Tag Archives: email

A Thanksgiving Carol: How Those Smart Engineers at Twitter Screwed Me

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/11/a-thanksgiving-carol-how-those-smart.html

Thanksgiving Holiday is a time for family and cheer. Well, a time for family. It’s the holiday where we ask our doctor relatives to look at that weird skin growth, and for our geek relatives to fix our computers. This tale is of such computer support, and how the “smart” engineers at Twitter have ruined this for life.

My mom is smart, but not a good computer user. I get my enthusiasm for science and math from my mother, and she has no problem understanding the science of computers. She keeps up when I explain Bitcoin. But she has difficulty using computers. She has this emotional, irrational belief that computers are out to get her.

This makes helping her difficult. Every problem is described in terms of what the computer did to her, not what she did to her computer. It’s the computer that needs to be fixed, instead of the user. When I showed her the “haveibeenpwned.com” website (part of my tips for securing computers), it showed her Tumblr password had been hacked. She swore she never created a Tumblr account — that somebody or something must have done it for her. Except, I was there five years ago and watched her create it.

Another example is how GMail is deleting her emails for no reason, corrupting them, and changing the spelling of her words. She emails the way an impatient teenager texts — all of us in the family know the misspellings are not GMail’s fault. But I can’t help her with this because she keeps her GMail inbox clean, deleting all her messages, leaving no evidence behind. She has only a vague description of the problem that I can’t make sense of.

This last March, I tried something to resolve this. I configured her GMail to send a copy of all incoming messages to a new, duplicate account on my own email server. With evidence in hand, I would then be able solve what’s going on with her GMail. I’d be able to show her which steps she took, which buttons she clicked on, and what caused the weirdness she’s seeing.

Today, while the family was in a state of turkey-induced torpor, my mom brought up a problem with Twitter. She doesn’t use Twitter, she doesn’t have an account, but they keep sending tweets to her phone, about topics like Denzel Washington. And she said something about “peaches” I didn’t understand.

This is how the problem descriptions always start, chaotic, with mutually exclusive possibilities. If you don’t use Twitter, you don’t have the Twitter app installed, so how are you getting Tweets? Over much gnashing of teeth, it comes out that she’s getting emails from Twitter, not tweets, about Denzel Washington — to someone named “Peaches Graham”. Naturally, she can only describe these emails, because she’s already deleted them.

“Ah ha!”, I think. I’ve got the evidence! I’ll just log onto my duplicate email server, and grab the copies to prove to her it was something she did.

I find she is indeed receiving such emails, called “Moments”, about topics trending on Twitter. They are signed with “DKIM”, proving they are legitimate rather than from a hacker or spammer. The only way that can happen is if my mother signed up for Twitter, despite her protestations that she didn’t.

I look further back and find that there were also confirmation messages involved. Back in August, she got a typical Twitter account signup message. I am now seeing a little bit more of the story unfold with this “Peaches Graham” name on the account. It wasn’t my mother who initially signed up for Twitter, but Peaches, who misspelled the email address. It’s one of the reasons why the confirmation process exists, to make sure you spelled your email address correctly.

It’s now obvious my mom accidentally clicked on the [Confirm] button. I don’t have any proof she did, but it’s the only reasonable explanation. Otherwise, she wouldn’t have gotten the “Moments” messages. My mom disputed this, emphatically insisting she never clicked on the emails.

It’s at this point that I made a great mistake, saying:

“This sort of thing just doesn’t happen. Twitter has very smart engineers. What’s the chance they made the mistake here, or…”.

I recognized condescension of words as they came out of my mouth, but dug myself deeper with:

“…or that the user made the error?”

This was wrong to say even if I were right. I have no excuse. I mean, maybe I could argue that it’s really her fault, for not raising me right, but no, this is only on me.

Regardless of what caused the Twitter emails, the problem needs to be fixed. The solution is to take control of the Twitter account by using the password reset feature. I went to the Twitter login page, clicked on “Lost Password”, got the password reset message, and reset the password. I then reconfigured the account to never send anything to my mom again.

But when I logged in I got an error saying the account had not yet been confirmed. I paused. The family dog eyed me in wise silence. My mom hadn’t clicked on the [Confirm] button — the proof was right there. Moreover, it hadn’t been confirmed for a long time, since the account was created in 2011.

I interrogated my mother some more. It appears that this has been going on for years. She’s just been deleting the emails without opening them, both the “Confirmations” and the “Moments”. She made it clear she does it this way because her son (that would be me) instructs her to never open emails she knows are bad. That’s how she could be so certain she never clicked on the [Confirm] button — she never even opens the emails to see the contents.

My mom is a prolific email user. In the last eight months, I’ve received over 10,000 emails in the duplicate mailbox on my server. That’s a lot. She’s technically retired, but she volunteers for several charities, goes to community college classes, and is joining an anti-Trump protest group. She has a daily routine for triaging and processing all the emails that flow through her inbox.

So here’s the thing, and there’s no getting around it: my mom was right, on all particulars. She had done nothing, the computer had done it to her. It’s Twitter who is at fault, having continued to resend that confirmation email every couple months for six years. When Twitter added their controversial “Moments” feature a couple years back, somehow they turned on Notifications for accounts that technically didn’t fully exist yet.

Being right this time means she might be right the next time the computer does something to her without her touching anything. My attempts at making computers seem rational has failed. That they are driven by untrustworthy spirits is now a reasonable alternative.

Those “smart” engineers at Twitter screwed me. Continuing to send confirmation emails for six years is stupid. Sending Notifications to unconfirmed accounts is stupid. Yes, I know at the bottom of the message it gives a “Not my account” selection that she could have clicked on, but it’s small and easily missed. In any case, my mom never saw that option, because she’s been deleting the messages without opening them — for six years.

Twitter can fix their problem, but it’s not going to help mine. Forever more, I’ll be unable to convince my mom that the majority of her problems are because of user error, and not because the computer people are out to get her.

HackSpace magazine #1 is out now!

Post Syndicated from Andrew Gregory original https://www.raspberrypi.org/blog/hackspace-magazine-1/

HackSpace magazine is finally here! Grab your copy of the new magazine for makers today, and try your hand at some new, exciting skills.

HackSpace magazine issue 1 cover

What is HackSpace magazine?

HackSpace magazine is the newest publication from the team behind The MagPi. Chock-full of amazing projects, tutorials, features, and maker interviews, HackSpace magazine brings together the makers of the world every month, with you — the community — providing the content.

HackSpace magazine is out now!

The new magazine for the modern maker is out now! Learn more at https://hsmag.cc HackSpace magazine is the new monthly magazine for people who love to make things and those who want to learn. Grab some duct tape, fire up a microcontroller, ready a 3D printer and hack the world around you!

Inside issue 1

Fancy smoking bacon with your very own cold smoker? How about protecting your home with a mini trebuchet for your front lawn? Or maybe you’d like to learn from awesome creator Becky Stern how to get paid for making the things you love? No matter whether it’s handheld consoles, robot prosthetics, Christmas projects, or, er, duct tape — whatever your maker passion, issue 1 is guaranteed to tick your boxes!



HackSpace magazine is packed with content from every corner of the maker world: from welding to digital making, and from woodwork to wearables. And whatever you enjoy making, we want to see it! So as you read through this first issue, imagine your favourite homemade projects on our pages, then make that a reality by emailing us the details via [email protected].

Get your copy

You can grab issue 1 of HackSpace magazine right now from WHSmith, Tesco, Sainsbury’s, and independent newsagents. If you live in the US, check out your local Barnes & Noble, Fry’s, or Micro Center next week. We’re also shipping to stores in Australia, Hong Kong, Canada, Singapore, Belgium and Brazil — ask your local newsagent whether they’ll be getting HackSpace magazine. Alternatively, you can get the new issue online from our store, or digitally via our Android or iOS apps. And don’t forget, as with all our publications, a free PDF of HackSpace magazine is available from release day.

We’re also offering money-saving subscriptions — find details on the the magazine website. And if you’re a subscriber of The MagPi, your free copy of HackSpace magazine is on its way, with details of a super 50% discount on subscriptions! Could this be the Christmas gift you didn’t know you wanted?

Share your makes and thoughts

Make sure to follow HackSpace magazine on Facebook and Twitter, or email the team at [email protected] to tell us about your projects and share your thoughts about issue 1. We’ve loved creating this new magazine for the maker community, and we hope you enjoy it as much as we do.

The post HackSpace magazine #1 is out now! appeared first on Raspberry Pi.

Easier Certificate Validation Using DNS with AWS Certificate Manager

Post Syndicated from Todd Cignetti original https://aws.amazon.com/blogs/security/easier-certificate-validation-using-dns-with-aws-certificate-manager/

Secure Sockets Layer/Transport Layer Security (SSL/TLS) certificates are used to secure network communications and establish the identity of websites over the internet. Before issuing a certificate for your website, Amazon must validate that you control the domain name for your site. You can now use AWS Certificate Manager (ACM) Domain Name System (DNS) validation to establish that you control a domain name when requesting SSL/TLS certificates with ACM. Previously ACM supported only email validation, which required the domain owner to receive an email for each certificate request and validate the information in the request before approving it.

With DNS validation, you write a CNAME record to your DNS configuration to establish control of your domain name. After you have configured the CNAME record, ACM can automatically renew DNS-validated certificates before they expire, as long as the DNS record has not changed. To make it even easier to validate your domain, ACM can update your DNS configuration for you if you manage your DNS records with Amazon Route 53. In this blog post, I demonstrate how to request a certificate for a website by using DNS validation. To perform the equivalent steps using the AWS CLI or AWS APIs and SDKs, see AWS Certificate Manager in the AWS CLI Reference and the ACM API Reference.

Requesting an SSL/TLS certificate by using DNS validation

In this section, I walk you through the four steps required to obtain an SSL/TLS certificate through ACM to identify your site over the internet. SSL/TLS provides encryption for sensitive data in transit and authentication by using certificates to establish the identity of your site and secure connections between browsers and applications and your site. DNS validation and SSL/TLS certificates provisioned through ACM are free.

Step 1: Request a certificate

To get started, sign in to the AWS Management Console and navigate to the ACM console. Choose Get started to request a certificate.

Screenshot of getting started in the ACM console

If you previously managed certificates in ACM, you will instead see a table with your certificates and a button to request a new certificate. Choose Request a certificate to request a new certificate.

Screenshot of choosing "Request a certificate"

Type the name of your domain in the Domain name box and choose Next. In this example, I type www.example.com. You must use a domain name that you control. Requesting certificates for domains that you don’t control violates the AWS Service Terms.

Screenshot of entering a domain name

Step 2: Select a validation method

With DNS validation, you write a CNAME record to your DNS configuration to establish control of your domain name. Choose DNS validation, and then choose Review.

Screenshot of selecting validation method

Step 3: Review your request

Review your request and choose Confirm and request to request the certificate.

Screenshot of reviewing request and confirming it

Step 4: Submit your request

After a brief delay while ACM populates your domain validation information, choose the down arrow (highlighted in the following screenshot) to display all the validation information for your domain.

Screenshot of validation information

ACM displays the CNAME record you must add to your DNS configuration to validate that you control the domain name in your certificate request. If you use a DNS provider other than Route 53 or if you use a different AWS account to manage DNS records in Route 53, copy the DNS CNAME information from the validation information, or export it to a file (choose Export DNS configuration to a file) and write it to your DNS configuration. For information about how to add or modify DNS records, check with your DNS provider. For more information about using DNS with Route 53 DNS, see the Route 53 documentation.

If you manage DNS records for your domain with Route 53 in the same AWS account, choose Create record in Route 53 to have ACM update your DNS configuration for you.

After updating your DNS configuration, choose Continue to return to the ACM table view.

ACM then displays a table that includes all your certificates. The certificate you requested is displayed so that you can see the status of your request. After you write the DNS record or have ACM write the record for you, it typically takes DNS 30 minutes to propagate the record, and it might take several hours for Amazon to validate it and issue the certificate. During this time, ACM shows the Validation status as Pending validation. After ACM validates the domain name, ACM updates the Validation status to Success. After the certificate is issued, the certificate status is updated to Issued. If ACM cannot validate your DNS record and issue the certificate after 72 hours, the request times out, and ACM displays a Timed out validation status. To recover, you must make a new request. Refer to the Troubleshooting Section of the ACM User Guide for instructions about troubleshooting validation or issuance failures.

Screenshot of a certificate issued and validation successful

You now have an ACM certificate that you can use to secure your application or website. For information about how to deploy certificates with other AWS services, see the documentation for Amazon CloudFront, Amazon API Gateway, Application Load Balancers, and Classic Load Balancers. Note that your certificate must be in the US East (N. Virginia) Region to use the certificate with CloudFront.

