatically generate ETL scripts (in Python!) to translate your data from your source formats to your target formats. Finally, Glue allows you to create development endpoints that allow your developers to use their favorite toolchains to construct their ETL scripts. Ok, let’s dive deep with an example.

In my job as a Developer Evangelist I spend a lot of time traveling and I thought it would be cool to play with some flight data. The Bureau of Transportations Statistics is kind enough to share all of this data for anyone to use here. We can easily download this data and put it in an Amazon Simple Storage Service (S3) bucket. This data will be the basis of our work today.


First, we need to create a Crawler for our flights data from S3. We’ll select Crawlers in the Glue console and follow the on screen prompts from there. I’ll specify s3://crawler-public-us-east-1/flight/2016/csv/ as my first datasource (we can add more later if needed). Next, we’ll create a database called flights and give our tables a prefix of flights as well.

The Crawler will go over our dataset, detect partitions through various folders – in this case months of the year, detect the schema, and build a table. We could add additonal data sources and jobs into our crawler or create separate crawlers that push data into the same database but for now let’s look at the autogenerated schema.

I’m going to make a quick schema change to year, moving it from BIGINT to INT. Then I can compare the two versions of the schema if needed.

Now that we know how to correctly parse this data let’s go ahead and do some transforms.

ETL Jobs

Now we’ll navigate to the Jobs subconsole and click Add Job. Will follow the prompts from there giving our job a name, selecting a datasource, and an S3 location for temporary files. Next we add our target by specifying “Create tables in your data target” and we’ll specify an S3 location in Parquet format as our target.

After clicking next, we’re at screen showing our various mappings proposed by Glue. Now we can make manual column adjustments as needed – in this case we’re just going to use the X button to remove a few columns that we don’t need.

This brings us to my favorite part. This is what I absolutely love about Glue.

Glue generated a PySpark script to transform our data based on the information we’ve given it so far. On the left hand side we can see a diagram documenting the flow of the ETL job. On the top right we see a series of buttons that we can use to add annotated data sources and targets, transforms, spigots, and other features. This is the interface I get if I click on transform.

If we add any of these transforms or additional data sources, Glue will update the diagram on the left giving us a useful visualization of the flow of our data. We can also just write our own code into the console and have it run. We can add triggers to this job that fire on completion of another job, a schedule, or on demand. That way if we add more flight data we can reload this same data back into S3 in the format we need.

I could spend all day writing about the power and versatility of the jobs console but Glue still has more features I want to cover. So, while I might love the script editing console, I know many people prefer their own development environments, tools, and IDEs. Let’s figure out how we can use those with Glue.

Development Endpoints and Notebooks

A Development Endpoint is an environment used to develop and test our Glue scripts. If we navigate to “Dev endpoints” in the Glue console we can click “Add endpoint” in the top right to get started. Next we’ll select a VPC, a security group that references itself and then we wait for it to provision.

Once it’s provisioned we can create an Apache Zeppelin notebook server by going to actions and clicking create notebook server. We give our instance an IAM role and make sure it has permissions to talk to our data sources. Then we can either SSH into the server or connect to the notebook to interactively develop our script.

Pricing and Documentation

You can see detailed pricing information here. Glue crawlers, ETL jobs, and development endpoints are all billed in Data Processing Unit Hours (DPU) (billed by minute). Each DPU-Hour costs $0.44 in us-east-1. A single DPU provides 4vCPU and 16GB of memory.

We’ve only covered about half of the features that Glue has so I want to encourage everyone who made it this far into the post to go read the documentation and service FAQs. Glue also has a rich and powerful API that allows you to do anything console can do and more.

We’re also releasing two new projects today. The aws-glue-libs provide a set of utilities for connecting, and talking with Glue. The aws-glue-samples repo contains a set of example jobs.

I hope you find that using Glue reduces the time it takes to start doing things with your data. Look for another post from me on AWS Glue soon because I can’t stop playing with this new service.

AWS CloudHSM Update – Cost Effective Hardware Key Management at Cloud Scale for Sensitive & Regulated Workloads

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-cloudhsm-update-cost-effective-hardware-key-management/

Our customers run an incredible variety of mission-critical workloads on AWS, many of which process and store sensitive data. As detailed in our Overview of Security Processes document, AWS customers have access to an ever-growing set of options for encrypting and protecting this data. For example, Amazon Relational Database Service (RDS) supports encryption of data at rest and in transit, with options tailored for each supported database engine (MySQL, SQL Server, Oracle, MariaDB, PostgreSQL, and Aurora).

Many customers use AWS Key Management Service (KMS) to centralize their key management, with others taking advantage of the hardware-based key management, encryption, and decryption provided by AWS CloudHSM to meet stringent security and compliance requirements for their most sensitive data and regulated workloads (you can read my post, AWS CloudHSM – Secure Key Storage and Cryptographic Operations, to learn more about Hardware Security Modules, also known as HSMs).

Major CloudHSM Update
Today, building on what we have learned from our first-generation product, we are making a major update to CloudHSM, with a set of improvements designed to make the benefits of hardware-based key management available to a much wider audience while reducing the need for specialized operating expertise. Here’s a summary of the improvements:

Pay As You Go – CloudHSM is now offered under a pay-as-you-go model that is simpler and more cost-effective, with no up-front fees.

Fully Managed – CloudHSM is now a scalable managed service; provisioning, patching, high availability, and backups are all built-in and taken care of for you. Scheduled backups extract an encrypted image of your HSM from the hardware (using keys that only the HSM hardware itself knows) that can be restored only to identical HSM hardware owned by AWS. For durability, those backups are stored in Amazon Simple Storage Service (S3), and for an additional layer of security, encrypted again with server-side S3 encryption using an AWS KMS master key.

Open & Compatible  – CloudHSM is open and standards-compliant, with support for multiple APIs, programming languages, and cryptography extensions such as PKCS #11, Java Cryptography Extension (JCE), and Microsoft CryptoNG (CNG). The open nature of CloudHSM gives you more control and simplifies the process of moving keys (in encrypted form) from one CloudHSM to another, and also allows migration to and from other commercially available HSMs.

More Secure – CloudHSM Classic (the original model) supports the generation and use of keys that comply with FIPS 140-2 Level 2. We’re stepping that up a notch today with support for FIPS 140-2 Level 3, with security mechanisms that are designed to detect and respond to physical attempts to access or modify the HSM. Your keys are protected with exclusive, single-tenant access to tamper-resistant HSMs that appear within your Virtual Private Clouds (VPCs). CloudHSM supports quorum authentication for critical administrative and key management functions. This feature allows you to define a list of N possible identities that can access the functions, and then require at least M of them to authorize the action. It also supports multi-factor authentication using tokens that you provide.

