Tag Archives: AWS Serverless Application Model

Building event-driven architectures with Amazon SNS FIFO

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/building-event-driven-architectures-with-amazon-sns-fifo/

This post is courtesy of Christian Mueller, Principal Solutions Architect.

Developers increasingly adopt event-driven architectures to decouple their distributed applications. Often, these events must be propagated in a strictly ordered manner to all subscribed applications. Using Amazon SNS FIFO topics and Amazon SQS FIFO queues, you can address use cases that require end-to-end message ordering, deduplication, filtering, and encryption.

In this blog post, I introduce a sample event-driven architecture. I walk through an implementation based on Amazon SNS FIFO topics and Amazon SQS FIFO queues.

Common requirements in event-driven-architectures

In event-driven architectures, data consistency is a common business requirement. This is often translated into technical requirements such as zero message loss and strict message ordering. For example, if you update your domain object rapidly, you want to be sure that all events are received by each subscriber in exactly the order they occurred. This way, the current domain object state is what each subscriber received as the latest update event. Similarly, all update events should be received after the initial create event.

Before Amazon SNS FIFO, architects had to design applications to check if messages are received out of order before processing.

Comparing SNS and SNS FIFO

Another common challenge is preventing message duplicates when sending events to the messaging service. If an event publisher receives an error, such as a network timeout, the publisher does not know if the messaging service could receive and successfully process the message or not.

The client may retry, as this is the default behavior for some HTTP response codes in AWS SDKs. This can cause duplicate messages.

Before Amazon SNS FIFO, developers had to design receivers to be idempotent. In some cases, where the event cannot be idempotent, this requires the receiver to be implemented in an idempotent way. Often, this is done by adding a key-value store like Amazon DynamoDB or Amazon ElastiCache for Redis to the service. Using this approach, the receiver can track if the event has been seen before.

Exactly once processing and message deduplication

Exploring the recruiting agency example

This sample application models a recruitment agency with a job listings website. The application is composed of multiple services. I explain 3 of them in more detail.

Sample application architecture

A custom service, the anti-corruption service, receives a change data capture (CDC) event stream of changes from a relational database. This service translates the low-level technical database events into meaningful business events for the domain services for easy consumption. These business events are sent to the SNS FIFO “JobEvents.fifo“ topic. Here, interested services subscribe to these events and process them asynchronously.

In this domain, the analytics service is interested in all events. It has an SQS FIFO “AnalyticsJobEvents.fifo” queue subscribed to the SNS FIFO “JobEvents.fifo“ topic. It uses SQS FIFO as event source for AWS Lambda, which processes and stores these events in Amazon S3. S3 is object storage service with high scalability, data availability, durability, security, and performance. This allows you to use services like Amazon EMR, AWS Glue or Amazon Athena to get insights into your data to extract value.

The inventory service owns an SQS FIFO “InventoryJobEvents.fifo” queue, which is subscribed to the SNS FIFO “JobEvents.fifo“ topic. It is only interested in “JobCreated” and “JobDeleted” events, as it only tracks which jobs are currently available and stores this information in a DynamoDB table. Therefore, it uses an SNS filter policy to only receive these events, instead of receiving all events.

This sample application focuses on the SNS FIFO capabilities, so I do not explore other services subscribed to the SNS FIFO topic. This sample follows the SQS best practices and SNS redrive policy recommendations and configures dead-letter queues (DLQ). This is useful in case SNS cannot deliver an event to the subscribed SQS queue. It also helps if the function fails to process an event from the corresponding SQS FIFO queue multiple times. As a requirement in both cases, the attached SQS DLQ must be an SQS FIFO queue.

Deploying the application

To deploy the application using infrastructure as code, it uses the AWS Serverless Application Model (SAM). SAM provides shorthand syntax to express functions, APIs, databases, and event source mappings. It is expanded into AWS CloudFormation syntax during deployment.

To get started, clone the “event-driven-architecture-with-sns-fifo” repository, from here. Alternatively, download the repository as a ZIP file from here and extract it to a directory of your choice.

As a prerequisite, you must have SAM CLI, Python 3, and PIP installed. You must also have the AWS CLI configured properly.

Navigate to the root directory of this project and build the application with SAM. SAM downloads required dependencies and stores them locally. Execute the following commands in your terminal:

git clone https://github.com/aws-samples/event-driven-architecture-with-amazon-sns-fifo.git
cd event-driven-architecture-with-amazon-sns-fifo
sam build

You see the following output:

Deployment output

Now, deploy the application:

sam deploy --guided

Provide arguments for the deployments, such as the stack name and preferred AWS Region:

SAM guided deployment

After a successful deployment, you see the following output:

Successful deployment message

Learning more about the implementation

I explore the three services forming this sample application, and how they use the features of SNS FIFO.

Anti-corruption service

The anti-corruption service owns the SNS FIFO “JobEvents.fifo” topic, where it publishes business events related to job postings. It uses an SNS FIFO topic, as end-to-end ordering per job ID is required. SNS FIFO is configured not to perform content-based deduplication, as I require a unique message deduplication ID for each event for deduplication. The corresponding definition in the SAM template looks like this:

  JobEventsTopic:
    Type: AWS::SNS::Topic
    Properties:
      TopicName: JobEvents.fifo
      FifoTopic: true
      ContentBasedDeduplication: false

For simplicity, the anti-corruption function in the sample application doesn’t consume an external database CDC stream. It uses Amazon CloudWatch Events as an event source to trigger the function every minute.

I provide the SNS FIFO topic Amazon Resource Name (ARN) as an environment variable in the function. This makes this function more portable to deploy in different environments and stages. The function’s AWS Identity and Access Management (IAM) policy grants permissions to publish messages to only this SNS topic:

  AntiCorruptionFunction:
    Type: AWS::Serverless::
    Properties:
      CodeUri: anti-corruption-service/
      Handler: app.lambda_handler
      Runtime: python3.7
      MemorySize: 256
      Environment:
        Variables:
          TOPIC_ARN: !Ref JobEventsTopic
      Policies:
        - SNSPublishMessagePolicy
            TopicName: !GetAtt JobEventsTopic.TopicName
      Events:
        Trigger:
          Type: 
          Properties:
            Schedule: 'rate(1 minute)'

The anti-corruption function uses features in the SNS publish API, which allows you to define a “MessageDeduplicationId” and a “MessageGroupId”. The “MessageDeduplicationId” is used to filter out duplicate messages, which are sent to SNS FIFO within in 5-minute deduplication interval. The “MessageGroupId” is required, as SNS FIFO processes all job events for the same message group in a strictly ordered manner, isolated from other message groups processed through the same topic.

Another important aspect in this implementation is the use of “MessageAttributes”. We define a message attribute with the name “eventType” and values like “JobCreated”, “JobSalaryUpdated”, and “JobDeleted”. This allows subscribers to define SNS filter policies to only receive certain events they are interested in:

import boto3
from datetime import datetime
import json
import os
import random
import uuid

TOPIC_ARN = os.environ['TOPIC_ARN']

sns = boto3.client('sns')

def lambda_handler(event, context):
    jobId = str(random.randrange(0, 1000))

    send_job_created_event(jobId)
    send_job_updated_event(jobId)
    send_job_deleted_event(jobId)
    return

def send_job_created_event(jobId):
    messageId = str(uuid.uuid4())

    response = sns.publish(
        TopicArn=TOPIC_ARN,
        Subject=f'Job {jobId} created',
        MessageDeduplicationId=messageId,
        MessageGroupId=f'JOB-{jobId}',
        Message={...},
        MessageAttributes = {
            'eventType': {
                'DataType': 'String',
                'StringValue': 'JobCreated'
            }
        }
    )
    print('sent message and received response: {}'.format(response))
    return

def send_job_updated_event(jobId):
    messageId = str(uuid.uuid4())

    response = sns.publish(...)
    print('sent message and received response: {}'.format(response))
    return

def send_job_deleted_event(jobId):
    messageId = str(uuid.uuid4())

    response = sns.publish(...)
    print('sent message and received response: {}'.format(response))
    return

Analytics service

The analytics service owns an SQS FIFO “AnalyticsJobEvents.fifo” queue which is subscribed to the SNS FIFO “JobEvents.fifo” topic. Following best practices, I define redrive policies for the SQS FIFO queue and the SNS FIFO subscription in the template:

  AnalyticsJobEventsQueue:
    Type: AWS::SQS::Queue
    Properties:
      QueueName: AnalyticsJobEvents.fifo
      FifoQueue: true
      RedrivePolicy:
        deadLetterTargetArn: !GetAtt AnalyticsJobEventsQueueDLQ.Arn
        maxReceiveCount: 3

  AnalyticsJobEventsQueueToJobEventsTopicSubscription:
    Type: AWS::SNS::Subscription
    Properties:
      Endpoint: !GetAtt AnalyticsJobEventsQueue.Arn
      Protocol: sqs
      RawMessageDelivery: true
      TopicArn: !Ref JobEventsTopic
      RedrivePolicy: !Sub '{"deadLetterTargetArn": "${AnalyticsJobEventsSubscriptionDLQ.Arn}"}'

The analytics function uses SQS FIFO as an event source for Lambda. The S3 bucket name is an environment variable for the function, which increases the code portability across environments and stages. The IAM policy for this function only grants permissions write objects to this S3 bucket:

  AnalyticsFunction:
    Type: AWS::Serverless::Function
    Properties:
      CodeUri: analytics-service/
      Handler: app.lambda_handler
      Runtime: python3.7
      MemorySize: 256
      Environment:
        Variables:
          BUCKET_NAME: !Ref AnalyticsBucket
      Policies:
        - S3WritePolicy:
            BucketName: !Ref AnalyticsBucket
      Events:
        Trigger:
          Type: SQS
          Properties:
            Queue: !GetAtt AnalyticsJobEventsQueue.Arn
            BatchSize: 10

View the function implementation at the GitHub repo.

Inventory service

The inventory service also owns an SQS FIFO “InventoryJobEvents.fifo” queue which is subscribed to the SNS FIFO “JobEvents.fifo” topic. It uses redrive policies for the SQS FIFO queue and the SNS FIFO subscription as well. This service is only interested in certain events, so uses an SNS filter policy to specify these events:

  InventoryJobEventsQueue:
    Type: AWS::SQS::Queue
    Properties:
      QueueName: InventoryJobEvents.fifo
      FifoQueue: true
      RedrivePolicy:
        deadLetterTargetArn: !GetAtt InventoryJobEventsQueueDLQ.Arn
        maxReceiveCount: 3

  InventoryJobEventsQueueToJobEventsTopicSubscription:
    Type: AWS::SNS::Subscription
    Properties:
      Endpoint: !GetAtt InventoryJobEventsQueue.Arn
      Protocol: sqs
      RawMessageDelivery: true
      TopicArn: !Ref JobEventsTopic
      FilterPolicy: '{"eventType":["JobCreated", "JobDeleted"]}'
      RedrivePolicy: !Sub '{"deadLetterTargetArn": "${InventoryJobEventsQueueSubscriptionDLQ.Arn}"}'

The inventory function also uses SQS FIFO as event source for Lambda. The DynamoDB table name is set as an environment variable, so the function can look up the name during initialization. The IAM policy grants read/write permissions for only this table:

  InventoryFunction:
    Type: AWS::Serverless::Function
    Properties:
      CodeUri: inventory-service/
      Handler: app.lambda_handler
      Runtime: python3.7
      MemorySize: 256
      Environment:
        Variables:
          TABLE_NAME: !Ref InventoryTable
      Policies:
        - DynamoDBCrudPolicy:
            TableName: !Ref InventoryTable
      Events:
        Trigger:
          Type: SQS
          Properties:
            Queue: !GetAtt InventoryJobEventsQueue.Arn
            BatchSize: 10

View the function implementation at the GitHub repo.

Conclusion

Amazon SNS FIFO topics can simplify the design of event-driven architectures and reduce custom code in building such applications.

By using the native integration with Amazon SQS FIFO queues, you can also build architectures that fan out to thousands of subscribers. This pattern helps achieve data consistency, deduplication, filtering, and encryption in near real time, using managed services.

For information on regional availability and service quotas, see SNS endpoints and quotas and SQS endpoints and quotas. For more information on the FIFO functionality, see SNS FIFO and SQS FIFO in their Developer Guides.

Optimizing the cost of serverless web applications

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/optimizing-the-cost-of-serverless-web-applications/

Web application backends are one of the most frequent types of serverless use-case for customers. The pay-for-value model can make it cost-efficient to build web applications using serverless tools.

While serverless cost is generally correlated with level of usage, there are architectural decisions that impact cost efficiency. The impact of these choices is more significant as your traffic grows, so it’s important to consider the cost-effectiveness of different designs and patterns.

This blog post reviews some common areas in web applications where you may be able to optimize cost. It uses the Happy Path web application as a reference example, which you can read about in the introductory blog post.

Serverless web applications generally use a combination of the services in the following diagram. I cover each of these areas to highlight common areas for cost optimization.

Serverless architecture by AWS service

The API management layer: Selecting the right API type

Most serverless web applications use an API between the frontend client and the backend architecture. Amazon API Gateway is a common choice since it is a fully managed service that scales automatically. There are three types of API offered by the service – REST APIs, WebSocket APIs, and the more recent HTTP APIs.

HTTP APIs offer many of the features in the REST APIs service, but the cost is often around 70% less. It supports Lambda service integration, JWT authorization, CORS, and custom domain names. It also has a simpler deployment model than REST APIs. This feature set tends to work well for web applications, many of which mainly use these capabilities. Additionally, HTTP APIs will gain feature parity with REST APIs over time.

The Happy Path application is designed for 100,000 monthly active users. It uses HTTP APIs, and you can inspect the backend/template.yaml to see how to define these in the AWS Serverless Application Model (AWS SAM). If you have existing AWS SAM templates that are using REST APIs, in many cases you can change these easily:

REST to HTTP API

Content distribution layer: Optimizing assets

Amazon CloudFront is a content delivery network (CDN). It enables you to distribute content globally across 216 Points of Presence without deploying or managing any infrastructure. It reduces latency for users who are geographically dispersed and can also reduce load on other parts of your service.

A typical web application uses CDNs in a couple of different ways. First, there is the distribution of the application itself. For single-page application frameworks like React or Vue.js, the build processes create static assets that are ideal for serving over a CDN.

However, these builds may not be optimized and can be larger than necessary. Many frameworks offer optimization plugins, and the JavaScript community frequently uses Webpack to bundle modules and shrink deployment packages. Similarly, any media assets used in the application build should be optimized. You can use tools like Lighthouse to analyze your web apps to find images that can be resized or compressed.

Optimizing images

The second common CDN use-case for web apps is for user-generated content (UGC). Many apps allow users to upload images, which are then shared with other users. A typical photo from a 12-megapixel smartphone is 3–9 MB in size. This high resolution is not necessary when photos are rendered within web apps. Displaying the high-resolution asset results in slower download performance and higher data transfer costs.

The Happy Path application uses a Resizer Lambda function to optimize these uploaded assets. This process creates two different optimized images depending upon which component loads the asset.

Image sizes in front-end applications

The upload S3 bucket shows the original size of the upload from the smartphone:

The distribution S3 bucket contains the two optimized images at different sizes:

Optimized images in the distribution S3 bucket

The distribution file sizes are 98–99% smaller. For a busy web application, using optimized image assets can make a significant difference to data transfer and CloudFront costs.

Additionally, you can convert to highly optimized file formats such as WebP to reduce file size even further. Not all browsers support this format, but you can use CSS on the frontend to fall back to other types if needed:

<img src="myImage.webp" onerror="this.onerror=null; this.src='myImage.jpg'">

The data layer

AWS offers many different database and storage options that can be useful for web applications. Billing models vary by service and Region. By understanding the data access and storage requirements of your app, you can make informed decisions about the right service to use.

Generally, it’s more cost-effective to store binary data in S3 than a database. First, when the data is uploaded, you can upload directly to S3 with presigned URLs instead of proxying data via API Gateway or another service.

If you are using Amazon DynamoDB, it’s best practice to store larger items in S3 and include a reference token in a table item. Part of DynamoDB pricing is based on read capacity units (RCUs). For binary items such as images, it is usually more cost-efficient to use S3 for storage.

Many web developers who are new to serverless are familiar with using a relational database, so choose Amazon RDS for their database needs. Depending upon your use-case and data access patterns, it may be more cost effective to use DynamoDB instead. RDS is not a serverless service so there are monthly charges for the underlying compute instance. DynamoDB pricing is based upon usage and storage, so for many web apps may be a lower-cost choice.

Integration layer

This layer includes services like Amazon SQS, Amazon SNS, and Amazon EventBridge, which are essential for decoupling serverless applications. Each of these have a request-based pricing component, where 64 KB of a payload is billed as one request. For example, a single SQS message with a 256 KB payload is billed as four requests. There are two optimization methods common for web applications.

1. Combine messages

Many messages sent to these services are much smaller than 64 KB. In some applications, the publishing service can combine multiple messages to reduce the total number of publish actions to SNS. Additionally, by either eliminating unused attributes in the message or compressing the message, you can store more data in a single request.

For example, a publishing service may be able to combine multiple messages together in a single publish action to an SNS topic:

  • Before optimization, a publishing service sends 100,000,000 1KB-messages to an SNS topic. This is charged as 100 million messages for a total cost of $50.00.
  • After optimization, the publishing service combines messages to send 1,562,500 64KB-messages to an SNS topic. This is charged as 1,562,500 messages for a total cost of $0.78.

2. Filter messages

In many applications, not every message is useful for a consuming service. For example, an SNS topic may publish to a Lambda function, which checks the content and discards the message based on some criteria. In this case, it’s more cost effective to use the native filtering capabilities of SNS. The service can filter messages and only invoke the Lambda function if the criteria is met. This lowers the compute cost by only invoking Lambda when necessary.

For example, an SNS topic receives messages about customer orders and forwards these to a Lambda function subscriber. The function is only interested in canceled orders and discards all other messages:

  • Before optimization, the SNS topic sends all messages to a Lambda function. It evaluates the message for the presence of an order canceled attribute. On average, only 25% of the messages are processed further. While SNS does not charge for delivery to Lambda functions, you are charged each time the Lambda service is invoked, for 100% of the messages.
  • After optimization, using an SNS subscription filter policy, the SNS subscription filters for canceled orders and only forwards matching messages. Since the Lambda function is only invoked for 25% of the messages, this may reduce the total compute cost by up to 75%.

3. Choose a different messaging service

For complex filtering options based upon matching patterns, you can use EventBridge. The service can filter messages based upon prefix matching, numeric matching, and other patterns, combining several rules into a single filter. You can create branching logic within the EventBridge rule to invoke downstream targets.

EventBridge offers a broader range of targets than SNS destinations. In cases where you publish from an SNS topic to a Lambda function to invoke an EventBridge target, you could use EventBridge instead and eliminate the Lambda invocation. For example, instead of routing from SNS to Lambda to AWS Step Functions, instead create an EventBridge rule that routes events directly to a state machine.

Business logic layer

Step Functions allows you to orchestrate complex workflows in serverless applications while eliminating common boilerplate code. The Standard Workflow service charges per state transition. Express Workflows were introduced in December 2019, with pricing based on requests and duration, instead of transitions.

For workloads that are processing large numbers of events in shorter durations, Express Workflows can be more cost-effective. This is designed for high-volume event workloads, such as streaming data processing or IoT data ingestion. For these cases, compare the cost of the two workflow types to see if you can reduce cost by switching across.

Lambda is the on-demand compute layer in serverless applications, which is billed by requests and GB-seconds. GB-seconds is calculated by multiplying duration in seconds by memory allocated to the function. For a function with a 1-second duration, invoked 1 million times, here is how memory allocation affects the total cost in the US East (N. Virginia) Region:

Memory (MB)GB/SCompute costTotal cost
128125,000$ 2.08$ 2.28
512500,000$ 8.34$ 8.54
10241,000,000$ 16.67$ 16.87
15361,500,000$ 25.01$ 25.21
20482,000,000$ 33.34$ 33.54
30082,937,500$ 48.97$ 49.17

There are many ways to optimize Lambda functions, but one of the most important choices is memory allocation. You can choose between 128 MB and 3008 MB, but this also impacts the amount of virtual CPU as memory increases. Since total cost is a combination of memory and duration, choosing more memory can often reduce duration and lower overall cost.

Instead of manually setting the memory for a Lambda function and running executions to compare duration, you can use the AWS Lambda Power Tuning tool. This uses Step Functions to run your function against varying memory configurations. It can produce a visualization to find the optimal memory setting, based upon cost or execution time.

Optimizing costs with the AWS Lambda Power Tuning tool

Conclusion

Web application backends are one of the most popular workload types for serverless applications. The pay-per-value model works well for this type of workload. As traffic grows, it’s important to consider the design choices and service configurations used to optimize your cost.

Serverless web applications generally use a common range of services, which you can logically split into different layers. This post examines each layer and suggests common cost optimizations helpful for web app developers.

To learn more about building web apps with serverless, see the Happy Path series. For more serverless learning resources, visit https://serverlessland.com.

Building Extensions for AWS Lambda – In preview

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/building-extensions-for-aws-lambda-in-preview/

AWS Lambda is announcing a preview of Lambda Extensions, a new way to easily integrate Lambda with your favorite monitoring, observability, security, and governance tools. Extensions enable tools to integrate deeply into the Lambda execution environment to control and participate in Lambda’s lifecycle. This simplified experience makes it easier for you to use your preferred tools across your application portfolio today.

In this post I explain how Lambda extensions work, the changes to the Lambda lifecycle, and how to build an extension. To learn how to use extensions with your functions, see the companion blog post “Introducing AWS Lambda extensions”.

Extensions are built using the new Lambda Extensions API, which provides a way for tools to get greater control during function initialization, invocation, and shut down. This API builds on the existing Lambda Runtime API, which enables you to bring custom runtimes to Lambda.

You can use extensions from AWS, AWS Lambda Ready Partners, and open source projects for use-cases such as application performance monitoring, secrets management, configuration management, and vulnerability detection. You can also build your own extensions to integrate your own tooling using the Extensions API.

There are extensions available today for AppDynamics, Check Point, Datadog, Dynatrace, Epsagon, HashiCorp, Lumigo, New Relic, Thundra, Splunk, AWS AppConfig, and Amazon CloudWatch Lambda Insights. For more details on these, see “Introducing AWS Lambda extensions”.

The Lambda execution environment

Lambda functions run in a sandboxed environment called an execution environment. This isolates them from other functions and provides the resources, such as memory, specified in the function configuration.

Lambda automatically manages the lifecycle of compute resources so that you pay for value. Between function invocations, the Lambda service freezes the execution environment. It is thawed if the Lambda service needs the execution environment for subsequent invocations.

Previously, only the runtime process could influence the lifecycle of the execution environment. It would communicate with the Runtime API, which provides an HTTP API endpoint within the execution environment to communicate with the Lambda service.

Lambda and Runtime API

Lambda and Runtime API

The runtime uses the API to request invocation events from Lambda and deliver them to the function code. It then informs the Lambda service when it has completed processing an event. The Lambda service then freezes the execution environment.