ACM automatically renews certificates that are deployed and in use with other AWS services as long as the CNAME record remains in your DNS configuration. To learn more about ACM DNS validation, see the ACM FAQs and the ACM documentation.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about this blog post, start a new thread on the ACM forum or contact AWS Support.

– Todd

The 10 Most Viewed Security-Related AWS Knowledge Center Articles and Videos for November 2017

Post Syndicated from Maggie Burke original https://aws.amazon.com/blogs/security/the-10-most-viewed-security-related-aws-knowledge-center-articles-and-videos-for-november-2017/

AWS Knowledge Center image

The AWS Knowledge Center helps answer the questions most frequently asked by AWS Support customers. The following 10 Knowledge Center security articles and videos have been the most viewed this month. It’s likely you’ve wondered about a few of these topics yourself, so here’s a chance to learn the answers!

  1. How do I create an AWS Identity and Access Management (IAM) policy to restrict access for an IAM user, group, or role to a particular Amazon Virtual Private Cloud (VPC)?
    Learn how to apply a custom IAM policy to restrict IAM user, group, or role permissions for creating and managing Amazon EC2 instances in a specified VPC.
  2. How do I use an MFA token to authenticate access to my AWS resources through the AWS CLI?
    One IAM best practice is to protect your account and its resources by using a multi-factor authentication (MFA) device. If you plan use the AWS Command Line Interface (CLI) while using an MFA device, you must create a temporary session token.
  3. Can I restrict an IAM user’s EC2 access to specific resources?
    This article demonstrates how to link multiple AWS accounts through AWS Organizations and isolate IAM user groups in their own accounts.
  4. I didn’t receive a validation email for the SSL certificate I requested through AWS Certificate Manager (ACM)—where is it?
    Can’t find your ACM validation emails? Be sure to check the email address to which you requested that ACM send validation emails.
  5. How do I create an IAM policy that has a source IP restriction but still allows users to switch roles in the AWS Management Console?
    Learn how to write an IAM policy that not only includes a source IP restriction but also lets your users switch roles in the console.
  6. How do I allow users from another account to access resources in my account through IAM?
    If you have the 12-digit account number and permissions to create and edit IAM roles and users for both accounts, you can permit specific IAM users to access resources in your account.
  7. What are the differences between a service control policy (SCP) and an IAM policy?
    Learn how to distinguish an SCP from an IAM policy.
  8. How do I share my customer master keys (CMKs) across multiple AWS accounts?
    To grant another account access to your CMKs, create an IAM policy on the secondary account that grants access to use your CMKs.
  9. How do I set up AWS Trusted Advisor notifications?
    Learn how to receive free weekly email notifications from Trusted Advisor.
  10. How do I use AWS Key Management Service (AWS KMS) encryption context to protect the integrity of encrypted data?
    Encryption context name-value pairs used with AWS KMS encryption and decryption operations provide a method for checking ciphertext authenticity. Learn how to use encryption context to help protect your encrypted data.

The AWS Security Blog will publish an updated version of this list regularly going forward. You also can subscribe to the AWS Knowledge Center Videos playlist on YouTube.

– Maggie

Security updates for Wednesday

Post Syndicated from jake original https://lwn.net/Articles/739858/rss

Security updates have been issued by Arch Linux (roundcubemail), Debian (optipng, samba, and vlc), Fedora (compat-openssl10, fedpkg, git, jbig2dec, ldns, memcached, openssl, perl-Net-Ping-External, python-copr, python-XStatic-jquery-ui, rpkg, thunderbird, and xen), SUSE (tomcat), and Ubuntu (db, db4.8, db5.3, linux, linux-raspi2, linux-aws, linux-azure, linux-gcp, and samba).

How to Patch, Inspect, and Protect Microsoft Windows Workloads on AWS—Part 2

Post Syndicated from Koen van Blijderveen original https://aws.amazon.com/blogs/security/how-to-patch-inspect-and-protect-microsoft-windows-workloads-on-aws-part-2/

Yesterday in Part 1 of this blog post, I showed you how to:

  1. Launch an Amazon EC2 instance with an AWS Identity and Access Management (IAM) role, an Amazon Elastic Block Store (Amazon EBS) volume, and tags that Amazon EC2 Systems Manager (Systems Manager) and Amazon Inspector use.
  2. Configure Systems Manager to install the Amazon Inspector agent and patch your EC2 instances.

Today in Steps 3 and 4, I show you how to:

  1. Take Amazon EBS snapshots using Amazon EBS Snapshot Scheduler to automate snapshots based on instance tags.
  2. Use Amazon Inspector to check if your EC2 instances running Microsoft Windows contain any common vulnerabilities and exposures (CVEs).

To catch up on Steps 1 and 2, see yesterday’s blog post.

Step 3: Take EBS snapshots using EBS Snapshot Scheduler

In this section, I show you how to use EBS Snapshot Scheduler to take snapshots of your instances at specific intervals. To do this, I will show you how to:

  • Determine the schedule for EBS Snapshot Scheduler by providing you with best practices.
  • Deploy EBS Snapshot Scheduler by using AWS CloudFormation.
  • Tag your EC2 instances so that EBS Snapshot Scheduler backs up your instances when you want them backed up.

In addition to making sure your EC2 instances have all the available operating system patches applied on a regular schedule, you should take snapshots of the EBS storage volumes attached to your EC2 instances. Taking regular snapshots allows you to restore your data to a previous state quickly and cost effectively. With Amazon EBS snapshots, you pay only for the actual data you store, and snapshots save only the data that has changed since the previous snapshot, which minimizes your cost. You will use EBS Snapshot Scheduler to make regular snapshots of your EC2 instance. EBS Snapshot Scheduler takes advantage of other AWS services including CloudFormation, Amazon DynamoDB, and AWS Lambda to make backing up your EBS volumes simple.

Determine the schedule

As a best practice, you should back up your data frequently during the hours when your data changes the most. This reduces the amount of data you lose if you have to restore from a snapshot. For the purposes of this blog post, the data for my instances changes the most between the business hours of 9:00 A.M. to 5:00 P.M. Pacific Time. During these hours, I will make snapshots hourly to minimize data loss.

In addition to backing up frequently, another best practice is to establish a strategy for retention. This will vary based on how you need to use the snapshots. If you have compliance requirements to be able to restore for auditing, your needs may be different than if you are able to detect data corruption within three hours and simply need to restore to something that limits data loss to five hours. EBS Snapshot Scheduler enables you to specify the retention period for your snapshots. For this post, I only need to keep snapshots for recent business days. To account for weekends, I will set my retention period to three days, which is down from the default of 15 days when deploying EBS Snapshot Scheduler.

Deploy EBS Snapshot Scheduler

In Step 1 of Part 1 of this post, I showed how to configure an EC2 for Windows Server 2012 R2 instance with an EBS volume. You will use EBS Snapshot Scheduler to take eight snapshots each weekday of your EC2 instance’s EBS volumes:

  1. Navigate to the EBS Snapshot Scheduler deployment page and choose Launch Solution. This takes you to the CloudFormation console in your account. The Specify an Amazon S3 template URL option is already selected and prefilled. Choose Next on the Select Template page.
  2. On the Specify Details page, retain all default parameters except for AutoSnapshotDeletion. Set AutoSnapshotDeletion to Yes to ensure that old snapshots are periodically deleted. The default retention period is 15 days (you will specify a shorter value on your instance in the next subsection).
  3. Choose Next twice to move to the Review step, and start deployment by choosing the I acknowledge that AWS CloudFormation might create IAM resources check box and then choosing Create.

Tag your EC2 instances

EBS Snapshot Scheduler takes a few minutes to deploy. While waiting for its deployment, you can start to tag your instance to define its schedule. EBS Snapshot Scheduler reads tag values and looks for four possible custom parameters in the following order:

  • <snapshot time> – Time in 24-hour format with no colon.
  • <retention days> – The number of days (a positive integer) to retain the snapshot before deletion, if set to automatically delete snapshots.
  • <time zone> – The time zone of the times specified in <snapshot time>.
  • <active day(s)>all, weekdays, or mon, tue, wed, thu, fri, sat, and/or sun.

Because you want hourly backups on weekdays between 9:00 A.M. and 5:00 P.M. Pacific Time, you need to configure eight tags—one for each hour of the day. You will add the eight tags shown in the following table to your EC2 instance.

Tag Value
scheduler:ebs-snapshot:0900 0900;3;utc;weekdays
scheduler:ebs-snapshot:1000 1000;3;utc;weekdays
scheduler:ebs-snapshot:1100 1100;3;utc;weekdays
scheduler:ebs-snapshot:1200 1200;3;utc;weekdays
scheduler:ebs-snapshot:1300 1300;3;utc;weekdays
scheduler:ebs-snapshot:1400 1400;3;utc;weekdays
scheduler:ebs-snapshot:1500 1500;3;utc;weekdays
scheduler:ebs-snapshot:1600 1600;3;utc;weekdays

Next, you will add these tags to your instance. If you want to tag multiple instances at once, you can use Tag Editor instead. To add the tags in the preceding table to your EC2 instance:

  1. Navigate to your EC2 instance in the EC2 console and choose Tags in the navigation pane.
  2. Choose Add/Edit Tags and then choose Create Tag to add all the tags specified in the preceding table.
  3. Confirm you have added the tags by choosing Save. After adding these tags, navigate to your EC2 instance in the EC2 console. Your EC2 instance should look similar to the following screenshot.
    Screenshot of how your EC2 instance should look in the console
  4. After waiting a couple of hours, you can see snapshots beginning to populate on the Snapshots page of the EC2 console.Screenshot of snapshots beginning to populate on the Snapshots page of the EC2 console
  5. To check if EBS Snapshot Scheduler is active, you can check the CloudWatch rule that runs the Lambda function. If the clock icon shown in the following screenshot is green, the scheduler is active. If the clock icon is gray, the rule is disabled and does not run. You can enable or disable the rule by selecting it, choosing Actions, and choosing Enable or Disable. This also allows you to temporarily disable EBS Snapshot Scheduler.Screenshot of checking to see if EBS Snapshot Scheduler is active
  1. You can also monitor when EBS Snapshot Scheduler has run by choosing the name of the CloudWatch rule as shown in the previous screenshot and choosing Show metrics for the rule.Screenshot of monitoring when EBS Snapshot Scheduler has run by choosing the name of the CloudWatch rule

If you want to restore and attach an EBS volume, see Restoring an Amazon EBS Volume from a Snapshot and Attaching an Amazon EBS Volume to an Instance.

Step 4: Use Amazon Inspector

In this section, I show you how to you use Amazon Inspector to scan your EC2 instance for common vulnerabilities and exposures (CVEs) and set up Amazon SNS notifications. To do this I will show you how to:

  • Install the Amazon Inspector agent by using EC2 Run Command.
  • Set up notifications using Amazon SNS to notify you of any findings.
  • Define an Amazon Inspector target and template to define what assessment to perform on your EC2 instance.
  • Schedule Amazon Inspector assessment runs to assess your EC2 instance on a regular interval.

Amazon Inspector can help you scan your EC2 instance using prebuilt rules packages, which are built and maintained by AWS. These prebuilt rules packages tell Amazon Inspector what to scan for on the EC2 instances you select. Amazon Inspector provides the following prebuilt packages for Microsoft Windows Server 2012 R2:

  • Common Vulnerabilities and Exposures
  • Center for Internet Security Benchmarks
  • Runtime Behavior Analysis

In this post, I’m focused on how to make sure you keep your EC2 instances patched, backed up, and inspected for common vulnerabilities and exposures (CVEs). As a result, I will focus on how to use the CVE rules package and use your instance tags to identify the instances on which to run the CVE rules. If your EC2 instance is fully patched using Systems Manager, as described earlier, you should not have any findings with the CVE rules package. Regardless, as a best practice I recommend that you use Amazon Inspector as an additional layer for identifying any unexpected failures. This involves using Amazon CloudWatch to set up weekly Amazon Inspector scans, and configuring Amazon Inspector to notify you of any findings through SNS topics. By acting on the notifications you receive, you can respond quickly to any CVEs on any of your EC2 instances to help ensure that malware using known CVEs does not affect your EC2 instances. In a previous blog post, Eric Fitzgerald showed how to remediate Amazon Inspector security findings automatically.

Install the Amazon Inspector agent

To install the Amazon Inspector agent, you will use EC2 Run Command, which allows you to run any command on any of your EC2 instances that have the Systems Manager agent with an attached IAM role that allows access to Systems Manager.