AWS-Native – The updated CloudHSM is an integral part of AWS and plays well with other tools and services. You can create and manage a cluster of HSMs using the AWS Management Console, AWS Command Line Interface (CLI), or API calls.

Diving In
You can create CloudHSM clusters that contain 1 to 32 HSMs, each in a separate Availability Zone in a particular AWS Region. Spreading HSMs across AZs gives you high availability (including built-in load balancing); adding more HSMs gives you additional throughput. The HSMs within a cluster are kept in sync: performing a task or operation on one HSM in a cluster automatically updates the others. Each HSM in a cluster has its own Elastic Network Interface (ENI).

All interaction with an HSM takes place via the AWS CloudHSM client. It runs on an EC2 instance and uses certificate-based mutual authentication to create secure (TLS) connections to the HSMs.

At the hardware level, each HSM includes hardware-enforced isolation of crypto operations and key storage. Each customer HSM runs on dedicated processor cores.

Setting Up a Cluster
Let’s set up a cluster using the CloudHSM Console:

I click on Create cluster to get started, select my desired VPC and the subnets within it (I can also create a new VPC and/or subnets if needed):

Then I review my settings and click on Create:

After a few minutes, my cluster exists, but is uninitialized:

Initialization simply means retrieving a certificate signing request (the Cluster CSR):

And then creating a private key and using it to sign the request (these commands were copied from the Initialize Cluster docs and I have omitted the output. Note that ID identifies the cluster):

$ openssl genrsa -out CustomerRoot.key 2048
$ openssl req -new -x509 -days 365 -key CustomerRoot.key -out CustomerRoot.crt
$ openssl x509 -req -days 365 -in ID_ClusterCsr.csr   \
                              -CA CustomerRoot.crt    \
                              -CAkey CustomerRoot.key \
                              -CAcreateserial         \
                              -out ID_CustomerHsmCertificate.crt

The next step is to apply the signed certificate to the cluster using the console or the CLI. After this has been done, the cluster can be activated by changing the password for the HSM’s administrative user, otherwise known as the Crypto Officer (CO).

Once the cluster has been created, initialized and activated, it can be used to protect data. Applications can use the APIs in AWS CloudHSM SDKs to manage keys, encrypt & decrypt objects, and more. The SDKs provide access to the CloudHSM client (running on the same instance as the application). The client, in turn, connects to the cluster across an encrypted connection.

Available Today
The new HSM is available today in the US East (Northern Virginia), US West (Oregon), US East (Ohio), and EU (Ireland) Regions, with more in the works. Pricing starts at $1.45 per HSM per hour.


AWS Migration Hub – Plan & Track Enterprise Application Migration

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-migration-hub-plan-track-enterprise-application-migration/

About once a week, I speak to current and potential AWS customers in our Seattle Executive Briefing Center. While I generally focus on our innovation process, we sometimes discuss other topics, including application migration. When enterprises decide to migrate their application portfolios they want to do it in a structured, orderly fashion. These portfolios typically consist of hundreds of complex Windows and Linux applications, relational databases, and more. Customers find themselves eager yet uncertain as to how to proceed. After spending time working with these customers, we have learned that their challenges generally fall in to three major categories:

Discovery – They want to make sure that they have a deep and complete understanding of all of the moving parts that power each application.

Server & Database Migration – They need to transfer on-premises workloads and database tables to the cloud.

Tracking / Management – With large application portfolios and multiple migrations happening in parallel, they need to track and manage progress in an application-centric fashion.

Over the last couple of years we have launched a set of tools that address the first two challenges. The AWS Application Discovery Service automates the process of discovering and collecting system information, the AWS Server Migration Service takes care of moving workloads to the cloud, and the AWS Database Migration Service moves relational databases, NoSQL databases, and data warehouses with minimal downtime. Partners like Racemi and CloudEndure also offer migration tools of their own.

New AWS Migration Hub
Today we are bringing this collection of AWS and partner migration tools together in the AWS Migration Hub. The hub provides access to the tools that I mentioned above, guides you through the migration process, and tracks the status of each migration, all in accord with the methodology and tenets described in our Migration Acceleration Program (MAP).

Here’s the main screen. It outlines the migration process (discovery, migration, and tracking):

Clicking on Start discovery reveals the flow of the migration process:

It is also possible to skip the Discovery step and begin the migration immediately:

The Servers list is populated using data from an AWS migration service (Server Migration Service or Database Migration Service), partner tools, or using data collected by the AWS Application Discovery Service:

I can on Group as application to create my first application:

Once I identify some applications to migrate, I can track them in the Migrations section of the Hub:

The migration tools, if authorized, automatically send status updates and results back to Migration Hub, for display on the migration status page for the application. Here you can see that Racemi DynaCenter and CloudEndure Migration have played their parts in the migration:

I can track the status of my migrations by checking the Migration Hub Dashboard:

Migration Hub works with migration tools from AWS and our Migration Partners; see the list of integrated partner tools to learn more:

Available Now
AWS Migration Hub can manage migrations in any AWS Region that has the necessary migration tools available; the hub itself runs in the US West (Oregon) Region. There is no charge for the Hub; you pay only for the AWS services that you consume in the course of the migration.

If you are ready to begin your migration to the cloud and are in need of some assistance, please take advantage of the services offered by our Migration Acceleration Partners. These organizations have earned their migration competency by repeatedly demonstrating their ability to deliver large-scale migration.


New – AWS SAM Local (Beta) – Build and Test Serverless Applications Locally

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/new-aws-sam-local-beta-build-and-test-serverless-applications-locally/

Today we’re releasing a beta of a new tool, SAM Local, that makes it easy to build and test your serverless applications locally. In this post we’ll use SAM local to build, debug, and deploy a quick application that allows us to vote on tabs or spaces by curling an endpoint. AWS introduced Serverless Application Model (SAM) last year to make it easier for developers to deploy serverless applications. If you’re not already familiar with SAM my colleague Orr wrote a great post on how to use SAM that you can read in about 5 minutes. At it’s core, SAM is a powerful open source specification built on AWS CloudFormation that makes it easy to keep your serverless infrastructure as code – and they have the cutest mascot.

SAM Local takes all the good parts of SAM and brings them to your local machine.

There are a couple of ways to install SAM Local but the easiest is through NPM. A quick npm install -g aws-sam-local should get us going but if you want the latest version you can always install straight from the source: go get github.com/awslabs/aws-sam-local (this will create a binary named aws-sam-local, not sam).

I like to vote on things so let’s write a quick SAM application to vote on Spaces versus Tabs. We’ll use a very simple, but powerful, architecture of API Gateway fronting a Lambda function and we’ll store our results in DynamoDB. In the end a user should be able to curl our API curl https://SOMEURL/ -d '{"vote": "spaces"}' and get back the number of votes.