The runtime process previously exposed two distinct phases in the lifecycle of the Lambda execution environment: Init and Invoke.

1. Init: During the Init phase, the Lambda service initializes the runtime, and then runs the function initialization code (the code outside the main handler). The Init phase happens either during the first invocation, or in advance if Provisioned Concurrency is enabled.

2. Invoke: During the invoke phase, the runtime requests an invocation event from the Lambda service via the Runtime API, and invokes the function handler. It then returns the function response to the Runtime API.

After the function runs, the Lambda service freezes the execution environment and maintains it for some time in anticipation of another function invocation.

If the Lambda function does not receive any invokes for a period of time, the Lambda service shuts down and removes the environment.

Previous Lambda lifecycle

Previous Lambda lifecycle

With the addition of the Extensions API, extensions can now influence, control, and participate in the lifecycle of the execution environment. They can use the Extensions API to influence when the Lambda service freezes the execution environment.

AWS Lambda execution environment with the Extensions API

AWS Lambda execution environment with the Extensions API

Extensions are initialized before the runtime and the function. They then continue to run in parallel with the function, get greater control during function invocation, and can run logic during shut down.

Extensions allow integrations with the Lambda service by introducing the following changes to the Lambda lifecycle:

  1. An updated Init phase. There are now three discrete Init tasks: extensions Init, runtime Init, and function Init. This creates an order where extensions and the runtime can perform setup tasks before the function code runs.
  2. Greater control during invocation. During the invoke phase, as before, the runtime requests the invocation event and invokes the function handler. In addition, extensions can now request lifecycle events from the Lambda service. They can run logic in response to these lifecycle events, and respond to the Lambda service when they are done. The Lambda service freezes the execution environment when it hears back from the runtime and all extensions. In this way, extensions can influence the freeze/thaw behavior.
  3. Shutdown phase: we are now exposing the shutdown phase to let extensions stop cleanly when the execution environment shuts down. The Lambda service sends a shut down event, which tells the runtime and extensions that the environment is about to be shut down.
New Lambda lifecycle with extensions

New Lambda lifecycle with extensions

Each Lambda lifecycle phase starts with an event from the Lambda service to the runtime and all registered extensions. The runtime and extensions signal that they have completed by requesting the Next invocation event from the Runtime and Extensions APIs. Lambda freezes the execution environment and all extensions when there are no pending events.

Lambda lifecycle for execution environment, runtime, extensions, and function.png

Lambda lifecycle for execution environment, runtime, extensions, and function.png

For more information on the lifecycle phases and the Extensions API, see the documentation.

How are extensions delivered and run?

You deploy extensions as Lambda layers, which are ZIP archives containing shared libraries or other dependencies.

To add a layer, use the AWS Management Console, AWS Command Line Interface (AWS CLI), or infrastructure as code tools such as AWS CloudFormation, the AWS Serverless Application Model (AWS SAM), and Terraform.

When the Lambda service starts the function execution environment, it extracts the extension files from the Lambda layer into the /opt directory. Lambda then looks for any extensions in the /opt/extensions directory and starts initializing them. Extensions need to be executable as binaries or scripts. As the function code directory is read-only, extensions cannot modify function code.

Extensions can run in either of two modes, internal and external.

  • Internal extensions run as part of the runtime process, in-process with your code. They are not separate processes. Internal extensions allow you to modify the startup of the runtime process using language-specific environment variables and wrapper scripts. You can use language-specific environment variables to add options and tools to the runtime for Java Correto 8 and 11, Node.js 10 and 12, and .NET Core 3.1. Wrapper scripts allow you to delegate the runtime startup to your script to customize the runtime startup behavior. You can use wrapper scripts with Node.js 10 and 12, Python 3.8, Ruby 2.7, Java 8 and 11, and .NET Core 3.1. For more information, see “Modifying-the-runtime-environment”.
  • External extensions allow you to run separate processes from the runtime but still within the same execution environment as the Lambda function. External extensions can start before the runtime process, and can continue after the runtime shuts down. External extensions work with Node.js 10 and 12, Python 3.7 and 3.8, Ruby 2.5 and 2.7, Java Corretto 8 and 11, .NET Core 3.1, and custom runtimes.

External extensions can be written in a different language to the function. We recommend implementing external extensions using a compiled language as a self-contained binary. This makes the extension compatible with all of the supported runtimes. If you use a non-compiled language, ensure that you include a compatible runtime in the extension.

Extensions run in the same execution environment as the function, so share resources such as CPU, memory, and disk storage with the function. They also share environment variables, in addition to permissions, using the same AWS Identity and Access Management (IAM) role as the function.

For more details on resources, security, and performance with extensions, see the companion blog post “Introducing AWS Lambda extensions”.

For example extensions and wrapper scripts to help you build your own extensions, see the GitHub repository.

Showing extensions in action

The demo shows how external extensions integrate deeply with functions and the Lambda runtime. The demo creates an example Lambda function with a single extension using either the AWS CLI, or AWS SAM.

The example shows how an external extension can start before the runtime, run during the Lambda function invocation, and shut down after the runtime shuts down.

To set up the example, visit the GitHub repo, and follow the instructions in the README.md file.

The example Lambda function uses the custom provided.al2 runtime based on Amazon Linux 2. Using the custom runtime helps illustrate in more detail how the Lambda service, Runtime API, and the function communicate. The extension is delivered using a Lambda layer.

The runtime, function, and extension, log their status events to Amazon CloudWatch Logs. The extension initializes as a separate process and waits to receive the function invocation event from the Extensions API. It then sleeps for 5 seconds before calling the API again to register to receive the next event. The extension sleep simulates the processing of a parallel process. This could, for example, collect telemetry data to send to an external observability service.

When the Lambda function is invoked, the extension, runtime and function perform the following steps. I walk through the steps using the log output.

1. The Lambda service adds the configured extension Lambda layer. It then searches the /opt/extensions folder, and finds an extension called extension1.sh. The extension executable launches before the runtime initializes. It registers with the Extensions API to receive INVOKE and SHUTDOWN events using the following API call.

curl -sS -LD "$HEADERS" -XPOST "http://${AWS_LAMBDA_RUNTIME_API}/2020-01-01/extension/register" --header "Lambda-Extension-Name: ${LAMBDA_EXTENSION_NAME}" -d "{ \"events\": [\"INVOKE\", \"SHUTDOWN\"]}" > $TMPFILE
Extension discovery, registration, and start

Extension discovery, registration, and start

2. The Lambda custom provided.al2 runtime initializes from the bootstrap file.

Runtime initialization

Runtime initialization

3. The runtime calls the Runtime API to get the next event using the following API call. The HTTP request is blocked until the event is received.

curl -sS -LD "$HEADERS" -X GET "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next" > $TMPFILE &

The extension calls the Extensions API and waits for the next event. The HTTP request is again blocked until one is received.

curl -sS -L -XGET "http://${AWS_LAMBDA_RUNTIME_API}/2020-01-01/extension/event/next" --header "Lambda-Extension-Identifier: ${EXTENSION_ID}" > $TMPFILE &
Runtime and extension call APIs to get the next event

Runtime and extension call APIs to get the next event

4. The Lambda service receives an invocation event. It sends the event payload to the runtime using the Runtime API. It sends an event to the extension informing it about the invocation, using the Extensions API.

Runtime and extension receive event

Runtime and extension receive event

5. The runtime invokes the function handler. The function receives the event payload.

Runtime invokes handler

Runtime invokes handler

6. The function runs the handler code. The Lambda runtime receives back the function response and sends it back to the Runtime API with the following API call.

curl -sS -X POST "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/response" -d "$RESPONSE" > $TMPFILE
Runtime receives function response and sends to Runtime API

Runtime receives function response and sends to Runtime API

7. The Lambda runtime then waits for the next invocation event (warm start).

Runtime waits for next event

Runtime waits for next event

8. The extension continues processing for 5 seconds, simulating the processing of a companion process. The extension finishes, and uses the Extensions API to register again to wait for the next event.

Extension processing

Extension processing

9. The function invocation report is logged.

Function invocation report

Function invocation report

10. When Lambda is about to shut down the execution environment, it sends the Runtime API a shut down event.

Lambda runtime shut down event

Lambda runtime shut down event

11. Lambda then sends a shut down event to the extensions. The extension finishes processing and then shuts down after the runtime.

Lambda extension shut down event

Lambda extension shut down event

The demo shows the steps the runtime, function, and extensions take during the Lambda lifecycle.

An external extension registers and starts before the runtime. When Lambda receives an invocation event, it sends it to the runtime. It then sends an event to the extension informing it about the invocation. The runtime invokes the function handler, and the extension does its own processing of the event. The extension continues processing after the function invocation completes. When Lambda is about to shut down the execution environment, it sends a shut down event to the runtime. It then sends one to the extension, so it can finish processing.

To see a sequence diagram of this flow, see the Extensions API documentation.

Pricing

Extensions share the same billing model as Lambda functions. When using Lambda functions with extensions, you pay for requests served and the combined compute time used to run your code and all extensions, in 100 ms increments. To learn more about the billing for extensions, visit the Lambda FAQs page.

Conclusion

Lambda extensions enable you to extend Lambda’s execution environment to more easily integrate with your favorite tools for monitoring, observability, security, and governance.

Extensions can run additional code; before, during, and after a function invocation. There are extensions available today from AWS Lambda Ready Partners. These cover use-cases such as application performance monitoring, secrets management, configuration management, and vulnerability detection. Extensions make it easier to use your existing tools with your serverless applications. For more information on the available extensions, see the companion post “Introducing Lambda Extensions – In preview“.

You can also build your own extensions to integrate your own tooling using the new Extensions API. For example extensions and wrapper scripts, see the GitHub repository.

Extensions are now available in preview in the following Regions: us-east-1, us-east-2, us-west-1, us-west-2, ca-central-1, eu-west-1, eu-west-2, eu-west-3, eu-central-1, eu-north-1, eu-south-1, sa-east-1, me-south-1, ap-northeast-1, ap-northeast-2, ap-northeast-3, ap-southeast-1, ap-southeast-2, ap-south-1, and ap-east-1.

For more serverless learning resources, visit https://serverlessland.com.

Introducing AWS Lambda Extensions – In preview

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/introducing-aws-lambda-extensions-in-preview/

AWS Lambda is announcing a preview of Lambda Extensions, a new way to easily integrate Lambda with your favorite monitoring, observability, security, and governance tools. In this post I explain how Lambda extensions work, how you can begin using them, and the extensions from AWS Lambda Ready Partners that are available today.

Extensions help solve a common request from customers to make it easier to integrate their existing tools with Lambda. Previously, customers told us that integrating Lambda with their preferred tools required additional operational and configuration tasks. In addition, tools such as log agents, which are long-running processes, could not easily run on Lambda.

Extensions are a new way for tools to integrate deeply into the Lambda environment. There is no complex installation or configuration, and this simplified experience makes it easier for you to use your preferred tools across your application portfolio today. You can use extensions for use-cases such as:

  • capturing diagnostic information before, during, and after function invocation
  • automatically instrumenting your code without needing code changes
  • fetching configuration settings or secrets before the function invocation
  • detecting and alerting on function activity through hardened security agents, which can run as separate processes from the function

You can use extensions from AWS, AWS Lambda Ready Partners, and open source projects. There are extensions available today for AppDynamics, Check Point, Datadog, Dynatrace, Epsagon, HashiCorp, Lumigo, New Relic, Thundra, Splunk SignalFX, AWS AppConfig, and Amazon CloudWatch Lambda Insights.

You can learn how to build your own extensions, in the companion post “Building Extensions for AWS Lambda – In preview“.

Overview

Lambda Extensions is designed to be the easiest way to plug in the tools you use today without complex installation or configuration management. You deploy extensions as Lambda layers, with the AWS Management Console and AWS Command Line Interface (AWS CLI). You can also use infrastructure as code tools such as AWS CloudFormation, the AWS Serverless Application Model (AWS SAM), Serverless Framework, and Terraform. You can use Stackery to automate the integration of extensions from Epsagon, New Relic, Lumigo, and Thundra.

There are two components to the Lambda Extensions capability: the Extensions API and extensions themselves. Extensions are built using the new Lambda Extensions API which provides a way for tools to get greater control during function initialization, invocation, and shut down. This API builds on the existing Lambda Runtime API, which enables you to bring custom runtimes to Lambda.

AWS Lambda execution environment with the Extensions API

AWS Lambda execution environment with the Extensions API

Most customers will use extensions without needing to know about the capabilities of the Extensions API that enables them. You can just consume capabilities of an extension by configuring the options in your Lambda functions. Developers who build extensions use the Extensions API to register for function and execution environment lifecycle events.

Extensions can run in either of two modes – internal and external.

  • Internal extensions run as part of the runtime process, in-process with your code. They allow you to modify the startup of the runtime process using language-specific environment variables and wrapper scripts. Internal extensions enable use cases such as automatically instrumenting code.
  • External extensions allow you to run separate processes from the runtime but still within the same execution environment as the Lambda function. External extensions can start before the runtime process, and can continue after the runtime shuts down. External extensions enable use cases such as fetching secrets before the invocation, or sending telemetry to a custom destination outside of the function invocation. These extensions run as companion processes to Lambda functions.

For more information on the Extensions API and the changes to the Lambda lifecycle, see “Building Extensions for AWS Lambda – In preview

AWS Lambda Ready Partners extensions available at launch

Today, you can use extensions with the following AWS and AWS Lambda Ready Partner’s tools, and there are more to come:

  • AppDynamics provides end-to-end transaction tracing for AWS Lambda. With the AppDynamics extension, it is no longer mandatory for developers to include the AppDynamics tracer as a dependency in their function code, making tracing transactions across hybrid architectures even simpler.
  • The Datadog extension brings comprehensive, real-time visibility to your serverless applications. Combined with Datadog’s existing AWS integration, you get metrics, traces, and logs to help you monitor, detect, and resolve issues at any scale. The Datadog extension makes it easier than ever to get telemetry from your serverless workloads.
  • The Dynatrace extension makes it even easier to bring AWS Lambda metrics and traces into the Dynatrace platform for intelligent observability and automatic root cause detection. Get comprehensive, end-to-end observability with the flip of a switch and no code changes.
  • Epsagon helps you monitor, troubleshoot, and lower the cost for your Lambda functions. Epsagon’s extension reduces the overhead of sending traces to the Epsagon service, with minimal performance impact to your function.
  • HashiCorp Vault allows you to secure, store, and tightly control access to your application’s secrets and sensitive data. With the Vault extension, you can now authenticate and securely retrieve dynamic secrets before your Lambda function invokes.
  • Lumigo provides a monitoring and observability platform for serverless and microservices applications. The Lumigo extension enables the new Lumigo Lambda Profiler to see a breakdown of function resources, including CPU, memory, and network metrics. Receive actionable insights to reduce Lambda runtime duration and cost, fix bottlenecks, and increase efficiency.
  • Check Point CloudGuard provides full lifecycle security for serverless applications. The CloudGuard extension enables Function Self Protection data aggregation as an out-of-process extension, providing detection and alerting on application layer attacks.
  • New Relic provides a unified observability experience for your entire software stack. The New Relic extension uses a simpler companion process to report function telemetry data. This also requires fewer AWS permissions to add New Relic to your application.
  • Thundra provides an application debugging, observability and security platform for serverless, container and virtual machine (VM) workloads. The Thundra extension adds asynchronous telemetry reporting functionality to the Thundra agents, getting rid of network latency.
  • Splunk offers an enterprise-grade cloud monitoring solution for real-time full-stack visibility at scale. The Splunk extension provides a simplified runtime-independent interface to collect high-resolution observability data with minimal overhead. Monitor, manage, and optimize the performance and cost of your serverless applications with Splunk Observability solutions.
  • AWS AppConfig helps you manage, store, and safely deploy application configurations to your hosts at runtime. The AWS AppConfig extension integrates Lambda and AWS AppConfig seamlessly. Lambda functions have simple access to external configuration settings quickly and easily. Developers can now dynamically change their Lambda function’s configuration safely using robust validation features.
  • Amazon CloudWatch Lambda Insights enables you to efficiently monitor, troubleshoot, and optimize Lambda functions. The Lambda Insights extension simplifies the collection, visualization, and investigation of detailed compute performance metrics, errors, and logs. You can more easily isolate and correlate performance problems to optimize your Lambda environments.

You can also build and use your own extensions to integrate your organization’s tooling. For instance, the Cloud Foundations team at Square has built their own extension. They say:

The Cloud Foundations team at Square works to make the cloud accessible and secure. We partnered with the Security Infrastructure team, who builds infrastructure to secure Square’s sensitive data, to enable serverless applications at Square,​ and ​provide mTLS identities to Lambda​.

Since beginning work on Lambda, we have focused on creating a streamlined developer experience. Teams adopting Lambda need to learn a lot about AWS, and we see extensions as a way to abstract away common use cases. For our initial exploration, we wanted to make accessing secrets easy, as with our current tools each Lambda function usually pulls 3-5 secrets.

The extension we built and open source fetches secrets on cold starts, before the Lambda function is invoked. Each function includes a configuration file that specifies which secrets to pull. We knew this configuration was key, as Lambda functions should only be doing work they need to do. The secrets are cached in the local /tmp directory, which the function reads when it needs the secret data. This makes Lambda functions not only faster, but reduces the amount of code for accessing secrets.

Showing extensions in action with AWS AppConfig

This demo shows an example of using the AWS AppConfig with a Lambda function. AWS AppConfig is a capability of AWS Systems Manager to create, manage, and quickly deploy application configurations. It lets you dynamically deploy external configuration without having to redeploy your applications. As AWS AppConfig has robust validation features, all configuration changes can be tested safely before rolling out to your applications.

AWS AppConfig has an available extension which gives Lambda functions access to external configuration settings quickly and easily. The extension runs a separate local process to retrieve and cache configuration data from the AWS AppConfig service. The function code can then fetch configuration data faster using a local call rather than over the network.

To set up the example, visit the GitHub repo and follow the instructions in the README.md file.

The example creates an AWS AppConfig application, environment, and configuration profile. It stores a loglevel value, initially set to normal.

AWS AppConfig application, environment, and configuration profile

AWS AppConfig application, environment, and configuration profile

An AWS AppConfig deployment runs to roll out the initial configuration.

AWS AppConfig deployment

AWS AppConfig deployment

The example contains two Lambda functions that include the AWS AppConfig extension. For a list of the layers that have the AppConfig extension, see the blog post “AWS AppConfig Lambda Extension”.

As extensions share the same permissions as Lambda functions, the functions have execution roles that allow access to retrieve the AWS AppConfig configuration.

Lambda function add layer

Lambda function add layer

The functions use the extension to retrieve the loglevel value from AWS AppConfig, returning the value as a response. In a production application, this value could be used within function code to determine what level of information to send to CloudWatch Logs. For example, to troubleshoot an application issue, you can change the loglevel value centrally. Subsequent function invocations for both functions use the updated value.

Both Lambda functions are configured with an environment variable that specifies which AWS AppConfig configuration profile and value to use.

Lambda environment variable specifying AWS AppConfig profile

Lambda environment variable specifying AWS AppConfig profile

The functions also return whether the invocation is a cold start.

Running the functions with a test payload returns the loglevel value normal. The first invocation is a cold start.

{
  "event": {
    "hello": "world"
  },
  "ColdStart": true,
  "LogLevel": "normal"
}

Subsequent invocations return the same value with ColdStart set to false.

{
  "event": {
    "hello": "world"
  },
  "ColdStart": false,
  "LogLevel": "normal"
}

Create a new AWS Config hosted configuration profile version setting the loglevel value to verbose. Run a new AWS AppConfig deployment to update the value. The extension for both functions retrieves the new value. The function configuration itself is not changed.

Running another test invocation for both functions returns the updated value still without a cold start.

{
  "event": {
    "hello": "world"
  },
  "ColdStart": false,
  "LogLevel": "verbose"
}

AWS AppConfig has worked seamlessly with Lambda to update a dynamic external configuration setting for multiple Lambda functions without having to redeploy the function configuration.

The only function configuration required is to add the layer which contains the AWS AppConfig extension.

Pricing

Extensions share the same billing model as Lambda functions. When using Lambda functions with extensions, you pay for requests served and the combined compute time used to run your code and all extensions, in 100 ms increments. To learn more about the billing for extensions, visit the Lambda FAQs page.

Resources, security, and performance with extensions

Extensions run in the same execution environment as the function code. Therefore, they share resources with the function, such as CPU, memory, disk storage, and environment variables. They also share permissions, using the same AWS Identity and Access Management (IAM) role as the function.

You can configure up to 10 extensions per function, using up to five layers at a time. Multiple extensions can be included in a single layer.

The size of the extensions counts towards the deployment package limit. This cannot exceed the unzipped deployment package size limit of 250 MB.

External extensions are initialized before the runtime is started so can increase the delay before the function is invoked. Today, the function invocation response is returned after all extensions have completed. An extension that takes time to complete can increase the delay before the function response is returned. If an extension performs compute-intensive operations, function execution duration may increase. To measure the additional time the extension runs after the function invocation, use the new PostRuntimeExtensionsDuration CloudWatch metric to measure the extra time the extension takes after the function execution. To understand the impact of a specific extension, you can use the Duration and MaxMemoryUsed CloudWatch metrics, and run different versions of your function with and without the extension. Adding more memory to a function also proportionally increases CPU and network throughput.

The function and all extensions must complete within the function’s configured timeout setting which applies to the entire invoke phase.

Conclusion

Lambda extensions enable you to extend the Lambda service to more easily integrate with your favorite tools for monitoring, observability, security, and governance.

Today, you can install a number of available extensions from AWS Lambda Ready Partners. These cover use-cases such as application performance monitoring, secrets management, configuration management, and vulnerability detection. Extensions make it easier to use your existing tools with your serverless applications.

You can also build extensions to integrate your own tooling using the new Extensions API. For more information, see the companion post “Building Extensions for AWS Lambda – In preview“.

Extensions are now available in preview in the following Regions: us-east-1, us-east-2, us-west-1, us-west-2, ca-central-1, eu-west-1, eu-west-2, eu-west-3, eu-central-1, eu-north-1, eu-south-1, sa-east-1, me-south-1, ap-northeast-1, ap-northeast-2, ap-northeast-3, ap-southeast-1, ap-southeast-2, ap-south-1, and ap-east-1.

For more serverless learning resources, visit https://serverlessland.com.

Building resilient serverless patterns by combining messaging services

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/building-resilient-no-code-serverless-patterns-by-combining-messaging-services/

In “Choosing between messaging services for serverless applications”, I explain the features and differences between the core AWS messaging services. Amazon SQS, Amazon SNS, and Amazon EventBridge provide queues, publish/subscribe, and event bus functionality for your applications. Individually, these are robust, scalable services that are fundamental building blocks of serverless architectures.

However, you can also combine these services to solve specific challenges in distributed architectures. By doing this, you can use specific features of each service to build sophisticated patterns with little code. These combinations can make your applications more resilient and scalable, and reduce the amount of custom logic and architecture in your workload.