  1. Choose Run Command under Systems Manager Services in the navigation pane of the EC2 console. Then choose Run a command.
    Screenshot of choosing "Run a command"
  2. To install the Amazon Inspector agent, you will use an AWS managed and provided command document that downloads and installs the agent for you on the selected EC2 instance. Choose AmazonInspector-ManageAWSAgent. To choose the target EC2 instance where this command will be run, use the tag you previously assigned to your EC2 instance, Patch Group, with a value of Windows Servers. For this example, set the concurrent installations to 1 and tell Systems Manager to stop after 5 errors.
    Screenshot of installing the Amazon Inspector agent
  3. Retain the default values for all other settings on the Run a command page and choose Run. Back on the Run Command page, you can see if the command that installed the Amazon Inspector agent executed successfully on all selected EC2 instances.
    Screenshot showing that the command that installed the Amazon Inspector agent executed successfully on all selected EC2 instances

Set up notifications using Amazon SNS

Now that you have installed the Amazon Inspector agent, you will set up an SNS topic that will notify you of any findings after an Amazon Inspector run.

To set up an SNS topic:

  1. In the AWS Management Console, choose Simple Notification Service under Messaging in the Services menu.
  2. Choose Create topic, name your topic (only alphanumeric characters, hyphens, and underscores are allowed) and give it a display name to ensure you know what this topic does (I’ve named mine Inspector). Choose Create topic.
    "Create new topic" page
  3. To allow Amazon Inspector to publish messages to your new topic, choose Other topic actions and choose Edit topic policy.
  4. For Allow these users to publish messages to this topic and Allow these users to subscribe to this topic, choose Only these AWS users. Type the following ARN for the US East (N. Virginia) Region in which you are deploying the solution in this post: arn:aws:iam::316112463485:root. This is the ARN of Amazon Inspector itself. For the ARNs of Amazon Inspector in other AWS Regions, see Setting Up an SNS Topic for Amazon Inspector Notifications (Console). Amazon Resource Names (ARNs) uniquely identify AWS resources across all of AWS.
    Screenshot of editing the topic policy
  5. To receive notifications from Amazon Inspector, subscribe to your new topic by choosing Create subscription and adding your email address. After confirming your subscription by clicking the link in the email, the topic should display your email address as a subscriber. Later, you will configure the Amazon Inspector template to publish to this topic.
    Screenshot of subscribing to the new topic

Define an Amazon Inspector target and template

Now that you have set up the notification topic by which Amazon Inspector can notify you of findings, you can create an Amazon Inspector target and template. A target defines which EC2 instances are in scope for Amazon Inspector. A template defines which packages to run, for how long, and on which target.

To create an Amazon Inspector target:

  1. Navigate to the Amazon Inspector console and choose Get started. At the time of writing this blog post, Amazon Inspector is available in the US East (N. Virginia), US West (N. California), US West (Oregon), EU (Ireland), Asia Pacific (Mumbai), Asia Pacific (Seoul), Asia Pacific (Sydney), and Asia Pacific (Tokyo) Regions.
  2. For Amazon Inspector to be able to collect the necessary data from your EC2 instance, you must create an IAM service role for Amazon Inspector. Amazon Inspector can create this role for you if you choose Choose or create role and confirm the role creation by choosing Allow.
    Screenshot of creating an IAM service role for Amazon Inspector
  3. Amazon Inspector also asks you to tag your EC2 instance and install the Amazon Inspector agent. You already performed these steps in Part 1 of this post, so you can proceed by choosing Next. To define the Amazon Inspector target, choose the previously used Patch Group tag with a Value of Windows Servers. This is the same tag that you used to define the targets for patching. Then choose Next.
    Screenshot of defining the Amazon Inspector target
  4. Now, define your Amazon Inspector template, and choose a name and the package you want to run. For this post, use the Common Vulnerabilities and Exposures package and choose the default duration of 1 hour. As you can see, the package has a version number, so always select the latest version of the rules package if multiple versions are available.
    Screenshot of defining an assessment template
  5. Configure Amazon Inspector to publish to your SNS topic when findings are reported. You can also choose to receive a notification of a started run, a finished run, or changes in the state of a run. For this blog post, you want to receive notifications if there are any findings. To start, choose Assessment Templates from the Amazon Inspector console and choose your newly created Amazon Inspector assessment template. Choose the icon below SNS topics (see the following screenshot).
    Screenshot of choosing an assessment template
  6. A pop-up appears in which you can choose the previously created topic and the events about which you want SNS to notify you (choose Finding reported).
    Screenshot of choosing the previously created topic and the events about which you want SNS to notify you

Schedule Amazon Inspector assessment runs

The last step in using Amazon Inspector to assess for CVEs is to schedule the Amazon Inspector template to run using Amazon CloudWatch Events. This will make sure that Amazon Inspector assesses your EC2 instance on a regular basis. To do this, you need the Amazon Inspector template ARN, which you can find under Assessment templates in the Amazon Inspector console. CloudWatch Events can run your Amazon Inspector assessment at an interval you define using a Cron-based schedule. Cron is a well-known scheduling agent that is widely used on UNIX-like operating systems and uses the following syntax for CloudWatch Events.

Image of Cron schedule

All scheduled events use a UTC time zone, and the minimum precision for schedules is one minute. For more information about scheduling CloudWatch Events, see Schedule Expressions for Rules.

To create the CloudWatch Events rule:

  1. Navigate to the CloudWatch console, choose Events, and choose Create rule.
    Screenshot of starting to create a rule in the CloudWatch Events console
  2. On the next page, specify if you want to invoke your rule based on an event pattern or a schedule. For this blog post, you will select a schedule based on a Cron expression.
  3. You can schedule the Amazon Inspector assessment any time you want using the Cron expression, or you can use the Cron expression I used in the following screenshot, which will run the Amazon Inspector assessment every Sunday at 10:00 P.M. GMT.
    Screenshot of scheduling an Amazon Inspector assessment with a Cron expression
  4. Choose Add target and choose Inspector assessment template from the drop-down menu. Paste the ARN of the Amazon Inspector template you previously created in the Amazon Inspector console in the Assessment template box and choose Create a new role for this specific resource. This new role is necessary so that CloudWatch Events has the necessary permissions to start the Amazon Inspector assessment. CloudWatch Events will automatically create the new role and grant the minimum set of permissions needed to run the Amazon Inspector assessment. To proceed, choose Configure details.
    Screenshot of adding a target
  5. Next, give your rule a name and a description. I suggest using a name that describes what the rule does, as shown in the following screenshot.
  6. Finish the wizard by choosing Create rule. The rule should appear in the Events – Rules section of the CloudWatch console.
    Screenshot of completing the creation of the rule
  7. To confirm your CloudWatch Events rule works, wait for the next time your CloudWatch Events rule is scheduled to run. For testing purposes, you can choose your CloudWatch Events rule and choose Edit to change the schedule to run it sooner than scheduled.
    Screenshot of confirming the CloudWatch Events rule works
  8. Now navigate to the Amazon Inspector console to confirm the launch of your first assessment run. The Start time column shows you the time each assessment started and the Status column the status of your assessment. In the following screenshot, you can see Amazon Inspector is busy Collecting data from the selected assessment targets.
    Screenshot of confirming the launch of the first assessment run

You have concluded the last step of this blog post by setting up a regular scan of your EC2 instance with Amazon Inspector and a notification that will let you know if your EC2 instance is vulnerable to any known CVEs. In a previous Security Blog post, Eric Fitzgerald explained How to Remediate Amazon Inspector Security Findings Automatically. Although that blog post is for Linux-based EC2 instances, the post shows that you can learn about Amazon Inspector findings in other ways than email alerts.

Conclusion

In this two-part blog post, I showed how to make sure you keep your EC2 instances up to date with patching, how to back up your instances with snapshots, and how to monitor your instances for CVEs. Collectively these measures help to protect your instances against common attack vectors that attempt to exploit known vulnerabilities. In Part 1, I showed how to configure your EC2 instances to make it easy to use Systems Manager, EBS Snapshot Scheduler, and Amazon Inspector. I also showed how to use Systems Manager to schedule automatic patches to keep your instances current in a timely fashion. In Part 2, I showed you how to take regular snapshots of your data by using EBS Snapshot Scheduler and how to use Amazon Inspector to check if your EC2 instances running Microsoft Windows contain any common vulnerabilities and exposures (CVEs).

If you have comments about today’s or yesterday’s post, submit them in the “Comments” section below. If you have questions about or issues implementing any part of this solution, start a new thread on the Amazon EC2 forum or the Amazon Inspector forum, or contact AWS Support.

– Koen

Game of Thrones Leaks “Carried Out By Former Iranian Military Hacker”

Post Syndicated from Andy original https://torrentfreak.com/game-of-thrones-leaks-carried-out-by-former-iranian-military-hacker-171122/

Late July it was reported that hackers had stolen proprietary information from media giant HBO.

The haul was said to include confidential details of the then-unreleased fourth episode of the latest Game of Thrones season, plus episodes of Ballers, Barry, Insecure, and Room 104.

“Hi to all mankind,” an email sent to reporters read. “The greatest leak of cyber space era is happening. What’s its name? Oh I forget to tell. Its HBO and Game of Thrones……!!!!!!”

In follow-up correspondence, the hackers claimed to have penetrated HBO’s internal network, gaining access to emails, technical platforms, and other confidential information.

Image released by the hackers

Soon after, HBO chairman and CEO Richard Plepler confirmed a breach at his company, telling employees that there had been a “cyber incident” in which information and programming had been taken.

“Any intrusion of this nature is obviously disruptive, unsettling, and disturbing for all of us. I can assure you that senior leadership and our extraordinary technology team, along with outside experts, are working round the clock to protect our collective interests,” he said.

During mid-August, problems persisted, with unreleased shows hitting the Internet. HBO appeared rattled by the ongoing incident, refusing to comment to the media on every new development. Now, however, it appears the tide is turning on HBO’s foe.

In a statement last evening, Joon H. Kim, Acting United States Attorney for the Southern District of New York, and William F. Sweeney Jr., Assistant Director-in-Charge of the New York Field Division of the FBI, announced the unsealing of an indictment charging a 29-year-old man with offenses carried out against HBO.

“Behzad Mesri, an Iranian national who had previously hacked computer systems for the Iranian military, allegedly infiltrated HBO’s systems, stole proprietary data, including scripts and plot summaries for unaired episodes of Game of Thrones, and then sought to extort HBO of $6 million in Bitcoins,” Kim said.

“Mesri now stands charged with federal crimes, and although not arrested today, he will forever have to look over his shoulder until he is made to face justice. American ingenuity and creativity is to be cultivated and celebrated — not hacked, stolen, and held for ransom. For hackers who test our resolve in protecting our intellectual property — even those hiding behind keyboards in countries far away — eventually, winter will come.”

According to the Department of Justice, Mesri honed his computer skills working for the Iranian military, conducting cyber attacks against enemy military systems, nuclear software, and Israeli infrastructure. He was also a member of the Turk Black Hat hacking team which defaced hundreds of websites with the online pseudonym “Skote Vahshat”.

The indictment states that Mesri began his campaign against HBO during May 2017, when he conducted “online reconnaissance” of HBO’s networks and employees. Between May and July, he then compromised a number of HBO employee user accounts and used them to access the company’s data and TV shows, copying them to his own machines.

After allegedly obtaining around 1.5 terabytes of HBO’s data, Mesri then began to extort HBO, warning that unless a ransom of $5.5 million wasn’t paid in Bitcoin, the leaking would begin. When the amount wasn’t paid, three days later Mesri told HBO that the amount had now risen to $6m and as an additional punishment, data could be wiped from HBO’s servers.

Subsequently, on or around July 30 and continuing through August 2017, Mesri allegedly carried through with his threats, leaking information and TV shows online and promoting them via emails to members of the press.

As a result of the above, Mesri is charged with one count of wire fraud, which carries a maximum sentence of 20 years in prison, one count of computer hacking (five years), three counts of threatening to impair the confidentiality of information (five years each), and one count of interstate transmission of an extortionate communication (two years). No copyright infringement offenses are mentioned in the indictment.

The big question now is whether the US will ever get their hands on Mesri. The answer to that, at least through any official channels, seems to be a resounding no. There is no extradition treaty between the US and Iran meaning that if Mesri stays put, he’s likely to remain a free man.

Wanted

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Your Holiday Cybersecurity Guide

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/11/your-holiday-cybersecurity-guide.html

Many of us are visiting parents/relatives this Thanksgiving/Christmas, and will have an opportunity to help our them with cybersecurity issues. I thought I’d write up a quick guide of the most important things.

1. Stop them from reusing passwords

By far the biggest threat to average people is that they re-use the same password across many websites, so that when one website gets hacked, all their accounts get hacked.
To demonstrate the problem, go to haveibeenpwned.com and enter the email address of your relatives. This will show them a number of sites where their password has already been stolen, like LinkedIn, Adobe, etc. That should convince them of the severity of the problem.

They don’t need a separate password for every site. You don’t care about the majority of website whether you get hacked. Use a common password for all the meaningless sites. You only need unique passwords for important accounts, like email, Facebook, and Twitter.