Let’s start by writing a simple SAM template.yaml:

AWSTemplateFormatVersion : '2010-09-09'
Transform: AWS::Serverless-2016-10-31
    Type: "AWS::Serverless::SimpleTable"
    Type: "AWS::Serverless::Function"
      Runtime: python3.6
      Handler: lambda_function.lambda_handler
      Policies: AmazonDynamoDBFullAccess
          TABLE_NAME: !Ref VotesTable
          Type: Api
            Path: /
            Method: post

So we create a [dynamo_i] table that we expose to our Lambda function through an environment variable called TABLE_NAME.

To test that this template is valid I’ll go ahead and call sam validate to make sure I haven’t fat-fingered anything. It returns Valid! so let’s go ahead and get to work on our Lambda function.

import os
import os
import json
import boto3
votes_table = boto3.resource('dynamodb').Table(os.getenv('TABLE_NAME'))

def lambda_handler(event, context):
    if event['httpMethod'] == 'GET':
        resp = votes_table.scan()
        return {'body': json.dumps({item['id']: int(item['votes']) for item in resp['Items']})}
    elif event['httpMethod'] == 'POST':
            body = json.loads(event['body'])
            return {'statusCode': 400, 'body': 'malformed json input'}
        if 'vote' not in body:
            return {'statusCode': 400, 'body': 'missing vote in request body'}
        if body['vote'] not in ['spaces', 'tabs']:
            return {'statusCode': 400, 'body': 'vote value must be "spaces" or "tabs"'}

        resp = votes_table.update_item(
            Key={'id': body['vote']},
            UpdateExpression='ADD votes :incr',
            ExpressionAttributeValues={':incr': 1},
        return {'body': "{} now has {} votes".format(body['vote'], resp['Attributes']['votes'])}

So let’s test this locally. I’ll need to create a real DynamoDB database to talk to and I’ll need to provide the name of that database through the enviornment variable TABLE_NAME. I could do that with an env.json file or I can just pass it on the command line. First, I can call:
$ echo '{"httpMethod": "POST", "body": "{\"vote\": \"spaces\"}"}' |\
TABLE_NAME="vote-spaces-tabs" sam local invoke "VoteSpacesTabs"

to test the Lambda – it returns the number of votes for spaces so theoritically everything is working. Typing all of that out is a pain so I could generate a sample event with sam local generate-event api and pass that in to the local invocation. Far easier than all of that is just running our API locally. Let’s do that: sam local start-api. Now I can curl my local endpoints to test everything out.
I’ll run the command: $ curl -d '{"vote": "tabs"}' and it returns: “tabs now has 12 votes”. Now, of course I did not write this function perfectly on my first try. I edited and saved several times. One of the benefits of hot-reloading is that as I change the function I don’t have to do any additional work to test the new function. This makes iterative development vastly easier.

Let’s say we don’t want to deal with accessing a real DynamoDB database over the network though. What are our options? Well we can download DynamoDB Local and launch it with java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar -sharedDb. Then we can have our Lambda function use the AWS_SAM_LOCAL environment variable to make some decisions about how to behave. Let’s modify our function a bit:

import os
import json
import boto3
if os.getenv("AWS_SAM_LOCAL"):
    votes_table = boto3.resource(
    votes_table = boto3.resource('dynamodb').Table(os.getenv('TABLE_NAME'))

Now we’re using a local endpoint to connect to our local database which makes working without wifi a little easier.

SAM local even supports interactive debugging! In Java and Node.js I can just pass the -d flag and a port to immediately enable the debugger. For Python I could use a library like import epdb; epdb.serve() and connect that way. Then we can call sam local invoke -d 8080 "VoteSpacesTabs" and our function will pause execution waiting for you to step through with the debugger.

Alright, I think we’ve got everything working so let’s deploy this!

First I’ll call the sam package command which is just an alias for aws cloudformation package and then I’ll use the result of that command to sam deploy.

$ sam package --template-file template.yaml --s3-bucket MYAWESOMEBUCKET --output-template-file package.yaml
Uploading to 144e47a4a08f8338faae894afe7563c3  90570 / 90570.0  (100.00%)
Successfully packaged artifacts and wrote output template to file package.yaml.
Execute the following command to deploy the packaged template
aws cloudformation deploy --template-file package.yaml --stack-name 
$ sam deploy --template-file package.yaml --stack-name VoteForSpaces --capabilities CAPABILITY_IAM
Waiting for changeset to be created..
Waiting for stack create/update to complete
Successfully created/updated stack - VoteForSpaces

Which brings us to our API:

I’m going to hop over into the production stage and add some rate limiting in case you guys start voting a lot – but otherwise we’ve taken our local work and deployed it to the cloud without much effort at all. I always enjoy it when things work on the first deploy!

You can vote now and watch the results live! http://spaces-or-tabs.s3-website-us-east-1.amazonaws.com/

We hope that SAM Local makes it easier for you to test, debug, and deploy your serverless apps. We have a CONTRIBUTING.md guide and we welcome pull requests. Please tweet at us to let us know what cool things you build. You can see our What’s New post here and the documentation is live here.


jSQL – Automatic SQL Injection Tool In Java

Post Syndicated from Darknet original http://feedproxy.google.com/~r/darknethackers/~3/vEsd_Exo0S0/

jSQL is an automatic SQL Injection tool written in Java, it’s lightweight and supports 23 kinds of database. It is free, open source and cross-platform (Windows, Linux, Mac OS X) and is easily available in Kali, Pentest Box, Parrot Security OS, ArchStrike or BlackArch Linux. Features Automatic injection of 23 kinds of databases: Access CockroachDB…

Read the full post at darknet.org.uk

NSA Collects MS Windows Error Information

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/08/nsa_collects_ms.html

Back in 2013, Der Spiegel reported that the NSA intercepts and collects Windows bug reports:

One example of the sheer creativity with which the TAO spies approach their work can be seen in a hacking method they use that exploits the error-proneness of Microsoft’s Windows. Every user of the operating system is familiar with the annoying window that occasionally pops up on screen when an internal problem is detected, an automatic message that prompts the user to report the bug to the manufacturer and to restart the program. These crash reports offer TAO specialists a welcome opportunity to spy on computers.

When TAO selects a computer somewhere in the world as a target and enters its unique identifiers (an IP address, for example) into the corresponding database, intelligence agents are then automatically notified any time the operating system of that computer crashes and its user receives the prompt to report the problem to Microsoft. An internal presentation suggests it is NSA’s powerful XKeyscore spying tool that is used to fish these crash reports out of the massive sea of Internet traffic.

The automated crash reports are a “neat way” to gain “passive access” to a machine, the presentation continues. Passive access means that, initially, only data the computer sends out into the Internet is captured and saved, but the computer itself is not yet manipulated. Still, even this passive access to error messages provides valuable insights into problems with a targeted person’s computer and, thus, information on security holes that might be exploitable for planting malware or spyware on the unwitting victim’s computer.