In this blog post, I highlight several important patterns for serverless developers. I also show how you use and deploy these integrations with the AWS Serverless Application Model (AWS SAM).

Examples in this post refer to code that can be downloaded from this GitHub repo. The README.md file explains how to deploy and run each example.

SNS to SQS: Adding resilience and throttling to message throughput

SNS has a robust retry policy that results in up to 100,010 delivery attempts over 23 days. If a downstream service is unavailable, it may be overwhelmed by retries when it comes back online. You can solve this issue by adding an SQS queue.

Adding an SQS queue between the SNS topic and its subscriber has two benefits. First, it adds resilience to message delivery, since the messages are durably stored in a queue. Second, it throttles the rate of messages to the consumer, helping smooth out traffic bursts caused by the service catching up with missed messages.

To build this in an AWS SAM template, you first define the two resources, and the SNS subscription:

  MySqsQueue:
    Type: AWS::SQS::Queue

  MySnsTopic:
    Type: AWS::SNS::Topic
    Properties:
      Subscription:
        - Protocol: sqs
          Endpoint: !GetAtt MySqsQueue.Arn

Finally, you provide permission to the SNS topic to publish to the queue, using the AWS::SQS::QueuePolicy resource:

  SnsToSqsPolicy:
    Type: AWS::SQS::QueuePolicy
    Properties:
      PolicyDocument:
        Version: "2012-10-17"
        Statement:
          - Sid: "Allow SNS publish to SQS"
            Effect: Allow
            Principal: "*"
            Resource: !GetAtt MySqsQueue.Arn
            Action: SQS:SendMessage
            Condition:
              ArnEquals:
                aws:SourceArn: !Ref MySnsTopic
      Queues:
        - Ref: MySqsQueue

To test this, you can publish a message to the SNS topic and then inspect the SQS queue length using the AWS CLI:

aws sns publish --topic-arn "arn:aws:sns:us-east-1:123456789012:sns-sqs-MySnsTopic-ABC123ABC" --message "Test message"
aws sqs get-queue-attributes --queue-url "https://sqs.us-east-1.amazonaws.com/123456789012/sns-sqs-MySqsQueue- ABC123ABC " --attribute-names ApproximateNumberOfMessages

This results in the following output:

CLI output

Another usage of this pattern is when you want to filter messages in architectures using an SQS queue. By placing the SNS topic in front of the queue, you can use the message filtering capabilities of SNS. This ensures that only the messages you need are published to the queue. To use message filtering in AWS SAM, use the AWS:SNS:Subcription resource:

  QueueSubcription:
    Type: 'AWS::SNS::Subscription'
    Properties:
      TopicArn: !Ref MySnsTopic
      Endpoint: !GetAtt MySqsQueue.Arn
      Protocol: sqs
      FilterPolicy:
        type:
        - orders
        - payments 
      RawMessageDelivery: 'true'

EventBridge to SNS: combining features of both services

Both SNS and EventBridge have different characteristics in terms of targets, and integration with broader features. This table compares the major differences between the two services:

Amazon SNSAmazon EventBridge
Number of targets10 million (soft)5
Limits100,000 topics. 12,500,000 subscriptions per topic.100 event buses. 300 rules per event bus.
Input transformationNoYes – see details.
Message filteringYes – see details.Yes, including IP address matching – see details.
FormatRaw or JSONJSON
Receive events from AWS CloudTrailNoYes
TargetsHTTP(S), SMS, SNS Mobile Push, Email/Email-JSON, SQS, Lambda functions15 targets including AWS LambdaAmazon SQSAmazon SNSAWS Step FunctionsAmazon Kinesis Data StreamsAmazon Kinesis Data Firehose.
SaaS integrationNoYes – see integration partners.
Schema Registry integrationNoYes – see details.
Dead-letter queues supportedYesNo
Public visibilityCan create public topicsCannot create public buses
Cross-RegionYou can subscribe your AWS Lambda functions to an Amazon SNS topic in any Region.Targets must be same Region. You can publish across Region to another event bus.

In this pattern, you configure an SNS topic as a target of an EventBridge rule:

SNS topic as a target for an EventBridge rule

In the AWS SAM template, you declare the resources in the preceding diagram as follows:

Resources:
  MySnsTopic:
    Type: AWS::SNS::Topic

  EventRule: 
    Type: AWS::Events::Rule
    Properties: 
      Description: "EventRule"
      EventPattern: 
        account: 
          - !Sub '${AWS::AccountId}'
        source:
          - "demo.cli"
      Targets: 
        - Arn: !Ref MySnsTopic
          Id: "SNStopic"

The default bus already exists in every AWS account, so there is no need to declare it. For the event bus to publish matching events to the SNS topic, you define permissions using the AWS::SNS::TopicPolicy resource:

  EventBridgeToToSnsPolicy:
    Type: AWS::SNS::TopicPolicy
    Properties: 
      PolicyDocument:
        Statement:
        - Effect: Allow
          Principal:
            Service: events.amazonaws.com
          Action: sns:Publish
          Resource: !Ref MySnsTopic
      Topics: 
        - !Ref MySnsTopic       

EventBridge has a limit of five targets per rule. In cases where you must send events to hundreds or thousands of targets, publishing to SNS first and then subscribing those targets to the topic works around this limit. Both services have different targets, and this pattern allows you to deliver EventBridge events to SMS, HTTP(s), email and SNS mobile push.

You can transform and filter the message using these services, often without needing an AWS Lambda function. SNS does not support input transformation but you can do this in an EventBridge rule. Message filtering is possible in both services but EventBridge provides richer content filtering capabilities.

AWS CloudTrail can log and monitor activity across services in your AWS account. It can be a useful source for events, allowing you to respond dynamically to objects in Amazon S3 or react to changes in your environment, for example. This natively integrates with EventBridge, allowing you to ingest events at scale from dozens of services.

Using EventBridge enables you to source events from outside your AWS account, offering integrations with a list of software as a service (SaaS) providers. This capability allows you to receive events from your accounts with SaaS providers like Zendesk, PagerDuty, and Auth0. These events are delivered to a partner event bus in your account, and can then be filtered and routed to an SNS topic.

Additionally, this pattern allows you to deliver events to Lambda functions in other AWS accounts and in other AWS Regions. You can invoke Lambda from SNS topics in other Regions and accounts. It’s also possible to make SNS topics publicly read-only, making them extensible endpoints that other third parties can consume from. SNS has comprehensive access control, which you can incorporate into this pattern.

Cross-account publishing

EventBridge to SQS: Building fault-tolerant microservices

EventBridge can route events to targets such as microservices. In the case of downstream failures, the service retries events for up to 24 hours. For workloads where you need a longer period of time to store and retry messages, you can deliver the events to an SQS queue in each microservice. This durably stores those events until the downstream service recovers. Additionally, this pattern protects the microservice from large bursts of traffic by throttling the delivery of messages.

Fault-tolerant microservices architecture

The resources declared in the AWS SAM template are similar to the previous examples, but it uses the AWS::SQS::QueuePolicy resource to grant the appropriate permission to EventBridge:

  EventBridgeToToSqsPolicy:
    Type: AWS::SQS::QueuePolicy
    Properties:
      PolicyDocument:
        Statement:
        - Effect: Allow
          Principal:
            Service: events.amazonaws.com
          Action: SQS:SendMessage
          Resource:  !GetAtt MySqsQueue.Arn
      Queues:
        - Ref: MySqsQueue

Conclusion

You can combine these services in your architectures to implement patterns that solve complex challenges, often with little code required. This blog post shows three examples that implement message throttling and queueing, integrating SNS and EventBridge, and building fault tolerant microservices.

To learn more building decoupled architectures, see this Learning Path series on EventBridge. For more serverless learning resources, visit https://serverlessland.com.

Choosing between messaging services for serverless applications

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/choosing-between-messaging-services-for-serverless-applications/

Most serverless application architectures use a combination of different AWS services, microservices, and AWS Lambda functions. Messaging services are important in allowing distributed applications to communicate with each other, and are fundamental to most production serverless workloads.

Messaging services can improve the resilience, availability, and scalability of applications, when used appropriately. They can also enable your applications to communicate beyond your workload or even the AWS Cloud, and provide extensibility for future service features and versions.

In this blog post, I compare the primary messaging services offered by AWS and how you can use these in your serverless application architectures. I also show how you use and deploy these integrations with the AWS Serverless Application Model (AWS SAM).

Examples in this post refer to code that can be downloaded from this GitHub repository. The README.md file explains how to deploy and run each example.

Overview

Three of the most useful messaging patterns for serverless developers are queues, publish/subscribe, and event buses. In AWS, these are provided by Amazon SQS, Amazon SNS, and Amazon EventBridge respectively. All of these services are fully managed and highly available, so there is no infrastructure to manage. All three integrate with Lambda, allowing you to publish messages via the AWS SDK and invoke functions as targets. Each of these services has an important role to play in serverless architectures.

SNS enables you to send messages reliably between parts of your infrastructure. It uses a robust retry mechanism for when downstream targets are unavailable. When the delivery policy is exhausted, it can optionally send those messages to a dead-letter queue for further processing. SNS uses topics to logically separate messages into channels, and your Lambda functions interact with these topics.

SQS provides queues for your serverless applications. You can use a queue to send, store, and receive messages between different services in your workload. Queues are an important mechanism for providing fault tolerance in distributed systems, and help decouple different parts of your application. SQS scales elastically, and there is no limit to the number of messages per queue. The service durably persists messages until they are processed by a downstream consumer.

EventBridge is a serverless event bus service, simplifying routing events between AWS services, software as a service (SaaS) providers, and your own applications. It logically separates routing using event buses, and you implement the routing logic using rules. You can filter and transform incoming messages at the service level, and route events to multiple targets, including Lambda functions.

Integrating an SQS queue with AWS SAM

The first example shows an AWS SAM template defining a serverless application with two Lambda functions and an SQS queue:

Producer-consumer example

You can declare an SQS queue in an AWS SAM template with the AWS::SQS::Queue resource:

  MySqsQueue:
    Type: AWS::SQS::Queue

To publish to the queue, the publisher function must have permission to send messages. Using an AWS SAM policy template, you can apply policy that enables send messaging to one specific queue:

      Policies:
        - SQSSendMessagePolicy:
            QueueName: !GetAtt MySqsQueue.QueueName

The AWS SAM template passes the queue name into the Lambda function as an environment variable. The function uses the sendMessage method of the AWS.SQS class to publish the message:

const AWS = require('aws-sdk')
AWS.config.region = process.env.AWS_REGION 
const sqs = new AWS.SQS({apiVersion: '2012-11-05'})

// The Lambda handler
exports.handler = async (event) => {
  // Params object for SQS
  const params = {
    MessageBody: `Message at ${Date()}`,
    QueueUrl: process.env.SQSqueueName
  }
  
  // Send to SQS
  const result = await sqs.sendMessage(params).promise()
  console.log(result)
}

When the SQS queue receives the message, it publishes to the consuming Lambda function. To configure this integration in AWS SAM, the consumer function is granted the SQSPollerPolicy policy. The function’s event source is set to receive messages from the queue in batches of 10:

  QueueConsumerFunction:
    Type: AWS::Serverless::Function 
    Properties:
      CodeUri: code/
      Handler: consumer.handler
      Runtime: nodejs12.x
      Timeout: 3
      MemorySize: 128
      Policies:  
        - SQSPollerPolicy:
            QueueName: !GetAtt MySqsQueue.QueueName
      Events:
        MySQSEvent:
          Type: SQS
          Properties:
            Queue: !GetAtt MySqsQueue.Arn
            BatchSize: 10

The payload for the consumer function is the message from SQS. This is an array of messages up to the batch size, containing a body attribute with the publishing function’s MessageBody. You can see this in the CloudWatch log for the function:

CloudWatch log result

Integrating an SNS topic with AWS SAM

The second example shows an AWS SAM template defining a serverless application with three Lambda functions and an SNS topic:

SNS fanout to Lambda functions

You declare an SNS topic and the subscribing Lambda functions with the AWS::SNS:Topic resource:

  MySnsTopic:
    Type: AWS::SNS::Topic
    Properties:
      Subscription:
        - Protocol: lambda
          Endpoint: !GetAtt TopicConsumerFunction1.Arn    
        - Protocol: lambda
          Endpoint: !GetAtt TopicConsumerFunction2.Arn

You provide the SNS service with permission to invoke the Lambda functions but defining an AWS::Lambda::Permission for each:

  TopicConsumerFunction1Permission:
    Type: 'AWS::Lambda::Permission'
    Properties:
      Action: 'lambda:InvokeFunction'
      FunctionName: !Ref TopicConsumerFunction1
      Principal: sns.amazonaws.com

The SNSPublishMessagePolicy policy template grants permission to the publishing function to send messages to the topic. In the function, the publish method of the AWS.SNS class handles publishing:

const AWS = require('aws-sdk')
AWS.config.region = process.env.AWS_REGION 
const sns = new AWS.SNS({apiVersion: '2012-11-05'})

// The Lambda handler
exports.handler = async (event) => {
  // Params object for SNS
  const params = {
    Message: `Message at ${Date()}`,
    Subject: 'New message from publisher',
    TopicArn: process.env.SNStopic
  }
  
  // Send to SQS
  const result = await sns.publish(params).promise()
  console.log(result)
}

The payload for the consumer functions is the message from SNS. This is an array of messages, containing subject and message attributes from the publishing function. You can see this in the CloudWatch log for the function:

CloudWatch log result

Differences between SQS and SNS configurations

SQS queues and SNS topics offer different functionality, though both can publish to downstream Lambda functions.

An SQS message is stored on the queue for up to 14 days until it is successfully processed by a subscriber. SNS does not retain messages so if there are no subscribers for a topic, the message is discarded.

SNS topics may broadcast to multiple targets. This behavior is called fan-out. It can be used to parallelize work across Lambda functions or send messages to multiple environments (such as test or development). An SNS topic can have up to 12,500,000 subscribers, providing highly scalable fan-out capabilities. The targets may include HTTP/S endpoints, SMS text messaging, SNS mobile push, email, SQS, and Lambda functions.

In AWS SAM templates, you can retrieve properties such as ARNs and names of queues and topics, using the following intrinsic functions:

Amazon SQSAmazon SNS
Channel typeQueueTopic
Get ARN!GetAtt MySqsQueue.Arn!Ref MySnsTopic
Get name!GetAtt MySqsQueue.QueueName!GetAtt MySnsTopic.TopicName

Integrating with EventBridge in AWS SAM

The third example shows the AWS SAM template defining a serverless application with two Lambda functions and an EventBridge rule:

EventBridge integration with AWS SAM

The default event bus already exists in every AWS account. You declare a rule that filters events in the event bus using the AWS::Events::Rule resource:

  EventRule: 
    Type: AWS::Events::Rule
    Properties: 
      Description: "EventRule"
      EventPattern: 
        source: 
          - "demo.event"
        detail: 
          state: 
            - "new"
      State: "ENABLED"
      Targets: 
        - Arn: !GetAtt EventConsumerFunction.Arn
          Id: "ConsumerTarget"

The rule describes an event pattern specifying matching JSON attributes. Events that match this pattern are routed to the list of targets. You provide the EventBridge service with permission to invoke the Lambda functions in the target list:

  PermissionForEventsToInvokeLambda: 
    Type: AWS::Lambda::Permission
    Properties: 
      FunctionName: 
        Ref: "EventConsumerFunction"
      Action: "lambda:InvokeFunction"
      Principal: "events.amazonaws.com"
      SourceArn: !GetAtt EventRule.Arn

The AWS SAM template uses an IAM policy statement to grant permission to the publishing function to put events on the event bus:

  EventPublisherFunction:
    Type: AWS::Serverless::Function
    Properties:
      CodeUri: code/
      Handler: publisher.handler
      Timeout: 3
      Runtime: nodejs12.x
      Policies:
        - Statement:
          - Effect: Allow
            Resource: '*'
            Action:
              - events:PutEvents      

The publishing function then uses the putEvents method of the AWS.EventBridge class, which returns after the events have been durably stored in EventBridge:

const AWS = require('aws-sdk')
AWS.config.update({region: 'us-east-1'})
const eventbridge = new AWS.EventBridge()

exports.handler = async (event) => {
  const params = {
    Entries: [ 
      {
        Detail: JSON.stringify({
          "message": "Hello from publisher",
          "state": "new"
        }),
        DetailType: 'Message',
        EventBusName: 'default',
        Source: 'demo.event',
        Time: new Date 
      }
    ]
  }
  const result = await eventbridge.putEvents(params).promise()
  console.log(result)
}

The payload for the consumer function is the message from EventBridge. This is an array of messages, containing subject and message attributes from the publishing function. You can see this in the CloudWatch log for the function:

CloudWatch log result

Comparing SNS with EventBridge

SNS and EventBridge have many similarities. Both can be used to decouple publishers and subscribers, filter messages or events, and provide fan-in or fan-out capabilities. However, there are differences in the list of targets and features for each service, and your choice of service depends on the needs of your use-case.

EventBridge offers two newer capabilities that are not available in SNS. The first is software as a service (SaaS) integration. This enables you to authorize supported SaaS providers to send events directly from their EventBridge event bus to partner event buses in your account. This replaces the need for polling or webhook configuration, and creates a highly scalable way to ingest SaaS events directly into your AWS account.

The second feature is the Schema Registry, which makes it easier to discover and manage OpenAPI schemas for events. EventBridge can infer schemas based on events routed through an event bus by using schema discovery. This can be used to generate code bindings directly to your IDE for type-safe languages like Python, Java, and TypeScript. This can help accelerate development by automating the generation of classes and code directly from events.

This table compares the major features of both services:

Amazon SNSAmazon EventBridge
Number of targets10 million (soft)5
Availability SLA99.9%99.99%
Limits100,000 topics. 12,500,000 subscriptions per topic.100 event buses. 300 rules per event bus.
Publish throughputVaries by Region. Soft limits.Varies by Region. Soft limits.
Input transformationNoYes – see details.
Message filteringYes – see details.Yes, including IP address matching – see details.
Message size maximum256 KB256 KB
BillingPer 64 KB
FormatRaw or JSONJSON
Receive events from AWS CloudTrailNoYes
TargetsHTTP(S), SMS, SNS Mobile Push, Email/Email-JSON, SQS, Lambda functions.15 targets including AWS LambdaAmazon SQSAmazon SNSAWS Step FunctionsAmazon Kinesis Data StreamsAmazon Kinesis Data Firehose.
SaaS integrationNoYes – see integrations.
Schema Registry integrationNoYes – see details.
Dead-letter queues supportedYesNo
FIFO ordering availableNoNo
Public visibilityCan create public topicsCannot create public buses
Pricing$0.50/million requests + variable delivery cost + data transfer out cost. SMS varies.$1.00/million events. Free for AWS events. No charge for delivery.
Billable request size1 request = 64 KB1 event = 64 KB
AWS Free Tier eligibleYesNo
Cross-RegionYou can subscribe your AWS Lambda functions to an Amazon SNS topic in any Region.Targets must be in the same Region. You can publish across Regions to another event bus.
Retry policy
  • For SQS/Lambda, exponential backoff over 23 days.
  • For SMTP, SMS and Mobile push, exponential backoff over 6 hours.
At-least-once event delivery to targets, including retry with exponential backoff for up to 24 hours.

Conclusion

Messaging is an important part of serverless applications and AWS services provide queues, publish/subscribe, and event routing capabilities. This post reviews the main features of SNS, SQS, and EventBridge and how they provide different capabilities for your workloads.

I show three example applications that publish and consume events from the three services. I walk through AWS SAM syntax for deploying these resources in your applications. Finally, I compare differences between the services.

To learn more building decoupled architectures, see this Learning Path series on EventBridge. For more serverless learning resources, visit https://serverlessland.com.

Uploading to Amazon S3 directly from a web or mobile application

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/uploading-to-amazon-s3-directly-from-a-web-or-mobile-application/

In web and mobile applications, it’s common to provide users with the ability to upload data. Your application may allow users to upload PDFs and documents, or media such as photos or videos. Every modern web server technology has mechanisms to allow this functionality. Typically, in the server-based environment, the process follows this flow:

Application server upload process

  1. The user uploads the file to the application server.
  2. The application server saves the upload to a temporary space for processing.
  3. The application transfers the file to a database, file server, or object store for persistent storage.

While the process is simple, it can have significant side-effects on the performance of the web-server in busier applications. Media uploads are typically large, so transferring these can represent a large share of network I/O and server CPU time. You must also manage the state of the transfer to ensure that the entire object is successfully uploaded, and manage retries and errors.

This is challenging for applications with spiky traffic patterns. For example, in a web application that specializes in sending holiday greetings, it may experience most traffic only around holidays. If thousands of users attempt to upload media around the same time, this requires you to scale out the application server and ensure that there is sufficient network bandwidth available.

By directly uploading these files to Amazon S3, you can avoid proxying these requests through your application server. This can significantly reduce network traffic and server CPU usage, and enable your application server to handle other requests during busy periods. S3 also is highly available and durable, making it an ideal persistent store for user uploads.

In this blog post, I walk through how to implement serverless uploads and show the benefits of this approach. This pattern is used in the Happy Path web application. You can download the code from this blog post in this GitHub repo.

Overview of serverless uploading to S3

When you upload directly to an S3 bucket, you must first request a signed URL from the Amazon S3 service. You can then upload directly using the signed URL. This is two-step process for your application front end:

Serverless uploading to S3

  1. Call an Amazon API Gateway endpoint, which invokes the getSignedURL Lambda function. This gets a signed URL from the S3 bucket.
  2. Directly upload the file from the application to the S3 bucket.

To deploy the S3 uploader example in your AWS account:

  1. Navigate to the S3 uploader repo and install the prerequisites listed in the README.md.
  2. In a terminal window, run:
    git clone https://github.com/aws-samples/amazon-s3-presigned-urls-aws-sam
    cd amazon-s3-presigned-urls-aws-sam
    sam deploy --guided
  3. At the prompts, enter s3uploader for Stack Name and select your preferred Region. Once the deployment is complete, note the APIendpoint output.

CloudFormation stack outputs

Testing the application

I show two ways to test this application. The first is with Postman, which allows you to directly call the API and upload a binary file with the signed URL. The second is with a basic frontend application that demonstrates how to integrate the API.