Write down passwords and store them in a safe place. Sure, it’s a common joke that people in offices write passwords on Post-It notes stuck on their monitors or under their keyboards. This is a common security mistake, but that’s only because the office environment is widely accessible. Your home isn’t, and there’s plenty of places to store written passwords securely, such as in a home safe. Even if it’s just a desk drawer, such passwords are safe from hackers, because they aren’t on a computer.

Write them down, with pen and paper. Don’t put them in a MyPasswords.doc, because when a hacker breaks in, they’ll easily find that document and easily hack your accounts.

You might help them out with getting a password manager, or two-factor authentication (2FA). Good 2FA like YubiKey will stop a lot of phishing threats. But this is difficult technology to learn, and of course, you’ll be on the hook for support issues, such as when they lose the device. Thus, while 2FA is best, I’m only recommending pen-and-paper to store passwords. (AccessNow has a guide, though I think YubiKey/U2F keys for Facebook and GMail are the best).

2. Lock their phone (passcode, fingerprint, faceprint)
You’ll lose your phone at some point. It has the keys all all your accounts, like email and so on. With your email, phones thieves can then reset passwords on all your other accounts. Thus, it’s incredibly important to lock the phone.

Apple has made this especially easy with fingerprints (and now faceprints), so there’s little excuse not to lock the phone.

Note that Apple iPhones are the most secure. I give my mother my old iPhones so that they will have something secure.

My mom demonstrates a problem you’ll have with the older generation: she doesn’t reliably have her phone with her, and charged. She’s the opposite of my dad who religiously slaved to his phone. Even a small change to make her lock her phone means it’ll be even more likely she won’t have it with her when you need to call her.

3. WiFi (WPA)
Make sure their home WiFi is WPA encrypted. It probably already is, but it’s worthwhile checking.

The password should be written down on the same piece of paper as all the other passwords. This is importance. My parents just moved, Comcast installed a WiFi access point for them, and they promptly lost the piece of paper. When I wanted to debug some thing on their network today, they didn’t know the password, and couldn’t find the paper. Get that password written down in a place it won’t get lost!

Discourage them from extra security features like “SSID hiding” and/or “MAC address filtering”. They provide no security benefit, and actually make security worse. It means a phone has to advertise the SSID when away from home, and it makes MAC address randomization harder, both of which allows your privacy to be tracked.

If they have a really old home router, you should probably replace it, or at least update the firmware. A lot of old routers have hacks that allow hackers (like me masscaning the Internet) to easily break in.

4. Ad blockers or Brave

Most of the online tricks that will confuse your older parents will come via advertising, such as popups claiming “You are infected with a virus, click here to clean it”. Installing an ad blocker in the browser, such as uBlock Origin, stops most all this nonsense.

For example, here’s a screenshot of going to the “Speedtest” website to test the speed of my connection (I took this on the plane on the way home for Thanksgiving). Ignore the error (plane’s firewall Speedtest) — but instead look at the advertising banner across the top of the page insisting you need to download a browser extension. This is tricking you into installing malware — the ad appears as if it’s a message from Speedtest, it’s not. Speedtest is just selling advertising and has no clue what the banner says. This sort of thing needs to be blocked — it fools even the technologically competent.

uBlock Origin for Chrome is the one I use. Another option is to replace their browser with Brave, a browser that blocks ads, but at the same time, allows micropayments to support websites you want to support. I use Brave on my iPhone.
A side benefit of ad blockers or Brave is that web surfing becomes much faster, since you aren’t downloading all this advertising. The smallest NYtimes story is 15 megabytes in size due to all the advertisements, for example.

5. Cloud Backups
Do backups, in the cloud. It’s a good idea in general, especially with the threat of ransomware these days.

In particular, consider your photos. Over time, they will be lost, because people make no effort to keep track of them. All hard drives will eventually crash, deleting your photos. Sure, a few key ones are backed up on Facebook for life, but the rest aren’t.
There are so many excellent online backup services out there, like DropBox and Backblaze. Or, you can use the iCloud feature that Apple provides. My favorite is Microsoft’s: I already pay $99 a year for Office 365 subscription, and it comes with 1-terabyte of online storage.

6. Separate email accounts
You should have three email accounts: work, personal, and financial.

First, you really need to separate your work account from personal. The IT department is already getting misdirected emails with your spouse/lover that they don’t want to see. Any conflict with your work, such as getting fired, gives your private correspondence to their lawyers.

Second, you need a wholly separate account for financial stuff, like Amazon.com, your bank, PayPal, and so on. That prevents confusion with phishing attacks.

Consider this warning today:

If you had split accounts, you could safely ignore this. The USPS would only your financial email account, which gets no phishing attacks, because it’s not widely known. When your receive the phishing attack on your personal email, you ignore it, because you know the USPS doesn’t know your personal email account.

Phishing emails are so sophisticated that even experts can’t tell the difference. Splitting financial from personal emails makes it so you don’t have to tell the difference — anything financial sent to personal email can safely be ignored.

7. Deauth those apps!

Twitter user @tompcoleman comments that we also need deauth apps.
Social media sites like Facebook, Twitter, and Google encourage you to enable “apps” that work their platforms, often demanding privileges to generate messages on your behalf. The typical scenario is that you use them only once or twice and forget about them.
A lot of them are hostile. For example, my niece’s twitter account would occasional send out advertisements, and she didn’t know why. It’s because a long time ago, she enabled an app with the permission to send tweets for her. I had to sit down and get rid of most of her apps.
Now would be a good time to go through your relatives Facebook, Twitter, and Google/GMail and disable those apps. Don’t be a afraid to be ruthless — they probably weren’t using them anyway. Some will still be necessary. For example, Twitter for iPhone shows up in the list of Twitter apps. The URL for editing these apps for Twitter is https://twitter.com/settings/applications. Google link is here (thanks @spextr). I don’t know of simple URLs for Facebook, but you should find it somewhere under privacy/security settings.
Update: Here’s a more complete guide for a even more social media services.
https://www.permissions.review/

8. Up-to-date software? maybe

I put this last because it can be so much work.

You should install the latest OS (Windows 10, macOS High Sierra), and also turn on automatic patching.

But remember it may not be worth the huge effort involved. I want my parents to be secure — but no so secure I have to deal with issues.

For example, when my parents updated their HP Print software, the icon on the desktop my mom usually uses to scan things in from the printer disappeared, and needed me to spend 15 minutes with her helping find the new way to access the software.
However, I did get my mom a new netbook to travel with instead of the old WinXP one. I want to get her a Chromebook, but she doesn’t want one.
For iOS, you can probably make sure their phones have the latest version without having these usability problems.

Conclusion

You can’t solve every problem for your relatives, but these are the more critical ones.

Using AWS CodeCommit Pull Requests to request code reviews and discuss code

Post Syndicated from Chris Barclay original https://aws.amazon.com/blogs/devops/using-aws-codecommit-pull-requests-to-request-code-reviews-and-discuss-code/