Although the method appears to have little importance in practical terms, the NSA’s agents still seem to enjoy it because it allows them to have a bit of a laugh at the expense of the Seattle-based software giant. In one internal graphic, they replaced the text of Microsoft’s original error message with one of their own reading, “This information may be intercepted by a foreign sigint system to gather detailed information and better exploit your machine.” (“Sigint” stands for “signals intelligence.”)

The article talks about the (limited) value of this information with regard to specific target computers, but I have another question: how valuable would this database be for finding new zero-day Windows vulnerabilities to exploit? Microsoft won’t have the incentive to examine and fix problems until they happen broadly among its user base. The NSA has a completely different incentive structure.

I don’t remember this being discussed back in 2013.

EDITED TO ADD (8/6): Slashdot thread.

HBO Got Hacked, Game of Thrones Spoilers Surface Online

Post Syndicated from Ernesto original https://torrentfreak.com/hbo-got-hacked-game-of-thrones-spoilers-surface-online-170801/

It appears that yet another large media outlet has fallen victim to a high-profile hack.

After Sony and, indirectly, Netflix, hackers have now compromised the network of the American cable and television network HBO.

Sunday evening a mysterious email was sent to reporters, announcing the prominent breach.

“Hi to all mankind. The greatest leak of cyber space era is happening. What’s its name? Oh I forget to tell. Its HBO and Game of Thrones……!!!!!!” the email read.

While several reports were published, the first by Entertainment Weekly, the actual leaked files were not widely available on the usual pirate sites. However, a few hours ago a website appeared online that claims to hold the ‘treasure trove.’

Winter-leak.com, a reference to the famous Game of Thrones “Winter is Coming” phrase, does indeed list several files that appear to come from HBO.

“In a complicate operation, we successfully penetrated in to the HBO Internal Network, Emails, technical platforms, and database and got precious and confidential stuff that blaze your eyes,” the hacker, or hackers write on their website.

The hackers claim to have 1.5 terabytes of data from the company. So far, previously unreleased episodes of Ballers, Barry, Insecure and Room 104 are featured on the site. However, there are also three separate archives listed, with over a terabyte of data.

Most prominent, perhaps, is a preliminary outline of the fourth episode of the current Game of Thrones season, which will air this coming Sunday.

At TorrentFreak, we always strive to find proof for reported leaks, and from what we’ve seen and gathered, it does indeed appear to be the real deal. The Game of Thrones information, for example, lists a preliminary outline of the fourth episode of season 7, including many spoilers.

As can be seen below, the outline itself is watermarked by the hackers, with the tagline “HBO is falling.”

Perhaps even more unusual, the leak also includes a video, featuring Game of Thrones images, the leaders, and a textual outline of the episode. As with the outline, the videos are available for the third and fourth episode of season 7.

HBO’s chairman and CEO, Richard Plepler, has confirmed that the company’s infrastructure was breached, but didn’t mention what information was accessed. He sent an email to employees a few hours ago, informing them about the “cyber incident.”

“As most of you have probably heard by now, there has been a cyber incident directed at the company which has resulted in some stolen proprietary information, including some of our programming,” he wrote.

“Any intrusion of this nature is obviously disruptive, unsettling, and disturbing for all of us. I can assure you that senior leadership and our extraordinary technology team, along with outside experts, are working round the clock to protect our collective interests.”

The full contents of the leaks have yet to be analyzed. It’s doubtful that any Game of Thrones episodes will leak, but there’s likely to be a lot of confidential information in the copied data, which HBO would otherwise prefer to keep to itself.

HBO has already mentioned that it’s doing everything in its power to prevent the leaks from spreading any further. In addition, they are also working with law enforcement to track down the people responsible.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Top 10 Most Obvious Hacks of All Time (v0.9)

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/07/top-10-most-obvious-hacks-of-all-time.html

For teaching hacking/cybersecurity, I thought I’d create of the most obvious hacks of all time. Not the best hacks, the most sophisticated hacks, or the hacks with the biggest impact, but the most obvious hacks — ones that even the least knowledgeable among us should be able to understand. Below I propose some hacks that fit this bill, though in no particular order.

The reason I’m writing this is that my niece wants me to teach her some hacking. I thought I’d start with the obvious stuff first.

Shared Passwords

If you use the same password for every website, and one of those websites gets hacked, then the hacker has your password for all your websites. The reason your Facebook account got hacked wasn’t because of anything Facebook did, but because you used the same email-address and password when creating an account on “beagleforums.com”, which got hacked last year.

I’ve heard people say “I’m sure, because I choose a complex password and use it everywhere”. No, this is the very worst thing you can do. Sure, you can the use the same password on all sites you don’t care much about, but for Facebook, your email account, and your bank, you should have a unique password, so that when other sites get hacked, your important sites are secure.

And yes, it’s okay to write down your passwords on paper.

Tools: HaveIBeenPwned.com

PIN encrypted PDFs

My accountant emails PDF statements encrypted with the last 4 digits of my Social Security Number. This is not encryption — a 4 digit number has only 10,000 combinations, and a hacker can guess all of them in seconds.
PIN numbers for ATM cards work because ATM machines are online, and the machine can reject your card after four guesses. PIN numbers don’t work for documents, because they are offline — the hacker has a copy of the document on their own machine, disconnected from the Internet, and can continue making bad guesses with no restrictions.
Passwords protecting documents must be long enough that even trillion upon trillion guesses are insufficient to guess.

Tools: Hashcat, John the Ripper

SQL and other injection

The lazy way of combining websites with databases is to combine user input with an SQL statement. This combines code with data, so the obvious consequence is that hackers can craft data to mess with the code.
No, this isn’t obvious to the general public, but it should be obvious to programmers. The moment you write code that adds unfiltered user-input to an SQL statement, the consequence should be obvious. Yet, “SQL injection” has remained one of the most effective hacks for the last 15 years because somehow programmers don’t understand the consequence.
CGI shell injection is a similar issue. Back in early days, when “CGI scripts” were a thing, it was really important, but these days, not so much, so I just included it with SQL. The consequence of executing shell code should’ve been obvious, but weirdly, it wasn’t. The IT guy at the company I worked for back in the late 1990s came to me and asked “this guy says we have a vulnerability, is he full of shit?”, and I had to answer “no, he’s right — obviously so”.

XSS (“Cross Site Scripting”) [*] is another injection issue, but this time at somebody’s web browser rather than a server. It works because websites will echo back what is sent to them. For example, if you search for Cross Site Scripting with the URL https://www.google.com/search?q=cross+site+scripting, then you’ll get a page back from the server that contains that string. If the string is JavaScript code rather than text, then some servers (thought not Google) send back the code in the page in a way that it’ll be executed. This is most often used to hack somebody’s account: you send them an email or tweet a link, and when they click on it, the JavaScript gives control of the account to the hacker.