To test using Postman:

  1. First, copy the API endpoint from the output of the deployment.
  2. In the Postman interface, paste the API endpoint into the box labeled Enter request URL.
  3. Choose Send.Postman test
  4. After the request is complete, the Body section shows a JSON response. The uploadURL attribute contains the signed URL. Copy this attribute to the clipboard.
  5. Select the + icon next to the tabs to create a new request.
  6. Using the dropdown, change the method from GET to PUT. Paste the URL into the Enter request URL box.
  7. Choose the Body tab, then the binary radio button.Select the binary radio button in Postman
  8. Choose Select file and choose a JPG file to upload.
    Choose Send. You see a 200 OK response after the file is uploaded.200 response code in Postman
  9. Navigate to the S3 console, and open the S3 bucket created by the deployment. In the bucket, you see the JPG file uploaded via Postman.Uploaded object in S3 bucket

To test with the sample frontend application:

  1. Copy index.html from the example’s repo to an S3 bucket.
  2. Update the object’s permissions to make it publicly readable.
  3. In a browser, navigate to the public URL of index.html file.Frontend testing app at index.html
  4. Select Choose file and then select a JPG file to upload in the file picker. Choose Upload image. When the upload completes, a confirmation message is displayed.Upload in the test app
  5. Navigate to the S3 console, and open the S3 bucket created by the deployment. In the bucket, you see the second JPG file you uploaded from the browser.Second uploaded file in S3 bucket

Understanding the S3 uploading process

When uploading objects to S3 from a web application, you must configure S3 for Cross-Origin Resource Sharing (CORS). CORS rules are defined as an XML document on the bucket. Using AWS SAM, you can configure CORS as part of the resource definition in the AWS SAM template:

   S3UploadBucket:
    Type: AWS::S3::Bucket
    Properties:
      CorsConfiguration:
        CorsRules:
        - AllowedHeaders:
            - "*"
          AllowedMethods:
            - GET
            - PUT
            - HEAD
          AllowedOrigins:
            - "*"

The preceding policy allows all headers and origins – it’s recommended that you use a more restrictive policy for production workloads.

In the first step of the process, the API endpoint invokes the Lambda function to make the signed URL request. The Lambda function contains the following code:

const AWS = require('aws-sdk')
AWS.config.update({ region: process.env.AWS_REGION })
const s3 = new AWS.S3()
const URL_EXPIRATION_SECONDS = 300

// Main Lambda entry point
exports.handler = async (event) => {
  return await getUploadURL(event)
}

const getUploadURL = async function(event) {
  const randomID = parseInt(Math.random() * 10000000)
  const Key = `${randomID}.jpg`

  // Get signed URL from S3
  const s3Params = {
    Bucket: process.env.UploadBucket,
    Key,
    Expires: URL_EXPIRATION_SECONDS,
    ContentType: 'image/jpeg'
  }
  const uploadURL = await s3.getSignedUrlPromise('putObject', s3Params)
  return JSON.stringify({
    uploadURL: uploadURL,
    Key
  })
}

This function determines the name, or key, of the uploaded object, using a random number. The s3Params object defines the accepted content type and also specifies the expiration of the key. In this case, the key is valid for 300 seconds. The signed URL is returned as part of a JSON object including the key for the calling application.

The signed URL contains a security token with permissions to upload this single object to this bucket. To successfully generate this token, the code calling getSignedUrlPromise must have s3:putObject permissions for the bucket. This Lambda function is granted the S3WritePolicy policy to the bucket by the AWS SAM template.

The uploaded object must match the same file name and content type as defined in the parameters. An object matching the parameters may be uploaded multiple times, providing that the upload process starts before the token expires. The default expiration is 15 minutes but you may want to specify shorter expirations depending upon your use case.

Once the frontend application receives the API endpoint response, it has the signed URL. The frontend application then uses the PUT method to upload binary data directly to the signed URL:

let blobData = new Blob([new Uint8Array(array)], {type: 'image/jpeg'})
const result = await fetch(signedURL, {
  method: 'PUT',
  body: blobData
})

At this point, the caller application is interacting directly with the S3 service and not with your API endpoint or Lambda function. S3 returns a 200 HTML status code once the upload is complete.

For applications expecting a large number of user uploads, this provides a simple way to offload a large amount of network traffic to S3, away from your backend infrastructure.

Adding authentication to the upload process

The current API endpoint is open, available to any service on the internet. This means that anyone can upload a JPG file once they receive the signed URL. In most production systems, developers want to use authentication to control who has access to the API, and who can upload files to your S3 buckets.

You can restrict access to this API by using an authorizer. This sample uses HTTP APIs, which support JWT authorizers. This allows you to control access to the API via an identity provider, which could be a service such as Amazon Cognito or Auth0.

The Happy Path application only allows signed-in users to upload files, using Auth0 as the identity provider. The sample repo contains a second AWS SAM template, templateWithAuth.yaml, which shows how you can add an authorizer to the API:

  MyApi:
    Type: AWS::Serverless::HttpApi
    Properties:
      Auth:
        Authorizers:
          MyAuthorizer:
            JwtConfiguration:
              issuer: !Ref Auth0issuer
              audience:
                - https://auth0-jwt-authorizer
            IdentitySource: "$request.header.Authorization"
        DefaultAuthorizer: MyAuthorizer

Both the issuer and audience attributes are provided by the Auth0 configuration. By specifying this authorizer as the default authorizer, it is used automatically for all routes using this API. Read part 1 of the Ask Around Me series to learn more about configuring Auth0 and authorizers with HTTP APIs.

After authentication is added, the calling web application provides a JWT token in the headers of the request:

const response = await axios.get(API_ENDPOINT_URL, {
  headers: {
    Authorization: `Bearer ${token}`
        }
})

API Gateway evaluates this token before invoking the getUploadURL Lambda function. This ensures that only authenticated users can upload objects to the S3 bucket.

Modifying ACLs and creating publicly readable objects

In the current implementation, the uploaded object is not publicly accessible. To make an uploaded object publicly readable, you must set its access control list (ACL). There are preconfigured ACLs available in S3, including a public-read option, which makes an object readable by anyone on the internet. Set the appropriate ACL in the params object before calling s3.getSignedUrl:

const s3Params = {
  Bucket: process.env.UploadBucket,
  Key,
  Expires: URL_EXPIRATION_SECONDS,
  ContentType: 'image/jpeg',
  ACL: 'public-read'
}

Since the Lambda function must have the appropriate bucket permissions to sign the request, you must also ensure that the function has PutObjectAcl permission. In AWS SAM, you can add the permission to the Lambda function with this policy:

        - Statement:
          - Effect: Allow
            Resource: !Sub 'arn:aws:s3:::${S3UploadBucket}/'
            Action:
              - s3:putObjectAcl

Conclusion

Many web and mobile applications allow users to upload data, including large media files like images and videos. In a traditional server-based application, this can create heavy load on the application server, and also use a considerable amount of network bandwidth.

By enabling users to upload files to Amazon S3, this serverless pattern moves the network load away from your service. This can make your application much more scalable, and capable of handling spiky traffic.

This blog post walks through a sample application repo and explains the process for retrieving a signed URL from S3. It explains how to the test the URLs in both Postman and in a web application. Finally, I explain how to add authentication and make uploaded objects publicly accessible.

To learn more, see this video walkthrough that shows how to upload directly to S3 from a frontend web application. For more serverless learning resources, visit https://serverlessland.com.

Troubleshooting Amazon API Gateway with enhanced observability variables

Post Syndicated from Eric Johnson original https://aws.amazon.com/blogs/compute/troubleshooting-amazon-api-gateway-with-enhanced-observability-variables/

Amazon API Gateway is often used for managing access to serverless applications. Additionally, it can help developers reduce code and increase security with features like AWS WAF integration and authorizers at the API level.

Because more is handled by API Gateway, developers tell us they would like to see more data points on the individual parts of the request. This data helps developers understand each phase of the API request and how it affects the request as a whole. In response to this request, the API Gateway team has added new enhanced observability variables to the API Gateway access logs. With these new variables, developers can troubleshoot on a more granular level to quickly isolate and resolve request errors and latency issues.

The phases of an API request

API Gateway divides requests into phases, reflected by the variables that have been added. Depending upon the features configured for the application, an API request goes through multiple phases. The phases appear in a specific order as follows:

Phases of an API request

Phases of an API request

  • WAF: the WAF phase only appears when an AWS WAF web access control list (ACL) is configured for enhanced security. During this phase, WAF rules are evaluated and a decision is made on whether to continue or cancel the request.
  • Authenticate: the authenticate phase is only present when AWS Identity and Access Management (IAM) authorizers are used. During this phase, the credentials of the signed request are verified. Access is granted or denied based on the client’s right to assume the access role.
  • Authorizer: the authorizer phase is only present when a Lambda, JWT, or Amazon Cognito authorizer is used. During this phase, the authorizer logic is processed to verify the user’s right to access the resource.
  • Authorize: the authorize phase is only present when a Lambda or IAM authorizer is used. During this phase, the results from the authenticate and authorizer phase are evaluated and applied.
  • Integration: during this phase, the backend integration processes the request.

Each phrase can add latency to the request, return a status, or raise an error. To capture this data, API Gateway now provides enhanced observability variables based on each phase. The variables are named according to the phase they occur in and follow the naming structure, $context.phase.property. Therefore, you can get data about WAF latency by using $context.waf.latency.

Some existing variables have also been given aliases to match this naming schema. For example, $context.integrationErrorMessage has a new alias of $context.integration.error. The resulting list of variables is as follows:

Phases and variables for API Gateway requests

Phases and variables for API Gateway requests

API Gateway provides status, latency, and error data for each phase. In the authorizer and integration phases, there are additional variables you can use in logs. The $context.phase.requestId provides the request ID from that service and the $context.phase.integrationStatus provide the status code.

For example, when using an AWS Lambda function as the integration, API Gateway receives two status codes. The first, $context.integration.integrationStatus, is the status of the Lambda service itself. This is usually 200, unless there is a service or permissions error. The second, $context.integration.status, is the status of the Lambda function and reports on the success or failure of the code.

A full list of access log variables is in the documentation for REST APIs, WebSocket APIs, and HTTP APIs.

A troubleshooting example

In this example, an application is built using an API Gateway REST API with a Lambda function for the backend integration. The application uses an IAM authorizer to require AWS account credentials for application access. The application also uses an AWS WAF ACL to rate limit requests to 100 requests per IP, per five minutes. The demo application and deployment instructions can be found in the Sessions With SAM repository.

Because the application involves an AWS WAF and IAM authorizer for security, the request passes through four phases: waf, authenticate, authorize, and integration. The access log format is configured to capture all the data regarding these phases:

{
  "requestId":"$context.requestId",
  "waf-error":"$context.waf.error",
  "waf-status":"$context.waf.status",
  "waf-latency":"$context.waf.latency",
  "waf-response":"$context.wafResponseCode",
  "authenticate-error":"$context.authenticate.error",
  "authenticate-status":"$context.authenticate.status",
  "authenticate-latency":"$context.authenticate.latency",
  "authorize-error":"$context.authorize.error",
  "authorize-status":"$context.authorize.status",
  "authorize-latency":"$context.authorize.latency",
  "integration-error":"$context.integration.error",
  "integration-status":"$context.integration.status",
  "integration-latency":"$context.integration.latency",
  "integration-requestId":"$context.integration.requestId",
  "integration-integrationStatus":"$context.integration.integrationStatus",
  "response-latency":"$context.responseLatency",
  "status":"$context.status"
}

Once the application is deployed, use Postman to test the API with a sigV4 request.

Configuring Postman authorization

Configuring Postman authorization

To show troubleshooting with the new enhanced observability variables, the first request sent through contains invalid credentials. The user receives a 403 Forbidden error.

Client response view with invalid tokens

Client response view with invalid tokens

The access log for this request is:

{
    "requestId": "70aa9606-26be-4396-991c-405a3671fd9a",
    "waf-error": "-",
    "waf-status": "200",
    "waf-latency": "8",
    "waf-response": "WAF_ALLOW",
    "authenticate-error": "-",
    "authenticate-status": "403",
    "authenticate-latency": "17",
    "authorize-error": "-",
    "authorize-status": "-",
    "authorize-latency": "-",
    "integration-error": "-",
    "integration-status": "-",
    "integration-latency": "-",
    "integration-requestId": "-",
    "integration-integrationStatus": "-",
    "response-latency": "48",
    "status": "403"
}

The request passed through the waf phase first. Since this is the first request and the rate limit has not been exceeded, the request is passed on to the next phase, authenticate. During the authenticate phase, the user’s credentials are verified. In this case, the credentials are invalid and the request is rejected with a 403 response before invoking the downstream phases.

To correct this, the next request uses valid credentials, but those credentials do not have access to invoke the API. Again, the user receives a 403 Forbidden error.

Client response view with unauthorized tokens

Client response view with unauthorized tokens

The access log for this request is:

{
  "requestId": "c16d9edc-037d-4f42-adf3-eaadf358db2d",
  "waf-error": "-",
  "waf-status": "200",
  "waf-latency": "7",
  "waf-response": "WAF_ALLOW",
  "authenticate-error": "-",
  "authenticate-status": "200",
  "authenticate-latency": "8",
  "authorize-error": "The client is not authorized to perform this operation.",
  "authorize-status": "403",
  "authorize-latency": "0",
  "integration-error": "-",
  "integration-status": "-",
  "integration-latency": "-",
  "integration-requestId": "-",
  "integration-integrationStatus": "-",
  "response-latency": "52",
  "status": "403"
}

This time, the access logs show that the authenticate phase returns a 200. This indicates that the user credentials are valid for this account. However, the authorize phase returns a 403 and states, “The client is not authorized to perform this operation”. Again, the request is rejected with a 403 response before invoking downstream phases.

The last request for the API contains valid credentials for a user that has rights to invoke this API. This time the user receives a 200 OK response and the requested data.

Client response view with valid request

Client response view with valid request

The log for this request is:

{
  "requestId": "ac726ce5-91dd-4f1d-8f34-fcc4ae0bd622",
  "waf-error": "-",
  "waf-status": "200",
  "waf-latency": "7",
  "waf-response": "WAF_ALLOW",
  "authenticate-error": "-",
  "authenticate-status": "200",
  "authenticate-latency": "1",
  "authorize-error": "-",
  "authorize-status": "200",
  "authorize-latency": "0",
  "integration-error": "-",
  "integration-status": "200",
  "integration-latency": "16",
  "integration-requestId": "8dc58335-fa13-4d48-8f99-2b1c97f41a3e",
  "integration-integrationStatus": "200",
  "response-latency": "48",
  "status": "200"
}

This log contains a 200 status code from each of the phases and returns a 200 response to the user. Additionally, each of the phases reports latency. This request had a total of 48 ms of latency. The latency breaks down according to the following:

Request latency breakdown

Request latency breakdown

Developers can use this information to identify the cause of latency within the API request and adjust accordingly. While some phases like authenticate or authorize are immutable, optimizing the integration phase of this request could remove a large chunk of the latency involved.

Conclusion

This post covers the enhanced observability variables, the phases they occur in, and the order of those phases. With these new variables, developers can quickly isolate the problem and focus on resolving issues.

When configured with the proper access logging variables, API Gateway access logs can provide a detailed story of API performance. They can help developers to continually optimize that performance. To learn how to configure logging in API Gateway with AWS SAM, see the demonstration app for this blog.

#ServerlessForEveryone

Building a serverless document scanner using Amazon Textract and AWS Amplify

Post Syndicated from Moheeb Zara original https://aws.amazon.com/blogs/compute/building-a-serverless-document-scanner-using-amazon-textract-and-aws-amplify/

This guide demonstrates creating and deploying a production ready document scanning application. It allows users to manage projects, upload images, and generate a PDF from detected text. The sample can be used as a template for building expense tracking applications, handling forms and legal documents, or for digitizing books and notes.

The frontend application is written in Vue.js and uses the Amplify Framework. The backend is built using AWS serverless technologies and consists of an Amazon API Gateway REST API that invokes AWS Lambda functions. Amazon Textract is used to analyze text from uploaded images to an Amazon S3 bucket. Detected text is stored in Amazon DynamoDB.

An architectural diagram of the application.

An architectural diagram of the application.

Prerequisites

You need the following to complete the project:

Deploy the application

The solution consists of two parts, the frontend application and the serverless backend. The Amplify CLI deploys all the Amazon Cognito authentication, and hosting resources for the frontend. The backend requires the Amazon Cognito user pool identifier to configure an authorizer on the API. This enables an authorization workflow, as shown in the following image.

A diagram showing how an Amazon Cognito authorization workflow works

A diagram showing how an Amazon Cognito authorization workflow works

First, configure the frontend. Complete the following steps using a terminal running on a computer or by using the AWS Cloud9 IDE. If using AWS Cloud9, create an instance using the default options.

From the terminal:

  1. Install the Amplify CLI by running this command.
    npm install -g @aws-amplify/cli
  2. Configure the Amplify CLI using this command. Follow the guided process to completion.
    amplify configure
  3. Clone the project from GitHub.
    git clone https://github.com/aws-samples/aws-serverless-document-scanner.git
  4. Navigate to the amplify-frontend directory and initialize the project using the Amplify CLI command. Follow the guided process to completion.
    cd aws-serverless-document-scanner/amplify-frontend
    
    amplify init
  5. Deploy all the frontend resources to the AWS Cloud using the Amplify CLI command.
    amplify push
  6. After the resources have finishing deploying, make note of the StackName and UserPoolId properties in the amplify-frontend/amplify/backend/amplify-meta.json file. These are required when deploying the serverless backend.

Next, deploy the serverless backend. While it can be deployed using the AWS SAM CLI, you can also deploy from the AWS Management Console:

  1. Navigate to the document-scanner application in the AWS Serverless Application Repository.
  2. In Application settings, name the application and provide the StackName and UserPoolId from the frontend application for the UserPoolID and AmplifyStackName parameters. Provide a unique name for the BucketName parameter.
  3. Choose Deploy.
  4. Once complete, copy the API endpoint so that it can be configured on the frontend application in the next section.

Configure and run the frontend application

  1. Create a file, amplify-frontend/src/api-config.js, in the frontend application with the following content. Include the API endpoint and the unique BucketName from the previous step. The s3_region value must be the same as the Region where your serverless backend is deployed.
    const apiConfig = {
    	"endpoint": "<API ENDPOINT>",
    	"s3_bucket_name": "<BucketName>",
    	"s3_region": "<Bucket Region>"
    };
    
    export default apiConfig;
  2. In a terminal, navigate to the root directory of the frontend application and run it locally for testing.
    cd aws-serverless-document-scanner/amplify-frontend
    
    npm install
    
    npm run serve

    You should see an output like this:

  3. To publish the frontend application to cloud hosting, run the following command.
    amplify publish

    Once complete, a URL to the hosted application is provided.

Using the frontend application

Once the application is running locally or hosted in the cloud, navigating to it presents a user login interface with an option to register. The registration flow requires a code sent to the provided email for verification. Once verified you’re presented with the main application interface.

Once you create a project and choose it from the list, you are presented with an interface for uploading images by page number.

On mobile, it uses the device camera to capture images. On desktop, images are provided by the file system. You can replace an image and the page selector also lets you go back and change an image. The corresponding analyzed text is updated in DynamoDB as well.

Each time you upload an image, the page is incremented. Choosing “Generate PDF” calls the endpoint for the GeneratePDF Lambda function and returns a PDF in base64 format. The download begins automatically.

You can also open the PDF in another window, if viewing a preview in a desktop browser.

Understanding the serverless backend

An architecture diagram of the serverless backend.

An architecture diagram of the serverless backend.

In the GitHub project, the folder serverless-backend/ contains the AWS SAM template file and the Lambda functions. It creates an API Gateway endpoint, six Lambda functions, an S3 bucket, and two DynamoDB tables. The template also defines an Amazon Cognito authorizer for the API using the UserPoolID passed in as a parameter:

Parameters:
  UserPoolID:
    Type: String
    Description: (Required) The user pool ID created by the Amplify frontend.

  AmplifyStackName:
    Type: String
    Description: (Required) The stack name of the Amplify backend deployment. 

  BucketName:
    Type: String
    Default: "ds-userfilebucket"
    Description: (Required) A unique name for the user file bucket. Must be all lowercase.  


Globals:
  Api:
    Cors:
      AllowMethods: "'*'"
      AllowHeaders: "'*'"
      AllowOrigin: "'*'"

Resources:

  DocumentScannerAPI:
    Type: AWS::Serverless::Api
    Properties:
      StageName: Prod
      Auth:
        DefaultAuthorizer: CognitoAuthorizer
        Authorizers:
          CognitoAuthorizer:
            UserPoolArn: !Sub 'arn:aws:cognito-idp:${AWS::Region}:${AWS::AccountId}:userpool/${UserPoolID}'
            Identity:
              Header: Authorization
        AddDefaultAuthorizerToCorsPreflight: False

This only allows authenticated users of the frontend application to make requests with a JWT token containing their user name and email. The backend uses that information to fetch and store data in DynamoDB that corresponds to the user making the request.

Two DynamoDB tables are created. A Project table, which tracks all the project names by user, and a Pages table, which tracks pages by project and user. The DynamoDB tables are created by the AWS SAM template with the partition key and range key defined for each table. These are used by the Lambda functions to query and sort items. See the documentation to learn more about DynamoDB table key schema.

ProjectsTable:
    Type: AWS::DynamoDB::Table
    Properties: 
      AttributeDefinitions: 
        - 
          AttributeName: "username"
          AttributeType: "S"
        - 
          AttributeName: "project_name"
          AttributeType: "S"
      KeySchema: 
        - AttributeName: username
          KeyType: HASH
        - AttributeName: project_name
          KeyType: RANGE
      ProvisionedThroughput: 
        ReadCapacityUnits: "5"
        WriteCapacityUnits: "5"

  PagesTable:
    Type: AWS::DynamoDB::Table
    Properties: 
      AttributeDefinitions: 
        - 
          AttributeName: "project"
          AttributeType: "S"
        - 
          AttributeName: "page"
          AttributeType: "N"
      KeySchema: 
        - AttributeName: project
          KeyType: HASH
        - AttributeName: page
          KeyType: RANGE
      ProvisionedThroughput: 
        ReadCapacityUnits: "5"
        WriteCapacityUnits: "5"

When an API Gateway endpoint is called, it passes the user credentials in the request context to a Lambda function. This is used by the CreateProject Lambda function, which also receives a project name in the request body, to create an item in the Project Table and associate it with a user.

The endpoint for the FetchProjects Lambda function is called to retrieve the list of projects associated with a user. The DeleteProject Lambda function removes a specific project from the Project table and any associated pages in the Pages table. It also deletes the folder in the S3 bucket containing all images for the project.

When a user enters a Project, the API endpoint calls the FetchPageCount Lambda function. This returns the number of pages for a project to update the current page number in the upload selector. The project is retrieved from the path parameters, as defined in the AWS SAM template:

FetchPageCount:
    Type: AWS::Serverless::Function
    Properties:
      Handler: app.handler
      Runtime: python3.8
      CodeUri: lambda_functions/fetchPageCount/
      Policies:
        - DynamoDBCrudPolicy:
            TableName: !Ref PagesTable
      Environment:
        Variables:
          PAGES_TABLE_NAME: !Ref PagesTable
      Events:
        GetResource:
          Type: Api
          Properties:
            RestApiId: !Ref DocumentScannerAPI
            Path: /pages/count/{project+}
            Method: get  

The template creates an S3 bucket and two AWS IAM managed policies. The policies are applied to the AuthRole and UnauthRole created by Amplify. This allows users to upload images directly to the S3 bucket. To understand how Amplify works with Storage, see the documentation.

The template also sets an S3 event notification on the bucket for all object create events with a “.png” suffix. Whenever the frontend uploads an image to S3, the object create event invokes the ProcessDocument Lambda function.