Thank you to Michael Edge, Senior Cloud Architect, for a great blog on CodeCommit pull requests.

~~~~~~~

AWS CodeCommit is a fully managed service for securely hosting private Git repositories. CodeCommit now supports pull requests, which allows repository users to review, comment upon, and interactively iterate on code changes. Used as a collaboration tool between team members, pull requests help you to review potential changes to a CodeCommit repository before merging those changes into the repository. Each pull request goes through a simple lifecycle, as follows:

  • The new features to be merged are added as one or more commits to a feature branch. The commits are not merged into the destination branch.
  • The pull request is created, usually from the difference between two branches.
  • Team members review and comment on the pull request. The pull request might be updated with additional commits that contain changes made in response to comments, or include changes made to the destination branch.
  • Once team members are happy with the pull request, it is merged into the destination branch. The commits are applied to the destination branch in the same order they were added to the pull request.

Commenting is an integral part of the pull request process, and is used to collaborate between the developers and the reviewer. Reviewers add comments and questions to a pull request during the review process, and developers respond to these with explanations. Pull request comments can be added to the overall pull request, a file within the pull request, or a line within a file.

To make the comments more useful, sign in to the AWS Management Console as an AWS Identity and Access Management (IAM) user. The username will then be associated with the comment, indicating the owner of the comment. Pull request comments are a great quality improvement tool as they allow the entire development team visibility into what reviewers are looking for in the code. They also serve as a record of the discussion between team members at a point in time, and shouldn’t be deleted.

AWS CodeCommit is also introducing the ability to add comments to a commit, another useful collaboration feature that allows team members to discuss code changed as part of a commit. This helps you discuss changes made in a repository, including why the changes were made, whether further changes are necessary, or whether changes should be merged. As is the case with pull request comments, you can comment on an overall commit, on a file within a commit, or on a specific line or change within a file, and other repository users can respond to your comments. Comments are not restricted to commits, they can also be used to comment on the differences between two branches, or between two tags. Commit comments are separate from pull request comments, i.e. you will not see commit comments when reviewing a pull request – you will only see pull request comments.

A pull request example

Let’s get started by running through an example. We’ll take a typical pull request scenario and look at how we’d use CodeCommit and the AWS Management Console for each of the steps.

To try out this scenario, you’ll need:

  • An AWS CodeCommit repository with some sample code in the master branch. We’ve provided sample code below.
  • Two AWS Identity and Access Management (IAM) users, both with the AWSCodeCommitPowerUser managed policy applied to them.
  • Git installed on your local computer, and access configured for AWS CodeCommit.
  • A clone of the AWS CodeCommit repository on your local computer.

In the course of this example, you’ll sign in to the AWS CodeCommit console as one IAM user to create the pull request, and as the other IAM user to review the pull request. To learn more about how to set up your IAM users and how to connect to AWS CodeCommit with Git, see the following topics:

  • Information on creating an IAM user with AWS Management Console access.
  • Instructions on how to access CodeCommit using Git.
  • If you’d like to use the same ‘hello world’ application as used in this article, here is the source code:
package com.amazon.helloworld;

public class Main {
	public static void main(String[] args) {

		System.out.println("Hello, world");
	}
}

The scenario below uses the us-east-2 region.

Creating the branches

Before we jump in and create a pull request, we’ll need at least two branches. In this example, we’ll follow a branching strategy similar to the one described in GitFlow. We’ll create a new branch for our feature from the main development branch (the default branch). We’ll develop the feature in the feature branch. Once we’ve written and tested the code for the new feature in that branch, we’ll create a pull request that contains the differences between the feature branch and the main development branch. Our team lead (the second IAM user) will review the changes in the pull request. Once the changes have been reviewed, the feature branch will be merged into the development branch.

Figure 1: Pull request link

Sign in to the AWS CodeCommit console with the IAM user you want to use as the developer. You can use an existing repository or you can go ahead and create a new one. We won’t be merging any changes to the master branch of your repository, so it’s safe to use an existing repository for this example. You’ll find the Pull requests link has been added just above the Commits link (see Figure 1), and below Commits you’ll find the Branches link. Click Branches and create a new branch called ‘develop’, branched from the ‘master’ branch. Then create a new branch called ‘feature1’, branched from the ‘develop’ branch. You’ll end up with three branches, as you can see in Figure 2. (Your repository might contain other branches in addition to the three shown in the figure).

Figure 2: Create a feature branch

If you haven’t cloned your repo yet, go to the Code link in the CodeCommit console and click the Connect button. Follow the instructions to clone your repo (detailed instructions are here). Open a terminal or command line and paste the git clone command supplied in the Connect instructions for your repository. The example below shows cloning a repository named codecommit-demo:

git clone https://git-codecommit.us-east-2.amazonaws.com/v1/repos/codecommit-demo

If you’ve previously cloned the repo you’ll need to update your local repo with the branches you created. Open a terminal or command line and make sure you’re in the root directory of your repo, then run the following command:

git remote update origin

You’ll see your new branches pulled down to your local repository.

$ git remote update origin
Fetching origin
From https://git-codecommit.us-east-2.amazonaws.com/v1/repos/codecommit-demo
 * [new branch]      develop    -> origin/develop
 * [new branch]      feature1   -> origin/feature1

You can also see your new branches by typing:

git branch --all

$ git branch --all
* master
  remotes/origin/develop
  remotes/origin/feature1
  remotes/origin/master

Now we’ll make a change to the ‘feature1’ branch. Open a terminal or command line and check out the feature1 branch by running the following command:

git checkout feature1

$ git checkout feature1
Branch feature1 set up to track remote branch feature1 from origin.
Switched to a new branch 'feature1'

Make code changes

Edit a file in the repo using your favorite editor and save the changes. Commit your changes to the local repository, and push your changes to CodeCommit. For example:

git commit -am 'added new feature'
git push origin feature1

$ git commit -am 'added new feature'
[feature1 8f6cb28] added new feature
1 file changed, 1 insertion(+), 1 deletion(-)

$ git push origin feature1
Counting objects: 9, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (9/9), 617 bytes | 617.00 KiB/s, done.
Total 9 (delta 2), reused 0 (delta 0)
To https://git-codecommit.us-east-2.amazonaws.com/v1/repos/codecommit-demo
   2774a53..8f6cb28  feature1 -> feature1

Creating the pull request

Now we have a ‘feature1’ branch that differs from the ‘develop’ branch. At this point we want to merge our changes into the ‘develop’ branch. We’ll create a pull request to notify our team members to review our changes and check whether they are ready for a merge.

In the AWS CodeCommit console, click Pull requests. Click Create pull request. On the next page select ‘develop’ as the destination branch and ‘feature1’ as the source branch. Click Compare. CodeCommit will check for merge conflicts and highlight whether the branches can be automatically merged using the fast-forward option, or whether a manual merge is necessary. A pull request can be created in both situations.

Figure 3: Create a pull request

After comparing the two branches, the CodeCommit console displays the information you’ll need in order to create the pull request. In the ‘Details’ section, the ‘Title’ for the pull request is mandatory, and you may optionally provide comments to your reviewers to explain the code change you have made and what you’d like them to review. In the ‘Notifications’ section, there is an option to set up notifications to notify subscribers of changes to your pull request. Notifications will be sent on creation of the pull request as well as for any pull request updates or comments. And finally, you can review the changes that make up this pull request. This includes both the individual commits (a pull request can contain one or more commits, available in the Commits tab) as well as the changes made to each file, i.e. the diff between the two branches referenced by the pull request, available in the Changes tab. After you have reviewed this information and added a title for your pull request, click the Create button. You will see a confirmation screen, as shown in Figure 4, indicating that your pull request has been successfully created, and can be merged without conflicts into the ‘develop’ branch.

Figure 4: Pull request confirmation page

Reviewing the pull request

Now let’s view the pull request from the perspective of the team lead. If you set up notifications for this CodeCommit repository, creating the pull request would have sent an email notification to the team lead, and he/she can use the links in the email to navigate directly to the pull request. In this example, sign in to the AWS CodeCommit console as the IAM user you’re using as the team lead, and click Pull requests. You will see the same information you did during creation of the pull request, plus a record of activity related to the pull request, as you can see in Figure 5.

Figure 5: Team lead reviewing the pull request

Commenting on the pull request

You now perform a thorough review of the changes and make a number of comments using the new pull request comment feature. To gain an overall perspective on the pull request, you might first go to the Commits tab and review how many commits are included in this pull request. Next, you might visit the Changes tab to review the changes, which displays the differences between the feature branch code and the develop branch code. At this point, you can add comments to the pull request as you work through each of the changes. Let’s go ahead and review the pull request. During the review, you can add review comments at three levels:

  • The overall pull request
  • A file within the pull request
  • An individual line within a file

The overall pull request
In the Changes tab near the bottom of the page you’ll see a ‘Comments on changes’ box. We’ll add comments here related to the overall pull request. Add your comments as shown in Figure 6 and click the Save button.

Figure 6: Pull request comment

A specific file in the pull request
Hovering your mouse over a filename in the Changes tab will cause a blue ‘comments’ icon to appear to the left of the filename. Clicking the icon will allow you to enter comments specific to this file, as in the example in Figure 7. Go ahead and add comments for one of the files changed by the developer. Click the Save button to save your comment.

Figure 7: File comment

A specific line in a file in the pull request
A blue ‘comments’ icon will appear as you hover over individual lines within each file in the pull request, allowing you to create comments against lines that have been added, removed or are unchanged. In Figure 8, you add comments against a line that has been added to the source code, encouraging the developer to review the naming standards. Go ahead and add line comments for one of the files changed by the developer. Click the Save button to save your comment.

Figure 8: Line comment

A pull request that has been commented at all three levels will look similar to Figure 9. The pull request comment is shown expanded in the ‘Comments on changes’ section, while the comments at file and line level are shown collapsed. A ‘comment’ icon indicates that comments exist at file and line level. Clicking the icon will expand and show the comment. Since you are expecting the developer to make further changes based on your comments, you won’t merge the pull request at this stage, but will leave it open awaiting feedback. Each comment you made results in a notification being sent to the developer, who can respond to the comments. This is great for remote working, where developers and team lead may be in different time zones.

Figure 9: Fully commented pull request

Adding a little complexity

A typical development team is going to be creating pull requests on a regular basis. It’s highly likely that the team lead will merge other pull requests into the ‘develop’ branch while pull requests on feature branches are in the review stage. This may result in a change to the ‘Mergable’ status of a pull request. Let’s add this scenario into the mix and check out how a developer will handle this.

To test this scenario, we could create a new pull request and ask the team lead to merge this to the ‘develop’ branch. But for the sake of simplicity we’ll take a shortcut. Clone your CodeCommit repo to a new folder, switch to the ‘develop’ branch, and make a change to one of the same files that were changed in your pull request. Make sure you change a line of code that was also changed in the pull request. Commit and push this back to CodeCommit. Since you’ve just changed a line of code in the ‘develop’ branch that has also been changed in the ‘feature1’ branch, the ‘feature1’ branch cannot be cleanly merged into the ‘develop’ branch. Your developer will need to resolve this merge conflict.

A developer reviewing the pull request would see the pull request now looks similar to Figure 10, with a ‘Resolve conflicts’ status rather than the ‘Mergable’ status it had previously (see Figure 5).

Figure 10: Pull request with merge conflicts

Reviewing the review comments

Once the team lead has completed his review, the developer will review the comments and make the suggested changes. As a developer, you’ll see the list of review comments made by the team lead in the pull request Activity tab, as shown in Figure 11. The Activity tab shows the history of the pull request, including commits and comments. You can reply to the review comments directly from the Activity tab, by clicking the Reply button, or you can do this from the Changes tab. The Changes tab shows the comments for the latest commit, as comments on previous commits may be associated with lines that have changed or been removed in the current commit. Comments for previous commits are available to view and reply to in the Activity tab.

In the Activity tab, use the shortcut link (which looks like this </>) to move quickly to the source code associated with the comment. In this example, you will make further changes to the source code to address the pull request review comments, so let’s go ahead and do this now. But first, you will need to resolve the ‘Resolve conflicts’ status.

Figure 11: Pull request activity

Resolving the ‘Resolve conflicts’ status

The ‘Resolve conflicts’ status indicates there is a merge conflict between the ‘develop’ branch and the ‘feature1’ branch. This will require manual intervention to restore the pull request back to the ‘Mergable’ state. We will resolve this conflict next.

Open a terminal or command line and check out the develop branch by running the following command:

git checkout develop

$ git checkout develop
Switched to branch 'develop'
Your branch is up-to-date with 'origin/develop'.

To incorporate the changes the team lead made to the ‘develop’ branch, merge the remote ‘develop’ branch with your local copy:

git pull

$ git pull
remote: Counting objects: 9, done.
Unpacking objects: 100% (9/9), done.
From https://git-codecommit.us-east-2.amazonaws.com/v1/repos/codecommit-demo
   af13c82..7b36f52  develop    -> origin/develop
Updating af13c82..7b36f52
Fast-forward
 src/main/java/com/amazon/helloworld/Main.java | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

Then checkout the ‘feature1’ branch:

git checkout feature1

$ git checkout feature1
Switched to branch 'feature1'
Your branch is up-to-date with 'origin/feature1'.

Now merge the changes from the ‘develop’ branch into your ‘feature1’ branch:

git merge develop

$ git merge develop
Auto-merging src/main/java/com/amazon/helloworld/Main.java
CONFLICT (content): Merge conflict in src/main/java/com/amazon/helloworld/Main.java
Automatic merge failed; fix conflicts and then commit the result.

Yes, this fails. The file Main.java has been changed in both branches, resulting in a merge conflict that can’t be resolved automatically. However, Main.java will now contain markers that indicate where the conflicting code is, and you can use these to resolve the issues manually. Edit Main.java using your favorite IDE, and you’ll see it looks something like this:

package com.amazon.helloworld;

import java.util.*;

/**
 * This class prints a hello world message
 */

public class Main {
   public static void main(String[] args) {

<<<<<<< HEAD
        Date todaysdate = Calendar.getInstance().getTime();

        System.out.println("Hello, earthling. Today's date is: " + todaysdate);
=======
      System.out.println("Hello, earth");
>>>>>>> develop
   }
}