Cross site injection issues like this should probably be their own category, but I’m including it here for now.

More: Wikipedia on SQL injection, Wikipedia on cross site scripting.
Tools: Burpsuite, SQLmap

Buffer overflows

In the C programming language, programmers first create a buffer, then read input into it. If input is long than the buffer, then it overflows. The extra bytes overwrite other parts of the program, letting the hacker run code.
Again, it’s not a thing the general public is expected to know about, but is instead something C programmers should be expected to understand. They should know that it’s up to them to check the length and stop reading input before it overflows the buffer, that there’s no language feature that takes care of this for them.
We are three decades after the first major buffer overflow exploits, so there is no excuse for C programmers not to understand this issue.

What makes particular obvious is the way they are wrapped in exploits, like in Metasploit. While the bug itself is obvious that it’s a bug, actually exploiting it can take some very non-obvious skill. However, once that exploit is written, any trained monkey can press a button and run the exploit. That’s where we get the insult “script kiddie” from — referring to wannabe-hackers who never learn enough to write their own exploits, but who spend a lot of time running the exploit scripts written by better hackers than they.

More: Wikipedia on buffer overflow, Wikipedia on script kiddie,  “Smashing The Stack For Fun And Profit” — Phrack (1996)
Tools: bash, Metasploit

SendMail DEBUG command (historical)

The first popular email server in the 1980s was called “SendMail”. It had a feature whereby if you send a “DEBUG” command to it, it would execute any code following the command. The consequence of this was obvious — hackers could (and did) upload code to take control of the server. This was used in the Morris Worm of 1988. Most Internet machines of the day ran SendMail, so the worm spread fast infecting most machines.
This bug was mostly ignored at the time. It was thought of as a theoretical problem, that might only rarely be used to hack a system. Part of the motivation of the Morris Worm was to demonstrate that such problems was to demonstrate the consequences — consequences that should’ve been obvious but somehow were rejected by everyone.

More: Wikipedia on Morris Worm

Email Attachments/Links

I’m conflicted whether I should add this or not, because here’s the deal: you are supposed to click on attachments and links within emails. That’s what they are there for. The difference between good and bad attachments/links is not obvious. Indeed, easy-to-use email systems makes detecting the difference harder.
On the other hand, the consequences of bad attachments/links is obvious. That worms like ILOVEYOU spread so easily is because people trusted attachments coming from their friends, and ran them.
We have no solution to the problem of bad email attachments and links. Viruses and phishing are pervasive problems. Yet, we know why they exist.

Default and backdoor passwords

The Mirai botnet was caused by surveillance-cameras having default and backdoor passwords, and being exposed to the Internet without a firewall. The consequence should be obvious: people will discover the passwords and use them to take control of the bots.
Surveillance-cameras have the problem that they are usually exposed to the public, and can’t be reached without a ladder — often a really tall ladder. Therefore, you don’t want a button consumers can press to reset to factory defaults. You want a remote way to reset them. Therefore, they put backdoor passwords to do the reset. Such passwords are easy for hackers to reverse-engineer, and hence, take control of millions of cameras across the Internet.
The same reasoning applies to “default” passwords. Many users will not change the defaults, leaving a ton of devices hackers can hack.

Masscan and background radiation of the Internet

I’ve written a tool that can easily scan the entire Internet in a short period of time. It surprises people that this possible, but it obvious from the numbers. Internet addresses are only 32-bits long, or roughly 4 billion combinations. A fast Internet link can easily handle 1 million packets-per-second, so the entire Internet can be scanned in 4000 seconds, little more than an hour. It’s basic math.
Because it’s so easy, many people do it. If you monitor your Internet link, you’ll see a steady trickle of packets coming in from all over the Internet, especially Russia and China, from hackers scanning the Internet for things they can hack.
People’s reaction to this scanning is weirdly emotional, taking is personally, such as:
  1. Why are they hacking me? What did I do to them?
  2. Great! They are hacking me! That must mean I’m important!
  3. Grrr! How dare they?! How can I hack them back for some retribution!?

I find this odd, because obviously such scanning isn’t personal, the hackers have no idea who you are.

Tools: masscan, firewalls

Packet-sniffing, sidejacking

If you connect to the Starbucks WiFi, a hacker nearby can easily eavesdrop on your network traffic, because it’s not encrypted. Windows even warns you about this, in case you weren’t sure.

At DefCon, they have a “Wall of Sheep”, where they show passwords from people who logged onto stuff using the insecure “DefCon-Open” network. Calling them “sheep” for not grasping this basic fact that unencrypted traffic is unencrypted.

To be fair, it’s actually non-obvious to many people. Even if the WiFi itself is not encrypted, SSL traffic is. They expect their services to be encrypted, without them having to worry about it. And in fact, most are, especially Google, Facebook, Twitter, Apple, and other major services that won’t allow you to log in anymore without encryption.

But many services (especially old ones) may not be encrypted. Unless users check and verify them carefully, they’ll happily expose passwords.

What’s interesting about this was 10 years ago, when most services which only used SSL to encrypt the passwords, but then used unencrypted connections after that, using “cookies”. This allowed the cookies to be sniffed and stolen, allowing other people to share the login session. I used this on stage at BlackHat to connect to somebody’s GMail session. Google, and other major websites, fixed this soon after. But it should never have been a problem — because the sidejacking of cookies should have been obvious.

Tools: Wireshark, dsniff

Stuxnet LNK vulnerability

Again, this issue isn’t obvious to the public, but it should’ve been obvious to anybody who knew how Windows works.
When Windows loads a .dll, it first calls the function DllMain(). A Windows link file (.lnk) can load icons/graphics from the resources in a .dll file. It does this by loading the .dll file, thus calling DllMain. Thus, a hacker could put on a USB drive a .lnk file pointing to a .dll file, and thus, cause arbitrary code execution as soon as a user inserted a drive.
I say this is obvious because I did this, created .lnks that pointed to .dlls, but without hostile DllMain code. The consequence should’ve been obvious to me, but I totally missed the connection. We all missed the connection, for decades.

Social Engineering and Tech Support [* * *]

After posting this, many people have pointed out “social engineering”, especially of “tech support”. This probably should be up near #1 in terms of obviousness.

The classic example of social engineering is when you call tech support and tell them you’ve lost your password, and they reset it for you with minimum of questions proving who you are. For example, you set the volume on your computer really loud and play the sound of a crying baby in the background and appear to be a bit frazzled and incoherent, which explains why you aren’t answering the questions they are asking. They, understanding your predicament as a new parent, will go the extra mile in helping you, resetting “your” password.