The function parses the object key to get the project name, user, and page number. Amazon Textract then analyzes the text of the image. The object returned by Amazon Textract contains the detected text and detailed information, such as the positioning of text in the image. Only the raw lines of text are stored in the Pages table.

import os
import json, decimal
import boto3
import urllib.parse
from boto3.dynamodb.conditions import Key, Attr

client = boto3.resource('dynamodb')
textract = boto3.client('textract')

tableName = os.environ.get('PAGES_TABLE_NAME')

def handler(event, context):

  table = client.Table(tableName)

  print(table.table_status)
 
  key = urllib.parse.unquote(event['Records'][0]['s3']['object']['key'])
  bucket = event['Records'][0]['s3']['bucket']['name']
  project = key.split('/')[3]
  page = key.split('/')[4].split('.')[0]
  user = key.split('/')[2]
  
  response = textract.detect_document_text(
    Document={
        'S3Object': {
            'Bucket': bucket,
            'Name': key
        }
    })
    
  fullText = ""
  
  for item in response["Blocks"]:
    if item["BlockType"] == "LINE":
        fullText = fullText + item["Text"] + '\n'
  
  print(fullText)

  table.put_item(Item= {
    'project': user + '/' + project,
    'page': int(page), 
    'text': fullText
    })

  # print(response)
  return

The GeneratePDF Lambda function retrieves the detected text for each page in a project from the Pages table. It combines the text into a PDF and returns it as a base64-encoded string for download. This function can be modified if your document structure differs.

Understanding the frontend

In the GitHub repo, the folder amplify-frontend/src/ contains all the code for the frontend application. In main.js, the Amplify VueJS modules are configured to use the resources defined in aws-exports.js. It also configures the endpoint and S3 bucket of the serverless backend, defined in api-config.js.

In components/DocumentScanner.vue, the API module is imported and the API is defined.

API calls are defined as Vue methods that can be called by various other components and elements of the application.

In components/Project.vue, the frontend uses the Storage module for Amplify to upload images. For more information on how to use S3 in an Amplify project see the documentation.

Conclusion

This blog post shows how to create a multiuser application that can analyze text from images and generate PDF documents. This guide demonstrates how to do so in a secure and scalable way using a serverless approach. The example also shows an event driven pattern for handling high volume image processing using S3, Lambda, and Amazon Textract.

The Amplify Framework simplifies the process of implementing authentication, storage, and backend integration. Explore the full solution on GitHub to modify it for your next project or startup idea.

To learn more about AWS serverless and keep up to date on the latest features, subscribe to the YouTube channel.

#ServerlessForEveryone

Jump-starting your serverless development environment

Post Syndicated from Benjamin Smith original https://aws.amazon.com/blogs/compute/jump-starting-your-serverless-development-environment/

Developers building serverless applications often wonder how they can jump-start their local development environment. This blog post provides a broad guide for those developers wanting to set up a development environment for building serverless applications.

serverless development environment

AWS and open source tools for a serverless development environment .

To use AWS Lambda and other AWS services, create and activate an AWS account.

Command line tooling

Command line tools are scripts, programs, and libraries that enable rapid application development and interactions from within a command line shell.

The AWS CLI

The AWS Command Line Interface (AWS CLI) is an open source tool that enables developers to interact with AWS services using a command line shell. In many cases, the AWS CLI increases developer velocity for building cloud resources and enables automating repetitive tasks. It is an important piece of any serverless developer’s toolkit. Follow these instructions to install and configure the AWS CLI on your operating system.

AWS enables you to build infrastructure with code. This provides a single source of truth for AWS resources. It enables development teams to use version control and create deployment pipelines for their cloud infrastructure. AWS CloudFormation provides a common language to model and provision these application resources in your cloud environment.

AWS Serverless Application Model (AWS SAM CLI)

AWS Serverless Application Model (AWS SAM) is an extension for CloudFormation that further simplifies the process of building serverless application resources.

It provides shorthand syntax to define Lambda functions, APIs, databases, and event source mappings. During deployment, the AWS SAM syntax is transformed into AWS CloudFormation syntax, enabling you to build serverless applications faster.

The AWS SAM CLI is an open source command line tool used to locally build, test, debug, and deploy serverless applications defined with AWS SAM templates.

Install AWS SAM CLI on your operating system.

Test the installation by initializing a new quick start project with the following command:

$ sam init
  1. Choose 1 for the “Quick Start Templates
  2. Choose 1 for the “Node.js runtime
  3. Use the default name.

The generated /sam-app/template.yaml contains all the resource definitions for your serverless application. This includes a Lambda function with a REST API endpoint, along with the necessary IAM permissions.

Resources:
  HelloWorldFunction:
    Type: AWS::Serverless::Function # More info about Function Resource: https://github.com/awslabs/serverless-application-model/blob/master/versions/2016-10-31.md#awsserverlessfunction
    Properties:
      CodeUri: hello-world/
      Handler: app.lambdaHandler
      Runtime: nodejs12.x
      Events:
        HelloWorld:
          Type: Api # More info about API Event Source: https://github.com/awslabs/serverless-application-model/blob/master/versions/2016-10-31.md#api
          Properties:
            Path: /hello
            Method: get

Deploy this application using the AWS SAM CLI guided deploy:

$ sam deploy -g

Local testing with AWS SAM CLI

The AWS SAM CLI requires Docker containers to simulate the AWS Lambda runtime environment on your local development environment. To test locally, install Docker Engine and run the Lambda function with following command:

$ sam local invoke "HelloWorldFunction" -e events/event.json

The first time this function is invoked, Docker downloads the lambci/lambda:nodejs12.x container image. It then invokes the Lambda function with a pre-defined event JSON file.

Helper tools

There are a number of open source tools and packages available to help you monitor, author, and optimize your Lambda-based applications. Some of the most popular tools are shown in the following list.

Template validation tooling

CloudFormation Linter is a validation tool that helps with your CloudFormation development cycle. It analyses CloudFormation YAML and JSON templates to resolve and validate intrinsic functions and resource properties. By analyzing your templates before deploying them, you can save valuable development time and build automated validation into your deployment release cycle.

Follow these instructions to install the tool.

Once, installed, run the cfn-lint command with the path to your AWS SAM template provided as the first argument:

cfn-lint template.yaml
AWS SAM template validation with cfn-lint

AWS SAM template validation with cfn-lint

The following example shows that the template is not valid because the !GettAtt function does not evaluate correctly.

IDE tooling

Use AWS IDE plugins to author and invoke Lambda functions from within your existing integrated development environment (IDE). AWS IDE toolkits are available for PyCharm, IntelliJ. Visual Studio.

The AWS Toolkit for Visual Studio Code provides an integrated experience for developing serverless applications. It enables you to invoke Lambda functions, specify function configurations, locally debug, and deploy—all conveniently from within the editor. The toolkit supports Node.js, Python, and .NET.

The AWS Toolkit for Visual Studio Code

From Visual Studio Code, choose the Extensions icon on the Activity Bar. In the Search Extensions in Marketplace box, enter AWS Toolkit and then choose AWS Toolkit for Visual Studio Code as shown in the following example. This opens a new tab in the editor showing the toolkit’s installation page. Choose the Install button in the header to add the extension.

AWS Toolkit extension for Visual Studio Code

AWS Toolkit extension for Visual Studio Code

AWS Cloud9

Another option to build a development environment without having to install anything locally is to use AWS Cloud9. AWS Cloud9 is a cloud-based integrated development environment (IDE) for writing, running, and debugging code from within the browser.

It provides a seamless experience for developing serverless applications. It has a preconfigured development environment that includes AWS CLI, AWS SAM CLI, SDKs, code libraries, and many useful plugins. AWS Cloud9 also provides an environment for locally testing and debugging AWS Lambda functions. This eliminates the need to upload your code to the Lambda console. It allows developers to iterate on code directly, saving time, and improving code quality.

Follow this guide to set up AWS Cloud9 in your AWS environment.

Advanced tooling

Efficient configuration of Lambda functions is critical when expecting optimal cost and performance of your serverless applications. Lambda allows you to control the memory (RAM) allocation for each function.

Lambda charges based on the number of function requests and the duration, the time it takes for your code to run. The price for duration depends on the amount of RAM you allocate to your function. A smaller RAM allocation may reduce the performance of your application if your function is running compute-heavy workloads. If performance needs outweigh cost, you can increase the memory allocation.

Cost and performance optimization tooling

AWS Lambda power tuner is an open source tool that uses an AWS Step Functions state machine to suggest cost and performance optimizations for your Lambda functions. It invokes a given function with multiple memory configurations. It analyzes the execution log results to determine and suggest power configurations that minimize cost and maximize performance.

To deploy the tool:

  1. Clone the repository as follows:
    $ git clone https://github.com/alexcasalboni/aws-lambda-power-tuning.git
  2. Create an Amazon S3 bucket and enter the deployment configurations in /scripts/deploy.sh:
    # config
    BUCKET_NAME=your-sam-templates-bucket
    STACK_NAME=lambda-power-tuning
    PowerValues='128,512,1024,1536,3008'
  3. Run the deploy.sh script from your terminal, this uses the AWS SAM CLI to deploy the application:
    $ bash scripts/deploy.sh
  4. Run the power tuning tool from the terminal using the AWS CLI:
    aws stepfunctions start-execution \
    --state-machine-arn arn:aws:states:us-east-1:0123456789:stateMachine:powerTuningStateMachine-Vywm3ozPB6Am \
    --input "{\"lambdaARN\": \"arn:aws:lambda:us-east-1:1234567890:function:testytest\", \"powerValues\":[128,256,512,1024,2048],\"num\":50,\"payload\":{},\"parallelInvocation\":true,\"strategy\":\"cost\"}" \
    --output json
  5. The Step Functions execution output produces a link to a visual summary of the suggested results:

    AWS Lambda power tuning results

    AWS Lambda power tuning results

Monitoring and debugging tooling

Sls-dev-tools is an open source serverless tool that delivers serverless metrics directly to the terminal. It provides developers with feedback on their serverless application’s metrics and key bindings that deploy, open, and manipulate stack resources. Bringing this data directly to your terminal or IDE, reduces context switching between the developer environment and the web interfaces. This can increase application development speed and improve user experience.

Follow these instructions to install the tool onto your development environment.

To open the tool, run the following command:

$ Sls-dev-tools

Follow the in-terminal interface to choose which stack to monitor or edit.

The following example shows how the tool can be used to invoke a Lambda function with a custom payload from within the IDE.

Invoke an AWS Lambda function with a custom payload using sls-dev-tools

Invoke an AWS Lambda function with a custom payload using sls-dev-tools

Serverless database tooling

NoSQL Workbench for Amazon DynamoDB is a GUI application for modern database development and operations. It provides a visual IDE tool for data modeling and visualization with query development features to help build serverless applications with Amazon DynamoDB tables. Define data models using one or more tables and visualize the data model to see how it works in different scenarios. Run or simulate operations and generate the code for Python, JavaScript (Node.js), or Java.

Choose the correct operating system link to download and install NoSQL Workbench on your development machine.

The following example illustrates a connection to a DynamoDB table. A data scan is built using the GUI, with Node.js code generated for inclusion in a Lambda function:

Connecting to an Amazon DynamoBD table with NoSQL Workbench for AmazonDynamoDB

Connecting to an Amazon DynamoDB table with NoSQL Workbench for Amazon DynamoDB

Generating query code with NoSQL Workbench for Amazon DynamoDB

Generating query code with NoSQL Workbench for Amazon DynamoDB

Conclusion

Building serverless applications allows developers to focus on business logic instead of managing and operating infrastructure. This is achieved by using managed services. Developers often struggle with knowing which tools, libraries, and frameworks are available to help with this new approach to building applications. This post shows tools that builders can use to create a serverless developer environment to help accelerate software development.

This list represents AWS and open source tools but does not include our APN Partners. For partner offers, check here.

Read more to start building serverless applications.

Using serverless backends to iterate quickly on web apps – part 3

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/using-serverless-backends-to-iterate-quickly-on-web-apps-part-3/

This series is about building flexible backends for web applications. The example is Happy Path, a web app that allows park visitors to upload and share maps and photos, to help replace printed materials.

In part 1, I show how the application works and walk through the backend architecture. In part 2, you deploy a basic image-processing workflow. To do this, you use an AWS Serverless Application Model (AWS SAM) template to create an AWS Step Functions state machine.

In this post, I show how to deploy progressively more complex workflow functionality while using minimal code. This solution in this web app is designed for 100,000 monthly active users. Using this approach, you can introduce more sophisticated workflows without affecting the existing backend application.

The code and instructions for this application are available in the GitHub repo.

Introducing image moderation

In the first version, users could upload any images to parks on the map. One of the most important feature requests is to enable moderation, to prevent inappropriate images from appearing on the app. To handle a large number of uploaded images, using human moderation would be slow and labor-intensive.

In this section, you use Amazon ML services to automate analyzing the images for unsafe content. Amazon Rekognition provides an API to detect if an image contains moderation labels. These labels are categorized into different types of unsafe content that would not be appropriate for this app.

Version 2 of the workflow uses this API to automate the process of checking images. To install version 2:

  1. From a terminal window, delete the v1 workflow stack:
    aws cloudformation delete-stack --stack-name happy-path-workflow-v1
  2. Change directory to the version 2 AWS SAM template in the repo:
    cd .\workflows\templates\v2
  3. Build and deploy the solution:
    sam build
    sam deploy --guided
  4. The deploy process prompts you for several parameters. Enter happy-path-workflow-v2 as the Stack Name. The other values are the outputs from the backend deployment process, detailed in the repo’s README. Enter these to complete the deployment.

From VS Code, open the v2 state machine in the repo from workflows/statemachines/v2.asl.json. Choose the Render graph option in the CodeLens to see the workflow visualization.

Serverless workflow visualization

This new workflow introduces a Moderator step. This invokes a Moderator Lambda function that uses the Amazon Rekognition API. If this API identifies any unsafe content labels, it returns these as part of the function output.

The next step in the workflow is a Moderation result choice state. This evaluates the output of the previous function – if the image passes moderation, the process continues to the Resizer function. If it fails, execution moves to the RecordFailState step.

Step Functions integrates directly with some AWS services so that you can call and pass parameters into the APIs of those services. The RecordFailState uses an Amazon DynamoDB service integration to write the workflow failure to the application table, using the arn:aws:states:::dynamodb:updateItem resource.

Testing the workflow

To test moderation, I use an unsafe image with suggestive content. This is an image that is not considered appropriate for this application. To test the deployed v2 workflow:

  1. Open the frontend application at https://localhost:8080 in your browser.
  2. Select a park location, choose Show Details, and then choose Upload images.
  3. Select an unsafe image to upload.
  4. Navigate to the Step Functions console. This shows the v2StateMachine with one successful execution:State machine result
  5. Select the state machine, and choose the execution to display more information. Scroll down to the Visual workflow panel.Visual workflow panel

This shows that the moderation failed and the path continued to log the failed state in the database. If you open the Output resource, this displays more details about why the image is considered unsafe.

Checking the image size and file type

The upload component in the frontend application limits file selection to JPG images but there is no check to reject images that are too small. It’s prudent to check and enforce image types and sizes on the backend API in addition to the frontend. This is because it’s possible to upload images via the API without using the frontend.

The next version of the workflow enforces image sizes and file types. To install version 3:

  1. From a terminal window, delete the v2 workflow stack:
    aws cloudformation delete-stack --stack-name happy-path-workflow-v2
  2. Change directory to the version 3 AWS SAM template in the repo:
    cd .\workflows\templates\v3
  3. Build and deploy the solution:
    sam build
    sam deploy --guided
  4. The deploy process prompts you for several parameters. Enter happy-path-workflow-v3 as the Stack Name. The other values are the outputs from the backend deployment process, detailed in the repo’s README. Enter these to complete the deployment.

From VS Code, open the v3 state machine in the repo from workflows/statemachines/v3.asl.json. Choose the Render graph option in the CodeLens to see the workflow visualization.

v3 state machine

This workflow changes the starting point of the execution, introducing a Check Dimensions step. This invokes a Lambda function that checks the size and types of the Amazon S3 object using the image-size npm package. This function uses environment variables provided by the AWS SAM template to compare against a minimum size and allowed type array.

The output is evaluated by the Dimension Result choice state. If the image is larger than the minimum size allowed, execution continues to the Moderator function as before. If not, it passes to the RecordFailState step to log the result in the database.

Testing the workflow

To test, I use an image that’s narrower than the mixPixels value. To test the deployed v3 workflow:

  1. Open the frontend application at https://localhost:8080 in your browser.
  2. Select a park location, choose Show Details, and then choose Upload images.
  3. Select an image with a width smaller than 800 pixels. After a few seconds, a rejection message appears:"Image is too small" message
  4. Navigate to the Step Functions console. This shows the v3StateMachine with one successful execution. Choose the execution to show more detail.Execution output

The execution shows that the Check Dimension step added the image dimensions to the event object. Next, the Dimensions Result choice state rejected the image, and logged the result at the RecordFailState step. The application’s DynamoDB table now contains details about the failed upload:

DynamoDB item details

Pivoting the application to a new concept

Until this point, the Happy Path web application is designed to help park visitors share maps and photos. This is the development team’s original idea behind the app. During the product-market fit stage of development, it’s common for applications to pivot substantially from the original idea. For startups, it can be critical to have the agility to modify solutions quickly to meet the needs of customers.

In this scenario, the original idea has been less successful than predicted, and park visitors are not adopting the app as expected. However, the business development team has identified a new opportunity. Restaurants would like an app that allows customers to upload menus and food photos. How can the development team create a new proof-of-concept app for restaurant customers to test this idea?

In this version, you modify the application to work for restaurants. While features continue to be added to the parks workflow, it now supports business logic specifically for the restaurant app.

To create the v4 workflow and update the frontend:

  1. From a terminal window, delete the v3 workflow stack:
    aws cloudformation delete-stack --stack-name happy-path-workflow-v3
  2. Change directory to the version 4 AWS SAM template in the repo:
    cd .\workflows\templates\v4
  3. Build and deploy the solution:
    sam build
    sam deploy --guided
  4. The deploy process prompts you for several parameters. Enter happy-path-workflow-v4 as the Stack Name. The other values are the outputs from the backend deployment process, detailed in the repo’s README. Enter these to complete the deployment.
  5. Open frontend/src/main.js and update the businessType variable on line 63. Set this value to ‘restaurant’.Change config to restaurants
  6. Start the local development server:
    npm run serve
  7. Open the application at http://localhost:8080. This now shows restaurants in the local area instead of parks.

In the Step Functions console, select the v4StateMachine to see the latest workflow, then open the Definition tab to see the visualization:

Workflow definition

This workflow starts with steps that apply to both parks and restaurants – checking the image dimensions. Next, it determines the place type from the placeId record in DynamoDB. Depending on place type, it now follows a different execution path:

  • Parks continue to run the automated moderator process, then resizer and publish the result.
  • Restaurants now use Amazon Rekognition to determine the labels in the image. Any photos containing people are rejected. Next, the workflow continues to the resizer and publish process.
  • Other business types go to the RecordFailState step since they are not supported.

Testing the workflow

To test the deployed v4 workflow:

  1. Open the frontend application at https://localhost:8080 in your browser.
  2. Select a restaurant, choose Show Details, and then choose Upload images.
  3. Select an image from the test photos dataset. After a few seconds, you see a message confirming the photo has been added.
  4. Next, select an image that contains one or more people. The new restaurant workflow rejects this type of photo:"Image rejected" message
  5. In the Step Functions console, select the last execution for the v4StateMachine to see how the Check for people step rejected the image:v4 workflow

If other business types are added later to the application, you can extend the Step Functions workflow accordingly. The cost of Step Functions is based on the number of transitions in a workflow, not the number of total steps. This means you can branch by business type in the Happy Path application. This doesn’t affect the overall cost of running an execution, if the total transitions are the same per execution.

Conclusion

Previously in this series, you deploy a simple workflow for processing image uploads in the Happy Path web application. In this post, you add progressively more complex functionality by deploying new versions of workflows.

The first iteration introduces image moderation using Amazon Rekognition, providing the ability to automate the evaluation of unsafe content. Next, the workflow is modified to check image size and file type. This allows you to reject any images that are too small or do not meet the type requirements. Finally, I show how to expand the logic further to accept other business types with their own custom workflows.

To learn more about building serverless web applications, see the Ask Around Me series.

Building storage-first serverless applications with HTTP APIs service integrations

Post Syndicated from Eric Johnson original https://aws.amazon.com/blogs/compute/building-storage-first-applications-with-http-apis-service-integrations/

Over the last year, I have been talking about “storage first” serverless patterns. With these patterns, data is stored persistently before any business logic is applied. The advantage of this pattern is increased application resiliency. By persisting the data before processing, the original data is still available, if or when errors occur.

Common pattern for serverless API backend

Common pattern for serverless API backend

Using Amazon API Gateway as a proxy to an AWS Lambda function is a common pattern in serverless applications. The Lambda function handles the business logic and communicates with other AWS or third-party services to route, modify, or store the processed data. One option is to place the data in an Amazon Simple Queue Service (SQS) queue for processing downstream. In this pattern, the developer is responsible for handling errors and retry logic within the Lambda function code.

The storage first pattern flips this around. It uses native error handling with retry logic or dead-letter queues (DLQ) at the SQS layer before any code is run. By directly integrating API Gateway to SQS, developers can increase application reliability while reducing lines of code.

Storage first pattern for serverless API backend

Storage first pattern for serverless API backend

Previously, direct integrations require REST APIs with transformation templates written in Velocity Template Language (VTL). However, developers tell us they would like to integrate directly with services in a simpler way without using VTL. As a result, HTTP APIs now offers the ability to directly integrate with five AWS services without needing a transformation template or code layer.

The first five service integrations

This release of HTTP APIs direct integrations includes Amazon EventBridge, Amazon Kinesis Data Streams, Simple Queue Service (SQS), AWS System Manager’s AppConfig, and AWS Step Functions. With these new integrations, customers can create APIs and webhooks for their business logic hosted in these AWS services. They can also take advantage of HTTP APIs features like authorizers, throttling, and enhanced observability for securing and monitoring these applications.

Amazon EventBridge

HTTP APIs service integration with Amazon EventBridge

HTTP APIs service integration with Amazon EventBridge

The HTTP APIs direct integration for EventBridge uses the PutEvents API to enable client applications to place events on an EventBridge bus. Once the events are on the bus, EventBridge routes the event to specific targets based upon EventBridge filtering rules.

This integration is a storage first pattern because data is written to the bus before any routing or logic is applied. If the downstream target service has issues, then EventBridge implements a retry strategy with incremental back-off for up to 24 hours. Additionally, the integration helps developers reduce code by filtering events at the bus. It routes to downstream targets without the need for a Lambda function as a transport layer.

Use this direct integration when:

  • Different tasks are required based upon incoming event details
  • Only data ingestion is required
  • Payload size is less than 256 kb
  • Expected requests per second are less than the Region quotas.

Amazon Kinesis Data Streams

HTTP APIs service integration with Amazon Kinesis Data Streams

HTTP APIs service integration with Amazon Kinesis Data Streams

The HTTP APIs direct integration for Kinesis Data Streams offers the PutRecord integration action, enabling client applications to place events on a Kinesis data stream. Kinesis Data Streams are designed to handle up to 1,000 writes per second per shard, with payloads up to 1 mb in size. Developers can increase throughput by increasing the number of shards in the data stream. You can route the incoming data to targets like an Amazon S3 bucket as part of a data lake or a Kinesis data analytics application for real-time analytics.

This integration is a storage first option because data is stored on the stream for up to seven days until it is processed and routed elsewhere. When processing stream events with a Lambda function, errors are handled at the Lambda layer through a configurable error handling strategy.

Use this direct integration when:

  • Ingesting large amounts of data
  • Ingesting large payload sizes
  • Order is important
  • Routing the same data to multiple targets

Amazon SQS

HTTP APIs service integration with Amazon SQS

HTTP APIs service integration with Amazon SQS

The HTTP APIs direct integration for Amazon SQS offers the SendMessage, ReceiveMessage, DeleteMessage, and PurgeQueue integration actions. This integration differs from the EventBridge and Kinesis integrations in that data flows both ways. Events can be created, read, and deleted from the SQS queue via REST calls through the HTTP API endpoint. Additionally, a full purge of the queue can be managed using the PurgeQueue action.

This pattern is a storage first pattern because the data remains on the queue for four days by default (configurable to 14 days), unless it is processed and removed. When the Lambda service polls the queue, the messages that are returned are hidden in the queue for a set amount of time. Once the calling service has processed these messages, it uses the DeleteMessage API to remove the messages permanently.

When triggering a Lambda function with an SQS queue, the Lambda service manages this process internally. However, HTTP APIs direct integration with SQS enables developers to move this process to client applications without the need for a Lambda function as a transport layer.

Use this direct integration when:

  • Data must be received as well as sent to the service
  • Downstream services need reduced concurrency
  • The queue requires custom management
  • Order is important (FIFO queues)

AWS AppConfig

HTTP APIs service integration with AWS Systems Manager AppConfig

HTTP APIs service integration with AWS Systems Manager AppConfig

The HTTP APIs direct integration for AWS AppConfig offers the GetConfiguration integration action and allows applications to check for application configuration updates. By exposing the systems parameter API through an HTTP APIs endpoint, developers can automate configuration changes for their applications. While this integration is not considered a storage first integration, it does enable direct communication from external services to AppConfig without the need for a Lambda function as a transport layer.

Use this direct integration when:

  • Access to AWS AppConfig is required.
  • Managing application configurations.

AWS Step Functions

HTTP APIs service integration with AWS Step Functions

HTTP APIs service integration with AWS Step Functions

The HTTP APIs direct integration for Step Functions offers the StartExecution and StopExecution integration actions. These actions allow for programmatic control of a Step Functions state machine via an API. When starting a Step Functions workflow, JSON data is passed in the request and mapped to the state machine. Error messages are also mapped to the state machine when stopping the execution.

This pattern provides a storage first integration because Step Functions maintains a persistent state during the life of the orchestrated workflow. Step Functions also supports service integrations that allow the workflows to send and receive data without needing a Lambda function as a transport layer.

Use this direct integration when:

  • Orchestrating multiple actions.
  • Order of action is required.

Building HTTP APIs direct integrations

HTTP APIs service integrations can be built using the AWS CLI, AWS SAM, or through the API Gateway console. The console walks through contextual choices to help you understand what is required for each integration. Each of the integrations also includes an Advanced section to provide additional information for the integration.

Creating an HTTP APIs service integration

Creating an HTTP APIs service integration

Once you build an integration, you can export it as an OpenAPI template that can be used with infrastructure as code (IaC) tools like AWS SAM. The exported template can also include the API Gateway extensions that define the specific integration information.

Exporting the HTTP APIs configuration to OpenAPI

Exporting the HTTP APIs configuration to OpenAPI

OpenAPI template

An example of a direct integration from HTTP APIs to SQS is located in the Sessions With SAM repository. This example includes the following architecture:

AWS SAM template resource architecture

AWS SAM template resource architecture

The AWS SAM template creates the HTTP APIs, SQS queue, Lambda function, and both Identity and Access Management (IAM) roles required. This is all generated in 58 lines of code and looks like this:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: HTTP API direct integrations

Resources:
  MyQueue:
    Type: AWS::SQS::Queue
    
  MyHttpApi:
    Type: AWS::Serverless::HttpApi
    Properties:
      DefinitionBody:
        'Fn::Transform':
          Name: 'AWS::Include'
          Parameters:
            Location: './api.yaml'
          
  MyHttpApiRole:
    Type: "AWS::IAM::Role"
    Properties:
      AssumeRolePolicyDocument:
        Version: "2012-10-17"
        Statement:
          - Effect: "Allow"
            Principal:
              Service: "apigateway.amazonaws.com"
            Action: 
              - "sts:AssumeRole"
      Policies:
        - PolicyName: ApiDirectWriteToSQS
          PolicyDocument:
            Version: '2012-10-17'
            Statement:
              Action:
              - sqs:SendMessage
              Effect: Allow
              Resource:
                - !GetAtt MyQueue.Arn
                
  MyTriggeredLambda:
    Type: AWS::Serverless::Function
    Properties:
      CodeUri: src/
      Handler: app.lambdaHandler
      Runtime: nodejs12.x
      Policies:
        - SQSPollerPolicy:
            QueueName: !GetAtt MyQueue.QueueName
      Events:
        SQSTrigger:
          Type: SQS
          Properties:
            Queue: !GetAtt MyQueue.Arn

Outputs:
  ApiEndpoint:
    Description: "HTTP API endpoint URL"
    Value: !Sub "https://${MyHttpApi}.execute-api.${AWS::Region}.amazonaws.com"

The OpenAPI template handles the route definitions for the HTTP API configuration and configures the service integration. The template looks like this:

openapi: "3.0.1"
info:
  title: "my-sqs-api"
paths:
  /:
    post:
      responses:
        default:
          description: "Default response for POST /"
      x-amazon-apigateway-integration:
        integrationSubtype: "SQS-SendMessage"
        credentials:
          Fn::GetAtt: [MyHttpApiRole, Arn]
        requestParameters:
          MessageBody: "$request.body.MessageBody"
          QueueUrl:
            Ref: MyQueue
        payloadFormatVersion: "1.0"
        type: "aws_proxy”
        connectionType: "INTERNET"
x-amazon-apigateway-importexport-version: "1.0"

Because the OpenAPI template is included in the AWS SAM template via a transform, the API Gateway integration can reference the roles and services created within the AWS SAM template.

Conclusion

This post covers the concept of storage first integration patterns and how the new HTTP APIs direct integrations can help. I cover the five current integrations and possible use cases for each. Additionally, I demonstrate how to use AWS SAM to build and manage the integrated applications using infrastructure as code.

Using the storage first pattern with direct integrations can help developers build serverless applications that are more durable with fewer lines of code. A Lambda function is no longer required to transport data from the API endpoint to the desired service. Instead, use Lambda function invocations for differentiating business logic.

To learn more join us for the HTTP API service integrations session of Sessions With SAM! 

#ServerlessForEveryone

Using serverless backends to iterate quickly on web apps – part 2

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/using-serverless-backends-to-iterate-quickly-on-web-apps-part-2/

This series is about building flexible solutions that can adapt as user requirements change. One of the challenges of building modern web applications is that requirements can change quickly. This is especially true for new applications that are finding their product-market fit. Many development teams start building a product with one set of requirements, and quickly find they must build a product with different features.

For both start-ups and enterprises, it’s often important to find a development methodology and architecture that allows flexibility. This is the surest way to keep up with feature requests in evolving products and innovate to delight your end-users. In this post, I show how to build sophisticated workflows using minimal custom code.

Part 1 introduces the Happy Path application that allows park visitors to share maps and photos with other users. In that post, I explain the functionality, how to deploy the application, and walk through the backend architecture.

The Happy Path application accepts photo uploads from users’ smartphones. The application architecture must support 100,000 monthly active users. These binary uploads are typically 3–9 MB in size and must be resized and optimized for efficient distribution.

Using a serverless approach, you can develop a robust low-code solution that can scale to handle millions of images. Additionally, the solution shown here is designed to handle complex changes that are introduced in subsequent versions of the software. The code and instructions for this application are available in the GitHub repo.

Architecture overview

After installing the backend in the previous post, the architecture looks like this:

In this design, the API, storage, and notification layers exist as one application, and the business logic layer is a separate application. These two applications are deployed using AWS Serverless Application Model (AWS SAM) templates. This architecture uses Amazon EventBridge to pass events between the two applications.

In the business logic layer:

  1. The workflow starts when events are received from EventBridge. Each time a new object is uploaded by an end-user, the PUT event in the Amazon S3 Upload bucket triggers this process.
  2. After the workflow is completed successfully, processed images are stored in the Distribution bucket. Related metadata for the object is also stored in the application’s Amazon DynamoDB table.

By separating the architecture into two independent applications, you can replace the business logic layer as needed. Providing that the workflow accepts incoming events and then stores processed images in the S3 bucket and DynamoDB table, the workflow logic becomes interchangeable. Using the pattern, this workflow can be upgraded to handle new functionality.

Introducing AWS Step Functions for workflow management

One of the challenges in building distributed applications is coordinating components. These systems are composed of separate services, which makes orchestrating workflows more difficult than working with a single monolithic application. As business logic grows more complex, if you attempt to manage this in custom code, it can become quickly convoluted. This is especially true if it handles retries and error handling logic, and it can be hard to test and maintain.

AWS Step Functions is designed to coordinate and manage these workflows in distributed serverless applications. To do this, you create state machine diagrams using Amazon States Language (ASL). Step Functions renders a visualization of your state machine, which makes it simpler to see the flow of data from one service to another.

Each state machine consists of a series of steps. Each step takes an input and produces an output. Using ASL, you define how this data progresses through the state machine. The flow from step to step is called a transition. All state machines transition from a Start state towards an End state.

The Step Functions service manages the state of individual executions. The service also supports versioning, which makes it easier to modify state machines in production systems. Executions continue to use the version of a state machine when they were started, so it’s possible to have active executions on multiple versions.

For developers using VS Code, the AWS Toolkit extension provides support for writing state machines using ASL. It also renders visualizations of those workflows. Combined with AWS Serverless Application Model (AWS SAM) templates, this provides a powerful way to deploy and maintain applications based on Step Functions. I refer to this IDE and AWS SAM in this walkthrough.

Version 1: Image resizing

The Happy Path application uses Step Functions to manage the image-processing part of the backend. The first version of this workflow resizes the uploaded image.

To see this workflow:

  1. In VS Code, open the workflows/statemachines folder in the Explorer panel.
  2. Choose the v1.asl.sjon file.v1 state machine
  3. Choose the Render graph option in the CodeLens. This opens the workflow visualization.CodeLens - Render graph

In this basic workflow, the state machine starts at the Resizer step, then progresses to the Publish step before ending:

  • In the top-level attributes in the definition, StartsAt sets the Resizer step as the first action.
  • The Resizer step is defined as a task with an ARN of a Lambda function. The Next attribute determines that the Publish step is next.
  • In the Publish step, this task defines a Lambda function using an ARN reference. It sets the input payload as the entire JSON payload. This step is set as the End of the workflow.

Deploying the Step Functions workflow

To deploy the state machine:

  1. In the terminal window, change directory to the workflows/templates/v1 folder in the repo.
  2. Execute these commands to build and deploy the AWS SAM template:
    sam build
    sam deploy –guided
  3. The deploy process prompts you for several parameters. Enter happy-path-workflow-v1 as the Stack Name. The other values are the outputs from the backend deployment process, detailed in the repo’s README. Enter these to complete the deployment.
  4. SAM deployment output

Testing and inspecting the deployed workflow

Now the workflow is deployed, you perform an integration test directly from the frontend application.

To test the deployed v1 workflow:

  1. Open the frontend application at https://localhost:8080 in your browser.
  2. Select a park location, choose Show Details, and then choose Upload images.
  3. Select an image from the sample photo dataset.
  4. After a few seconds, you see a pop-up message confirming that the image has been added:Upload confirmation message
  5. Select the same park location again, and the information window now shows the uploaded image:Happy Path - park with image data

To see how the workflow processed this image:

  1. Navigate to the Steps Functions console.
  2. Here you see the v1StateMachine with one execution in the Succeeded column.Successful execution view
  3. Choose the state machine to display more information about the start and end time.State machine detail
  4. Select the execution ID in the Executions panel to open details of this single instance of the workflow.

This view shows important information that’s useful for understanding and debugging an execution. Under Input, you see the event passed into Step Functions by EventBridge:

Event detail from EventBridge

This contains detail about the S3 object event, such as the bucket name and key, together with the placeId, which identifies the location on the map. Under Output, you see the final result from the state machine, shows a successful StatusCode (200) and other metadata:

Event output from the state machine

Using AWS SAM to define and deploy Step Functions state machines

The AWS SAM template defines both the state machine, the trigger for executions, and the permissions needed for Step Functions to execute. The AWS SAM resource for a Step Functions definition is AWS::Serverless::StateMachine.

Definition permissions in state machines

In this example:

  • DefinitionUri refers to an external ASL definition, instead of embedding the JSON in the AWS SAM template directly.
  • DefinitionSubstitutions allow you to use tokens in the ASL definition that refer to resources created in the AWS SAM template. For example, the token ${ResizerFunctionArn} refers to the ARN of the resizer Lambda function.
  • Events define how the state machine is invoked. Here it defines an EventBridge rule. If an event matches this source and detail-type, it triggers an execution.
  • Policies: the Step Functions service must have permission to invoke the services that perform tasks in the state machine. AWS SAM policy templates provide a convenient shorthand for common execution policies, such as invoking a Lambda function.

This workflow application is separate from the main backend template. As more functionality is added to the workflow, you deploy the subsequent AWS SAM templates in the same way.

Conclusion

Using AWS SAM, you can specify serverless resources, configure permissions, and define substitutions for the ASL template. You can deploy a standalone Step Functions-based application using the AWS SAM CLI, separately from other parts of your application. This makes it easier to decouple and maintain larger applications. You can visualize these workflows directly in the VS Code IDE in addition to the AWS Management Console.

In part 3, I show how to build progressively more complex workflows and how to deploy these in-place without affecting the other parts of the application.

To learn more about building serverless web applications, see the Ask Around Me series.

Using Amazon MSK as an event source for AWS Lambda

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/using-amazon-msk-as-an-event-source-for-aws-lambda/

Amazon Managed Streaming for Apache Kafka (Amazon MSK) is a fully managed, highly available service that uses Apache Kafka to process real-time streaming data. Many producers can send messages to Kafka, which can then be routed to and processed by multiple consumers. Lambda now supports Amazon MSK as an event source, so it can consume messages and integrate with downstream serverless workflows.

Apache Kafka is a distributed streaming platform that it is similar to Amazon Kinesis. Amazon MSK simplifies the setup, scaling, and management of clusters running Kafka. It makes it easier to configure the application for multiple Availability Zones and securing with IAM. It’s fully compatible with Kafka and supports familiar community-build tools such as MirrorMakerApache Flink, and Prometheus.

In this blog post, I explain how to set up a test Amazon MSK cluster and configure key elements in the networking configuration. I also show how to create a Lambda function that is invoked by messages in Amazon MSK topics.

Overview

Using Amazon MSK as an event source operates in a similar way to using Amazon SQS or Amazon Kinesis. In all cases, the Lambda service internally polls for new records or messages from the event source, and then synchronously invokes the target Lambda function. Lambda reads the messages in batches and provides these to your function as an event payload.

Lambda is a consumer application for your Kafka topic. It processes records from one or more partitions and sends the payload to the target function. Lambda continues to process batches until there are no more messages in the topic.

The Lambda function’s event payload contains an array of records. Each array item contains details of the topic and Kafka partition identifier, together with a timestamp and base64 encoded message:

MSK Lambda event payload

Network configuration overview

Amazon MSK is a highly available service, so it must be configured to run in a minimum of two Availability Zones in your preferred Region. To comply with security best practice, the brokers are usually configured in private subnets in each Region.

For Amazon MSK to invoke Lambda, you must ensure that there is a NAT Gateway running in the public subnet of each Region. It’s possible to route the traffic to a single NAT Gateway in one AZ for test and development workloads. For redundancy in production workloads, it’s recommended that there is one NAT Gateway available in each Availability Zone.

Amazon MSK network architecture

The Lambda function target in the event source mapping does not need to be running in a VPC to receive messages from Amazon MSK. To learn more about configuring the private subnet table to use a NAT Gateway, see this Premium Support response. For an example of how to configure the infrastructure with AWS CloudFormation, see this template.

Required Lambda function permissions

The Lambda must have permission to describe VPCs and security groups, and manage elastic network interfaces. These execution roles permissions are:

  • ec2:CreateNetworkInterface
  • ec2:DescribeNetworkInterfaces
  • ec2:DescribeVpcs
  • ec2:DeleteNetworkInterface
  • ec2:DescribeSubnets
  • ec2:DescribeSecurityGroups

To access the Amazon MSK data stream, the Lambda function also needs two Kafka permissions: kafka:DescribeCluster and kafka:GetBootstrapBrokers. The policy template AWSLambdaMSKExecutionRole includes these permissions.

In AWS SAM templates, you can configure a Lambda function with an Amazon MSK event source mapping and the necessary permissions. For example:

Resources:
  ProcessMSKfunction:
    Type: AWS::Serverless::Function 
    Properties:
      CodeUri: code/
      Timeout: 3
      Handler: app.lambdaHandler
      Runtime: nodejs12.x
      Events:
  MSKEvent:
    Type: MSK
    Properties:
      StartingPosition: LATEST
      Stream: arn:aws:kafka:us-east-1:123456789012:cluster/my-cluster/12abcd12-1234-1234-1234-1234abcd1234-1
      Topics:
        - MyTopic
      VpcConfig:
        SecurityGroupIds: "sg-ab1234ab"
        SubnetIds: "subnet-12345678,subnet-abcd1234"
  Policies:
  - AWSLambdaMSKExecutionRole: {}

Setting up an Amazon MSK cluster

Before starting, configure a new VPC with public and private subnets in two Availability Zones using this AWS CloudFormation template. In this configuration, the private subnets are set up to use a NAT Gateway.

To create the Amazon MSK cluster:

  1. From the Amazon MSK console, choose Create Cluster.
  2. Select Create cluster with custom settings, apply the name “my-MSK-cluster”, and keep the recommended Apache Kafka version.

    Create MSK cluster

  3. In the Configuration panel, keep the “Use the MSK default configuration” option selected.

    MSK configuration dialog box

  4. In Networking, select the new VPC and choose “2” for Number of Availability Zones. From the dropdowns, select the two Availability Zones in the VPC, and choose the private subnets for each.

    MSK networking configuration dialog box

  5. In the Brokers panel, choose kafka.t3.small for Broker instance type, and enter “1” for Number of brokers per Availability Zone.

    Brokers dialog box

  6. For Storage, enter “1” for EBS storage volume per broker.
  7. Keep the existing defaults and choose Create cluster. It takes up to 15 minutes to create the cluster and the status is displayed in the Cluster Summary panel.

    Creating MSK cluster summary

Configuring the Lambda event source mapping

You can create the Lambda event source mapping using the AWS CLI or AWS SDK, which provide the CreateEventSourceMapping API. In this walkthrough, you use the AWS Management Console to create the event source mapping.

First, you must create an Amazon MSK topic:

  1. Launch an EC2 instance, selecting t2.micro as the instance size. Connect to the instance once it is available.
  2. Follow these instructions in the Amazon MSK documentation to create a topic. Use the name “mytopic” and a replication-factor of 2, since there are only two Availability Zones in this test.

Now create a Lambda function that uses the Amazon MSK cluster and topic as an event source:

  1. From the Lambda console, select Create function.
  2. Enter a function name, and select Node.js 12.x as the runtime.
  3. Select the Permissions tab, and select the role name in the Execution role panel to open the IAM console.
  4. Choose Attach policies.Attach policies to IAM role
  5. In the filter box, enter “MSK”, then check the AWSLambdaMSKExecutionRole policy name.

    AWSLambdaMSKExecutionRole role

  6. Choose Attach policy.

    IAM role summary

  7. Back in the Lambda function, select the Configuration tab. In the Designer panel, choose Add trigger.
  8. In the dropdown, select MSK. In the MSK cluster box, select the cluster you configured earlier. Enter “mytopic” for Topic name and choose “Latest” for Starting Position. Choose Add.

    Add trigger
    Note: it takes several minutes for the trigger status to update from Creating to Enabled.

  9. In the Function code panel, replace the contents of index.js with:
    exports.handler = async (event) => {
        // Iterate through keys
        for (let key in event.records) {
          console.log('Key: ', key)
          // Iterate through records
          event.records[key].map((record) => {
            console.log('Record: ', record)
            // Decode base64
            const msg = Buffer.from(record.value, 'base64').toString()
            console.log('Message:', msg)
          }) 
        }
    }
  10. Choose Save.

Testing the event source mapping

At this point, you have created a VPC with two private and public subnets and a NAT Gateway. You have placed a new Amazon MSK cluster in the two private subnets. You set up a target Lambda function in the same VPC and private subnets, with the necessary IAM permissions. Next, you publish messages to the Amazon MSK topic and see the resulting invocation in the Lambda function’s logs.

  1. From the EC2 instance you created earlier, follow these instructions to produce messages. In the Kafka console producer script running in the terminal, enter “Message #1”:

    Produce Kafka messages from terminal

  2. Back in the Lambda function, select the Monitoring tab and choose View logs in CloudWatch. Select the first log stream.

    CloudWatch log streams

  3. In the Log events panel, expand the entries to see the message sent from the Amazon MSK topic. Note that the value attribute containing the message is base64 encoded.

    MSK event log in Lambda

Conclusion

Amazon MSK provide a fully managed, highly available service that uses Kafka to process real-time streaming data. Now Lambda supports Amazon MSK as an event source, you can invoke Lambda functions from messages in Kafka topics to integrate into your downstream serverless workflows.

In this post, I give an overview of how the integration compared with other event source mappings. I show how to create a test Amazon MSK cluster, configure the networking, and create the event source mapping with Lambda. I also show how to set up the Lambda function in the AWS Management Console, and refer to the equivalent AWS SAM syntax to simplify deployment.

To learn more about how to use this feature, read the documentation.

 

Migrating AWS Lambda functions to Amazon Linux 2

Post Syndicated from Eric Johnson original https://aws.amazon.com/blogs/compute/migrating-aws-lambda-functions-to-al2/

You can now use the latest version of any of the AWS Lambda runtimes on Amazon Linux 2 (AL2). End-of-life of standard support for Amazon Linux (AL1 for simplicity in this post) is coming in December 2020. As a result, AWS is providing a path for customers to migrate current and future workloads to AL2-supported runtimes.

This blog post covers:

  • New runtimes for AL2
  • AL1 end-of-life schedule
  • Legacy runtime end-of-life schedules

New runtimes

The choice to run a Lambda function on AL1 or AL2 is based upon the runtime. With the addition of the java8.al2 and provided.al2 runtimes, it is now possible to run Java 8 (Corretto), Go, and custom runtimes on AL2. It also means that the latest version of all supported runtimes can now run on AL2.

The following shows how the runtimes are mapped to Amazon Linux versions:

RuntimeAmazon LinuxAmazon Linux 2 (AL2)
Node.jsnodejs12.x, nodejs10.x
Pythonpython3.7, python3.6, python2.7python3.8
Rubyruby2.5ruby2.7
Javajavajava11 (Corretto 11), java8.al2 (Corretto 8)
Gogo1.xprovided.al2
.NETdotnetcore2.1dotnetcore3.1
Customprovidedprovided.al2

Java 8 (Corretto)

Amazon Corretto 8 is a production-ready distribution of the Open Java Development Kit (OpenJDK) 8 and comes with long-term support (LTS). AWS runs Corretto internally on thousands of production services. Patches and improvements in Corretto allows AWS to address real-world service concerns and meet heavy performance and scalability demands.

Developers can now take advantage of these improvements as they develop Lambda functions by using the new Java 8 (Corretto) runtime of java8.al2. You can see the new Java runtimes supported in the Lambda console:

Console: choosing the Java 8 (Corretto) runtime

Console: Console: choosing the Java 8 (Corretto) runtime

Or, in an AWS Serverless Application Model (AWS SAM) template:

Resources:
  HelloWorldFunction:
    Type: AWS::Serverless::Function
    Properties:
      CodeUri: HelloWorldFunction
      Handler: helloworld.App::handleRequest
      Runtime: java8.al2

Custom runtimes

The custom runtime for Lambda feature was announced at re:Invent 2018. Since then, developers have created custom runtimes for PHP, Erlang/Elixir, Swift, COBOL, Rust, and many others. Until today, custom runtimes have only used the AL1 environment. Now, developers can choose to run custom runtimes in the AL2 execution environment. To do this, select the provided.al2 runtime value in the console when creating or updating your Lambda function:

Console: choosing the custom runtime

Console: choosing the custom runtime

Or, in an AWS SAM template:

Resources:
  HelloWorldFunction:
    Type: AWS::Serverless::Function
    Properties:
      CodeUri: hello-world/
      Handler: my.bootstrap.file
      Runtime: provided.al2

Go

With the addition of the provided.al2 runtime option, Go developers can now run Lambda functions in AL2. As one of the later supported runtimes for Lambda, Go is implemented differently than other native runtimes. Under the hood, Go is treated as a custom runtime and runs accordingly. A Go developer can take advantage of this by choosing the provided.al2 runtime and providing the required bootstrap file.

Using SAM Build to build AL2 functions

With the new sam build options, this is easily accomplished with the following steps:

  1. Update the AWS Serverless Application Model template to the new provided.al2 runtime. Add the Metadata parameter to set the BuildMethod to makefile.
    Resources:
      HelloWorldFunction:
        Type: AWS::Serverless::Function
        Properties:
          CodeUri: hello-world/
          Handler: my.bootstrap.file
          Runtime: provided.al2
        Metadata:
          BuildMethod: makefile
  2. Add a MakeFile to the project.
    build-HelloWorldFunction:
      GOOS=linux go build
      cp hello-world $(ARTIFACTS_DIR)/bootstrap
  3. Use the sam build command.

    Example: sam build

    Example: sam build

A working sample Go application on AL2 can be found here: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/go-al2.

Amazon Linux end-of-life timeline

With the latest runtimes now available on AL2, we are encouraging developers to begin migrating Lambda functions from AL1-based runtimes to AL2-based runtimes. By starting this process now, Lambda functions are running on the latest long-term supported environment.

With AL1, that long-term support is coming to an end. The latest version of AL1, 2018.13, had an original end-of-life date set for June 30, 2020. However, AWS extended this date until December 30, 2020. On this date, AL1 will transition from long-term support (LTS) to a maintenance support period lasting until June 30, 2023. During the maintenance support period, AL1 receives critical and important security updates for a reduced set of packages.

Support timeline

Support timeline

However, AL2 is scheduled for LTS until June 30, 2023 and provides the following support:

  1. Security updates and bug fixes for all packages in core.
  2. Maintain user-space application binary interface (ABI) compatibility for core packages.

Legacy runtime end-of-life schedules

As shown in the preceding chart, some runtimes are still mapped to AL1 host operating systems. AWS Lambda is committed to supporting runtimes through their long-term support (LTS) window, as specified by the language publisher. During this maintenance support period, Lambda provides base operating system and patching for these runtimes. After this period, runtimes are deprecated.

According to our runtime support policy, deprecation occurs in two phases:

  1. Phase 1: you can no longer create functions that use the deprecated runtime. For at least 30 days, you can continue to update existing functions that use the deprecated runtime.
  2. Phase 2: both function creation and updates are disabled permanently. However, the function continues to be available to process invocation events.

Based on this timeline and our commitment to supporting runtimes through their LTS, the following schedule is followed for the deprecation of AL1-based runtimes:

RuntimeAction
python3.7June 2023
python3.6December 2021
python2.7Current plans to support until AL1 end-of-life
ruby2.5Supported until March 2021
java8Supported until March 2022
go1.xEach major Go release is supported until there are two newer Go releases.
dotnetcore2.1Supported until August 2021
providedSupported until December 2020 with AL1

Conclusion

AWS is committed to helping developers build their Lambda functions with the latest tools and technology. This post covers two new Lambda runtimes that expand the range of available runtimes on AL2. I discuss the end-of-life schedule of AL1 and why developers should start migrating to AL2 now. Finally, I discuss the remaining runtimes and their plan for support until deprecation, according to the AWS runtime support policy.

Happy coding!

ICYMI: Season one of Sessions with SAM

Post Syndicated from Eric Johnson original https://aws.amazon.com/blogs/compute/icymi-season-one-of-sessions-with-sam/

Developers tell us they want to know how to easily build and manage their serverless applications. In 2017 AWS announced AWS Serverless Application Model (SAM) to help with just that. To help developers learn more about SAM, I created a weekly Twitch series called Sessions with SAM. Each session focuses on a specific serverless task or service. It demonstrates deploying and managing that task using infrastructure as code (IaC) with SAM templates. This post recaps each session of the first season to prepare you for Sessions with SAM season two, starting August 13.

Sessions with SAM

Sessions with SAM

What is SAM

AWS SAM is an open source framework designed for building serverless applications. The framework provides shorthand syntax to quickly declare AWS Lambda functions, Amazon DynamoDB tables and more. Additionally, SAM is not limited to serverless resources and can also declare any standard AWS CloudFormation resource. With around 20 lines of code, a developer can create an application with an API, logic, and database layer with the proper permissions in place.

Example of using SAM templates to generate infrastructure

20 Lines of code

By using infrastructure as code to manage and deploy serverless applications, developers gain several advantages. You can version the templates and rollback when necessary. They can be parameterized for flexibility across multiple environments. They can be shared with development teams for consistency across developer environments.

Sessions

The code and linked videos are listed with the session. See the YouTube playlist and GitHub repository for the entire season.

Session one: JWT authorizers on Amazon API Gateway

In this session, I cover building an application backend using JWT authorizers with the new Amazon API Gateway HTTP API. We also discussed building an application with multiple routes and the ability to change the authorization requirements per route.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/http-api

Video: https://youtu.be/klOScYEojzY

Session two: Amazon Cognito authentication

In this session, I cover building an Amazon Cognito template for authentication. This includes the user management component with user pools and user groups in addition to a hosted authentication workflow with an app client.

Building an Amazon Cognito authentication provider

Building an Amazon Cognito authentication provider

We also discussed using custom pre-token Lambda functions to modify the JWT token issued by Amazon Cognito. This custom token allows you to insert custom scopes based on the Amazon Cognito user groups. These custom scopes are then used to customize the authorization requirements for the individual routes.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/cognito

Video: https://youtu.be/nBtWCjKd72M

Session three: Building a translation app with Amazon EventBridge

I covered using AWS SAM to build a basic translation and sentiment app centered around Amazon EventBridge. The SAM template created three Lambda functions, a custom EventBridge bus, and an HTTP API endpoint.

Architecture for serverless translation application

Architecture for serverless translation application

Requests from HTTP API endpoint are put into the custom EventBridge bus via the endpoint Lambda function. Based on the type of request, either the translate function or the sentiment function is invoked. The AWS SAM template manages all the infrastructure in addition to the permissions to invoke the Lambda functions and access Amazon Translate and Amazon Comprehend.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/eventbridge

Video: https://youtu.be/73R02KufLac

Session four: Building an Amazon Kinesis Data Firehose for ingesting website access logs

In this session, I covered building an Amazon Kinesis Data Firehose for ingesting large amounts of data. This particular application is designed for access logs generated from API Gateway. The logs are first stored to an Amazon DynamoDB data base for immediate processing. Next, the logs are sent through a Kinesis Data Firehose and stored in an Amazon S3 bucket for later processing.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/kinesis-firehose

Video: https://youtu.be/jdTBtaxs0hA

Session five: Analyzing API Gateway logs with Amazon Kinesis Data Analytics

Continuing from session 4, I discussed configuring API Gateway access logs to use the Kinesis Data Firehose built in the previous session. I also demonstrate an Amazon Kinesis data analytics application for near-real-time analytics of your access logs.

Example of Kinesis Data Analytics in SAM

Example of Kinesis Data Analytics in SAM

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/kinesis-firehose

Video: https://youtu.be/ce0v-q9EVTQ

Session six: Managing Amazon SQS with AWS SAM templates

I demonstrated configuring an Amazon Simple Queue Service (SQS) queue and the queue policy to control access to the queue. We also discuss allowing cross-account and external resources to access the queue. I show how to identify the proper principal resources for building the proper AWS IAM policy templates.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/SQS

Video: https://youtu.be/q2rbHMyJBDY

Session seven: Creating canary deploys for Lambda functions

In this session, I cover canary and linear deployments for serverless applications. We discuss how canary releases compare to linear releases and how they can be customized. We also spend time discussing pre-traffic and post-traffic tests and how rollbacks are handled when one of these tests fails.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/safe-deploy

Video: https://youtu.be/RE4r_6edaXc

Session eight: Configuring custom domains for Amazon API Gateway endpoints

In session eight I configured custom domains for API Gateway REST and HTTP APIs. The demonstration included the option to pass in an Amazon Route 53 zone ID or AWS Certificate Manager (ACM) certificate ARN. If either of these are missing, then the template built a zone or SSL cert respectively.

Working with Amazon Route 53 zones

Working with Amazon Route 53 zones

We discussed how to use declarative and imperative methods in our templates. We also discussed how to use a single domain across multiple APIs, regardless of they are REST or HTTP APIs.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/custom-domains

Video: https://youtu.be/4uXEGNKU5NI

Session nine: Managing AWS Step Functions with AWS SAM

In this session I was joined by fellow Senior Developer Advocate, Rob Sutter. Rob and I demonstrated managing and deploying AWS Step Functions using the new Step Functions support built into SAM. We discussed how SAM offers definition substitutions to pass data from the template into the state machine configuration.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/step-functions

Video: https://youtu.be/BguUgdZwymQ

Session ten: Using Amazon EFS with Lambda functions in SAM

Joined by Senior Developer Advocate, James Beswick, we covered configuring Amazon Elastic File System (EFS) as a storage option for Lambda functions using AWS SAM. We discussed the Amazon VPC requirements in configuring for EFS. James also walked through using the AWS Command Line Interface (CLI) to aid in configuration of the VPC.

Code: https://github.com/aws-samples/aws-lambda-efs-samples

Video: https://youtu.be/up1op216trk

Session eleven: Ask the experts

This session introduced you to some of our SAM experts. Jeff Griffiths, Senior Product Manager, and Alex Woods, Software Development Engineer, joined me in answering live audience questions. WE discussed best practices for local development and debugging, Docker networking, CORS configurations, roadmap features and more.

SAM experts panel

SAM experts panel

Video: https://youtu.be/2JRa8MugPCY

Session twelve: Managing .Net Lambda function in AWS SAM and Stackery

In this final session of the season, I was joined by Stackery CTO and serverless hero, Chase Douglas. Chase demonstrated using Stackery and AWS SAM to build and deploy .Net Core Lambda functions. We discuss how Stackery’s editor allows developers to visually design a serverless application and how it uses SAM templates under the hood.

Stackery visual editor

Stackery visual editor

Code only examples

In addition to code examples with each video session, the repo includes developer-requested code examples. In this section, I demonstrate how to build an access log pipeline for HTTP API or use the SAM build command to compile Swift for Lambda functions.

Conclusion

Sessions with SAM helps developers bootstrap their serverless applications with instructional video and ready-made IaC templates. From JWT authorizers to EFS storage solutions, over 15 AWS services are represented in SAM templates. The first season of live videos supplements these templates with best practices explained and real developer questions answered.

Season two of Sessions with SAM starts August 13. The series will continue the pattern of explaining best practices, providing usable starter templates, and having some fun along the way.

#ServerlessForEveryone

 

Building a Pulse Oximetry tracker using AWS Amplify and AWS serverless

Post Syndicated from Moheeb Zara original https://aws.amazon.com/blogs/compute/building-a-pulse-oximetry-tracker-using-aws-amplify-and-aws-serverless/

This guide demonstrates an example solution for collecting, tracking, and sharing pulse oximetry data for multiple users. It’s built using AWS serverless technologies, enabling reliable scalability and security. The frontend application is written in VueJS and uses the Amplify Framework. It takes oxygen saturation measurements as manual input or a BerryMed pulse oximeter connected to a browser using Web Bluetooth.

The serverless backend that handles user data and shared access management is deployed using the AWS Serverless Application Model (AWS SAM). The backend application consists of an Amazon API Gateway REST API, which invokes AWS Lambda functions. The code is written in Python to handle the business logic of interacting with an Amazon DynamoDB database. Authentication is managed by Amazon Cognito.

A screenshot of the frontend application running in a desktop browser.

A screenshot of the frontend application running in a desktop browser.

Prerequisites

You need the following to complete the project:

Deploy the application

A high-level diagram of the full oxygen monitor application.

A high-level diagram of the full oxygen monitor application.

The solution consists of two parts, the frontend application and the serverless backend. The Amplify CLI deploys all the Amazon Cognito authentication and hosting resources for the frontend. The backend requires the Amazon Cognito user pool identifier to configure an authorizer on the API. This enables an authorization workflow, as shown in the following image.

A diagram showing how an Amazon Cognito authorization workflow works

A diagram showing how an Amazon Cognito authorization workflow works

First, configure the frontend. Complete the following steps using a terminal running on a computer or by using the AWS Cloud9 IDE. If using AWS Cloud9, create an instance using the default options.

From the terminal:

  1. Install the Amplify CLI by running this command.
    npm install -g @aws-amplify/cli
  2. Configure the Amplify CLI using this command. Follow the guided process to completion.
    amplify configure
  3. Clone the project from GitHub.
    git clone https://github.com/aws-samples/aws-serverless-oxygen-monitor-web-bluetooth.git
  4. Navigate to the amplify-frontend directory and initialize the project using the Amplify CLI command. Follow the guided process to completion.
    cd aws-serverless-oxygen-monitor-web-bluetooth/amplify-frontend
    
    amplify init
  5. Deploy all the frontend resources to the AWS Cloud using the Amplify CLI command.
    amplify push
  6. After the resources have finishing deploying, make note of the aws_user_pools_id property in the src/aws-exports.js file. This is required when deploying the serverless backend.

Next, deploy the serverless backend. While it can be deployed using the AWS SAM CLI, you can also deploy from the AWS Management Console:

  1. Navigate to the oxygen-monitor-backend application in the AWS Serverless Application Repository.
  2. In Application settings, name the application and provide the aws_user_pools_id from the frontend application for the UserPoolID parameter.
  3. Choose Deploy.
  4. Once complete, copy the API endpoint so that it can be configured on the frontend application in the next step.

Configure and run the frontend application

  1. Create a file, amplify-frontend/src/api-config.js, in the frontend application with the following content. Include the API endpoint from the previous step.
    const apiConfig = {
      “endpoint”: “<API ENDPOINT>”
    };
    
    export default apiConfig;
  2. In a terminal, navigate to the root directory of the frontend application and run it locally for testing.
    cd aws-serverless-oxygen-monitor-web-bluetooth/amplify-frontend
    
    npm install
    
    npm run serve

    You should see an output like this:

  3. To publish the frontend application to cloud hosting, run the following command.
    amplify publish

    Once complete, a URL to the hosted application is provided.

Using the frontend application

Once the application is running locally or hosted in the cloud, navigating to it presents a user login interface with an option to register.

The registration flow requires a code sent to the provided email for verification. Once verified you’re presented with the main application interface. A sample value is displayed when the account has no oxygen saturation or pulse rate history.

To connect a BerryMed pulse oximeter to begin reading measurements, turn on the device. Choose the Connect Pulse Oximeter button and then select it from the list. A Chrome browser on a desktop or Android mobile device is required to use the Web Bluetooth feature.

If you do not have a compatible Bluetooth pulse oximeter or access to Web Bluetooth, checking the Enter Manually check box presents direct input boxes.

Once oxygen saturation and pulse rate values are available, choose the cloud upload icon. This publishes the values to the serverless backend, where they are stored in a DynamoDB table. The trend chart then updates to reflect the new data.

Access to your historical data can be shared to another user, for example a healthcare professional. Choose the share icon on the right to open sharing options. From here, you can add or remove access to others by user name.

To view data shared with you, select the user name from the drop-down and choose the refresh icon.

Understanding the serverless backend

In the GitHub project, the folder serverless-backend/ contains the AWS SAM template file and the Lambda functions. It creates an API Gateway endpoint, six Lambda functions, and two DynamoDB tables. The template also defines an Amazon Cognito authorizer for the API using the UserPoolID passed in as a parameter:

This only allows authenticated users of the frontend application to make requests with a JWT token containing their user name and email. The backend uses that information to fetch and store data in DynamoDB that corresponds to the user making the request.

The first three endpoints handle updating and retrieving oxygen and pulse rate levels. When a user publishes a new measurement, the AddLevels function is invoked which creates a new item in the DynamoDB “Levelstable.

The FetchLevels function retrieves the user’s personal history. The FetchSharedUserLevels function checks the Access Table to see if the requesting user has shared access rights.

The remaining endpoints handle access management. When you add a shared user, this invokes the ManageAccess function with a user name and an action, such as share or revoke. If sharing, the item is added to the Access Table that enables the relationship. If revoking, the item is removed from the table.

The GetSharedUsers function fetches the list of shared with the user making the request. This populates the drop-down of accessible users. FetchUsersWithAccess fetches all users that have access to the user making the request, this populates the list of users in the sharing options.

The DynamoDB tables are created by the AWS SAM template with the partition key and range key defined for each table. These are used by the Lambda functions to query and sort items. See the documentation to learn more about DynamoDB table key schema.

LevelsTable:
    Type: AWS::DynamoDB::Table
    Properties: 
      AttributeDefinitions: 
        - 
          AttributeName: "username"
          AttributeType: "S"
        - 
          AttributeName: "timestamp"
          AttributeType: "N"
      KeySchema: 
        - AttributeName: username
          KeyType: HASH
        - AttributeName: timestamp
          KeyType: RANGE
      ProvisionedThroughput: 
        ReadCapacityUnits: "5"
        WriteCapacityUnits: "5"

  SharedAccessTable:
    Type: AWS::DynamoDB::Table
    Properties: 
      AttributeDefinitions: 
        - 
          AttributeName: "username"
          AttributeType: "S"
        - 
          AttributeName: "shared_user"
          AttributeType: "S"
      KeySchema: 
        - AttributeName: username
          KeyType: HASH
        - AttributeName: shared_user
          KeyType: RANGE
      ProvisionedThroughput: 
        ReadCapacityUnits: "5"
        WriteCapacityUnits: "5"

 

Understanding the frontend

In the GitHub project, the folder amplify-frontend/src/ contains all the code for the frontend application. In main.js, the Amplify VueJS modules are configured to use the resources defined in aws-exports.js. It also configures the endpoint of the serverless backend, defined in api-config.js.

In the file, components/OxygenMonitor.vue, the API module is imported and the desired API is defined.

API calls are defined as Vue methods that can be called by various other components and elements of the application.

In components/ConnectDevice.vue, the connect method initializes a Web Bluetooth connection to the pulse oximeter. It searches for a Bluetooth service UUID and device name specific to BerryMed pulse oximeters. On a successful connection it creates an event listener on the Bluetooth characteristic that notifies changes on measurements.

The handleData method parses notification events. It emits on any changes to oxygen saturation or pulse rate.

The OxygenMonitor component defines the ConnectDevice component in its template. It binds handlers on emitted events.

The handlers assign the values to the Vue data object for use throughout the application.

Further explore the project code to see how the Amplify Framework and the serverless backend are used to make a practical application.

Conclusion

Tracking patient vitals remotely has become more relevant than ever. This guide demonstrates a solution for a personal health and telemedicine application. The full solution includes multiuser functionality and a secure and scalable serverless backend. The application uses a browser to interact with a physical device to measure oxygen saturation and pulse rate. It publishes measurements to a database using a serverless API. The historical data can be displayed as a trend chart and can also be shared with other users.

Once more familiarized with the sample project you may want to begin developing an application with your team. The Amplify Framework has support for team environments, allowing all your developers to work together seamlessly.

To learn more about AWS serverless and keep up to date on the latest features, subscribe to the YouTube channel.

Building well-architected serverless applications: Controlling serverless API access – part 1

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-controlling-serverless-api-access-part-1/

This series of blog posts uses the AWS Well-Architected Tool with the Serverless Lens to help customers build and operate applications using best practices. In each post, I address the nine serverless-specific questions identified by the Serverless Lens along with the recommended best practices. See the Introduction post for a table of contents and explanation of the example application.

Security question SEC1: How do you control access to your serverless API?

Use authentication and authorization mechanisms to prevent unauthorized access, and enforce quota for public resources. By controlling access to your API, you can help protect against unauthorized access and prevent unnecessary use of resources.

AWS has a number of services to provide API endpoints including Amazon API Gateway and AWS AppSync.

Use Amazon API Gateway for RESTful and WebSocket APIs. Here is an example serverless web application architecture using API Gateway.

Example serverless application architecture using API Gateway

Example serverless application architecture using API Gateway

Use AWS AppSync for managed GraphQL APIs.

AWS AppSync overview diagram

AWS AppSync overview diagram

The serverless airline example in this series uses AWS AppSync to provide the frontend, user-facing public API. The application also uses API Gateway to provide backend, internal, private REST APIs for the loyalty and payment services.

Good practice: Use an authentication and an authorization mechanism

Authentication and authorization are mechanisms for controlling and managing access to a resource. In this well-architected question, that is a serverless API. Authentication is verifying who a client or user is. Authorization is deciding whether they have the permission to access a resource. By enforcing authorization, you can prevent unauthorized access to your workload from non-authenticated users.

Integrate with an identity provider that can validate your API consumer’s identity. An identity provider is a system that provides user authentication as a service. The identity provider may use the XML-based Security Assertion Markup Language (SAML), or JSON Web Tokens (JWT) for authentication. It may also federate with other identity management systems. JWT is an open standard that defines a way for securely transmitting information between parties as a JSON object. JWT uses frameworks such as OAuth 2.0 for authorization and OpenID Connect (OIDC), which builds on OAuth2, and adds authentication.

Only authorize access to consumers that have successfully authenticated. Use an identity provider rather than API keys as a primary authorization method. API keys are more suited to rate limiting and throttling.

Evaluate authorization mechanisms

Use AWS Identity and Access Management (IAM) for authorizing access to internal or private API consumers, or other AWS Managed Services like AWS Lambda.

For public, user facing web applications, API Gateway accepts JWT authorizers for authenticating consumers. You can use either Amazon Cognito or OpenID Connect (OIDC).

App client authenticates and gets tokens

App client authenticates and gets tokens

For custom authorization needs, you can use Lambda authorizers.

A Lambda authorizer (previously called a custom authorizer) is an AWS Lambda function which API Gateway calls for an authorization check when a client makes a request to an API method. This means you do not have to write custom authorization logic in a function behind an API. The Lambda authorizer function can validate a bearer token such as JWT, OAuth, or SAML, or request parameters and grant access. Lambda authorizers can be used when using an identity provider other than Amazon Cognito or AWS IAM, or when you require additional authorization customization.

Lambda authorizers

Lambda authorizers

For more information, see the AWS Hero blog post, “The Complete Guide to Custom Authorizers with AWS Lambda and API Gateway”.

The AWS documentation also has a useful section on “Understanding Lambda Authorizers Auth Workflow with Amazon API Gateway”.

Enforce authorization for non-public resources within your API

Within API Gateway, you can enable native authorization for users authenticated using Amazon Cognito or AWS IAM. For authorizing users authenticated by other identity providers, use Lambda authorizers.

For example, within the serverless airline, the loyalty service uses a Lambda function to fetch loyalty points and next tier progress. AWS AppSync acts as the client using an HTTP resolver, via an API Gateway REST API /loyalty/{customerId}/get resource, to invoke the function.

To ensure only AWS AppSync is authorized to invoke the API, IAM authorization is set within the API Gateway method request.

Viewing API Gateway IAM authorization

Viewing API Gateway IAM authorization

The serverless airline uses the AWS Serverless Application Model (AWS SAM) to deploy the backend infrastructure as code. This makes it easier to know which IAM role has access to the API. One of the benefits of using infrastructure as code is visibility into all deployed application resources, including IAM roles.

The loyalty service AWS SAM template contains the AppsyncLoyaltyRestApiIamRole.

AppsyncLoyaltyRestApiIamRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
- Effect: Allow
  AppsyncLoyaltyRestApiIamRole:
    Type: AWS::IAM::Role
    Properties:
      AssumeRolePolicyDocument:
        Version: 2012-10-17
        Statement:
          - Effect: Allow
            Principal:
              Service: appsync.amazonaws.com
            Action: sts:AssumeRole
      Path: /
      Policies:
        - PolicyName: LoyaltyApiInvoke
          PolicyDocument:
            Version: 2012-10-17
            Statement:
              - Effect: Allow
                Action:
                  - execute-api:Invoke
                # arn:aws:execute-api:region:account-id:api-id/stage/METHOD_HTTP_VERB/Resource-path
                Resource: !Sub arn:aws:execute-api:${AWS::Region}:${AWS::AccountId}:${LoyaltyApi}/*/*/*

The IAM role specifies that appsync.amazonaws.com can perform an execute-api:Invoke on the specific API Gateway resource arn:aws:execute-api:${AWS::Region}:${AWS::AccountId}:${LoyaltyApi}/*/*/*

Within AWS AppSync, you can enable native authorization for users authenticating using Amazon Cognito or AWS IAM. You can also use any external identity provider compliant with OpenID Connect (OIDC).

Improvement plan summary:

  1. Evaluate authorization mechanisms.
  2. Enforce authorization for non-public resources within your API

Required practice: Use appropriate endpoint type and mechanisms to secure access to your API

APIs may have public or private endpoints. Consider public endpoints to serve consumers where they may not be part of your network perimeter. Consider private endpoints to serve consumers within your network perimeter where you may not want to expose the API publicly. Public and private endpoints may have different levels of security.

Determine your API consumer and choose an API endpoint type

For providing public content, use Amazon API Gateway or AWS AppSync public endpoints.

For providing content with restricted access, use Amazon API Gateway with authorization to specific resources, methods, and actions you want to restrict. For example, the serverless airline application uses AWS IAM to restrict access to the private loyalty API so only AWS AppSync can call it.

With AWS AppSync providing a GraphQL API, restrict access to specific data types, data fields, queries, mutations, or subscriptions.

You can create API Gateway private REST APIs that you can only access from your AWS Virtual Private Cloud(VPC) by using an interface VPC endpoint.

API Gateway private endpoints

API Gateway private endpoints

For more information, see “Choose an endpoint type to set up for an API Gateway API”.

Implement security mechanisms appropriate to your API endpoint

With Amazon API Gateway and AWS AppSync, for both public and private endpoints, there are a number of mechanisms for access control.

For providing content with restricted access, API Gateway REST APIs support native authorization using AWS IAM, Amazon Cognito user pools, and Lambda authorizers. Amazon Cognito user pools is a feature that provides a managed user directory for authentication. For more detailed information, see the AWS Hero blog post, “Picking the correct authorization mechanism in Amazon API Gateway“.

You can also use resource policies to restrict content to a specific VPC, VPC endpoint, a data center, or a specific AWS Account.

API Gateway resource policies are different from IAM identity policies. IAM identity policies are attached to IAM users, groups, or roles. These policies define what that identity can do on which resources. For example, in the serverless airline, the IAM role AppsyncLoyaltyRestApiIamRole specifies that appsync.amazonaws.com can perform an execute-api:Invoke on the specific API Gateway resource arn:aws:execute-api:${AWS::Region}:${AWS::AccountId}:${LoyaltyApi}/*/*/*

Resource policies are attached to resources such as an Amazon S3 bucket, or an API Gateway resource or method. The policies define what identities can access the resource.

IAM access is determined by a combination of identity policies and resource policies.

For more information on the differences, see “Identity-Based Policies and Resource-Based Policies”. To see which services support resource-based policies, see “AWS Services That Work with IAM”.

API Gateway HTTP APIs support JWT authorizers as a part of OpenID Connect (OIDC) and OAuth 2.0 frameworks.

API Gateway WebSocket APIs support AWS IAM and Lambda authorizers.

With AWS AppSync public endpoints, you can enable authorization with the following:

  • AWS IAM
  • Amazon Cognito User pools for email and password functionality
  • Social providers (Facebook, Google+, and Login with Amazon)
  • Enterprise federation with SAML

Within the serverless airline, AWS Amplify Console hosts the public user facing site. Amplify Console provides a git-based workflow for building, deploying, and hosting serverless web applications. Amplify Console manages the hosting of the frontend assets for single page app (SPA) frameworks in addition to static websites, along with an optional serverless backend. Frontend assets are stored in S3 and the Amazon CloudFront global edge network distributes the web app globally.

The AWS Amplify CLI toolchain allows you to add backend resources using AWS CloudFormation.

Using Amplify CLI to add authentication

For the serverless airline, I use the Amplify CLI to add authentication using Amazon Cognito with the following command:

amplify add auth

When prompted, I specify the authentication parameters I require.

Amplify add auth

Amplify add auth

Amplify CLI creates a local CloudFormation template. Use the following command to deploy the updated authentication configuration to the cloud:

amplify push

Once the deployment is complete, I view the deployed authentication nested stack resources from within the CloudFormation Console. I see the Amazon Cognito user pool.

View Amplify authentication CloudFormation nested stack resources

View Amplify authentication CloudFormation nested stack resources

For a more detailed walkthrough using Amplify CLI to add authentication for the serverless airline, see the build video.

For more information on Amplify CLI and authentication, see “Authentication with Amplify”.

Conclusion

To help protect against unauthorized access and prevent unnecessary use of serverless API resources, control access using authentication and authorization mechanisms.

In this post, I cover the different mechanisms for authorization available for API Gateway and AWS AppSync. I explain the different approaches for public or private endpoints and show how to use IAM to control access to internal or private API consumers. I walk through how to use the Amplify CLI to create an Amazon Cognito user pool.

This well-architected question will be continued in a future post where I continue using the Amplify CLI to add a GraphQL API. I will explain how to view JSON Web Tokens (JWT) claims, and how to use Cognito identity pools to grant temporary access to AWS services. I will also show how to use API keys and API Gateway usage plans for rate limiting and throttling requests.

Replacing web server functionality with serverless services

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/replacing-web-server-functionality-with-serverless-services/

Web servers bring together many useful services in traditional web development. Developers use servers like Apache and NGINX for many common tasks. Linux, Apache, MySQL, and PHP formed the LAMP stack to power a large percentage of the world’s websites. Other variants, like the MEAN stack (MongoDB, Express.js, AngularJS, Node.js), have also been popular.

In the migration to serverless, it’s important to understand where this functionality moves to. There are significant benefits in taking a serverless approach to developing web apps but there are differences in where developers spend their efforts. This blog post provides a guide to serverless development for traditional web developers to help with this transition.

Comparing a “Hello World” example

To run a “Hello World” example in a highly available configuration, using a traditional webserver approach you need more than one server in more than one Availability Zone. This server contains an operating system, runtime, and web server software, together with your code. You might build an Amazon Machine Image (AMI) to help with creating more servers.

Scalable "Hello World"

With a web framework like Express, the following code starts a server and listens on port 3000 for connections. For requests at the root URL, it responds with the “Hello World” greeting:

Hello World output

There is a reasonable amount of configuration and infrastructure needed to make this example work. Even creating a TLS connection requires you to maintain a certificate or install and maintain a service like Let’s Encrypt. Additionally, you must patch and maintain the underlying EC2 instance to keep this service running once it’s deployed.

The serverless equivalent is simpler. I can define the Hello World example using an AWS Serverless Application Model (SAM) template:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: hello-world

Resources:
  HelloWorldFunction:
    Type: AWS::Serverless::Function 
    Properties:
      Handler: index.lambdaHandler
      Runtime: nodejs12.x
      InlineCode: | 
        exports.lambdaHandler = async (event, context) => {
          return { 'statusCode': 200, 'body': 'Hello World!' }
        }
      Events:
        HelloWorld:
          Type: Api 
          Properties:
            Path: /hello
            Method: get

The SAM deployment creates an AWS Lambda function with an Amazon API Gateway endpoint:

Serverless Hello World

This is a highly available, scalable endpoint. The developer does not need to define VPCs, subnets or security groups, or install and manage a web server stack. A considerable part of the underlying infrastructure is managed for you, letting you focus primarily on the business logic of the application.

Additionally, using the default Service Quotas, this Endpoint can handle millions of requests a day. To handle this equivalent load with a traditional web server, you may need EC2 Auto Scaling. Lambda manages the scaling automatically, and also scales down as needed without any intervention from the developer.

Implementing authentication in serverless web apps

Many traditional web servers use web frameworks like Python Flask or Express and implement session-based authentication. This allows the server to authenticate users, often with a user name and password validation scheme. The server is responsible for storing user lists, and hashing and salting passwords securely. There are also user administration flows required for tasks such as creating accounts and resetting passwords.

While you can implement all these within a Lambda function, there is another approach that can be more secure and reduce boilerplate code. You can implement authorization and authentication in serverless development by using open standard JSON Web Tokens (JWTs). API Gateway then authenticates the user at the service level using Amazon Cognito, a Lambda authorizer, or with a JWT authorizer with HTTP APIs.

You use an identity provider such as Amazon Cognito or Auth0 to generate the user token. You pass the token in the API request in the Authorization header. The API Gateway service then validates the token before the request is sent downstream to your application.

While you can use JWTs in server-based web applications, there are benefits to separating out this functionality using serverless services:

  • Failed requests do not put any additional load on your infrastructure. API Gateway also does not charge on authenticated routes when authorization headers are missing.
  • You eliminate custom code for handling and processing logins since this happens before reaching your business logic.
  • You can add support for social logins, multi-factor authentication (MFA) and OAuth without changing your code.

Additionally, as your application grows to more functions or across Regions, you are not relying on a single authentication point in your architecture. Each microservice validates a JWT independently and can verify the authorization claims that can be securely embedded in the token’s payload.

For web developers, one of the most common questions is how to handle the user interface elements related to authorization within the application. Auth0 offers a number of customizable components that you can integrate into any JavaScript application. Amplify Framework provides the Authenticator component that provides a wrapper for common flows for signing in users.

Amplify signin UI

Using either approach eliminates boilerplate user management code and helps provide a consistent and professional login experience for your users. To learn more about using Auth0’s integrated sign-in, see the Ask Around Me application code repo.

Generating HTML, CSS and front-end templates

Many web frameworks use templating languages like Jinja or Mustache to help developers inject dynamic content into static HTML and CSS layouts. Typically, the web server creates the entire page layout for each request. You can use the same approach with Lambda if preferred, having the function build the HTML response for the browser.

However, single-page application (SPA) frameworks such as React, Vue.js, and AngularJS offer a different paradigm that works well for serverless development. The build process for SPA applications generates static HTML, CSS, and JavaScript files. When downloaded to the browser, they use JavaScript to fetch dynamic data and interact with the backend application:

SPA backend architecture

  1. The user visits the web application’s URL. The browser downloads the application’s HTML, CSS, and JavaScript files from Amazon S3 via Amazon CloudFront.
  2. The browser executes the application’s JavaScript.
  3. The application calls API Gateway endpoints to fetch and store dynamic data.

This architecture offers a number of benefits. First, serving the application’s assets is offloaded from your infrastructure to a global CDN. This reduces latency and increases scalability. Second, the HTML page building and rendering is managed entirely by the client browser, improving responsiveness and reducing network traffic with the application backend.

Uploading, processing, and saving binary files

Many web applications handle large binary files, such as user uploads. Processing these on web servers can be compute and network-intensive. You must also manage the amount of temporary space in use on the web server, and scale the fleet of servers appropriately during busy periods.

You can upload files serverlessly by using Amazon S3 directly. In this process, you request a presigned URL and upload the binary data directly to this endpoint. This reduces load on your infrastructure and increase scalability. The code is also simple to adapt for non-serverless applications that use S3. Watch this video to see how you can build an S3 uploader solution.

For processing binaries, you can use the S3 PutObject event to trigger serverless workflows. For example, you can process images, translate documents, or transcribe audio. For complex business workflows, the event can trigger AWS Step Functions workflows. This is a highly scalable way to bring automation and custom processing to binary uploads in your web applications.

When processing binary data, Lambda provides a 512 MB temporary file system (located at /tmp). You use this space for intermediate processing, not permanent storage, since the storage is ephemeral. For example, this can be useful for unzipping files or creating PDFs.

When saving files permanently in serverless applications, S3 buckets are the most common storage choice. S3 is highly durable and highly available, provides robust encryption options, and is a scalable, cost-effective solution for many workloads.

Storing application state

In many traditional applications, the web server stores temporary, context-specific application state, and a relational database stores data permanently.

Serverless tools have a range of different options available for managing state. Lambda functions are ephemeral and stateless, and there is no guarantee of reusing the same instance of a Lambda function multiple times.

For functions that need a durable store of user data that can be rehydrated between invocations, Amazon DynamoDB tables provide a low-latency, cost-effective solution. For example, this is ideal for recalling shopping cart contents or user profiles.

For more complex state, tracking long-lived or complex business workflows, the best practice is to use AWS Step Functions. You can model workflows in JSON that use parallel tasks, require human interaction, or take up to one year to complete.

Conclusion

In this post, I show how traditional web-server applications compare with their serverless counterparts. I show how the infrastructure is managed for you in serverless, and how code for serverless developers in primarily focused on business logic.

I look at how common web server tasks, such as authentication and authorization, are managed by scalable services. In single-page applications, front-end layouts are generated on the client-side, and the distribution is managed by a global CDN.

To learn more about how to build web applications with serverless, see the Ask Around Me application repo.

The AWS Serverless Application Model CLI is now generally available

Post Syndicated from Eric Johnson original https://aws.amazon.com/blogs/compute/the-aws-serverless-application-model-cli-is-now-generally-available/

The AWS Serverless Application Model (AWS SAM) is an open-source framework for building serverless applications. Built on AWS CloudFormation, AWS SAM provides shorthand syntax to declare serverless resources. During deployment, AWS SAM transforms the serverless resources into CloudFormation syntax, enabling you to build serverless applications faster.

As a companion to AWS SAM, the AWS SAM CLI is a command line tool that operates on AWS SAM templates. It provides developers local tooling to create, develop, debug, and deploy serverless applications. AWS SAM has been open-source and generally available since April 2018. Today, the AWS SAM CLI is now also generally available (GA).

The AWS SAM CLI offers a rich set of tools that enable developers to build serverless applications quickly. This blog post summarizes the different tools available.

Init

The sam init command creates the folder structure and basic resources for a new serverless application. Additionally, you can choose a starter template for the serverless applications from one of the AWS managed templates, or create your own. Some runtimes also offer multiple dependency manager options to choose from. In this case, you choose Maven for Java11.

Demonstration of sam init

Local

The sam local command provides tooling for locally testing serverless applications. It has four commands available.

  1. sam local invoke: Invokes an AWS Lambda function locally once and quits after the invocation is complete. This is great for testing asynchronous invocations from services like Amazon S3 or Amazon EventBridge. Invoke allows you to pass parameters for environment settings, event sources, debugging, Docker network settings, and more.
  2. sam local start-api: Invokes a Lambda function using a local emulation of an Amazon API Gateway REST API. Using a Docker container, the service starts and listens on a specific port allowing you to repeatedly invoke the Lambda function via an HTTP request. Like invoke, start-api allows you to set flags for request and configuration data.
  3. sam local start-lambda: Starts a service that emulates Lambda, allowing you to test Lambda function invocations from the AWS CLI or an SDK. Using a Docker container, the service starts and listens on a specific port. It is available for repeated testing invocations.
  4. sam local generate-event: Generates a mock event to use with the local invocation commands. This is useful if you are working with an asynchronous service call and need to understand what the event looks like. Here is an example of a generated Amazon S3 put event:

Demonstration of sam local generate

Build

The sam build command provides contextual build capabilities based on the selected runtime. The build process prepares the code and dependencies into a deployable artifact and updates the AWS SAM template accordingly. While the build process has been around since the AWS SAM CLI was created, new features have been added for the general release. These features are covered in depth later in this post.

Deploy

The sam deploy command packages and deploys a serverless application with the following steps:

  1. Compresses the application resources into a zip file and uploads to a AWS SAM-managed S3 bucket. AWS SAM creates the S3 bucket if it does not exist and uses it for any other applications in the same Region.
  2. AWS SAM calls AWS CloudFormation with an updated AWS SAM template and requests a new CloudFormation change set be created.
  3. If the change set is valid, CloudFormation then creates or updates the application resources as needed.

The first time you run sam deploy, it is recommended you use the -g or –guided flag. This indicates to the AWS SAM CLI that the deployment configurations must be set or updated.

Demonstration of sam deploy with guided option on

By using the guided deploy, you are prompted for the required application and configuration information. You also have the option to save the information to a configuration file for subsequent deployments.

Package

The sam package command is generally only required in a continuous integration and continuous delivery (CI/CD) scenario, where the deployment is not handled by sam deploy.

This command expedites the process of packaging the deployment artifacts and uploading to an Amazon S3 bucket for deployment by CloudFormation. This command compresses the application resources referenced in the AWS SAM template and uploads to the specified S3 bucket. It then outputs a new AWS SAM template with the updated resource location for deployment.

Publish

The sam publish command enables you to publish applications to the AWS Serverless Application Repository. This command expects the AWS SAM template to include application metadata required for publishing. You can use the same build and package tools to prepare the artifacts.

Logs

The sam logs command enables you to explore Amazon CloudWatch Logs for a deployed Lambda function. You can identify the function by the stack name and logical identifier of the function, or directly by the physical name of the Lambda function. You can filter the results by start time, end time, and keywords. You can also add the -t or –tail flag to have AWS SAM fetch new logs as they become available.

Demonstration of sam logs

Validate

The sam validate command validates a AWS SAM template file. This allows you to quickly identify template errors before sending to CloudFormation.

New features with GA

In preparation for the this release, the tooling team is making improvements to the build process for Lambda functions and Lambda Layers.

Building Lambda functions

When creating Lambda functions in AWS SAM templates, you now have an optional MetaData parameter with a nested parameter called BuildMethod. The build method can be set to a supported runtime (node12.x, java11, etc.) and AWS SAM uses the default build process for the selected runtime. The BuildMethod can also be set to makefile, which allows a MakeFile to customize the build for supported runtimes or automate the build for custom runtimes.

Demonstration of a Lambda function with the makefile build option

Building Lambda Layers

Lambda layers also benefit from the new build process as well. Previously, a Lambda Layer had to be fully built and packaged to deploy, and the files had to be structured according to runtimes.

Demonstration of the old layer structure

With the new AWS SAM CLI build, a layer only needs to contain the manifest file. AWS SAM build fetches the dependencies and builds the layer for deployment. AWS SAM build for layers works with all runtimes supported by AWS SAM build.

Demonstration of the updated layer structure

A new Docker container image

With the general availability of the AWS SAM CLI, sam local commands now use an AWS managed Docker image. Previously, AWS SAM used the docker-lambda image created and maintained by AWS Serverless Hero, Michael Hart (@hichaelmart). The AWS Serverless team thanks Michael for his tireless work on this project and for his unfailing leadership and support in the serverless space. We also appreciate how Michael selflessly worked with us to make our new container images a reality.

What does GA mean?

The term generally available means that the software is no longer considered in beta and is released as stable, from version 1.0.0. It also means that the team is actively building new features and security updates on a regular cadence.

Chart explaining three code versions

After this launch, for any major version updates, AWS will first release a beta and then promote to the stable version. The stable version is used for non-breaking feature updates and the beta version is used for any breaking changes. The old major version will be supported in maintenance mode for a period of time. Today’s v1.0.0 release is the first stable version. The following semantic version patterns are used:

  1. MAJOR version for incompatible changes (1.0.0)
  2. MINOR version for functionality in a backward compatible manner (1.1.0)
  3. PATCH version for backward compatible bug fixes and security updates (1.1.1)

Today’s v1.0.0 release marks the first stable version.

Conclusion

AWS SAM CLI is a powerful tool for accelerating serverless development and helping developers improve their time to market. Now that AWS SAM CLI is generally available, we continue to add features and make service improvements that are generally available as well. As always, your feedback is important to us. If you have ideas or comments, submit an issue at https://github.com/awslabs/aws-sam-cli.

Now, build something serverless!