The code between HEAD and ‘===’ is the code the developer added in the ‘feature1’ branch (HEAD represents ‘feature1’ because this is the current checked out branch). The code between ‘===’ and ‘>>> develop’ is the code added to the ‘develop’ branch by the team lead. We’ll resolve the conflict by manually merging both changes, resulting in an updated Main.java:

package com.amazon.helloworld;

import java.util.*;

/**
 * This class prints a hello world message
 */

public class Main {
   public static void main(String[] args) {

        Date todaysdate = Calendar.getInstance().getTime();

        System.out.println("Hello, earth. Today's date is: " + todaysdate);
   }
}

After saving the change you can add and commit it to your local repo:

git add src/
git commit -m 'fixed merge conflict by merging changes'

Fixing issues raised by the reviewer

Now you are ready to address the comments made by the team lead. If you are no longer pointing to the ‘feature1’ branch, check out the ‘feature1’ branch by running the following command:

git checkout feature1

$ git checkout feature1
Branch feature1 set up to track remote branch feature1 from origin.
Switched to a new branch 'feature1'

Edit the source code in your favorite IDE and make the changes to address the comments. In this example, the developer has updated the source code as follows:

package com.amazon.helloworld;

import java.util.*;

/**
 *  This class prints a hello world message
 *
 * @author Michael Edge
 * @see HelloEarth
 * @version 1.0
 */

public class Main {
   public static void main(String[] args) {

        Date todaysDate = Calendar.getInstance().getTime();

        System.out.println("Hello, earth. Today's date is: " + todaysDate);
   }
}

After saving the changes, commit and push to the CodeCommit ‘feature1’ branch as you did previously:

git commit -am 'updated based on review comments'
git push origin feature1

Responding to the reviewer

Now that you’ve fixed the code issues you will want to respond to the review comments. In the AWS CodeCommit console, check that your latest commit appears in the pull request Commits tab. You now have a pull request consisting of more than one commit. The pull request in Figure 12 has four commits, which originated from the following activities:

  • 8th Nov: the original commit used to initiate this pull request
  • 10th Nov, 3 hours ago: the commit by the team lead to the ‘develop’ branch, merged into our ‘feature1’ branch
  • 10th Nov, 24 minutes ago: the commit by the developer that resolved the merge conflict
  • 10th Nov, 4 minutes ago: the final commit by the developer addressing the review comments

Figure 12: Pull request with multiple commits

Let’s reply to the review comments provided by the team lead. In the Activity tab, reply to the pull request comment and save it, as shown in Figure 13.

Figure 13: Replying to a pull request comment

At this stage, your code has been committed and you’ve updated your pull request comments, so you are ready for a final review by the team lead.

Final review

The team lead reviews the code changes and comments made by the developer. As team lead, you own the ‘develop’ branch and it’s your decision on whether to merge the changes in the pull request into the ‘develop’ branch. You can close the pull request with or without merging using the Merge and Close buttons at the bottom of the pull request page (see Figure 13). Clicking Close will allow you to add comments on why you are closing the pull request without merging. Merging will perform a fast-forward merge, incorporating the commits referenced by the pull request. Let’s go ahead and click the Merge button to merge the pull request into the ‘develop’ branch.

Figure 14: Merging the pull request

After merging a pull request, development of that feature is complete and the feature branch is no longer needed. It’s common practice to delete the feature branch after merging. CodeCommit provides a check box during merge to automatically delete the associated feature branch, as seen in Figure 14. Clicking the Merge button will merge the pull request into the ‘develop’ branch, as shown in Figure 15. This will update the status of the pull request to ‘Merged’, and will close the pull request.

Conclusion

This blog has demonstrated how pull requests can be used to request a code review, and enable reviewers to get a comprehensive summary of what is changing, provide feedback to the author, and merge the code into production. For more information on pull requests, see the documentation.

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/739648/rss

Security updates have been issued by Arch Linux (icu and lib32-icu), CentOS (firefox), Debian (imagemagick, konversation, libspring-ldap-java, libxml-libxml-perl, lynx-cur, ming, opensaml2, poppler, procmail, shibboleth-sp2, and xen), Fedora (firefox, java-9-openjdk, jbig2dec, kernel, knot, knot-resolver, qt5-qtwebengine, and roundcubemail), Gentoo (adobe-flash, couchdb, icedtea-bin, and phpunit), Mageia (apr, bluez, firefox, jq, konversation, libextractor, and quagga), Oracle (firefox), Red Hat (firefox), and Scientific Linux (firefox).

Why Linus is right (as usual)

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/11/why-linus-is-right-as-usual.html

People are debating this email from Linus Torvalds (maintainer of the Linux kernel). It has strong language, like:

Some security people have scoffed at me when I say that security
problems are primarily “just bugs”.
Those security people are f*cking morons.
Because honestly, the kind of security person who doesn’t accept that
security problems are primarily just bugs, I don’t want to work with.

I thought I’d explain why Linus is right.
Linus has an unwritten manifesto of how the Linux kernel should be maintained. It’s not written down in one place, instead we are supposed to reverse engineer it from his scathing emails, where he calls people morons for not understanding it. This is one such scathing email. The rules he’s expressing here are:
  • Large changes to the kernel should happen in small iterative steps, each one thoroughly debugged.
  • Minor security concerns aren’t major emergencies; they don’t allow bypassing the rules more than any other bug/feature.
Last year, some security “hardening” code was added to the kernel to prevent a class of buffer-overflow/out-of-bounds issues. This code didn’t address any particular 0day vulnerability, but was designed to prevent a class of future potential exploits from being exploited. This is reasonable.
This code had bugs, but that’s no sin. All code has bugs.
The sin, from Linus’s point of view, is that when an overflow/out-of-bounds access was detected, the code would kill the user-mode process or kernel. Linus thinks it should have only generated warnings, and let the offending code continue to run.
Of course, that would in theory make the change of little benefit, because it would no longer prevent 0days from being exploited.
But warnings would only be temporary, the first step. There’s likely to be be bugs in the large code change, and it would probably uncover bugs in other code. While bounds-checking is a security issue, it’s first implementation will always find existing code having latent bounds bugs. Or, it’ll have “false-positives” triggering on things that aren’t actually the flaws its looking for. Killing things made these bugs worse, causing catastrophic failures in the latest kernel that didn’t exist before. Warnings, however, would have equally highlighted the bugs, but without causing catastrophic failures. My car runs multiple copies of Linux — such catastrophic failures would risk my life.
Only after a year, when the bugs have been fixed, would the default behavior of the code be changed to kill buggy code, thus preventing exploitation.
In other words, large changes to the kernel should happen in small, manageable steps. This hardening hasn’t existed for 25 years of the Linux kernel, so there’s no emergency requiring it be added immediately rather than conservatively, no reason to bypass Linus’s development processes. There’s no reason it couldn’t have been warnings for a year while working out problems, followed by killing buggy code later.
Linus was correct here. No vuln has appeared in the last year that this code would’ve stopped, so the fact that it killed processes/kernels rather than generated warnings was unnecessary. Conversely, because it killed things, bugs in the kernel code were costly, and required emergency patches.
Despite his unreasonable tone, Linus is a hugely reasonable person. He’s not trying to stop changes to the kernel. He’s not trying to stop security improvements. He’s not even trying to stop processes from getting killed That’s not why people are moronic. Instead, they are moronic for not understanding that large changes need to made conservatively, and security issues are no more important than any other feature/bug.

Update: Also, since most security people aren’t developers, they are also a bit clueless how things actually work. Bounds-checking, which they define as purely a security feature to stop buffer-overflows is actually overwhelmingly a debugging feature. When you turn on bounds-checking for the first time, it’ll trigger on a lot of latent bugs in the code — things that never caused a problem in the past (like reading past ends of buffers) but cause trouble now. Developers know this, security “experts” tend not to. These kernel changes were made by security people who failed to understand this, who failed to realize that their changes would uncover lots of bugs in existing code, and that killing buggy code was hugely inappropriate.

Update: Another flaw developers are intimately familiar with is how “hardening” code can cause false-positives, triggering on non-buggy code. A good example is where the BIND9 code crashed on an improper assert(). This hardening code designed to prevent exploitation made things worse by triggering on valid input/code.

Update: No, it’s probably not okay to call people “morons” as Linus does. They may be wrong, but they usually are reasonable people. On the other hand, security people tend to be sanctimonious bastards with rigid thinking, so after he as dealt with that minority, I can see why Linus treats all security people that way.

How to Recover From Ransomware

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/complete-guide-ransomware/

Here’s the scenario. You’re working on your computer and you notice that it seems slower. Or perhaps you can’t access document or media files that were previously available.

You might be getting error messages from Windows telling you that a file is of an “Unknown file type” or “Windows can’t open this file.”

Windows error message

If you’re on a Mac, you might see the message “No associated application,” or “There is no application set to open the document.”

MacOS error message

Another possibility is that you’re completely locked out of your system. If you’re in an office, you might be looking around and seeing that other people are experiencing the same problem. Some are already locked out, and others are just now wondering what’s going on, just as you are.

Then you see a message confirming your fears.

wana decrypt0r ransomware message

You’ve been infected with ransomware.

You’ll have lots of company this year. The number of ransomware attacks on businesses tripled in the past year, jumping from one attack every two minutes in Q1 to one every 40 seconds by Q3.There were over four times more new ransomware variants in the first quarter of 2017 than in the first quarter of 2016, and damages from ransomware are expected to exceed $5 billion this year.

Growth in Ransomware Variants Since December 2015

Source: Proofpoint Q1 2017 Quarterly Threat Report

This past summer, our local PBS and NPR station in San Francisco, KQED, was debilitated for weeks by a ransomware attack that forced them to go back to working the way they used to prior to computers. Five months have passed since the attack and they’re still recovering and trying to figure out how to prevent it from happening again.

How Does Ransomware Work?

Ransomware typically spreads via spam or phishing emails, but also through websites or drive-by downloads, to infect an endpoint and penetrate the network. Once in place, the ransomware then locks all files it can access using strong encryption. Finally, the malware demands a ransom (typically payable in bitcoins) to decrypt the files and restore full operations to the affected IT systems.

Encrypting ransomware or “cryptoware” is by far the most common recent variety of ransomware. Other types that might be encountered are:

  • Non-encrypting ransomware or lock screens (restricts access to files and data, but does not encrypt them)
  • Ransomware that encrypts the Master Boot Record (MBR) of a drive or Microsoft’s NTFS, which prevents victims’ computers from being booted up in a live OS environment
  • Leakware or extortionware (exfiltrates data that the attackers threaten to release if ransom is not paid)
  • Mobile Device Ransomware (infects cell-phones through “drive-by downloads” or fake apps)

The typical steps in a ransomware attack are:

1
Infection
After it has been delivered to the system via email attachment, phishing email, infected application or other method, the ransomware installs itself on the endpoint and any network devices it can access.
2
Secure Key Exchange
The ransomware contacts the command and control server operated by the cybercriminals behind the attack to generate the cryptographic keys to be used on the local system.
3
Encryption
The ransomware starts encrypting any files it can find on local machines and the network.
4
Extortion
With the encryption work done, the ransomware displays instructions for extortion and ransom payment, threatening destruction of data if payment is not made.
5
Unlocking
Organizations can either pay the ransom and hope for the cybercriminals to actually decrypt the affected files (which in many cases does not happen), or they can attempt recovery by removing infected files and systems from the network and restoring data from clean backups.

Who Gets Attacked?

Ransomware attacks target firms of all sizes — 5% or more of businesses in the top 10 industry sectors have been attacked — and no no size business, from SMBs to enterprises, are immune. Attacks are on the rise in every sector and in every size of business.

Recent attacks, such as WannaCry earlier this year, mainly affected systems outside of the United States. Hundreds of thousands of computers were infected from Taiwan to the United Kingdom, where it crippled the National Health Service.

The US has not been so lucky in other attacks, though. The US ranks the highest in the number of ransomware attacks, followed by Germany and then France. Windows computers are the main targets, but ransomware strains exist for Macintosh and Linux, as well.

The unfortunate truth is that ransomware has become so wide-spread that for most companies it is a certainty that they will be exposed to some degree to a ransomware or malware attack. The best they can do is to be prepared and understand the best ways to minimize the impact of ransomware.

“Ransomware is more about manipulating vulnerabilities in human psychology than the adversary’s technological sophistication.” — James Scott, expert in Artificial Intelligence

Phishing emails, malicious email attachments, and visiting compromised websites have been common vehicles of infection (we wrote about protecting against phishing recently), but other methods have become more common in past months. Weaknesses in Microsoft’s Server Message Block (SMB) and Remote Desktop Protocol (RDP) have allowed cryptoworms to spread. Desktop applications — in one case an accounting package — and even Microsoft Office (Microsoft’s Dynamic Data Exchange — DDE) have been the agents of infection.

Recent ransomware strains such as Petya, CryptoLocker, and WannaCry have incorporated worms to spread themselves across networks, earning the nickname, “cryptoworms.”

How to Defeat Ransomware

1
Isolate the Infection
Prevent the infection from spreading by separating all infected computers from each other, shared storage, and the network.
2
Identify the Infection
From messages, evidence on the computer, and identification tools, determine which malware strain you are dealing with.
3
Report
Report to the authorities to support and coordinate measures to counter attacks.
4
Determine Your Options
You have a number of ways to deal with the infection. Determine which approach is best for you.
5
Restore and Refresh
Use safe backups and program and software sources to restore your computer or outfit a new platform.
6
Plan to Prevent Recurrence
Make an assessment of how the infection occurred and what you can do to put measures into place that will prevent it from happening again.

1 — Isolate the Infection

The rate and speed of ransomware detection is critical in combating fast moving attacks before they succeed in spreading across networks and encrypting vital data.

The first thing to do when a computer is suspected of being infected is to isolate it from other computers and storage devices. Disconnect it from the network (both wired and Wi-Fi) and from any external storage devices. Cryptoworms actively seek out connections and other computers, so you want to prevent that happening. You also don’t want the ransomware communicating across the network with its command and control center.

Be aware that there may be more than just one patient zero, meaning that the ransomware may have entered your organization or home through multiple computers, or may be dormant and not yet shown itself on some systems. Treat all connected and networked computers with suspicion and apply measures to ensure that all systems are not infected.

This Week in Tech (TWiT.tv) did a videocast showing what happens when WannaCry is released on an isolated system and encrypts files and trys to spread itself to other computers. It’s a great lesson on how these types of cryptoworms operate.

2 — Identify the Infection

Most often the ransomware will identify itself when it asks for ransom. There are numerous sites that help you identify the ransomware, including ID Ransomware. The No More Ransomware! Project provides the Crypto Sheriff to help identify ransomware.