One of the interesting consequences is how it affects domain names (DNS). It’s quite easy in many cases to call up the registrar and convince them to transfer a domain name. This has been used in lots of hacks. It’s really hard to defend against. If a registrar charges only $9/year for a domain name, then it really can’t afford to provide very good tech support — or very secure tech support — to prevent this sort of hack.

Social engineering is such a huge problem, and obvious problem, that it’s outside the scope of this document. Just google it to find example after example.

A related issue that perhaps deserves it’s own section is OSINT [*], or “open-source intelligence”, where you gather public information about a target. For example, on the day the bank manager is out on vacation (which you got from their Facebook post) you show up and claim to be a bank auditor, and are shown into their office where you grab their backup tapes. (We’ve actually done this).

More: Wikipedia on Social Engineering, Wikipedia on OSINT, “How I Won the Defcon Social Engineering CTF” — blogpost (2011), “Questioning 42: Where’s the Engineering in Social Engineering of Namespace Compromises” — BSidesLV talk (2016)

Blue-boxes (historical) [*]

Telephones historically used what we call “in-band signaling”. That’s why when you dial on an old phone, it makes sounds — those sounds are sent no differently than the way your voice is sent. Thus, it was possible to make tone generators to do things other than simply dial calls. Early hackers (in the 1970s) would make tone-generators called “blue-boxes” and “black-boxes” to make free long distance calls, for example.

These days, “signaling” and “voice” are digitized, then sent as separate channels or “bands”. This is call “out-of-band signaling”. You can’t trick the phone system by generating tones. When your iPhone makes sounds when you dial, it’s entirely for you benefit and has nothing to do with how it signals the cell tower to make a call.

Early hackers, like the founders of Apple, are famous for having started their careers making such “boxes” for tricking the phone system. The problem was obvious back in the day, which is why as the phone system moves from analog to digital, the problem was fixed.

More: Wikipedia on blue box, Wikipedia article on Steve Wozniak.

Thumb drives in parking lots [*]

A simple trick is to put a virus on a USB flash drive, and drop it in a parking lot. Somebody is bound to notice it, stick it in their computer, and open the file.

This can be extended with tricks. For example, you can put a file labeled “third-quarter-salaries.xlsx” on the drive that required macros to be run in order to open. It’s irresistible to other employees who want to know what their peers are being paid, so they’ll bypass any warning prompts in order to see the data.

Another example is to go online and get custom USB sticks made printed with the logo of the target company, making them seem more trustworthy.

We also did a trick of taking an Adobe Flash game “Punch the Monkey” and replaced the monkey with a logo of a competitor of our target. They now only played the game (infecting themselves with our virus), but gave to others inside the company to play, infecting others, including the CEO.

Thumb drives like this have been used in many incidents, such as Russians hacking military headquarters in Afghanistan. It’s really hard to defend against.

More: “Computer Virus Hits U.S. Military Base in Afghanistan” — USNews (2008), “The Return of the Worm That Ate The Pentagon” — Wired (2011), DoD Bans Flash Drives — Stripes (2008)

Googling [*]

Search engines like Google will index your website — your entire website. Frequently companies put things on their website without much protection because they are nearly impossible for users to find. But Google finds them, then indexes them, causing them to pop up with innocent searches.
There are books written on “Google hacking” explaining what search terms to look for, like “not for public release”, in order to find such documents.

More: Wikipedia entry on Google Hacking, “Google Hacking” book.

URL editing [*]

At the top of every browser is what’s called the “URL”. You can change it. Thus, if you see a URL that looks like this:


Then you can edit it to see the next document on the server:


The owner of the website may think they are secure, because nothing points to this document, so the Google search won’t find it. But that doesn’t stop a user from manually editing the URL.
An example of this is a big Fortune 500 company that posts the quarterly results to the website an hour before the official announcement. Simply editing the URL from previous financial announcements allows hackers to find the document, then buy/sell the stock as appropriate in order to make a lot of money.
Another example is the classic case of Andrew “Weev” Auernheimer who did this trick in order to download the account email addresses of early owners of the iPad, including movie stars and members of the Obama administration. It’s an interesting legal case because on one hand, techies consider this so obvious as to not be “hacking”. On the other hand, non-techies, especially judges and prosecutors, believe this to be obviously “hacking”.

DDoS, spoofing, and amplification [*]

For decades now, online gamers have figured out an easy way to win: just flood the opponent with Internet traffic, slowing their network connection. This is called a DoS, which stands for “Denial of Service”. DoSing game competitors is often a teenager’s first foray into hacking.
A variant of this is when you hack a bunch of other machines on the Internet, then command them to flood your target. (The hacked machines are often called a “botnet”, a network of robot computers). This is called DDoS, or “Distributed DoS”. At this point, it gets quite serious, as instead of competitive gamers hackers can take down entire businesses. Extortion scams, DDoSing websites then demanding payment to stop, is a common way hackers earn money.
Another form of DDoS is “amplification”. Sometimes when you send a packet to a machine on the Internet it’ll respond with a much larger response, either a very large packet or many packets. The hacker can then send a packet to many of these sites, “spoofing” or forging the IP address of the victim. This causes all those sites to then flood the victim with traffic. Thus, with a small amount of outbound traffic, the hacker can flood the inbound traffic of the victim.
This is one of those things that has worked for 20 years, because it’s so obvious teenagers can do it, yet there is no obvious solution. President Trump’s executive order of cyberspace specifically demanded that his government come up with a report on how to address this, but it’s unlikely that they’ll come up with any useful strategy.

More: Wikipedia on DDoS, Wikipedia on Spoofing


Tweet me (@ErrataRob) your obvious hacks, so I can add them to the list.

Amazon QuickSight Now Supports Amazon Athena in EU (Ireland), Count Distinct, and Week Aggregation

Post Syndicated from Luis Wang original https://aws.amazon.com/blogs/big-data/amazon-quicksight-now-supports-amazon-athena-in-eu-ireland-count-distinct-and-week-aggregation/

Today, I’m excited to share a couple of new features in Amazon QuickSight. First, with this release, we expanded connectivity options by adding Amazon Athena support in the EU (Ireland) Region. Additionally, you can now use Count Distinct on your dimensions and metrics in the visualizations and aggregate date fields by week for SPICE data sets.

Athena in Ireland

Athena is one of the most popular data sources used by QuickSight customers. It allows you to deploy a serverless BI and analytics architecture for your operational and business data. With this release, the Athena connector is now available in the EU (Ireland) Region. You can connect QuickSight to your Athena databases and tables in the region and start visualizing your data in a matter of seconds.

Count Distinct

You can now perform aggregations using Count Distinct in the visualizations, one of the top requests from users. To use Count Distinct, simply select Count Distinct as the aggregation on the visual axis or in the field well. Count Distinct is supported for both direct queries and SPICE data sets. You can apply it to strings and measures. It is available for all supported visualization types.

Date aggregation by week

Time series line charts are one of the most common ways for customers to report on business trends. In addition to Year, Month, Day and Hour, you can now aggregate date fields by WEEK and visualize your data at a weekly granularity.

Learn more

To learn more about these capabilities and start using them in your dashboards, see the QuickSight User Guide.

Stay engaged

If you have questions or suggestions, you can post them on the QuickSight Discussion Forum.

Not a QuickSight user?

To get started for FREE, see quicksight.aws.


Wanted: Site Reliability Engineer

Post Syndicated from Yev original https://www.backblaze.com/blog/wanted-site-reliability-engineer/

Are you a Site Reliability Engineer who is looking for a challenging and fast-paced working environment? Want to a join our dynamic team and help Backblaze grow to new heights? Our Operations team is a distributed and collaborative group of individual contributors. We work closely together to build and maintain our home grown cloud storage farm, carefully controlling costs by utilizing open source and various brands of technology, as well as designing our own cloud storage servers. Members of Operations participate in the prioritization and decision making process, and make a difference everyday. The environment is challenging, but we balance the challenges with rewards, and we are looking for clever and innovative people to join us.


  • Lead projects across a range of IT disciplines
  • Understand environment thoroughly enough to administer/debug any system
  • Collaborate on automated provisioning & updating of systems
  • Collaborate on network administration and security
  • Collaborate on database administration
  • Participate in the 24×7 on-call rotation and respond to alerts
    as needed


  • Expert knowledge of Linux administration (Debian preferred)
  • Scripting skills
  • Experience in automation/configuration management (Ansible preferred)
  • Position based in the San Mateo, California Corporate Office

Required for all Backblaze Employees

  • Good attitude and willingness to do whatever it takes to get the job done.
  • Desire to learn and adapt to rapidly changing technologies and work environment.
  • Relentless attention to detail.
  • Excellent communication and problem solving skills.
  • Backblaze is an Equal Opportunity Employer and we offer competitive salary and benefits, including our no policy vacation policy.

Company Description:
Founded in 2007, Backblaze started with a mission to make backup software elegant and provide complete peace of mind. Over the course of almost a decade, we have become a pioneer in robust, scalable low cost cloud backup. Recently, we launched B2 – robust and reliable object storage at just $0.005/gb/mo. Part of our differentiation is being able to offer the lowest price of any of the big players while still being profitable.

We’ve managed to nurture a team oriented culture with amazingly low turnover. We value our people and their families. Don’t forget to check out our “About Us” page to learn more about the people and some of our perks.

We have built a profitable, high growth business. While we love our investors, we have maintained control over the business. That means our corporate goals are simple – grow sustainably and profitably.

Some Backblaze Perks:

  • Competitive healthcare plans
  • Competitive compensation and 401k
  • All employees receive Option grants
  • Unlimited vacation days
  • Strong coffee
  • Fully stocked Micro kitchen
  • Catered breakfast and lunches
  • Awesome people who work on awesome projects
  • Childcare bonus
  • Normal work hours
  • Get to bring your pets into the office
  • San Mateo Office – located near Caltrain and Highways 101 & 280.

If this sounds like you — follow these steps:

  1. Send an email to [email protected] with the position in the subject line.
  2. Include your resume.
  3. Tell us a bit about your experience and why you’re excited to work with Backblaze.

The post Wanted: Site Reliability Engineer appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Wanted: Database Systems Administrator

Post Syndicated from Yev original https://www.backblaze.com/blog/wanted-database-systems-administrator/

Are you a Database Systems Administrator who is looking for a challenging and fast-paced working environment? Want to a join our dynamic team and help Backblaze grow to new heights? Our Operations team is a distributed and collaborative group of individual contributors. We work closely together to build and maintain our home grown cloud storage farm, carefully controlling costs by utilizing open source and various brands of technology, as well as designing our own cloud storage servers. Members of Operations participate in the prioritization and decision making process, and make a difference everyday. The environment is challenging, but we balance the challenges with rewards, and we are looking for clever and innovative people to join us.


  • Own the administration of Cassandra and MySQL
  • Lead projects across a range of IT disciplines
  • Understand environment thoroughly enough to administer/debug the system
  • Participate in the 24×7 on-call rotation and respond to alerts as needed


  • Expert knowledge of Cassandra & MySQL
  • Expert knowledge of Linux administration (Debian preferred)
  • Scripting skills
  • Experience in automation/configuration management
  • Position is based in the San Mateo, California corporate office

Required for all Backblaze Employees

  • Good attitude and willingness to do whatever it takes to get the job done.
  • Desire to learn and adapt to rapidly changing technologies and work environment.
  • Relentless attention to detail.
  • Excellent communication and problem solving skills.
  • Backblaze is an Equal Opportunity Employer and we offer competitive salary and benefits, including our no policy vacation policy.

Company Description:
Founded in 2007, Backblaze started with a mission to make backup software elegant and provide complete peace of mind. Over the course of almost a decade, we have become a pioneer in robust, scalable low cost cloud backup. Recently, we launched B2 – robust and reliable object storage at just $0.005/gb/mo. Part of our differentiation is being able to offer the lowest price of any of the big players while still being profitable.

We’ve managed to nurture a team oriented culture with amazingly low turnover. We value our people and their families. Don’t forget to check out our “About Us” page to learn more about the people and some of our perks.

We have built a profitable, high growth business. While we love our investors, we have maintained control over the business. That means our corporate goals are simple – grow sustainably and profitably.

Some Backblaze Perks:

  • Competitive healthcare plans
  • Competitive compensation and 401k
  • All employees receive Option grants
  • Unlimited vacation days
  • Strong coffee
  • Fully stocked Micro kitchen
  • Catered breakfast and lunches
  • Awesome people who work on awesome projects
  • Childcare bonus
  • Normal work hours
  • Get to bring your pets into the office
  • San Mateo Office – located near Caltrain and Highways 101 & 280.

If this sounds like you — follow these steps:

  1. Send an email to [email protected] with the position in the subject line.
  2. Include your resume.
  3. Tell us a bit about your experience and why you’re excited to work with Backblaze.

The post Wanted: Database Systems Administrator appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

TVStreamCMS Brings Pirate Streaming Site Clones to The Masses

Post Syndicated from Ernesto original https://torrentfreak.com/tvstreamcms-brings-pirate-streaming-site-clones-to-the-masses-170723/

In recent years many pirates have moved from more traditional download sites and tools, to streaming portals.

These streaming sites come in all shapes and sizes, and there is fierce competition among site owners to grab the most traffic. More traffic means more money, after all.

While building a streaming from scratch is quite an operation, there are scripts on the market that allow virtually anyone to set up their own streaming index in just a few minutes.

TVStreamCMS is one of the leading players in this area. To find out more we spoke to one of the people behind the project, who prefers to stay anonymous, but for the sake of this article, we’ll call him Rick.

“The idea came up when I wanted to make my own streaming site. I saw that they make a lot of money, and many people had them,” Rick tells us.

After discovering that there were already a few streaming site scripts available, Rick saw an opportunity. None of the popular scripts at the time offered automatic updates with freshly pirated content, a gap that was waiting to be filled.

“I found out that TVStreamScript and others on ThemeForest like MTDB were available, but these were not automatized. Instead, they were kinda generic and hard to update. We wanted to make our own site, but as we made it, we also thought about reselling it.”

Soon after TVStreamCMS was born. In addition to using it for his own project, Rick also decided to offer it to others who wanted to run their own streaming portal, for a monthly subscription fee.

TVStreamCMS website

According to Rick, the script’s automated content management system has been its key selling point. The buyers don’t have to update or change much themselves, as pretty much everything is automatized.

This has generated hundreds of sales over the years, according to the developer. And several of the sites that run on the script are successfully “stealing” traffic from the original, such as gomovies.co, which ranks well above the real GoMovies in Google’s search results.

“Currently, a lot of the sites competing against the top level streaming sites are using our script. This includes 123movies.co, gomovies.co and putlockers.tv, keywords like yesmovies fmovies gomovies 123movies, even in different Languages like Portuguese, French and Italian,” Rick says.

The pirated videos that appear on these sites come from a database maintained by the TVStreamCMS team. These are hosted on their own servers, but also by third parties such as Google and Openload.

When we looked at one of the sites we noticed a few dead links, but according to Rick, these are regularly replaced.

“Dead links are maintained by our team, DMCA removals are re-uploaded, and so on. This allows users not to worry about re-uploading or adding content daily and weekly as movies and episodes release,” Rick explains.

While this all sounds fine and dandy for prospective pirates, there are some significant drawbacks.

Aside from the obvious legal risks that come with operating one of these sites, there is also a financial hurdle. The full package costs $399 plus a monthly fee of $99, and the basic option is $399 and $49 per month.

TVStreamCMS subscription plans

There are apparently plenty of site owners who don’t mind paying this kind of money. That said, not everyone is happy with the script. TorrentFreak spoke to a source at one of the larger streaming sites, who believes that these clones are misleading their users.

TVStreamCMS is not impressed by the criticism. They know very well what they are doing. Their users asked for these clone templates, and they are delivering them, so both sides can make more money.

“We’re are in the business to make money and grow the sales,” Rick says.

“So we have made templates looking like 123movies, Yesmovies, Fmovies and Putlocker to accommodate the demands of the buyers. A similar design gets buyers traffic and is very, very effective for new sites, as users who come from Google they think it is the real website.”

The fact that 123Movies changed its name to GoMovies and recently changed to a GoStream.is URL, only makes it easier for clones to get traffic, according to the developer.

“This provides us with a lot of business because every time they change their name the buyers come back and want another site with the new name. GoMovies, for instance, and now Gostream,” Rick notes.

Of course, the infringing nature of the clone sites means that there are many copyright holders who would rather see the script and its associated sites gone. Previously, the Hollywood group FACT managed to shut down TVstreamScript, taking down hundreds of sites that relied on it, and it’s likely that TVStreamCMS is being watched too.

For now, however, more and more clones continue to flood the web with pirated streams.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

The KickassTorrents Shutdown, One Year Later

Post Syndicated from Ernesto original https://torrentfreak.com/the-kickasstorrents-shutdown-one-year-later-170720/

Exactly one year ago, on July 20th 2016, the torrent community was in dire straits.

Polish law enforcement officers had just apprehended Artem Vaulin, the alleged founder of KickassTorrents (KAT) at a local airport.

The arrest was part of a U.S. criminal case which also listed two other men as key players. At the time, KAT was the most-used torrent site around, so the authorities couldn’t have hit a more prominent target.

The criminal case was the end of the torrent site, but also the start of a lengthy court battle for the defendants.

To this day, Artem remains in Poland. He’s currently out on bail awaiting the final decision on the extradition request from the United States, while the other two defendants remain at large. If he is extradited, it’s expected that an extensive court battle will follow.

Although the original KickassTorrents is website no longer around, the ‘brand’ is still very much alive. Soon after the site went down several KAT copies and mirrors appeared. For many, however, the original site is still dearly missed.

The most prominent effort to create a replacement is the product of a group of well-known staffers from the original site. They began to rebuild the community by launching a forum for estranged KAT users last summer. A few months later they expanded their KATcr project to a full blown torrent site, mimicking the looks of the original.

Today, one year after it all started, we reach out to the new KATcr team to hear about their memories and future plans.

“Looking back it was shocking and disheartening for everyone, we know it happens but didn’t expect our ship to sink like that. We’ve written history there though, made many friends, learned a hell of a lot, and achieved so much,” Mr.Gooner recalls.

“It’s thanks to the original site and the loyal, supporting users that we were able to rebuild our ship and set sail again,” he adds.

While KATcr was able to put up a forum within days, getting fully organized was a more complex operation. Several former admins came on board, but without access to the original code or database, it took a few months to build a KAT replacement from scratch.

KATcr today

The site eventually relaunched as a full-blown torrent site last December. Although it doesn’t get as much traffic as the original KAT, many former users have found their way ‘back.’

“Minus a few hiccups and various other minor issues most new sites experience, traffic is increasing at a good rate. We are continuously improving and our name is well and truly out there now. The door is open and everyone is welcomed with open arms, we know all too well what it’s like to lose our home,” Mr.Gooner notes.

A lot of people would think twice before attempting to fill the shoes of a site that was hunted down by the US Department of Justice. However, the KATcr team believes that they are acting within the boundaries of the law.

“As far as we are concerned we operate to every letter of the law,” Mr.Gooner states in full confidence.

In the future, the site hopes to expand its userbase even further. Although it’s now been a year since the original KAT was pulled offline, the KATcr team prefers to look ahead, instead of dwelling in the past. There are some people who are still missed, but other than that, the focus is forward.

“I mostly miss those that are no longer with us. But rather than living in the past, the present day and the future is what matters, so we don’t tend to look back to miss anything else,” Mr.Gooner says.

Looking ahead is what alleged KickassTorrents operator Artem Vaulin will do as well. His concerns are different though.

The most pressing question that has to be answered in the near future is whether Poland will extradite him to the United States. Through his lawyers, he previously floated the idea of surrendering to the US voluntarily to “resolve” the pending charges, but only under the right conditions.

Meanwhile, he remains in Poland on bail.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.