Identifying the ransomware will help you understand what type of ransomware you have, how it propagates, what types of files it encrypts, and maybe what your options are for removal and disinfection. It also will enable you to report the attack to the authorities, which is recommended.

wanna decryptor 2.0 ransomware message

WannaCry Ransomware Extortion Dialog

3 — Report to the Authorities

You’ll be doing everyone a favor by reporting all ransomware attacks to the authorities. The FBI urges ransomware victims to report ransomware incidents regardless of the outcome. Victim reporting provides law enforcement with a greater understanding of the threat, provides justification for ransomware investigations, and contributes relevant information to ongoing ransomware cases. Knowing more about victims and their experiences with ransomware will help the FBI to determine who is behind the attacks and how they are identifying or targeting victims.

You can file a report with the FBI at the Internet Crime Complaint Center.

There are other ways to report ransomware, as well.

4 — Determine Your Options

Your options when infected with ransomware are:

  1. Pay the ransom
  2. Try to remove the malware
  3. Wipe the system(s) and reinstall from scratch

It’s generally considered a bad idea to pay the ransom. Paying the ransom encourages more ransomware, and in most cases the unlocking of the encrypted files is not successful.

In a recent survey, more than three-quarters of respondents said their organization is not at all likely to pay the ransom in order to recover their data (77%). Only a small minority said they were willing to pay some ransom (3% of companies have already set up a Bitcoin account in preparation).

Even if you decide to pay, it’s very possible you won’t get back your data.

5 — Restore or Start Fresh

You have the choice of trying to remove the malware from your systems or wiping your systems and reinstalling from safe backups and clean OS and application sources.

Get Rid of the Infection

There are internet sites and software packages that claim to be able to remove ransomware from systems. The No More Ransom! Project is one. Other options can be found, as well.

Whether you can successfully and completely remove an infection is up for debate. A working decryptor doesn’t exist for every known ransomware, and unfortunately it’s true that the newer the ransomware, the more sophisticated it’s likely to be and a perhaps a decryptor has not yet been created.

It’s Best to Wipe All Systems Completely

The surest way of being certain that malware or ransomware has been removed from a system is to do a complete wipe of all storage devices and reinstall everything from scratch. If you’ve been following a sound backup strategy, you should have copies of all your documents, media, and important files right up to the time of the infection.

Be sure to determine as well as you can from file dates and other information what was the date of infection. Consider that an infection might have been dormant in your system for a while before it activated and made significant changes to your system. Identifying and learning about the particular malware that attacked your systems will enable you to understand how that malware operates and what your best strategy should be for restoring your systems.

Backblaze Backup enables you to go back in time and specify the date prior to which you wish to restore files. That date should precede the date your system was infected.

Choose files to restore from earlier date in Backblaze Backup

If you’ve been following a good backup policy with both local and off-site backups, you should be able to use backup copies that you are sure were not connected to your network after the time of attack and hence protected from infection. Backup drives that were completely disconnected should be safe, as are files stored in the cloud, as with Backblaze Backup.

System Restores Are not the Best Strategy for Dealing with Ransomware and Malware

You might be tempted to use a System Restore point to get your system back up and running. System Restore is not a good solution for removing viruses or other malware. Since malicious software is typically buried within all kinds of places on a system, you can’t rely on System Restore being able to root out all parts of the malware. Instead, you should rely on a quality virus scanner that you keep up to date. Also, System Restore does not save old copies of your personal files as part of its snapshot. It also will not delete or replace any of your personal files when you perform a restoration, so don’t count on System Restore as working like a backup. You should always have a good backup procedure in place for all your personal files.

Local backups can be encrypted by ransomware. If your backup solution is local and connected to a computer that gets hit with ransomware, the chances are good your backups will be encrypted along with the rest of your data.

With a good backup solution that is isolated from your local computers, such as Backblaze Backup, you can easily obtain the files you need to get your system working again. You have the flexility to determine which files to restore, from which date you want to restore, and how to obtain the files you need to restore your system.

Choose how to obtain your backup files

You’ll need to reinstall your OS and software applications from the source media or the internet. If you’ve been managing your account and software credentials in a sound manner, you should be able to reactivate accounts for applications that require it.

If you use a password manager, such as 1Password or LastPass, to store your account numbers, usernames, passwords, and other essential information, you can access that information through their web interface or mobile applications. You just need to be sure that you still know your master username and password to obtain access to these programs.

6 — How to Prevent a Ransomware Attack

“Ransomware is at an unprecedented level and requires international investigation.” — European police agency EuroPol

A ransomware attack can be devastating for a home or a business. Valuable and irreplaceable files can be lost and tens or even hundreds of hours of effort can be required to get rid of the infection and get systems working again.

Security experts suggest several precautionary measures for preventing a ransomware attack.

  1. Use anti-virus and anti-malware software or other security policies to block known payloads from launching.
  2. Make frequent, comprehensive backups of all important files and isolate them from local and open networks. Cybersecurity professionals view data backup and recovery (74% in a recent survey) by far as the most effective solution to respond to a successful ransomware attack.
  3. Keep offline backups of data stored in locations inaccessible from any potentially infected computer, such as external storage drives or the cloud, which prevents them from being accessed by the ransomware.
  4. Install the latest security updates issued by software vendors of your OS and applications. Remember to Patch Early and Patch Often to close known vulnerabilities in operating systems, browsers, and web plugins.
  5. Consider deploying security software to protect endpoints, email servers, and network systems from infection.
  6. Exercise cyber hygiene, such as using caution when opening email attachments and links.
  7. Segment your networks to keep critical computers isolated and to prevent the spread of malware in case of attack. Turn off unneeded network shares.
  8. Turn off admin rights for users who don’t require them. Give users the lowest system permissions they need to do their work.
  9. Restrict write permissions on file servers as much as possible.
  10. Educate yourself, your employees, and your family in best practices to keep malware out of your systems. Update everyone on the latest email phishing scams and human engineering aimed at turning victims into abettors.

It’s clear that the best way to respond to a ransomware attack is to avoid having one in the first place. Other than that, making sure your valuable data is backed up and unreachable by ransomware infection will ensure that your downtime and data loss will be minimal or avoided completely.

Have you endured a ransomware attack or have a strategy to avoid becoming a victim? Please let us know in the comments.

The post How to Recover From Ransomware appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Security updates for Thursday

Post Syndicated from jake original https://lwn.net/Articles/739318/rss

Security updates have been issued by Arch Linux (firefox, flashplugin, lib32-flashplugin, and mediawiki), CentOS (kernel and php), Debian (firefox-esr, jackson-databind, and mediawiki), Fedora (apr, apr-util, chromium, compat-openssl10, firefox, ghostscript, hostapd, icu, ImageMagick, jackson-databind, krb5, lame, liblouis, nagios, nodejs, perl-Catalyst-Plugin-Static-Simple, php, php-PHPMailer, poppler, poppler-data, rubygem-ox, systemd, webkitgtk4, wget, wordpress, and xen), Mageia (flash-player-plugin, icu, jackson-databind, php, and roundcubemail), Oracle (kernel and php), Red Hat (openstack-aodh), SUSE (wget and xen), and Ubuntu (apport and webkit2gtk).

Visualising Weather Station data with Initial State

Post Syndicated from Richard Hayler original https://www.raspberrypi.org/blog/initial-state/

Since we launched the Oracle Weather Station project, we’ve collected more than six million records from our network of stations at schools and colleges around the world. Each one of these records contains data from ten separate sensors — that’s over 60 million individual weather measurements!

Weather station measurements in Oracle database - Initial State

Weather station measurements in Oracle database

Weather data collection

Having lots of data covering a long period of time is great for spotting trends, but to do so, you need some way of visualising your measurements. We’ve always had great resources like Graphing the weather to help anyone analyse their weather data.

And from now on its going to be even easier for our Oracle Weather Station owners to display and share their measurements. I’m pleased to announce a new partnership with our friends at Initial State: they are generously providing a white-label platform to which all Oracle Weather Station recipients can stream their data.

Using Initial State

Initial State makes it easy to create vibrant dashboards that show off local climate data. The service is perfect for having your Oracle Weather Station data on permanent display, for example in the school reception area or on the school’s website.

But that’s not all: the Initial State toolkit includes a whole range of easy-to-use analysis tools for extracting trends from your data. Distribution plots and statistics are just a few clicks away!

Humidity value distribution (May-Nov 2017) - Raspberry Pi Oracle Weather Station Initial State

Looks like Auntie Beryl is right — it has been a damp old year! (Humidity value distribution May–Nov 2017)

The wind direction data from my Weather Station supports my excuse as to why I’ve not managed a high-altitude balloon launch this year: to use my launch site, I need winds coming from the east, and those have been in short supply.

Chart showing wind direction over time - Raspberry Pi Oracle Weather Station Initial State

Chart showing wind direction over time

Initial State credientials

Every Raspberry Pi Oracle Weather Station school will shortly be receiving the credentials needed to start streaming their data to Initial State. If you’re super keen though, please email [email protected] with a photo of your Oracle Weather Station, and I’ll let you jump the queue!

The Initial State folks are big fans of Raspberry Pi and have a ton of Pi-related projects on their website. They even included shout-outs to us in the music video they made to celebrate the publication of their 50th tutorial. Can you spot their weather station?

Your home-brew weather station

If you’ve built your own Raspberry Pi–powered weather station and would like to dabble with the Initial State dashboards, you’re in luck! The team at Initial State is offering 14-day trials for everyone. For more information on Initial State, and to sign up for the trial, check out their website.

The post Visualising Weather Station data with Initial State appeared first on Raspberry Pi.

Protect your Reputation with Email Pausing and Configuration Set Metrics

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/ses/protect-your-reputation-with-email-pausing-and-configuration-set-metrics/

In August, we launched the reputation dashboard, which helps you track important metrics that could impact your ability to send emails. By monitoring the metrics in this dashboard, you can protect your sender reputation, which can increase the likelihood that the emails you send will reach your customers’ inboxes.

Today, we’re launching two features that build upon the capabilities of the reputation dashboard. The first is the ability to temporarily pause email sending, either at the configuration set level, or across your entire Amazon SES account. The second is the ability to export reputation metrics for individual configuration sets.

Email Pausing

Today’s update includes new API operations that can temporarily pause your ability to send email using Amazon SES. To disable email sending across your entire Amazon SES account, you can use the UpdateAccountSendingEnabled operation. To pause sending only for emails sent using a specific configuration set, you can use the UpdateConfigurationSetSendingEnabled operation.

Email pausing is helpful because Amazon SES uses automatic enforcement policies. If the bounce or complaint rates for your account are too high, your account is automatically placed on probation. If the bounce or complaint issues continue after the probation period has ended, your account may be suspended.

With email pausing, you can temporarily halt your ability to send email before your account is placed on probation. While your ability to send email is paused, you can identify the issues that were causing your account to register high bounce or complaint rates. You can then resume sending after the issues are resolved.

Email pausing helps ensure that your ability to send email using Amazon SES is not interrupted because of enforcement issues. It helps ensure that your sender reputation won’t be damaged by mistakes or unforeseen issues.

You can learn more about the UpdateAccountSendingEnabled and UpdateConfigurationSetSendingEnabled operations in the Amazon Simple Email Service API Reference.

Configuration Set Reputation Metrics

Amazon SES automatically publishes the bounce and complaint rates for your account to Amazon CloudWatch. In CloudWatch, you can monitor these metrics over time, and create alarms that notify you when your reputation metrics cross certain thresholds.

With today’s update, you can also publish reputation metrics for individual configuration sets to CloudWatch. This feature gives you additional information about the messages you send using Amazon SES. For example, if you send all of your marketing emails using one configuration set, and your transactional emails using a different configuration set, you can view distinct reputation metrics for each type of email.

Because we anticipate that this feature will lead to the creation of many new configuration sets, we’re increasing the maximum number of configuration sets you can create from 50 to 10,000.

For more information about exporting reputation metrics for configuration sets, see Exporting Reputation Metrics for a Configuration Set to CloudWatch in the Amazon Simple Email Service Developer Guide.

Automating These Features

You can use AWS services—including Amazon SNS, AWS Lambda, and Amazon CloudWatch—to create a solution that automatically pauses email sending for your account when your overall reputation metrics cross a certain threshold. Or, to minimize disruption to your email sending program, you can pause email sending for a specific configuration set when the metrics for that configuration set cross a threshold. The following image illustrates the processes that occur when you implement these solutions.

A flow diagram that illustrates a solution for automatically pausing Amazon SES email sending. Amazon SES provides reputation metrics to CloudWatch. If those metrics exceed a threshold, a CloudWatch alarm is triggered, which triggers an SNS topic. The SNS topic sends notifications (email, SMS), and executes a Lambda function, which pauses email sending in SES.

For more information on both of these solutions, see Automatically Pausing Email Sending in the Amazon Simple Email Service Developer Guide.

We’re always looking for ways to help safeguard the reputation you’ve worked hard to build. If you have suggestions, questions, or comments, we’d love to hear from you in the comments below, or in the Amazon SES Forum.

These features are now available in the following AWS Regions: US West (Oregon), US East (N. Virginia), and EU (Ireland).

The Decision on Transparency

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/transparency-in-business/

Backblaze transparency

This post by Backblaze’s CEO and co-founder Gleb Budman is the seventh in a series about entrepreneurship. You can choose posts in the series from the list below:

  1. How Backblaze got Started: The Problem, The Solution, and the Stuff In-Between
  2. Building a Competitive Moat: Turning Challenges Into Advantages
  3. From Idea to Launch: Getting Your First Customers
  4. How to Get Your First 1,000 Customers
  5. Surviving Your First Year
  6. How to Compete with Giants
  7. The Decision on Transparency

Use the Join button above to receive notification of new posts in this series.

“Are you crazy?” “Why would you do that?!” “You shouldn’t share that!”

These are just a few of the common questions and comments we heard after posting some of the information we have shared over the years. So was it crazy? Misguided? Should you do it?

With that background I’d like to dig into the decision to become so transparent, from releasing stats on hard drive failures, to storage pod specs, to publishing our cloud storage costs, and open sourcing the Reed-Solomon code. What was the thought process behind becoming so transparent when most companies work so hard to hide their inner workings, especially information such as the Storage Pod specs that would normally be considered a proprietary advantage? Most importantly I’d like to explore the positives and negatives of being so transparent.

Sharing Intellectual Property

The first “transparency” that garnered a flurry of “why would you share that?!” came as a result of us deciding to open source our Storage Pod design: publishing the specs, parts, prices, and how to build it yourself. The Storage Pod was a key component of our infrastructure, gave us a cost (and thus competitive) advantage, took significant effort to develop, and had a fair bit of intellectual property: the “IP.”

The negatives of sharing this are obvious: it allows our competitors to use the design to reduce our cost advantage, and it gives away the IP, which could be patentable or have value as a trade secret.

The positives were certainly less obvious, and at the time we couldn’t have guessed how massive they would be.

We wrestled with the decision: prospective users and others online didn’t believe we could offer our service for such a low price, thinking that we would burn through some cash hoard and then go out of business. We wanted to reassure them, but how?

This is how our response evolved:

We’ve built a lower cost storage platform.
But why would anyone believe us?
Because, we’ve designed our own servers and they’re less expensive.
But why would anyone believe they were so low cost and efficient?
Because here’s how much they cost versus others.
But why would anyone believe they cost that little and still enabled us to efficiently store data?
Because here are all the components they’re made of, this is how to build them, and this is how they work.
Ok, you can’t argue with that.

Great — so that would reassure people. But should we do this? Is it worth it?

This was 2009, we were a tiny company of seven people working from our co-founder’s one-bedroom apartment. We decided that the risk of not having potential customers trust us was more impactful than the risk of our competitors possibly deciding to use our server architecture. The former might kill the company in short order; the latter might make it harder for us to compete in the future. Moreover, we figured that most competitors were established on their own platforms and were unlikely to switch to ours, even if it were better.

Takeaway: Build your brand today. There are no assurances you will make it to tomorrow if you can’t make people believe in you today.

A Sharing Success Story — The Backblaze Storage Pod

So with that, we decided to publish everything about the Storage Pod. As for deciding to actually open source it? That was a ‘thank you’ to the open source community upon whose shoulders we stood as we used software such as Linux, Tomcat, etc.

With eight years of hindsight, here’s what happened:

As best as I can tell, none of our direct competitors ever used our Storage Pod design, opting instead to continue paying more for commercial solutions.

  • Hundreds of press articles have been written about Backblaze as a direct result of sharing the Storage Pod design.
  • Millions of people have read press articles or our blog posts about the Storage Pods.
  • Backblaze was established as a storage tech thought leader, and a resource for those looking for information in the space.
  • Our blog became viewed as a resource, not a corporate mouthpiece.
  • Recruiting has been made easier through the awareness of Backblaze, the appreciation for us taking on challenging tech problems in interesting ways, and for our openness.
  • Sourcing for our Storage Pods has become easier because we can point potential vendors to our blog posts and say, “here’s what we need.”

And those are just the direct benefits for us. One of the things that warms my heart is that doing this has helped others:

  • Several companies have started selling servers based on our Storage Pod designs.
  • Netflix credits Backblaze with being the inspiration behind their CDN servers.
  • Many schools, labs, and others have shared that they’ve been able to do what they didn’t think was possible because using our Storage Pod designs provided lower-cost storage.
  • And I want to believe that in general we pushed forward the development of low-cost storage servers in the industry.

So overall, the decision on being transparent and sharing our Storage Pod designs was a clear win.

Takeaway: Never underestimate the value of goodwill. It can help build new markets that fuel your future growth and create new ecosystems.

Sharing An “Almost Acquisition”

Acquisition announcements are par for the course. No company, however, talks about the acquisition that fell through. If rumors appear in the press, the company’s response is always, “no comment.” But in 2010, when Backblaze was almost, but not acquired, we wrote about it in detail. Crazy?

The negatives of sharing this are slightly less obvious, but the two issues most people worried about were, 1) the fact that the company could be acquired would spook customers, and 2) the fact that it wasn’t would signal to potential acquirers that something was wrong.

So, why share this at all? No one was asking “did you almost get acquired?”

First, we had established a culture of transparency and this was a significant event that occurred for us, thus we defaulted to assuming we would share. Second, we learned that acquisitions fall through all the time, not just during the early fishing stage, but even after term sheets are signed, diligence is done, and all the paperwork is complete. I felt we had learned some things about the process that would be valuable to others that were going through it.

As it turned out, we received emails from startup founders saying they saved the post for the future, and from lawyers, VCs, and advisors saying they shared them with their portfolio companies. Among the most touching emails I received was from a founder who said that after an acquisition fell through she felt so alone that she became incredibly depressed, and that reading our post helped her see that this happens and that things could be OK after. Being transparent about almost getting acquired was worth it just to help that one founder.

And what about the concerns? As for spooking customers, maybe some were — but our sign-ups went up, not down, afterward. Any company can be acquired, and many of the world’s largest have been. That we were being both thoughtful about where to go with it, and open about it, I believe gave customers a sense that we would do the right thing if it happened. And as for signaling to potential acquirers? The ones I’ve spoken with all knew this happens regularly enough that it’s not a factor.

Takeaway: Being open and transparent is also a form of giving back to others.

Sharing Strategic Data

For years people have been desperate to know how reliable are hard drives. They could go to Amazon for individual reviews, but someone saying “this drive died for me” doesn’t provide statistical insight. Google published a study that showed annualized drive failure rates, but didn’t break down the results by manufacturer or model. Since Backblaze has deployed about 100,000 hard drives to store customer data, we have been able to collect a wealth of data on the reliability of the drives by make, model, and size. Was Backblaze the only one with this data? Of course not — Google, Amazon, Microsoft, and any other cloud-scale storage provider tracked it. Yet none would publish. Should Backblaze?

Again, starting with the main negatives: 1) sharing which drives we liked could increase demand for them, thus reducing availability or increasing prices, and 2) publishing the data might make the drive vendors unhappy with us, thereby making it difficult for us to buy drives.

But we felt that the largest drive purchasers (Amazon, Google, etc.) already had their own stats and would buy the drives they chose, and if individuals or smaller companies used our stats, they wouldn’t sufficiently move the overall market demand. Also, we hoped that the drive companies would see that we were being fair in our analysis and, if anything, would leverage our data to make drives even better.

Again, publishing the data resulted in tremendous value for Backblaze, with millions of people having read the analysis that we put out quarterly. Also, becoming known as the place to go for drive reliability information is a natural fit with being a backup and storage provider. In addition, in a twist from many people’s expectations, some of the drive companies actually started working closer with us, seeing that we could be a good source of data for them as feedback. We’ve also seen many individuals and companies make more data-based decisions on which drives to buy, and researchers have used the data for a variety of analyses.

traffic spike from hard drive reliability post

Backblaze blog analytics showing spike in readership after a hard drive stats post

Takeaway: Being open and transparent is rarely as risky as it seems.

Sharing Revenue (And Other Metrics)

Journalists always want to publish company revenue and other metrics, and private companies always shy away from sharing. For a long time we did, too. Then, we opened up about that, as well.

The negatives of sharing these numbers are: 1) external parties may otherwise perceive you’re doing better than you are, 2) if you share numbers often, you may show that growth has slowed or worse, 3) it gives your competitors info to compare their own business too.

We decided that, while some may have perceived we were bigger, our scale was plenty significant. Since we choose what we share and when, it’s up to us whether to disclose at any point. And if our competitors compare, what will they actually change that would affect us?

I did wait to share revenue until I felt I had the right person to write about it. At one point a journalist said she wouldn’t write about us unless I disclosed revenue. I suggested we had a lot to offer for the story, but didn’t want to share revenue yet. She refused to budge and I walked away from the article. Several year later, I reached out to a journalist who had covered Backblaze before and I felt understood our business and offered to share revenue with him. He wrote a deep-dive about the company, with revenue being one of the components of the story.

Sharing these metrics showed that we were at scale and running a real business, one with positive unit economics and margins, but not one where we were gouging customers.

Takeaway: Being open with the press about items typically not shared can be uncomfortable, but the press can amplify your story.

Should You Share?

For Backblaze, I believe the results of transparency have been staggering. However, it’s not for everyone. Apple has, clearly, been wildly successful taking secrecy to the extreme. In their case, early disclosure combined with the long cycle of hardware releases could significantly impact sales of current products.

“For Backblaze, I believe the results of transparency have been staggering.” — Gleb Budman

I will argue, however, that for most startups transparency wins. Most startups need to establish credibility and trust, build awareness and a fan base, show that they understand what their customers need and be useful to them, and show the soul and passion behind the company. Some startup companies try to buy these virtues with investor money, and sometimes amplifying your brand via paid marketing helps. But, authentic transparency can build awareness and trust not only less expensively, but more deeply than money can buy.

Backblaze was open from the beginning. With no outside investors, as founders we were able to express ourselves and make our decisions. And it’s easier to be a company that shares if you do it from the start, but for any company, here are a few suggestions:

  1. Ask about sharing: If something significant happens — good or bad — ask “should we share this?” If you made a tough decision, ask “should we share the thinking behind the decision and why it was tough?”
  2. Default to yes: It’s often scary to share, but look for the reasons to say ‘yes,’ not the reasons to say ‘no.’ That doesn’t mean you won’t sometimes decide not to, but make that the high bar.
  3. Minimize reviews: Press releases tend to be sanitized and boring because they’ve been endlessly wordsmithed by committee. Establish the few things you don’t want shared, but minimize the number of people that have to see anything else before it can go out. Teach, then trust.
  4. Engage: Sharing will result in comments on your blog, social, articles, etc. Reply to people’s questions and engage. It’ll make the readers more engaged and give you a better understanding of what they’re looking for.
  5. Accept mistakes: Things will become public that aren’t perfectly sanitized. Accept that and don’t punish people for oversharing.

Building a culture of a company that is open to sharing takes time, but continuous practice will build that, and over time the company will navigate its voice and approach to sharing.

The post The Decision on Transparency appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Microsoft Sued Over ‘Baseless’ Piracy Threats

Post Syndicated from Ernesto original https://torrentfreak.com/microsoft-sued-over-baseless-piracy-threats-171113/

For many years, Microsoft and the Business Software Alliance (BSA) have carried out piracy investigations into organizations large and small.

Companies accused of using Microsoft software without permission usually get a letter asking them to pay up, or face legal consequences.

Rhode Island-based company Hanna Instruments is one of the most recent targets. The company stands accused of using Microsoft Office products without a proper license.

However, instead of Microsoft going after Hanna in court for copyright infringement, Hanna has filed a lawsuit against BSA and Microsoft asking for a declaratory judgment that it did nothing wrong.

The lawsuit is the result of a long back-and-forth that started in June. At the time, BSA’s lawyers sent Hanna a letter accusing it of using Microsoft products without a proper license, while requesting an audit.

Hanna’s management wasn’t aware of any pirated products but after repeated requests, the company decided to go ahead and conduct a thorough investigation. The results, combined in a detailed spreadsheet, showed that it purchased 126 copies of Microsoft Office software, while only 120 were in use.

Perfectly fine, they assumed, but the BSA was not convinced.

Since Hanna only had Microsoft generated key cards for the most recent purchases, the company used purchase orders, requisitions, and price quotes to prove that it properly licensed earlier copies of Microsoft Office. Not good enough, according to the BSA, which wanted to see money instead.

The BSA’s lawyers informed Hanna that the company would face up to $4,950,000 in damages if the case went to court. Instead, however, they offered to settle the matter for $72,074.

From the complaint

Hanna wasn’t planning to pay and pointed out that they sent in as much proof as they could find, documenting legal purchases of Microsoft Office licenses for a period covering more than ten years. While the BSA appreciated the effort, it didn’t accept this as hard evidence.

“…the provision of purchase orders, price quotes, purchase requisitions are not acceptable as valid proof of purchase to our client. Reason being, the aforesaid documents do not demonstrate that a purchase has taken place, they merely establish intent to make a purchase of software,” the BSA wrote in yer another email.

Interestingly, the BSA itself still failed to provide any solid proof that Hanna was using unlicensed software. The Rhode Island company repeatedly requested this, but the BSA simply replied that it’s neither appropriate nor efficient to request evidence from their clients in every case.

The BSA then went a step further and suggested that Microsoft did the company a favor by approaching it directly. The alternative would have been to call in the U.S. Marshals and raid the company’s headquarters.

“The rights holders had the alternative option of simply commencing litigation and seeking a court order permitting a raid by U.S. Marshals,” the BSA’s lawyers wrote in one of their letters.

This ‘threat’ wasn’t completely in vain. In the past, the BSA and Microsoft’s accusations have developed into fully-fledged raids, with armed law enforcement officials assisting the software vendor, taking away computers for further inspection.

Still, Hanna maintained that it didn’t do anything wrong. At this point, they’d spent $25,000 on disproving the BSA’s “baseless” claims, and saw no other option than to take the matter to court.

Late last week the company submitted a complaint against Microsoft and the BSA in a Rhode Island federal court, asking for a declaratory judgment and monetary compensation.

“To date, the Defendants have not provided any documentation supporting the baseless allegation that Hanna illegally copied Microsoft Office, in spite of repeated requests by Plaintiff’s counsel that BSA produce such information,” the complaint reads.

“By this Complaint, Hanna seeks a declaration by the Court that it has not infringed any Microsoft copyrights, that Hanna has been harmed by BSA’s relentless and unsupported charges, and that Defendants pay Hanna’s costs and expenses for this action, together with reasonable attorney fees, and any additional monetary award this Court deems appropriate.”

It’s now up to the court to decide who’s right and who’s wrong, but the case already provides a rare and intriguing insight into the anti-piracy practices of Microsoft and the BSA.

This isn’t the first time that one of these cases has gone to court. In Belgium, the BSA and Microsoft lost a similar case. Here, a local company was ordered to pay a settlement on the spot or lose its computers. With law enforcement at the ready, the owner decided to pay, despite owning valid licenses.

The full complaint is available here (pdf).

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons