Tag Archives: Developer Tools

Find Your Most Expensive Lines of Code – Amazon CodeGuru Is Now Generally Available

Post Syndicated from Danilo Poccia original https://aws.amazon.com/blogs/aws/find-your-most-expensive-lines-of-code-amazon-codeguru-is-now-generally-available/

Bringing new applications into production, maintaining their code base as they grow and evolve, and at the same time respond to operational issues, is a challenging task. For this reason, you can find many ideas on how to structure your teams, on which methodologies to apply, and how to safely automate your software delivery pipeline.

At re:Invent last year, we introduced in preview Amazon CodeGuru, a developer tool powered by machine learning that helps you improve your applications and troubleshoot issues with automated code reviews and performance recommendations based on runtime data. During the last few months, many improvements have been launched, including a more cost-effective pricing model, support for Bitbucket repositories, and the ability to start the profiling agent using a command line switch, so that you no longer need to modify the code of your application, or add dependencies, to run the agent.

You can use CodeGuru in two ways:

  • CodeGuru Reviewer uses program analysis and machine learning to detect potential defects that are difficult for developers to find, and recommends fixes in your Java code. The code can be stored in GitHub (now also in GitHub Enterprise), AWS CodeCommit, or Bitbucket repositories. When you submit a pull request on a repository that is associated with CodeGuru Reviewer, it provides recommendations for how to improve your code. Each pull request corresponds to a code review, and each code review can include multiple recommendations that appear as comments on the pull request.
  • CodeGuru Profiler provides interactive visualizations and recommendations that help you fine-tune your application performance and troubleshoot operational issues using runtime data from your live applications. It currently supports applications written in Java virtual machine (JVM) languages such as Java, Scala, Kotlin, Groovy, Jython, JRuby, and Clojure. CodeGuru Profiler can help you find the most expensive lines of code, in terms of CPU usage or introduced latency, and suggest ways you can improve efficiency and remove bottlenecks. You can use CodeGuru Profiler in production, and when you test your application with a meaningful workload, for example in a pre-production environment.

Today, Amazon CodeGuru is generally available with the addition of many new features.

In CodeGuru Reviewer, we included the following:

  • Support for Github Enterprise – You can now scan your pull requests and get recommendations against your source code on Github Enterprise on-premises repositories, together with a description of what’s causing the issue and how to remediate it.
  • New types of recommendations to solve defects and improve your code – For example, checking input validation, to avoid issues that can compromise security and performance, and looking for multiple copies of code that do the same thing.

In CodeGuru Profiler, you can find these new capabilities:

  • Anomaly detection – We automatically detect anomalies in the application profile for those methods that represent the highest proportion of CPU time or latency.
  • Lambda function support – You can now profile AWS Lambda functions just like applications hosted on Amazon Elastic Compute Cloud (EC2) and containerized applications running on Amazon ECS and Amazon Elastic Kubernetes Service, including those using AWS Fargate.
  • Cost of issues in the recommendation report – Recommendations contain actionable resolution steps which explain what the problem is, the CPU impact, and how to fix the issue. To help you better prioritize your activities, you now have an estimation of the savings introduced by applying the recommendation.
  • Color-my-code – In the visualizations, to help you easily find your own code, we are coloring your methods differently from frameworks and other libraries you may use.
  • CloudWatch metrics and alerts – To keep track and monitor efficiency issues that have been discovered.

Let’s see some of these new features at work!

Using CodeGuru Reviewer with a Lambda Function
I create a new repo in my GitHub account, and leave it empty for now. Locally, where I am developing a Lambda function using the Java 11 runtime, I initialize my Git repo and add only the README.md file to the master branch. In this way, I can add all the code as a pull request later and have it go through a code review by CodeGuru.

git init
git add README.md
git commit -m "First commit"

Now, I add the GitHub repo as origin, and push my changes to the new repo:

git remote add origin https://github.com/<my-user-id>/amazon-codeguru-sample-lambda-function.git
git push -u origin master

I associate the repository in the CodeGuru console:

When the repository is associated, I create a new dev branch, add all my local files to it, and push it remotely:

git checkout -b dev
git add .
git commit -m "Code added to the dev branch"
git push --set-upstream origin dev

In the GitHub console, I open a new pull request by comparing changes across the two branches, master and dev. I verify that the pull request is able to merge, then I create it.

Since the repository is associated with CodeGuru, a code review is listed as Pending in the Code reviews section of the CodeGuru console.

After a few minutes, the code review status is Completed, and CodeGuru Reviewer issues a recommendation on the same GitHub page where the pull request was created.

Oops! I am creating the Amazon DynamoDB service object inside the function invocation method. In this way, it cannot be reused across invocations. This is not efficient.

To improve the performance of my Lambda function, I follow the CodeGuru recommendation, and move the declaration of the DynamoDB service object to a static final attribute of the Java application object, so that it is instantiated only once, during function initialization. Then, I follow the link in the recommendation to learn more best practices for working with Lambda functions.

Using CodeGuru Profiler with a Lambda Function
In the CodeGuru console, I create a MyServerlessApp-Development profiling group and select the Lambda compute platform.

Next, I give the AWS Identity and Access Management (IAM) role used by my Lambda function permissions to submit data to this profiling group.

Now, the console is giving me all the info I need to profile my Lambda function. To configure the profiling agent, I use a couple of environment variables:

  • AWS_CODEGURU_PROFILER_GROUP_ARN to specify the ARN of the profiling group to use.
  • AWS_CODEGURU_PROFILER_ENABLED to enable (TRUE) or disable (FALSE) profiling.

I follow the instructions (for Maven and Gradle) to add a dependency, and include the profiling agent in the build. Then, I update the code of the Lambda function to wrap the handler function inside the LambdaProfiler provided by the agent.

To generate some load, I start a few scripts invoking my function using the Amazon API Gateway as trigger. After a few minutes, the profiling group starts to show visualizations describing the runtime behavior of my Lambda function.

For example, I can see how much CPU time is spent in the different methods of my function. At the bottom, there are the entry point methods. As I scroll up, I find methods that are called deeper in the stack trace. I right-click and hide the LambdaRuntimeClient methods to focus on my code. Note that my methods are colored differently than those in the packages I am using, such as the AWS SDK for Java.

I am mostly interested in what happens in the handler method invoked by the Lambda platform. I select the handler method, and now it becomes the new “base” of the visualization.

As I move my pointer on each of my methods, I get more information, including an estimation of the yearly cost of running that specific part of the code in production, based on the load experienced by the profiling agent during the selected time window. In my case, the handler function cost is estimated to be $6. If I select the two main functions above, I have an estimation of $3 each. The cost estimation works for code running on Lambda functions, EC2 instances, and containerized applications.

Similarly, I can visualize Latency, to understand how much time is spent inside the methods in my code. I keep the Lambda function handler method selected to drill down into what is under my control, and see where time is being spent the most.

The CodeGuru Profiler is also providing a recommendation based on the data collected. I am spending too much time (more than 4%) in managing encryption. I can use a more efficient crypto provider, such as the open source Amazon Corretto Crypto Provider, described in this blog post. This should lower the time spent to what is expected, about 1% of my profile.

Finally, I edit the profiling group to enable notifications. In this way, if CodeGuru detects an anomaly in the profile of my application, I am notified in one or more Amazon Simple Notification Service (SNS) topics.

Available Now
Amazon CodeGuru is available today in 10 regions, and we are working to add more regions in the coming months. For regional availability, please see the AWS Region Table.

CodeGuru helps you improve your application code and reduce compute and infrastructure costs with an automated code reviewer and application profiler that provide intelligent recommendations. Using visualizations based on runtime data, you can quickly find the most expensive lines of code of your applications. With CodeGuru, you pay only for what you use. Pricing is based on the lines of code analyzed by CodeGuru Reviewer, and on sampling hours for CodeGuru Profiler.

To learn more, please see the documentation.


AWS CodeArtifact and your package management flow – Best Practices for Integration

Post Syndicated from John Standish original https://aws.amazon.com/blogs/devops/integrating-aws-codeartifact-package-mgmt-flow/

You often use artifact repositories to store and share software or deployment packages. Centralized artifacts enable teams to operate independently and share versioned software artifacts across your organization. Sharing versioned artifacts across organizations increases code reuse and reduces delivery time. Having a central artifact store enables tighter artifact governance and improves security visibility. This post uses some of these patterns to show you how to integrate AWS CodeArtifact in an effective, cost-controlled, and efficient manner.

AWS CodeArtifact Diagram

AWS CodeArtifact Service Usage

AWS CodeArtifact concepts

AWS CodeArtifact uses the following elements:

  • Asset – An individual file stored in AWS CodeArtifact that is associated with a package version, such as an npm .tgz file or Maven POM and JAR files
  • Package – A package is a bundle of software and the metadata that is required to resolve dependencies and install the software. AWS CodeArtifact supports npmPyPI, and Maven package formats.
  • Repository – An CodeArtifact repository contains a set of package versions, each of which maps to a set of assets. Repositories are polyglot—a single repository can contain packages of any supported type. Each repository exposes endpoints for fetching and publishing packages using tools like the npm CLI, the Maven CLI (mvn), and pip.
  • Domain – Repositories are aggregated into a higher-level entity known as a domain. The domain allows organizational policy to be applied across multiple repositories. A domain deduplicates storage of the repositories packages.

Creating a domain based on organizational ownership

When you create a domain in CodeArtifact, it’s important to organize the domain by ownership within the organization. An example would be a a company being a domain, and the products being repositories. Domains allow you to apply organizational policies across multiple repositories. Generally we recommend creating one domain per company. In some cases it may also be beneficial to have a sandbox domain where prototype repositories reside. In a sandbox domain teams are at liberty to create their own repositories and experiment as needed, without affecting product deliverable assets. Using a sandbox domain will duplicate packages, isolate repositories since you can not copy packages between domains, and increase costs since package deduplication is handle at the domain level. Organizing packages by domain ownership increases the cache hits on a package within the domain and reduces cost for each subsequent package fetch request.

Whenever a package is fetched from a repository, the asset is cached in your CodeArtifact domain to minimize the cost of subsequent downstream requests. A given asset only needs to be stored once in a domain, even if it’s available in two—or two thousand—repositories. That means you only pay for storage once. Copying a package version with the CopyPackageVersions API is only possible between repositories within the same CodeArtifact domain.

You can create a domain for your organization by calling create-domain in the AWS Command Line Interface (AWS CLI), AWS SDK, or on the CodeArtifact console. See the following code:

aws codeartifact create-domain --domain "my-org"

After creating the domain you will see the domains listed in the Domains section on the CodeArtifact console.

AWS CodeArtifact domains per governing organization

Organizing packages by domain ownership

Using a shared repository

A shared repository is applicable when a team feels that a component is useful to the rest of the organization and isn’t in an experimental state, personal project, and not meant for wide distribution within the organization. Examples of shared components are open source public repositories (npm, PyPI, and Maven), authentication, logging, or helper libraries. Shared libraries aren’t related to product libraries; for instance, a service contract library shouldn’t live in a shared repository. The shared repository should be marked read-only to all users except for the publishing IAM role. At Amazon, we have found that many teams want to consume common packages as part of their application build, and don’t need to publish any package themselves. Those teams don’t need their own repository and pull packages from shared. Overall, approximately 80% of packages are downloaded from the shared repository, and 20% from team or project specific repositories.

You can create a shared repository by calling the create-repository command and setting a resource policy that makes the repository read-only.

Here is how you create a repository with the AWS CLI using the create-repository command. See the following code:

aws codeartifact create-repository --domain "my-org" \
--domain-owner "account-id" --repository "my-shared-repo-name" \
--description "My new repository"

Next you make the repository read-only by setting a resource policy. See the following code:

    "Version": "2012-10-17",
    "Statement": [
            "Action": [
            "Effect": "Allow",
            "Principal": {
                "AWS": "arn:aws:iam::444455556666:root"
            "Resource": "*"

To attach a resource polcicy to a repository by calling the put-repository-permissions command. See the following code:

aws codeartifact put-repository-permissions-policy --domain "my-org" \
--domain-owner "account-id" --repository "my-shared-repo-name" \
--policy-document file:///PATH/TO/policy.json

When you have created the repository, you will see it listed in the Repositories section on the CodeArtifact console.

A list of shared repositories in AWS CodeArtifact

Shared repositories in AWS CodeArtifact

External repository connections

CodeArtifact enables you to set external repository connections and replicate them within CodeArtifact. An external connection reduces the downstream dependency on the remote external repository. When you request a package from the CodeArtifact repository that’s not already present in the repository, the package can be fetched from the external connection. This makes it possible to consume open-source dependencies used by your application. Using an external connection reduces interruption in your development process for package external dependencies, an example is if a package is removed from a public repository, you will still have a copy of the package stored in CodeArtifact. You should have a one-to-one mapping with external repositories, and rather than have multiple CodeArtifact repositories pointing to the same public repository. Each asset that CodeArtifact imports into your repository from a public repository is billed as a single request, and each connection must reconcile and fetch the package before the response is returned. By having a one-to-one mapping, you can increase cache hits, reduces time to download an application dependency from CodeArtifact, and reduce the number of external package resolution requests. Associating an external repository connection with your repository is done using the associate-external-connection command. See the following code:

aws codeartifact associate-external-connection \
--domain "my-org" --domain-owner "account-id" \
--repository "my-external-repo" --external-connection public:npmjs

Once you have associated an external connection with your repository, you’ll see the external connection visible in the Repositories section detail. In this example we’ve connected the repository to the external npmjs repository.

External connection to npmjs with AWS CodeArtifact repositories

External connection to npmjs for an AWS CodeArtifact repository

Team and product repositories

When working in distributed teams, you often align repositories to the product or service ownership. Teams working on there own repository can update as needed. An example would be creating a private package that your team only uses internally.

See the following code:

aws codeartifact create-repository --domain my-org \
--domain-owner account-id --repository my-team-repo \
--description "My new team repository"

As team’s develop against the package they will need to publish their changes to the repository. As part of your development pipeline you would publish the package to the repository. See the following code for an example:

# Log in to CodeArtifact
aws codeartifact login --tool npm \
--domain "my-org" --domain-owner "account-id" \
--repository "my-team-repo"

# Run build commands here

# Set $VERSION from your build system
npm version $VERSION

# Publish to CodeArtifact
npm publish

After testing the feature and you find that it will be usable across your organization, you can copy the package into your shared repository. See the following code:

# Promoting to a shared repo
aws codeartifact copy-package-versions --domain "my-org" \
--domain-owner "account-id" --source-repository "my-team-repo" \
--destination-repository "my-shared-repo" \
--package my-package --format npm \
--versions '["6.0.2"]'

Once you’ve created your shared repository you will see the repositories updated as shown here.

Team and product repositories in AWS CodeArtifact

Team and product repositories

Sharing repositories across accounts

Often teams or workloads have separate accounts within an organization. This is a recommended practice because it clearly defines operational boundaries and domain of ownership and establishes security boundaries. If your organization uses a multi-account strategy, you can share repositories across accounts using CodeArtifact resource policy. Teams can develop in their own account and publish to a CodeArtifact repository controlled in a shared account.

Here you see a list of repositories, which includes both a shared and team repository.

Cross account sharing of AWS CodeArtifact repositories

Cross account sharing of AWS CodeArtifact repositories

Using Amazon CloudWatch Events when a package is pushed

When a package is pushed into a repository, its change can affect software dependencies, teams, or process dependencies. When an artifact is pushed to CodeArtifact, an Amazon CloudWatch Events event is triggered, which you can trigger additional functionality. You can react to these events by subscribing to a CodeArtifact event in Amazon EventBridge. Some examples of reactions to a change you could take are: checking dependencies, deploying dependent services, notifying teams or services of a change, or building the dependencies.

You can also use EventBridge to start a pipeline in AWS CodePipeline, notify an Amazon Simple Notification Service (Amazon SNS) topic, and have that call AWS Chatbot. For more information see, CodeArtifact event format and example. If you are looking to integrate AWS Chatbot into your delivery flow, see Receive AWS Developer Tools Notifications over Slack using AWS Chatbot.

Deploying code in a hybrid environment

You can enable seamless software deployment into AWS and on-premises environments by integrating CodeArtifact with software build and deployment services. You can use CodeArtifact with your existing development pipeline tooling such as NPM, Python, and Maven. With native support for these package managers, you can access CodeArtifact wherever you operate today.

First, log in to CodeArtifact, build your code, and finally publish using npm publish with the following code:

# Log in to CodeArtifact 
aws codeartifact login --tool npm \
--domain "my-org" --domain-owner "account-id" \
--repository "my-team-repo"

# Run build commands here 

# Set $VERSION from your build system 
npm version $VERSION 

# Publish to CodeArtifact 
npm publish

Cleaning Up

When you’re ready to clean up the repositories and domains you’ve created, you’ll need to remove them in a specific order. Please be aware that deleting a repository is a destructive action which will remove any stored packages. To delete a domain and delete a repository created from the previous sections in this blog, you will be using the delete-domain and delete-repository commands.

You will need to remove the domain and repository in the following order:

  1. Remove any repositories in a domain
  2. Remove the domain

To delete the repository and domain, see the following code:

# Delete the repository
aws codeartifact delete-repository --domain "my-org" --domain-owner "account-id" --repository "my-team-repo"

# Delete the domain
aws codeartifact delete-domain --domain "my-org" --domain-owner "account-id"


This post covered how to integrate CodeArtifact into your delivery flow and use CodeArtifact effectively. A shared repository approach aides in creating reusable components across your organization. Using team repositories and promoting to a consumable repository allows your teams to iterate independently. For more information, see Getting started with CodeArtifact.

About the Author

John Standish

John Standish is a Solutions Architect at AWS and spent over 13 years as a Microsoft .Net developer. Outside of work, he enjoys playing video games, cooking, and watching hockey.

Yogesh Chaturvedi

Yogesh Chaturvedi is a Solutions Architect at AWS and has over 20 years of software development and architecture experience.


Introducing the new Serverless LAMP stack

Post Syndicated from Benjamin Smith original https://aws.amazon.com/blogs/compute/introducing-the-new-serverless-lamp-stack/

This is the first in a series of posts for PHP developers. The series will explain how to use serverless technologies with PHP. It covers the available tools, frameworks and strategies to build serverless applications, and why now is the right time to start.

In future posts, I demonstrate how to use AWS Lambda for web applications built with PHP frameworks such as Laravel and Symphony. I show how to move from using Lambda as a replacement for web hosting functionality to a decoupled, event-driven approach. I cover how to combine multiple Lambda functions of minimal scope with other serverless services to create performant scalable microservices.

In this post, you learn how to use PHP with Lambda via the custom runtime API. Visit this GitHub repository for the sample code.

The Serverless LAMP stack

The Serverless LAMP stack

The challenges with traditional PHP applications

Scalability is an inherent challenge with the traditional LAMP stack. A scalable application is one that can handle highly variable levels of traffic. PHP applications are often scaled horizontally, by adding more web servers as needed. This is managed via a load balancer, which directs requests to various web servers. Each additional server brings additional overhead with networking, administration, storage capacity, backup and restore systems, and an update to asset management inventories. Additionally, each horizontally scaled server runs independently. This can result in configuration synchronization challenges.

Horizontal scaling with traditional LAMP stack applications.

Horizontal scaling with traditional LAMP stack applications.

New storage challenges arise as each server has its own disks and filesystem, often requiring developers to add a mechanism to handle user sessions. Using serverless technologies, scalability is managed for the developer.

If traffic surges, the services scale to meet the demand without having to deploy additional servers. This allows applications to quickly transition from prototype to production.

The serverless LAMP architecture

A traditional web application can be split in to two components:

  • The static assets (media files, css, js)
  • The dynamic application (PHP, MySQL)

A serverless approach to serving these two components is illustrated below:

The serverless LAMP stack

The serverless LAMP stack

All requests for dynamic content (anything excluding /assets/*) are forwarded to Amazon API Gateway. This is a fully managed service for creating, publishing, and securing APIs at any scale. It acts as the “front door” to the PHP application, routing requests downstream to Lambda functions. The Lambda functions contain the business logic and interaction with the MySQL database. You can pass the input to the Lambda function as any combination of request headers, path variables, query string parameters, and body.

Notable AWS features for PHP developers

Amazon Aurora Serverless

During re:Invent 2017, AWS announced Aurora Serverless, an on-demand serverless relational database with a pay-per-use cost model. This manages the responsibility of relational database provisioning and scaling for the developer.

Lambda Layers and custom runtime API.

At re:Invent 2018, AWS announced two new Lambda features. These enable developers to build custom runtimes, and share and manage common code between functions.

Improved VPC networking for Lambda functions.

In September 2019, AWS announced significant improvements in cold starts for Lambda functions inside a VPC. This results in faster function startup performance and more efficient usage of elastic network interfaces, reducing VPC cold starts.

Amazon RDS Proxy

At re:Invent 2019, AWS announced the launch of a new service called Amazon RDS Proxy. A fully managed database proxy that sits between your application and your relational database. It efficiently pools and shares database connections to improve the scalability of your application.


Significant moments in the serverless LAMP stack timeline

Significant moments in the serverless LAMP stack timeline

Combining these services, it is now it is possible to build secure and performant scalable serverless applications with PHP and relational databases.

Custom runtime API

The custom runtime API is a simple interface to enable Lambda function execution in any programming language or a specific language version. The custom runtime API requires an executable text file called a bootstrap. The bootstrap file is responsible for the communication between your code and the Lambda environment.

To create a custom runtime, you must first compile the required version of PHP in an Amazon Linux environment compatible with the Lambda execution environment .To do this, follow these step-by-step instructions.

The bootstrap file

The file below is an example of a basic PHP bootstrap file. This example is for explanation purposes as there is no error handling or abstractions taking place. To ensure that you handle exceptions appropriately, consult the runtime API documentation as you build production custom runtimes.


// This invokes Composer's autoloader so that we'll be able to use Guzzle and any other 3rd party libraries we need.
require __DIR__ . '/vendor/autoload.php;

// This is the request processing loop. Barring unrecoverable failure, this loop runs until the environment shuts down.
do {
    // Ask the runtime API for a request to handle.
    $request = getNextRequest();

    // Obtain the function name from the _HANDLER environment variable and ensure the function's code is available.
    $handlerFunction = array_slice(explode('.', $_ENV['_HANDLER']), -1)[0];
    require_once $_ENV['LAMBDA_TASK_ROOT'] . '/src/' . $handlerFunction . '.php;

    // Execute the desired function and obtain the response.
    $response = $handlerFunction($request['payload']);

    // Submit the response back to the runtime API.
    sendResponse($request['invocationId'], $response);
} while (true);

function getNextRequest()
    $client = new \GuzzleHttp\Client();
    $response = $client->get('http://' . $_ENV['AWS_LAMBDA_RUNTIME_API'] . '/2018-06-01/runtime/invocation/next');

    return [
      'invocationId' => $response->getHeader('Lambda-Runtime-Aws-Request-Id')[0],
      'payload' => json_decode((string) $response->getBody(), true)

function sendResponse($invocationId, $response)
    $client = new \GuzzleHttp\Client();
    'http://' . $_ENV['AWS_LAMBDA_RUNTIME_API'] . '/2018-06-01/runtime/invocation/' . $invocationId . '/response',
       ['body' => $response]

The #!/opt/bin/php declaration instructs the program loader to use the PHP binary compiled for Amazon Linux.

The bootstrap file performs the following tasks, in an operational loop:

  1. Obtains the next request.
  2. Executes the code to handle the request.
  3. Returns a response.

Follow these steps to package the bootstrap and compiled PHP binary together into a `runtime.zip`.

Libraries and dependencies

The runtime bootstrap uses an HTTP-based local interface. This retrieves the event payload for each Lambda function invocation and returns back the response from the function. This bootstrap file uses Guzzle, a popular PHP HTTP client, to make requests to the custom runtime API. The Guzzle package is installed using Composer package manager. Installing packages in this way creates a mechanism for incorporating additional libraries and dependencies as the application evolves.

Follow these steps to create and package the runtime dependencies into a `vendors.zip` binary.

Lambda Layers provides a mechanism to centrally manage code and data that is shared across multiple functions. When a Lambda function is configured with a layer, the layer’s contents are put into the /opt directory of the execution environment. You can include a custom runtime in your function’s deployment package, or as a layer. Lambda executes the bootstrap file in your deployment package, if available. If not, Lambda looks for a runtime in the function’s layers. There are several open source PHP runtime layers available today, most notably:

The following steps show how to publish the `runtime.zip` and `vendor.zip` binaries created earlier into Lambda layers and use them to build a Lambda function with a PHP runtime:

  1.  Use the AWS Command Line Interface (CLI) to publish layers from the binaries created earlier
    aws lambda publish-layer-version \
        --layer-name PHP-example-runtime \
        --zip-file fileb://runtime.zip \
        --region eu-west-1

    aws lambda publish-layer-version \
        --layer-name PHP-example-vendor \
        --zip-file fileb://vendors.zip \
        --region eu-west-1

  2. Make note of each command’s LayerVersionArn output value (for example arn:aws:lambda:eu-west-1:XXXXXXXXXXXX:layer:PHP-example-runtime:1), which you’ll need for the next steps.

Creating a PHP Lambda function

You can create a Lambda function via the AWS CLI, the AWS Serverless Application Model (SAM), or directly in the AWS Management Console. To do this using the console:

  1. Navigate to the Lambda section  of the AWS Management Console and choose Create function.
  2. Enter “PHPHello” into the Function name field, and choose Provide your own bootstrap in the Runtime field. Then choose Create function.
  3. Right click on bootstrap.sample and choose Delete.
  4. Choose the layers icon and choose Add a layer.
  5. Choose Provide a layer version ARN, then copy and paste the ARN of the custom runtime layer from in step 1 into the Layer version ARN field.
  6. Repeat steps 6 and 7 for the vendor ARN.
  7. In the Function Code section, create a new folder called src and inside it create a new file called index.php.
  8. Paste the following code into index.php:
    //index function
    function index($data)
     return "Hello, ". $data['name'];
  9. Insert “index” into the Handler input field. This instructs Lambda to run the index function when invoked.
  10. Choose Save at the top right of the page.
  11. Choose Test at the top right of the page, and  enter “PHPTest” into the Event name field. Enter the following into the event payload field and then choose Create:{ "name": "world"}
  12. Choose Test and Select the dropdown next to the execution result heading.

You can see that the event payload “name” value is used to return “hello world”. This is taken from the $data['name'] parameter provided to the Lambda function. The log output provides details about the actual duration, billed duration, and amount of memory used to execute the code.


This post explains how to create a Lambda function with a PHP runtime using Lambda Layers and the custom runtime API. It introduces the architecture for a serverless LAMP stack that scales with application traffic.

Lambda allows for functions with mixed runtimes to interact with each other. Now, PHP developers can join other serverless development teams focusing on shipping code. With serverless technologies, you no longer have to think about restarting webhosts, scaling or hosting.

Start building your own custom runtime for Lambda.

Simplifying application orchestration with AWS Step Functions and AWS SAM

Post Syndicated from Rob Sutter original https://aws.amazon.com/blogs/compute/simplifying-application-orchestration-with-aws-step-functions-and-aws-sam/

Modern software applications consist of multiple components distributed across many services. AWS Step Functions lets you define serverless workflows to orchestrate these services so you can build and update your apps quickly. Step Functions manages its own state and retries when there are errors, enabling you to focus on your business logic. Now, with support for Step Functions in the AWS Serverless Application Model (AWS SAM), you can easily create, deploy, and maintain your serverless applications.

The most recent AWS SAM update introduces the AWS::Serverless::StateMachine component that simplifies the definition of workflows in your application. Because the StateMachine is an AWS SAM component, you can apply AWS SAM policy templates to scope the permissions of your workflows. AWS SAM also provides configuration options for invoking your workflows based on events or a schedule that you specify.

Defining a simple state machine

The simplest way to begin orchestrating your applications with Step Functions and AWS SAM is to install the latest version of the AWS SAM CLI.

Creating a state machine with AWS SAM CLI

To create a state machine with the AWS SAM CLI, perform the following steps:

  1. From a command line prompt, enter sam init
  2. Choose AWS Quick Start Templates
  3. Select nodejs12.x as the runtime
  4. Provide a project name
  5. Choose the Hello World Example quick start application template

Screen capture showing the first execution of sam init selecting the Hello World Example quick start application template

The AWS SAM CLI downloads the quick start application template and creates a new directory with sample code. Change into the sam-app directory and replace the contents of template.yaml with the following code:

# Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

    Type: AWS::Serverless::StateMachine
        StartAt: Single State
          Single State:
            Type: Pass
            End: true
        - CloudWatchPutMetricPolicy: {}

This is a simple yet complete template that defines a Step Functions Standard Workflow with a single Pass state. The Transform: AWS::Serverless-2016-10-31 line indicates that this is an AWS SAM template and not a basic AWS CloudFormation template. This enables the AWS::Serverless components and policy templates such as CloudWatchPutMetricPolicy on the last line, which allows you to publish metrics to Amazon CloudWatch.

Deploying a state machine with AWS SAM CLI

To deploy your state machine with the AWS SAM CLI:

  1. Save your template.yaml file
  2. Delete any function code in the directory, such as hello-world
  3. Enter sam deploy --guided into the terminal and follow the prompts
  4. Enter simple-state-machine as the stack name
  5. Select the defaults for the remaining prompts

Screen capture showing the first execution of sam deploy --guided

For additional information on visualizing, executing, and monitoring your workflow, see the tutorial Create a Step Functions State Machine Using AWS SAM.

Refining your workflow

The StateMachine component not only simplifies creation of your workflows, but also provides powerful control over how your workflow executes. You can compose complex workflows from all available Amazon States Language (ASL) states. Definition substitution allows you to reference resources. Finally, you can manage access permissions using AWS Identity and Access Management (IAM) policies and roles.

Service integrations

Step Functions service integrations allow you to call other AWS services directly from Task states. The following example shows you how to use a service integration to store information about a workflow execution directly in an Amazon DynamoDB table. Replace the Resources section of your template.yaml file with the following code:

    Type: AWS::Serverless::SimpleTable

    Type: AWS::Serverless::StateMachine
        StartAt: FirstState
            Type: Pass
            Next: Write to DynamoDB
          Write to DynamoDB:
            Type: Task
            Resource: arn:aws:states:::dynamodb:putItem
              TableName: !Ref SAMTable
                  S.$: $$.Execution.Id
            ResultPath: $.DynamoDB
            End: true
        - DynamoDBWritePolicy: 
            TableName: !Ref SAMTable

The AWS::Serverless::SimpleTable is an AWS SAM component that creates a DynamoDB table with on-demand capacity and reasonable defaults. To learn more, see the SimpleTable component documentation.

The Write to DynamoDB state is a Task with a service integration to the DynamoDB PutItem API call. The above code stores a single item with a field id containing the execution ID, taken from the context object of the current workflow execution.

Notice that DynamoDBWritePolicy replaces the CloudWatchPutMetricPolicy policy from the previous workflow. This is another AWS SAM policy template that provides write access only to a named DynamoDB table.

Definition substitutions

AWS SAM supports definition substitutions when defining a StateMachine resource. Definition substitutions work like template string substitution. First, you specify a Definition or DefinitionUri property of the StateMachine that contains variables specified in ${dollar_sign_brace} notation. Then you provide values for those variables as a map via the DefinitionSubstitution property.

The AWS SAM CLI provides a quick start template that demonstrates definition substitutions. To create a workflow using this template, perform the following steps:

  1. From a command line prompt in an empty directory, enter sam init
  2. Choose AWS Quick Start Templates
  3. Select your preferred runtime
  4. Provide a project name
  5. Choose the Step Functions Sample App (Stock Trader) quick start application template

Screen capture showing the execution of sam init selecting the Step Functions Sample App (Stock Trader) quick start application template

Change into the newly created directory and open the template.yaml file with your preferred text editor. Note that the Definition property is a path to a file, not a string as in your previous template. The DefinitionSubstitutions property is a map of key-value pairs. These pairs should match variables in the statemachine/stockTrader.asl.json file referenced under DefinitionUri.

      DefinitionUri: statemachine/stockTrader.asl.json
        StockCheckerFunctionArn: !GetAtt StockCheckerFunction.Arn
        StockSellerFunctionArn: !GetAtt StockSellerFunction.Arn
        StockBuyerFunctionArn: !GetAtt StockBuyerFunction.Arn
        DDBPutItem: !Sub arn:${AWS::Partition}:states:::dynamodb:putItem
        DDBTable: !Ref TransactionTable

Open the statemachine/stockTrader.asl.json file and look for the first state, Check Stock Value. The Resource property for this state is not a Lambda function ARN, but a replacement expression, “${StockCheckerFunctionArn}”. You see from DefinitionSubstitutions that this maps to the ARN of the StockCheckerFunction resource, an AWS::Serverless::Function also defined in template.yaml. AWS SAM CLI transforms these components into a complete, standard CloudFormation template at deploy time.

Separating the state machine definition into its own file allows you to benefit from integration with the AWS Toolkit for Visual Studio Code. With your state machine in a separate file, you can make changes and visualize your workflow within the IDE while still referencing it from your AWS SAM template.

Screen capture of a rendering of the AWS Step Functions workflow from the Step Functions Sample App (Stock Trader) quick start application template

Managing permissions and access

AWS SAM support allows you to apply policy templates to your state machines. AWS SAM policy templates provide pre-defined IAM policies for common scenarios. These templates appropriately limit the scope of permissions for your state machine while simultaneously simplifying your AWS SAM templates. You can also apply AWS managed policies to your state machines.

If AWS SAM policy templates and AWS managed policies do not suit your needs, you can also create inline policies or attach an IAM role. This allows you to tailor the permissions of your state machine to your exact use case.

Additional configuration

AWS SAM provides additional simplification for configuring event sources and logging.

Event sources

Event sources determine what events can start execution of your workflow. These sources can include HTTP requests to Amazon API Gateway REST APIs and Amazon EventBridge rules. For example, the below Events block creates an API Gateway REST API. Whenever that API receives an HTTP POST request to the path /request, it starts an execution of the state machine:

          Type: Api
            Method: POST
            Path: /request

Event sources can also start executions of your workflow on a schedule that you specify. The quick start template you created above provides the following example. When this event source is enabled, the workflow executes once every hour:

          Type: Schedule 
            Enabled: False
            Schedule: "rate(1 hour)"

Architecture diagram for the Step Functions Sample App (Stock Trader) quick start application template

To learn more about schedules as event sources, see the AWS SAM documentation on GitHub.


Both Standard Workflows and Express Workflows support logging execution history to CloudWatch Logs. To enable logging for your workflow, you must define an AWS::Logs::LogGroup and add a Logging property to your StateMachine definition. You also must attach an IAM policy or role that provides sufficient permissions to create and publish logs. The following code shows how to add logging to an existing workflow:

    Type: AWS::Logs::LogGroup

    Type: AWS::Serverless::StateMachine
      Definition: {…}
          - CloudWatchLogsLogGroup: 
              LogGroupArn: !GetAtt SAMLogs.Arn
        IncludeExecutionData: true
        Level: ALL
        - CloudWatchLogsFullAccess
      Type: EXPRESS



Step Functions workflows simplify orchestration of distributed services and accelerate application development. AWS SAM support for Step Functions compounds those benefits by helping you build, deploy, and monitor your workflows more quickly and more precisely. In this post, you learned how to use AWS SAM to define simple workflows and more complex workflows with service integrations. You also learned how to manage security permissions, event sources, and logging for your Step Functions workflows.

To learn more about building with Step Functions, see the AWS Step Functions playlist on the AWS Serverless YouTube channel. To learn more about orchestrating modern, event-driven applications with Step Functions, see the App 2025 playlist.

Now go build!

Deploying a serverless application using AWS CDK

Post Syndicated from Georges Leschener original https://aws.amazon.com/blogs/devops/deploying-a-serverless-application-using-aws-cdk/

There are multiple ways to deploy API endpoints, such as this example, in which you could use an application running on Amazon EC2 to demonstrate how to integrate Amazon ElastiCache with Amazon DocumentDB (with MongoDB capability). While the approach in this example help achieve great performance and reliability through the elasticity and the ability to scale up or down the number of EC2 instances in order to accommodate the load on the application, there is still however some operational overhead you still have to manage the EC2 instances yourself. One way of addressing the operational overhead issue and related costs could be to transform the application into a serverless architecture.

The example in this blog post uses an application that provides a similar use case, leveraging a serverless architecture showcasing some of the tools that are being leveraged by customers transitioning from lift-and-shift to building cloud-native applications. It uses Amazon API Gateway to provide the REST API endpoint connected to an AWS Lambda function to provide the business logic to read and write from an Amazon Aurora Serverless database. It also showcases the deployment of most of the infrastructure with the AWS Cloud Development Kit, known as the CDK. By moving your applications to cloud native architecture like the example showcased in this blog post, you will be able to realize a number of benefits including:

  • Fast and clean deployment of your application thereby achieving fast time to market
  • Reduce operational costs by serverless and managed services

Architecture Diagram

At the end of this blog, you have an AWS Cloud9 instance environment containing a CDK project which deploys an API Gateway and Lambda function. This Lambda function leverages a secret stored in your AWS Secrets Manager to read and write from your Aurora Serverless database through the data API, as shown in the following diagram.


Architecture diagram for deploying a serverless application using AWS CDK

This above architecture diagram showcases the resources to be deployed in your AWS Account

Through the blog post you will be creating the following resources:

  1. Deploy an Amazon Aurora Serverless database cluster
  2. Secure the cluster credentials in AWS Secrets Manager
  3. Create and populate your database in the AWS Console
  4. Deploy an AWS Cloud9 instance used as a development environment
  5. Initialize and configure an AWS Cloud Development Kit project including the definition of your Amazon API Gateway endpoint and AWS Lambda function
  6. Deploy an AWS CloudFormation template through the AWS Cloud Development Kit


In order to deploy the CDK application, there are a few prerequisites that need to be met:

  1. Create an AWS account or use an existing account.
  2. Install Postman for testing purposes

Amazon Aurora serverless cluster creation

To begin, navigate to the AWS console to create a new Amazon RDS database.

  1. Select Create Database from the Amazon RDS service.
  2. Select Standard Create under Choose a database creation method.
  3. Select Serverless under Database features.
  4. Select Amazon Aurora as the engine type under Engine options.
  5. Enter db-blog for your DB Cluster Identifier.
  6. Expand the Additional Connectivity section and select the Data API option. This functionality enables you to access Aurora Serverless with web services-based applications. It also allows you to use the query editor feature for Aurora Serverless in order to run SQL queries against your database instance.
  7. Leave the default selection for everything else and choose Create Database.

Your database instance is created in a single availability zone (AZ), but an Aurora Serverless database cluster has a capability known as automatic multi-AZ failover, which enables Aurora to recreate the database instance in a different AZ should the current database instance or the AZ become unavailable. The storage volume for the cluster is spread across multiple AZs, since Aurora separates computation capacity and storage. This allows for data to remain available even if the database instance or the associated AZ is affected by an outage.

Securing database credentials with AWS Secrets Manager

After creating the database instance, the next step is to store your secrets for your database in AWS Secrets Manager.

  • Navigate to AWS Secrets Manager, and select Store a New Secret.
  • Leave the default selection (Credentials for RDS database) for the secret type. Enter your database username and password and then select the radio button for the database you created in the previous step (in this example, db-blog), as shown in the following screenshot.

database search in aws secrets manager

  •  Choose Next.
  • Enter a name and optionally a description. For the name, make sure to add the prefix rds-db-credentials/ as shown in the following screenshot.

AWS Secrets Manager Store a new secret window

  • Choose Next and leave the default selection.
  • Review your settings on the last page and choose Store to have your secrets created and stored in AWS Secrets Manager, which you can now use to connect to your database.

Creating and populating your Amazon Aurora Serverless database

After creating the DB cluster, create the database instance; create your tables and populate them; and finally, test a connection to ensure that you can query your database.

  • Navigate to the Amazon RDS service from the AWS console, and select your db-blog database cluster.
  • Select Query under Actions to open the Connect to database window as shown in the screenshot below . Enter your database connection details. You can copy your secret manager ARN from the Secrets Manager service and paste it into the corresponding field in the database connection window.

Amazon RDS connect to database window

  • To create the DB instance run the following SQL query: CREATE DATABASE recordstore;from the Query editor shown in the screenshot below:


Amazon RDS Query editor

  • Before you can run the following commands, make sure you are using the Recordstore database you just created by running the command:
USE recordstore;
  • Create a records table using the following command:
CREATE TABLE IF NOT EXISTS records (recordid INT PRIMARY KEY, title VARCHAR(255) NOT NULL, release_date DATE);
  • Create a singers table using the following command:
  • Add a record to your records table and a singer to your singers table.
INSERT INTO records(recordid,title,release_date) VALUES(001,'Liberian Girl','2012-05-03');
INSERT INTO singers(id,name,nationality,recordid) VALUES(100,'Michael Jackson','American',001);

If you have the AWS CLI set up on your computer, you can connect to your database and retrieve records.

To test it, use the rds-data execute-statement API within the AWS CLI to connect to your database via the data API web service and query the singers table, as shown below:

aws rds-data execute-statement —secret-arn "arn:aws:secretsmanager:REGION:xxxxxxxxxxx:secret:rds-db-credentials/xxxxxxxxxxxxxxx" —resource-arn "arn:aws:rds:us-east-1:xxxxxxxxxx:cluster:db-blog" —database demodb —sql "select * from singers" —output json

You should see the following result:

    "numberOfRecordsUpdated": 0,
    "records": [
                "longValue": 100
                "stringValue": "Michael Jackson"
                "stringValue": "American"
                "longValue": 1

Creating a Cloud9 instance

To create a Cloud9 instance:

  1. Navigate to the Cloud9 console and select Create Environment.
  2. Name your environment AuroraServerlessBlog.
  3. Keep the default values under the Environment Settings.

Once your instance is launched, you see the screen shown in the following screenshot:

AWS Cloud9


You can now install the CDK in your environment. Run the following command inside your bash terminal on the blue section at the bottom of your screen:

npm install -g [email protected]

For the next section of this example, you mostly work on the command line of your Cloud9 terminal and on your file explorer.

Creating the CDK deployment

The AWS Cloud Development Kit (AWS CDK) is an open-source software development framework to model and provision your cloud application resources using familiar programming languages. If you would like to familiarize yourself the CDKWorkshop is a great place to start.

First, create a working directory called RecordsApp and initialize a CDK project from a template.

Run the following commands:

mkdir RecordsApp
cd RecordsApp
cdk init app --language typescript
mkdir resources
npm install @aws-cdk/[email protected] @aws-cdk/[email protected] @aws-cdk/[email protected]

Now your instance should look like the example shown in the following screenshot:

AWS Cloud9 shell


You are mainly working in two directories:

  • Resources
  • Lib

Your initial set up is ready, and you can move into creating specific services and deploying them to your account.

Creating AWS resources using the CDK

  1. Follow these steps to create AWS resources using the CDK:
  2. Under the /lib folder,  create a new file called records_service.ts.
    • Inside of your new file, paste the following code with these changes:
    • Replace the dbARN with the ARN of your AuroraServerless DB ARN from the previous steps.

Replace the dbSecretARN with the ARN of your Secrets Manager secret ARN from the previous steps.

import core = require("@aws-cdk/core");
import apigateway = require("@aws-cdk/aws-apigateway");
import lambda = require("@aws-cdk/aws-lambda");
import iam = require("@aws-cdk/aws-iam");

const dbARN = "arn:aws:rds:XXXX:XXXX:cluster:aurora-serverless-blog";
const dbSecretARN = "arn:aws:secretsmanager:XXXXX:XXXXX:secret:rds-db-credentials/XXXXX";

export class RecordsService extends core.Construct {
  constructor(scope: core.Construct, id: string) {
    super(scope, id);

    const lambdaRole = new iam.Role(this, 'AuroraServerlessBlogLambdaRole', {
      assumedBy: new iam.ServicePrincipal('lambda.amazonaws.com'),
      managedPolicies: [

    const handler = new lambda.Function(this, "RecordsHandler", {
     role: lambdaRole,
     runtime: lambda.Runtime.NODEJS_12_X, // So we can use async in widget.js
     code: lambda.Code.asset("resources"),
     handler: "records.main",
     environment: {
       TABLE: dbARN,
       TABLESECRET: dbSecretARN,
       DATABASE: "recordstore"

    const api = new apigateway.RestApi(this, "records-api", {
      restApiName: "Records Service",
      description: "This service serves records."

    const getRecordsIntegration = new apigateway.LambdaIntegration(handler, {
      requestTemplates: { "application/json": '{ "statusCode": 200 }' }

    api.root.addMethod("GET", getRecordsIntegration); // GET /

    const record = api.root.addResource("{id}");
    const postRecordIntegration = new apigateway.LambdaIntegration(handler);
    const getRecordIntegration = new apigateway.LambdaIntegration(handler);

    record.addMethod("POST", postRecordIntegration); // POST /{id}
    record.addMethod("GET", getRecordIntegration); // GET/{id}

This snippet of code will instruct the AWS CDK to create the following resources:

  • IAM role: AuroraServerlessBlogLambdaRole containing the following managed policies:
    • AmazonRDSDataFullAccess
    • service-role/AWSLambdaBasicExecutionRole
  • Lambda function: RecordsHandler, which has a Node.js 8.10 runtime and three environmental variables
  • API Gateway: Records Service, which has the following characteristics:
    • GET Method
      • GET /
    • { id } Resource
      • GET method
        • GET /{id}
      • POST method
        • POST /{id}

Now that you have a service, you need to add it to your stack under the /lib directory.

  1. Open the records_app-stack.ts
  2. Replace the contents of this file with the following:
import cdk = require('@aws-cdk/core'); 
import records_service = require('../lib/records_service'); 
export class RecordsAppStack extends cdk.Stack { 
  constructor(scope: cdk.Construct, id: string, props?
: cdk.StackProps) { 
    super(scope, id, props); 
    new records_service.RecordsService(this, 'Records'
  1. Create the Lambda code that is invoked from the API Gateway endpoint. Under the /resources directory, create a file called records.js and paste the following code in this file
const AWS = require('aws-sdk');
var rdsdataservice = new AWS.RDSDataService();

exports.main = async function(event, context) {
  try {
    var method = event.httpMethod;
    var recordName = event.path.startsWith('/') ? event.path.substring(1) : event.path;
// Defining parameters for rdsdataservice
    var params = {
      resourceArn: process.env.TABLE,
      secretArn: process.env.TABLESECRET,
      database: process.env.DATABASE,
   if (method === "GET") {
      if (event.path === "/") {
       //Here is where we are defining the SQL query that will be run at the DATA API
       params['sql'] = 'select * from records';
       const data = await rdsdataservice.executeStatement(params).promise();
       var body = {
           records: data
       return {
         statusCode: 200,
         headers: {},
         body: JSON.stringify(body)
     else if (recordName) {
       params['sql'] = `SELECT singers.id, singers.name, singers.nationality, records.title FROM singers INNER JOIN records on records.recordid = singers.recordid WHERE records.title LIKE '${recordName}%';`
       const data = await rdsdataservice.executeStatement(params).promise();
       var body = {
           singer: data
       return {
         statusCode: 200,
         headers: {},
         body: JSON.stringify(body)
   else if (method === "POST") {
     var payload = JSON.parse(event.body);
     if (!payload) {
       return {
         statusCode: 400,
         headers: {},
         body: "The body is missing"

     //Generating random IDs
     var recordId = uuidv4();
     var singerId = uuidv4();

     //Parsing the payload from body
     var recordTitle = `${payload.recordTitle}`;
     var recordReleaseDate = `${payload.recordReleaseDate}`;
     var singerName = `${payload.singerName}`;
     var singerNationality = `${payload.singerNationality}`;

      //Making 2 calls to the data API to insert the new record and singer
      params['sql'] = `INSERT INTO records(recordid,title,release_date) VALUES(${recordId},"${recordTitle}","${recordReleaseDate}");`;
      const recordsWrite = await rdsdataservice.executeStatement(params).promise();
      params['sql'] = `INSERT INTO singers(recordid,id,name,nationality) VALUES(${recordId},${singerId},"${singerName}","${singerNationality}");`;
      const singersWrite = await rdsdataservice.executeStatement(params).promise();

      return {
        statusCode: 200,
        headers: {},
        body: JSON.stringify("Your record has been saved")

    // We got something besides a GET, POST, or DELETE
    return {
      statusCode: 400,
      headers: {},
      body: "We only accept GET, POST, and DELETE, not " + method
  } catch(error) {
    var body = error.stack || JSON.stringify(error, null, 2);
    return {
      statusCode: 400,
      headers: {},
      body: body
function uuidv4() {
  return 'xxxx'.replace(/[xy]/g, function(c) {
    var r = Math.random() * 16 | 0, v = c == 'x' ? r : (r & 0x3 | 0x8);
    return v;

Take a look at what this Lambda function is doing. You have two functions inside of your Lambda function. The first is the exported handler, which is defined as an asynchronous function. The second is a unique identifier function to generate four-digit random numbers you use as UIDs for your database records. In your handler function, you handle the following actions based on the event you get from API Gateway:

  • Method GETwith empty path /:
    • This calls the data API executeStatement method with the following SQL query:
SELECT * from records
  • Method GET with a record name in the path /{recordName}:
    • This calls the data API executeStatmentmethod with the following SQL query:
SELECT singers.id, singers.name, singers.nationality, records.title FROM singers INNER JOIN records on records.recordid = singers.recordid WHERE records.title LIKE '${recordName}%';
  • Method POST with a payload in the body:
    • This makes two calls to the data API executeStatement with the following SQL queries:
INSERT INTO records(recordid,titel,release_date) VALUES(${recordId},"${recordTitle}",“${recordReleaseDate}”);&lt;br /&gt;INSERT INTO singers(recordid,id,name,nationality) VALUES(${recordId},${singerId},"${singerName}","${singerNationality}");

Now you have all the pieces you need to deploy your endpoint and Lambda function by running the following commands:

npm run build
cdk synth
cdk bootstrap
cdk deploy

If you change the Lambda code or add aditional AWS resources to your CDK deployment, you can redeploy the application by running all four commands in a single line:

npm run build; cdk synth; cdk bootstrap; cdk deploy

Testing with Postman

Once it’s done, you can test it using Postman:

GET = ‘RecordName’ in the path

  • example:
    • ENDPOINT/RecordName

POST = Payload in the body

  • example:
   "recordTitle" : "BlogTest",
   "recordReleaseDate" : "2020-01-01",
   "singerName" : "BlogSinger",
   "singerNationality" : "AWS"

Clean up

To clean up the resources created by the CDK, run the following command in your Cloud9 instance:

cdk destroy

To clean up the resources created manually, run the following commands:

aws rds delete-db-cluster --db-cluster-identifier Serverless-blog --skip-final-snapshot
aws secretsmanager delete-secret --secret-id XXXXX --recovery-window-in-days 7


This blog post demonstrated how to transform an application running on Amazon EC2 from a previous blog into serverless architecture by leveraging services such as Amazon API Gateway, Lambda, Cloud 9, AWS CDK, and Aurora Serverless. The benefit of serverless architecture is that it takes away the overhead of having to manage a server and helps reduce costs, as you only pay for the time in which your code executes.

This example used a record-store application written in Node.js that allows users to find their favorite singer’s record titles, as well as the dates when they were released. This example could be expanded, for instance, by adding a payment gateway and a shopping cart to allow users to shop and pay for their favorite records. You could then incorporate some machine learning into the application to predict user choice based on previous visits, purchases, or information provided through registration profiles.



About the Authors

Luis Lopez Soria is an AI/ML specialist solutions architect working with the AWS machine learning team. He works with AWS customers to help them with the adoption of Machine Learning on a large scale. He enjoys doing sports in addition to traveling around the world, exploring new foods and cultures.




 Georges Leschener is a Partner Solutions Architect in the Global System Integrator (GSI) team at Amazon Web Services. He works with our GSIs partners to help migrate customers’ workloads to AWS cloud, design and architect innovative solutions on AWS by applying AWS recommended best practices.


Building and testing iOS and iPadOS apps with AWS DevOps and mobile services

Post Syndicated from Abdullahi Olaoye original https://aws.amazon.com/blogs/devops/building-and-testing-ios-and-ipados-apps-with-aws-devops-and-mobile-services/

Continuous integration/continuous deployment (CI/CD) helps automate software delivery processes. With the software delivery process automated, developers can test and deliver features faster. In iOS app development, testing your apps on real devices allows you to understand how users will interact with your app and to detect potential issues in real time.

AWS has a collection of tools designed to help developers build, test, configure, and release cloud-based applications for mobile devices. This blog post shows you how to leverage some of those tools and integrate third-party build tools like Jenkins into a CI/CD Pipeline in AWS for iOS app development and testing.

A new commit to the source repository triggers the pipeline. The build is done on a Jenkins server, and the build artifact from Jenkins is passed to the test phase, which is configured with AWS Device Farm to test the application on real devices. AWS CodePipeline provides the orchestration and helps automate the build and test phases. The CodePipeline continuous delivery process is illustrated in the following screenshot.

CodePipeline Archietcture with all stages

Figure: CodePipeline Continuous Delivery Architecture



Ensure you have the following prerequisites set up before beginning:

  1. Apple developer account
  2. Build server (macOS)
  3. Xcode Version 11.3 (installed on the build server and setup)
  4. Jenkins (installed on the build server)
  5. AWS CLI installed and configured on workstation
  6. Basic knowledge of Git


This example uses a sample iOS Notes app which we have hosted in an AWS CodeCommit repository, which is in the source stage of the pipeline.

Jenkins installation

Jenkins can be installed on macOS using a homebrew package manager for macOS with the following command:

$ brew install Jenkins

Start Jenkins by typing the following command:

$ Jenkins

You can also configure Jenkins to start as a service on startup with the following command:

$ brew services start Jenkins

Jenkins configuration

On a browser on your local machine, visit http://localhost:8080. You should see the setup screen shown in the following screenshot:

Screenshot of how to retrive Jenkins secret during setup on mac

1. Grab the initial admin password from the terminal by typing:

$ cat /Users/administrator/.jenkins/secrets/initialAdminPassword

2. Follow the onscreen instructions to complete setup. This includes creating a first admin user, installing initial plugins, etc.

3. Make some changes to the config file to ensure Jenkins is accessible from anywhere, not just the local machine:

    • Open the config file:

$ sudo nano /Users/admin/Library/LaunchAgents/homebrew.mxcl.jenkins.plist

    • Find the following line:


    • Change it to the following:


    • Save your changes and exit.

To reach Jenkins from the internet, enter the following into a web browser:


The default Jenkins port is 8080. For example, if a public IP address, the path is

4. Install the AWS CodePipeline Jenkins plugin:

      • Sign in to Jenkins using the user name and password you created. Choose Manage Jenkins, then Manage Plugins.
      • Switch to the Available tab and start typing CodePipeline into the filter until AWS CodePipeline Plugin appears. Select the plugin, then select Install without restart.
      • Select Restart Jenkins when installation is complete and no jobs are running.

5. Create a project. Choose New Item, then Freestyle Project. Enter a descriptive name. This example uses iosapp as the item name.

6. In the Source Code Management section, select AWS CodePipeline and configure the plugin as shown in the following screenshot.

Screenshot of Source Code Management configuration in a Jenkins freestyle project

      • AWS region: The region in which you want to create the CI/CD pipeline.
      • AWS access key and AWS secret key: Create a special IAM user and apply the AWSCodePipelineCustomActionAccess managed policy to that user. Use the access credentials for that user to configure this section.
      • Category: Choose Build. This is also used in the pipeline configuration.
      • Provider: This example uses the name Jenkins. It can be renamed, but take note of the name specified here.
      • Version: Enter 1 here. This value is used in the pipeline configuration.

7. Under Build Triggers, select Poll SCM. Enter the schedule * * * * * separated by spaces, as shown in the following screenshot.

Screenshot of Build Triggers confoguration in a Jenkins freestyle project

8. Under Build, select Add build step, then Execute shell. Enter the following commands, inserting your development team ID.

/usr/bin/xcodebuild -version
/usr/bin/xcodebuild build-for-testing -scheme MyNotes -destination generic/platform=iOS DEVELOPMENT_TEAM=<your development team ID> -allowProvisioningUpdates -derivedDataPath /Users/admin/.jenkins/workspace/iosapp
mkdir Payload && cp -r /Users/admin/.jenkins/workspace/iosapp/Build/Products/Debug-iphoneos/MyNotes.app Payload/
zip -r Payload.zip Payload && mv Payload.zip MyNotes.ipa

9. Under Post-build Actions, select Add post-build action, then AWS CodePipeline Publisher. Fill in the fields as shown in the following screenshot:

Screenshot of Post Build Action Configuration in a Jenkins freestyle project

10. Save the configuration.

11. Retrieve the public IP address for the macOS build server.

Configure Device Farm

In this section, you configure Device Farm to test the sample iOS app on real-world devices.

  1. Navigate to the AWS Device Farm Console
  2. Choose Create a new project and enter a name for the project. Choose Create project. Note the name of the project.
  3. Choose the newly created project and retrieve the project ID:
    • Copy the URL found in the browser into a text editor.
    • Note the project ID, which can be found in the URL path:

https://us-west-2.console.aws.amazon.com/devicefarm/home?region=us-east-1#/projects/<your project ID is here>/runs

    • Decide on which devices you want to test the sample app. This is known as the device pool in Device Farm. This example doesn’t use a PRIVATE device pool. It uses a CURATED device pool, which is a device pool created and managed by AWS Device Farm.
    • Retrieve the ARN of the CURATED device pool for your project using the AWS CLI:

$ aws devicefarm list-device-pools --arn arn::devicefarm:us-west-2:<account-id>:project:<project id noted above> --region us-west-2 --query 'devicePools[?name==`Top Devices`]'

Note the device pool ARN.

Configure the CodeCommit repository

In this section, the source code repository is created and source code is pushed to the repository.

  1. Create a CodeCommit repository. Take note of the repository name.
  2. Connect to the newly created repository.
  3. Push the iOS app code from the local repository to the remote CodeCommit repository:

$ git push

Create and configure CodePipeline

CodePipeline orchestrates all phases of the example. Each action is represented as a stage.

Since you have a Jenkins stage, which is considered a custom action and has to be configured via the AWS management console, use the AWS management console to create your pipeline.

  1. Go to the AWS CodePipeline console and choose Create pipeline.
  2. Enter iosapp under Pipeline settings and select New service role.
  3. Leave the default Role name, and select Allow AWS CodePipeline to create a service role so it can be used with this new pipeline.
  4. Choose Next.
  5. Select AWS CodeCommit as the Source provider. Select the repository you created and the branch name, then select Next.
  6. Select Add Jenkins as the build provider and fill in the fields:
    • Provider name: Specify the provider name you configured for this example.
    • Server URL: Specify the public IP address of the Jenkins server and the port on which Jenkins is. For example, if is the IP address and 8080 is the port, the server URL is
    • Project name: Specify the name you gave to the Jenkins Freestyle project you created.
  7. Choose Next.
  8. Choose Skip deploy stage. You are integrating with Device Farm and this is only valid as a test stage, not a deploy stage.
  9. Choose Create pipeline. This creates a two-stage pipeline which starts executing immediately after creation. However, you are not done yet, so stop the current execution
  10. Now create a test stage with Device Farm. Choose Edit to modify the pipeline. Under the Build stage, select Add Stage and enter a stage name (such as Test). Choose Add stage again.
  11. In the newly added stage, choose Add action group and fill in the fields:
    • Action name: Enter an Action name
    • Action Provider: Select AWS Device Farm
    • Region: Select US West – Oregon.

      “AWS Device Farm is only supported in US-West-2 (Oregon) so this action will be a cross region action since the pipeline is in us-east-1”

    • Input artifacts: Select BuildArtifact, which is the output of the Jenkins build stage
    • ProjectId: This is the Device Farm project ID you noted earlier
    • DevicePoolArn: This is the Device Farm ARN you noted earlier
    • AppType: Enter iOS
    • App: This is the file that contains the app to test; the filename of your generated IPA is MyNotes.ipa
    • TestType: This is the type of test to run on the application; enter BUILTIN_FUZZ
  12. Leave the other fields blank and choose Done to save the action configuration, then choose Save to save the pipeline changes.
  13. Optionally, you can enable notifications to notify you of changes in the pipeline, such as when the pipeline completes, when a stage or action completes, or when there is a failure. To enable notifications, create a notification rule.
  14. Choose Release change to execute the pipeline, as shown in the following screenshot.

Completed codepipeline sample with example test failure

Verify the test on Device Farm

From the pipeline execution, you can see there is a failure in your test. Check the test results:

  1. Navigate to the AWS Device Farm Console.
  2. Select the project you created.
  3. All the tests that have run are listed, as seen in the following screenshot.
  4. Failure on AWS Device FarmChoose the test to see more details.

You can see the source of the failure. To investigate why the test failed, choose each device. The device names on which the app was tested are also shown, such as the OS version and the total duration of the test for each device. You can see screenshots of the test by switching to the Screenshots tab. More information can also be seen by clicking on a device.

Troubleshoot the failure by examining the result in each of the devices on which the test was run to determine what changes are needed in the application. After making the needed changes in the application source code, push the changes to the remote repository (in this case, a CodeCommit repository) to trigger the pipeline again. The following screenshot shows a successful pipeline execution:

Succesfuly executed CodePipeline

The following screenshot shows a successful test:

Sucessfully executed tests on Device Farm


Cleanup the following AWS resources:


This post showed you how to integrate CodePipeline with an iOS Jenkins build server and leverage the integration of CodePipeline and Device Farm to automatically build and test iOS apps on real-world devices. By taking this approach to testing iOS apps, you can visualize how an app will behave on actual devices and with the automated CI/CD pipeline, and quickly test apps as they are developed.

Using AWS CodeBuild to execute administrative tasks

Post Syndicated from Danilo Poccia original https://aws.amazon.com/blogs/devops/using-aws-codebuild-to-execute-administrative-tasks/

This article is a guest post from AWS Serverless Hero Gojko Adzic.

At MindMup, we started using AWS CodeBuild to quickly lift and shift support tasks to the cloud. MindMup is a collaborative mind-mapping tool, used by millions of teachers and students to collaborate on assignments, structure ideas, and organize and navigate complex information. Still, the team behind the product consists of just two people, and we’re both responsible for everything from sales and product management to programming and customer support. One of the key reasons why such a tiny team can support a large group of users is that we tend to automate all recurring tasks in order to free up our time for more productive work.

Administrative support tasks often start as ad-hoc command line scripts, with manual intervention to resolve exceptions. As the scripts stabilize, humans can be less involved, so teams look for ways of scheduling and automating job executions. For infrastructure deployed to AWS, this also means moving away from running scripts from on-premises developers or operations computers to running in the cloud. With utilization-based pricing and on-demand capacity, AWS Lambda and AWS Fargate are the two obvious choices for running such tasks in AWS. There is a third option, often overlooked: CodeBuild. Although CodeBuild is designed for a completely different purpose, it offers some compelling features that make it very easy to set up and run periodic support jobs, especially as a first easy step towards a more systematic solution.

Solution overview

CodeBuild is, as the name suggests, a managed service for executing typical software build jobs. In some ways, such as each job having an associated IAM permissions, CodeBuild is similar to Lambda and Fargate. One of fundamental differences between Codebuild jobs and Lambda functions or Fargate tasks is the location of the executable definition of the job. The executable definition of a Lambda function is in a ZIP archive deployed to Lambda. For Fargate, the executable definition is in a Docker container image, deployed in a task with Amazon ECS or in a Kubernetes pod with Amazon EKS. Both services require an explicit deployment to update the executable definition of a task. For CodeBuild jobs, the executable definition is not deployed to an AWS service. Instead, it is in a source code control system that you can manage locally or using a service such as GitHub or AWS CodeCommit.

Sitting alongside the rest of the source code, each CodeBuild task has an entry-point configuration file, by convention called a buildspec.yml. The buildspec.yml file lists the programming language runtimes required by the job, and the steps to execute before, during and after the build job. For example, the following buildspec.yml sets up a build environment for JavaScript with Node.js 12, installs dependencies, runs tests, and then produces a deployment package using webpack.

version: 0.2

      nodejs: 12
      - npm install
      - npm test
      - npm run web pack

Usually, the buildspec.yml file involves some variant of installing dependencies, compiling code and running tests, then packaging and versioning artifacts. But the steps of a buildspec.yml file are actually just shell commands, so CodeBuild doesn’t necessarily need to run tasks related to compiling or packaging. It can execute any sequence of Unix commands, scripts, or binaries. This makes CodeBuild a uniquely compelling choice for the transition from running shell scripts on an operations machine to running a shell script in the cloud.

Comparing CodeBuild and Lambda for administrative tasks

The major advantage of CodeBuild over Lambda functions for support jobs is that the scripts can be significantly more flexible. Moving from shell scripts to Lambda functions usually means rewriting the task in a language such as JavaScript or Python. You can execute a shell script from a Lambda function when using Amazon Linux 1 instances, or even use a Bash custom runtime, but when using CodeBuild, you can execute the same shell script without changes.

Lambda functions usually run only in a single language. Support tasks often perform a chain of actions, and different steps might require utilities written in different languages. Running such varied tasks with a Lambda function would require constructing a custom Lambda runtime, or splitting steps into multiple functions with different runtimes, and then somehow coordinating and passing data between them. AWS Step Functions can be used to coordinate the workflow, but most support tasks are a sequence of steps, to be executed in order if the previous one succeeds. With CodeBuild, you can configure the task to include all required runtimes.

Support tasks often need to transform the outputs of one tool and pass it into a different tool. For example, select rows from a database containing expired accounts, then filter out only the user emails, separate the data with commas, and send to an automated mailer with a template. Tools such as grep, awk, and sed become invaluable for such transformations. However, they aren’t available on new Lambda runtimes.

Lambda runtimes based on Amazon Linux 2 bundle only the absolutely minimal operating system packages. Even the basic command line Linux utilities, such as which, are not packaged with the recent Lambda runtimes. On the other hand, CodeBuild runs tasks in a full-blown Linux environment. Executing support tasks through CodeBuild means that you can pipe results into all the standard Unix tools, without having to use half-baked replacements written in a scripting language.

For applications running in the AWS ecosystem, support tasks often need to communicate with AWS services or resources. Standard CodeBuild environments also come with the aws command line tools, so you can use them without any additional setup. This becomes especially important for moving data from and to Amazon S3, where command line tools have operations for batch uploads or downloads or recursive directory synchronization. Those operations are not directly available through the programming language SDK libraries.

It is, of course, possible to install additional binaries to Lambda functions by building them for the right Linux environment. Because the standard shared system libraries are also not in the recent Lambda runtimes, compiling additional tools is akin to building a Linux distribution from scratch. With CodeBuild, most standard tools are included already, and you can add additional tools to the system by using an operating system package manager (apt-get or yum).

CodeBuild execution environments can also be more flexible in terms of execution time and performance constraints. Lambda tasks are currently limited to fifteen minutes. The only performance setting you can influence is the memory size, which proportionally impacts the CPU power. The highest setting is currently 3GB memory, which assigns two virtual cores. CodeBuild allows you to configure tasks which can run for up to 8 hours. You can also explicitly select a compute type, including using GPU processors and going all the way up to 255 GB memory or 72 virtual CPU cores. This makes CodeBuild an interesting choice for tasks that need to potentially run longer than fifteen minutes, that are very computationally intensive, or that need a lot of working memory.

On the other hand, compared to Lambda functions, CodeBuild jobs start significantly slower and running them in parallel is not as easy or convenient. For example, by default you can only run up to 60 CodeBuild tasks in parallel, but this is a soft limit that you can increase. However, support tasks are mostly batch jobs by nature, so saving a few seconds or being able to execute thousands of such tasks in parallel is not usually important.

Comparing CodeBuild or Amazon EC2/Fargate for administrative tasks

Most of the limitations of Lambda functions for admin jobs could be solved by running a virtual machine through Amazon EC2. In fact, running tasks on Amazon EC2 was the usual way of lifting support tasks from the operations computers and moving them into the cloud until Lambda became available. However, due to how Amazon EC2 instances are billed, teams often bundled all the operations tasks on a single Amazon EC2 instance. That instance needed a superset of all the security privileges required by the various tasks, opening potential security risks. That’s where Fargate can help. Fargate runs container-based tasks on demand, offering utilization-based billing and removing many restrictions of Lambda, such as the 15-minute runtime and reduced operating system environment, also allowing you to choose execution environments more flexibly.

This means that, compared to Fargate tasks, CodeBuild execution is more or less comparable in terms of what you can run and how much power you can assign to your tasks. Both can use a custom Docker container, and both run a full-blown operating system with all the standard binaries. They also have similar terms of start-up time and parallelization. However, setting up a CodeBuild job and updating it later is much easier than with Fargate using tasks or pods.

With Fargate, you need to provide a custom Docker container with the right entry point. CodeBuild lets you use custom containers or choose standard images provided by AWS, including Ubuntu or AWS Linux instances. Likewise, configuring a Fargate task involves deploying in an Amazon VPC, and if the task needs to access other AWS services, setting up a NAT gateway. CodeBuild tasks have network access by default, and can be deployed in a VPC if required.

Updating support scripts can also be easier with CodeBuild than with Fargate. Deploying a new version of a task into Fargate involves building a new Docker container and uploading it to a container manager such as Amazon ECS or Amazon EKS. Deploying a new version of a CodeBuild job involves committing to the version control system, without the need to set up a CI/CD pipeline. This makes CodeBuild a compelling way of setting up support tasks, especially for larger organizations with strict access rules. Support people can update tasks definitions by having access to the source code control system, without the need to get access to production resources on AWS.

Fargate environments are transient, similar to Lambda functions. If you want to preserve some files between job runs (for example, compiled task binaries or installed dependencies), you would have to manage that manually with Fargate. CodeBuild supports artifact caching out of the box, so it’s significantly easier to preserve data files or installed dependencies between runs.

Potential downsides

Although taking supporting tasks directly from the source code repository is one of the biggest advantages of CodeBuild over Fargate or Lambda, it can also be a major drawback. Ensuring that the scripts are always in a stable condition requires discipline regarding committing to the trunk. Without such discipline, untested or unstable code might be used for admin tasks by mistake. A potential workaround for teams without good trunk commit discipline would be to use a specific branch for CodeBuild tasks, and then merge code into that branch once it is ready to be released.

Using support scripts directly from a source code repository makes it more complicated to synchronize versions with other deployed software. If you need the support scripts to track the exact version of code that was deployed to other services, it’s probably safer and easier to use Lambda functions or Fargate containers with an explicit deployment step.

Executing support tasks through CodeBuild

CodeBuild jobs take a bit more setup than Lambda functions, but significantly less than Fargate tasks. Below is an example of a CodeBuild job set up through AWS CloudFormation.

Architecture diagram for the CodeBuild being used for administrative tasks

Here are a few things to note:

  • You can add the required IAM permissions for the task into the Policies section of the CodeBuildRole resource.
  • The Environment section of the CodeBuildProject resource is where you can define the container image, choose the virtual hardware or set up environment variables to configure the task.
  • Environment variables are directly available for the shell commands listed in the buildspec.yml file, so this trick allows you to easily parameterize jobs to use resources from the same AWS CloudFormation template.
  • The Location and BuildSpec properties in the Source section define the source code repository, and the path of the buildspec.yml file within the repository.
    Type: "AWS::IAM::Role"
        Version: "2012-10-17"
          - Effect: Allow
              Service: "codebuild.amazonaws.com"
            Action: "sts:AssumeRole"
        - PolicyName: AllowLogs
            Version: '2012-10-17'
              - Effect: Allow
                  - 'logs:*'
                Resource: '*'

    Type: AWS::CodeBuild::Project
      Name: !Ref JobName
      ServiceRole: !GetAtt CodeBuildRole.Arn
        Type: NO_ARTIFACTS
          Status: ENABLED
        Type: NO_CACHE
        ComputeType: BUILD_GENERAL1_SMALL
        Image: aws/codebuild/standard:3.0
          - Name: SYSTEM_BUCKET 
            Value: !Ref SystemBucketName
        Type: GITHUB
        Location: !Ref GithubRepository 
        GitCloneDepth: 1
        BuildSpec: !Ref BuildSpecPath 
        ReportBuildStatus: False
        InsecureSsl: False
      TimeoutInMinutes: !Ref TimeoutInMinutes

CodeBuild jobs usually run after changes to source code files. Support tasks usually need to run on a periodic schedule. The previous snippet did not define the Triggers property for the CodeBuild job, so it will not track source code changes or run automatically. Instead, you can set up an Amazon CloudWatch Event rule (or optionally use Amazon EventBridge, that provides more sophisticated rules) that will periodically trigger the CodeBuild job. Here is how to do that with AWS CloudFormation:

    Condition: ScheduleRuns
    Type: "AWS::IAM::Role"
        Version: "2012-10-17"
          - Effect: Allow
              Service: "events.amazonaws.com"
            Action: "sts:AssumeRole"
        - PolicyName: StartTask 
            Version: '2012-10-17'
              - Effect: Allow
                  - 'codebuild:StartBuild'
                  - !GetAtt CodeBuildProject.Arn

    Condition: ScheduleRuns
    Type: AWS::Events::Rule
      Name: !Sub '${JobName}-scheduler'
      Description: Periodically runs codebuild job to archive defunct accounts
      ScheduleExpression: !Ref ScheduleRate
      State: ENABLED
        - Arn: !GetAtt CodeBuildProject.Arn
          Id: CodeBuildProject
          RoleArn: !GetAtt RunCodeBuildJobRole.Arn

Note the ScheduleExpression property of the RunCodeBuildJobRoleRule resource. You can use any supported CloudWatch schedule expression there to set up when or how frequently your job runs.

Observability and audit logs

If a support job fails for any reason, people need to know. Luckily, CodeBuild already integrates nicely with CloudWatch to report job statuses, so you can set up another CloudWatch Event rule that tracks failures and alerts someone about it. To make notifications flexible, you can send them to an Amazon SNS topic. You can then subscribe for email notifications or forward those alerts somewhere else easily. The following wires up notifications with an AWS CloudFormation template.

    Condition: CreateSNSNotifications
    Type: "AWS::IAM::Role"
        Version: "2012-10-17"
          - Effect: Allow
              Service: "events.amazonaws.com"
            Action: "sts:AssumeRole"
        - PolicyName: AllowLogs
            Version: '2012-10-17'
              - Effect: Allow
                  - 'SNS:Publish'
                  - !Ref SnsTopicArn

    Condition: CreateSNSNotifications
    Type: AWS::Events::Rule
      Name: !Sub '${JobName}-fail-notification'
      Description: Notify about codebuild project failures
      RoleArn: !GetAtt SnsPublishRole.Arn
          - "aws.codebuild"
          - "CodeBuild Build State Change"
            - "FAILED"
            - "STOPPED"
            - !Ref CodeBuildProject
      State: ENABLED
        - Arn: Ref SnsTopicArn
          Id: NotificationTopic

Another option to keep the execution of your tasks under control is to generate a report using the test report functionality introduced a few months ago and specify in the buildspec.yml file about the location of the files that store results you want to include in your report.

Testing administrative tasks

Note the build-status list inside the CodeBuildNotificationRule resource. This defines a list of statuses about which you want to publish alerts. In the previous snippet, the list does not include successful runs. That’s because it’s usually not necessary to take any action when a support job runs successfully. However, during initial testing you may want to add IN_PROGRESS (notify when a task starts) and SUCCEEDED (notify when the job ends without an error).

Finally, one of the biggest challenges when moving scripts from an operations machine to running in CodeBuild is to create the right IAM policies. Command-line users on operations machines usually have a wide set of privileges, and identifying the minimum required for a specific job usually involves starting small, then iterating over failed attempts and opening up required operations. Running that process directly through CodeBuild can be quite slow. Instead, I suggest setting up a separate IAM policy for the job, then assigning it both to the role for the CodeBuild task, and to a command-line role or a command-line user. You can then iterate quickly directly on the command line and identify all required IAM operations, then remove the additional command-line user when done.


The next time you need to move a support task to the cloud, and you need a rich execution environment, consider using CodeBuild, at least as the initial step towards a more systematic solution. It will allow you to quickly get a script up and running with all the benefits of IAM isolation, scheduled execution, and reliable notifications.

Gojko is author of the Running Serverless book and interactive course. He is currently working on Video Puppet, a tool for editing videos as easily as editing text. You can reach out to him on Twitter.

Enhancing automated database continuous integration with AWS CodeBuild and Amazon RDS Database Snapshot

Post Syndicated from bobyeh original https://aws.amazon.com/blogs/devops/enhancing-automated-database-continuous-integration-with-aws-codebuild-and-amazon-rds-database-snapshot/

In major integration merges, it’s sometimes necessary to verify the changes with existing online data. To inspect the changes with a cloned database can give us confidence to deploy to the production database. This post demonstrates how to use AWS CodeBuild and Amazon RDS Database Snapshot to verify your code revisions in both the application layer and the underlying layer, ensuring that your existing data works seamlessly with your revised code.

Making code revisions using continuous integration requires running periodic verification to ensure that your new deliverable works functionally and reliably. It’s easy to focus attention solely on the surface level changes made to the application layer. However, it’s important to remember to inspect the changes made to the underlying data layer too.

From the application layer, users modify the data model for different reasons. Any data model definition change in the application layer maps to a schema change in the database. For those services backed with a relational database (RDBMS), a user might perform data definition language (DDL) operations directly toward a database schema or rely on an object-relational mapping (ORM) library to migrate the schema to fit the application revision. These schema changes (CREATE, DROP, ALTER, TRUNCATE, etc.) can be very critical, especially for those services serving real customers.

Performing proper verification and simulation for these changes mitigates the risk of bringing down services. After the changes are applied, fundamental operation testing (CRUD – CREATE, READ, UPDATE, DELETE) toward data models is mandatory; this leads to data control language (DCL) operations (INSERT, SELECT, UPDATE, DELETE, etc.). After all the necessary steps, a user can move on to the deployment stage.

About this page

  • Time to read:6 minutes
  • Time to complete:30 minutes
  • Cost to complete (estimated):Less than $1 for 1-GB database snapshot and restored instance
  • Learning level:Advanced (300)
  • Services used:AWS CodeBuild, IAM, RDS

Solution overview

This example uses a buildspec file in CodeBuild. Set up a build project that points to a source control repository containing that buildspec file. The CodeBuild runtime environment restores the database server from an RDS snapshot.We restore snapshot to an Amazon Aurora cluster as example through AWS Command Line Interface (AWS CLI). After the database is restored, the build process starts to run your integration process, which is in mock code in the buildspec definition. After the verification stage, CodeBuild drops the restored database.


Architecture diagram showing an overview of how we use CodeBuild to restore a database snapshot to verify and validate the new database schema change.


The following components are required to implement this example:


Follow these steps to execute the solution.

Prepare your build specification file

Before you begin, prepare your CodeBuild Build Specification file with following information:

  • db-cluster-identifier-prefix
  • db-snapshot-identifier
  • region-ID
  • account-ID
  • vpc-security-group-id

The db-cluster-identifier-prefix creates a temporary database followed by a timestamp. Make sure that this value does not overlap with any other databases. The db-snapshot-identifier points to the snapshot you are calling to run with your application. Region-ID and account-ID describe the account on which you are running. The vpc-security-group-id indicates the security group you use in the CodeBuild environment and temporary database.

Version: 0.2
      python: 3.7
    - pip3 install awscli --upgrade --user
    - export DATE=`date +%Y%m%d%H%M`
    - export DBIDENTIFIER=db-cluster-identifier-prefix-$DATE
    - echo $DBIDENTIFIER
    - aws rds restore-db-cluster-from-snapshot --snapshot-identifier arn:aws:rds:region-ID:account-ID:cluster-snapshot:db-snapshot-identifier –vpc-security-group-ids vpc-security-group-id --db-cluster-identifier $DBIDENTIFIER --engine aurora
    - while [ $(aws rds describe-db-cluster-endpoints --db-cluster-identifier $DBNAME | grep -c available) -eq 0 ]; do echo "sleep 60s"; sleep 60; done
    - echo "Temp db ready"
    - export ENDPOINT=$(aws rds describe-db-cluster-endpoints --db-cluster-identifier $DBIDENTIFIER| grep "\"Endpoint\"" | grep -v "\-ro\-" | awk -F '\"' '{print $4}')
    - echo $ENDPOINT
    - echo Build started on `date`
    - echo proceed db connection to $ENDPOINT
    - echo proceed db migrate update, DDL proceed here
    - echo proceed application test, CRUD test run here
    - echo Build completed on `date`
    - echo $DBNAME
    - aws rds delete-db-cluster --db-cluster-identifier $DBIDENTIFIER --skip-final-snapshot &


After you finish editing the file, name it buildspec.yml. Save it in the root directory with which you plan to build, then commit the file into your code repository.

  1. Open the CodeBuild console.
  2. Choose Create build project.
  3. In Project Configuration, enter the name and description for the build project.
  4. In Source, select the source provider for your code repository.
  5. In Environment image, choose Managed image, Ubuntu, and the latest runtime version.
  6. Choose the appropriate service role for your project.
  7. In the Additional configuration menu, select the VPC with your Amazon RDS database snapshots, as shown in the following screenshot, and then select Validate VPC Settings. For more information, see Use CodeBuild with Amazon Virtual Private Cloud.
  8. In Security Groups, select the security group needed for the CodeBuild environment to access your temporary database.
  9. In Build Specifications, select Use a buildspec file.

CodeBuild Project Additional Configuration - VPC

Grant permission for the build project

Follow these steps to grant permission.

  1. Navigate to the AWS Management Console Policies.
  2. Choose Create a policy and select the JSON tab.To give CodeBuild access to the Amazon RDS resource in the pre_build stage, you must grant RestoreDBClusterFromSnapshot and DeleteDBCluster. Follow the least privilege guideline and limit the DeleteDBCluster action point to “arn:aws:rds:*:*:cluster: db-cluster-identifier-*”.
  3. Copy the following code and paste it into your policy:
      "Version": "2012-10-17",
      "Statement": [
          "Sid": "VisualEditor0",
          "Effect": "Allow",
          "Action": "rds:RestoreDBClusterFromSnapshot",
          "Resource": "*"
          "Sid": "VisualEditor1",
          "Effect": "Allow",
          "Action": "rds:DeleteDBCluster*",
          "Resource": "arn:aws:rds:*:*:cluster:db-cluster-identifier-*"
  4. Choose Review Policy.
  5. Enter a Name and Description for this policy, then choose Create Policy.
  6. After the policy is ready, attach it to your CodeBuild service role, as shown in the following screenshot.

Attach created policy to IAM role

Use database snapshot restore to launch the build process

  1. Navigate back to CodeBuild and locate the project you just created.
  2. Give an appropriate timeout setting and make sure that you set it to the correct branch for your repository.
  3. Choose Start Build.
  4. Open the Build Log to view the database cluster from your snapshot in the pre_build stage, as shown in the following screenshot.CodeBuild ProjectBuild Log - pre_build stage
  5. In the build stage, use $ENDPOINT to point your application to this temporary database, as shown in the following screenshot.CodeBuild Project Build Log - build stage
  6. In the post_build, delete the cluster, as shown in the following screenshot.CodeBuild Project Build log - post build stage

Test your database schema change

After you set up this pipeline, you can begin to test your database schema change within your application code. This example defines several steps in the Build Specifications file to migrate the schema and run with the latest application code. In this example, you can verify that all the modifications fit from the application to the database.

    - echo Build started on `date`
    - echo proceed db connection to $ENDPOINT
    # run a script to apply your latest schema change
    - echo proceed db migrate update
    # start the latest code, and run your own testing
    - echo proceed application test

After validation

After we validated the database schema change in the above steps, a suitable strategy for deployment to production should be utilized that would align with the criteria to satisfy the business goals.

Cleaning up

To avoid incurring future charges, delete the resources as following steps:

  1. Open the CodeBuild console
  2. Click the project you created for this test.
  3. Click the delete build project and input delete to confirm deletion.


In this post, you created a mechanism to set up a temporary database and limit access into the build runtime. The temporary database stands alone and isolated. This mechanism can be applied to secure the permission control for the database snapshot, or not to break any existing environment. The database engine applies to all available RDS options, including Amazon Aurora, PostgreSQL, MySQL, MariaDB, Oracle Database, and SQL Server. This provides options, without impacting any existing environments, for critical events triggered by major changes in the production database schema, or data format changes required by business decisions.


AWS Step Functions support in Visual Studio Code

Post Syndicated from Rob Sutter original https://aws.amazon.com/blogs/compute/aws-step-functions-support-in-visual-studio-code/

The AWS Toolkit for Visual Studio Code has been installed over 115,000 times since launching in July 2019. We are excited to announce toolkit support for AWS Step Functions, enabling you to define, visualize, and create your Step Functions workflows without leaving VS Code.

Version 1.8 of the toolkit provides two new commands in the Command Palette to help you define and visualize your workflows. The toolkit also provides code snippets for seven different Amazon States Language (ASL) state types and additional service integrations to speed up workflow development. Automatic linting detects errors in your state machine as you type, and provides tooltips to help you correct the errors. Finally, the toolkit allows you to create or update Step Functions workflows in your AWS account without leaving VS Code.

Defining a new state machine

To define a new Step Functions state machine, first open the VS Code Command Palette by choosing Command Palette from the View menu. Enter Step Functions to filter the available options and choose AWS: Create a new Step Functions state machine.

Screen capture of the Command Palette in Visual Studio Code with the text ">AWS Step Functions" entered

Creating a new Step Functions state machine in VS Code

A dialog box appears with several options to help you get started quickly. Select Hello world to create a basic example using a series of Pass states.

A screen capture of the Visual Studio Code Command Palette "Select a starter template" dialog with "Hello world" selected

Selecting the “Hello world” starter template

VS Code creates a new Amazon States Language file containing a workflow with examples of the Pass, Choice, Fail, Wait, and Parallel states.

A screen capture of a Visual Studio Code window with a "Hello World" example state machine

The “Hello World” example state machine

Pass states allow you to define your workflow before building the implementation of your logic with Task states. This lets you work with business process owners to ensure you have the workflow right before you start writing code. For more information on the other state types, see State Types in the ASL documentation.

Save your new workflow by choosing Save from the File menu. VS Code automatically applies the .asl.json extension.

Visualizing state machines

In addition to helping define workflows, the toolkit also enables you to visualize your workflows without leaving VS Code.

To visualize your new workflow, open the Command Palette and enter Preview state machine to filter the available options. Choose AWS: Preview state machine graph.

A screen capture of the Visual Studio Code Command Palette with the text ">Preview state machine" entered and the option "AWS: Preview state machine graph" highlighted

Previewing the state machine graph in VS Code

The toolkit renders a visualization of your workflow in a new tab to the right of your workflow definition. The visualization updates automatically as the workflow definition changes.

A screen capture of a Visual Studio Code window with two side-by-side tabs, one with a state machine definition and one with a preview graph for the same state machine

A state machine preview graph

Modifying your state machine definition

The toolkit provides code snippets for 12 different ASL states and service integrations. To insert a code snippet, place your cursor within the States object in your workflow and press Ctrl+Space to show the list of available states.

A screen capture of a Visual Studio Code window with a code snippet insertion dialog showing twelve Amazon States Langauge states

Code snippets are available for twelve ASL states

In this example, insert a newline after the definition of the Pass state, press Ctrl+Space, and choose Map State to insert a code snippet with the required structure for an ASL Map State.

Debugging state machines

The toolkit also includes features to help you debug your Step Functions state machines. Visualization is one feature, as it allows the builder and the product owner to confirm that they have a shared understanding of the relevant process.

Automatic linting is another feature that helps you debug your workflows. For example, when you insert the Map state into your workflow, a number of errors are detected, underlined in red in the editor window, and highlighted in red in the Minimap. The visualization tab also displays an error to inform you that the workflow definition has errors.

A screen capture of a Visual Studio Code window with a tooltip dialog indicating an "Unreachable state" error

A tooltip indicating an “Unreachable state” error

Hovering over an error opens a tooltip with information about the error. In this case, the toolkit is informing you that MapState is unreachable. Correct this error by changing the value of Next in the Pass state above from Hello World Example to MapState. The red underline automatically disappears, indicating the error has been resolved.

To finish reconciling the errors in your workflow, cut all of the following states from Hello World Example? through Hello World and paste into MapState, replacing the existing values of MapState.Iterator.States. The workflow preview updates automatically, indicating that the errors have been resolved. The MapState is indicated by the three dashed lines surrounding most of the workflow.

A Visual Studio Code window displaying two tabs, an updated state machine definition and the automatically-updated preview of the same state machine

Automatically updating the state machine preview after changes

Creating and updating state machines in your AWS account

The toolkit enables you to publish your state machine directly to your AWS account without leaving VS Code. Before publishing a state machine to your account, ensure that you establish credentials for your AWS account for the toolkit.

Creating a state machine in your AWS account

To publish a new state machine to your AWS account, bring up the VS Code Command Palette as before. Enter Publish to filter the available options and choose AWS: Publish state machine to Step Functions.

Screen capture of the Visual Studio Command Palette with the command "AWS: Publish state machine to Step Functions" highlighted

Publishing a state machine to AWS Step Functions

Choose Quick Create from the dialog box to create a new state machine in your AWS account.

Screen Capture from a Visual Studio Code flow to publish a state machine to AWS Step Functions with "Quick Create" highlighted

Publishing a state machine to AWS Step Functions

Select an existing execution role for your state machine to assume. This role must already exist in your AWS account.

For more information on creating execution roles for state machines, please visit Creating IAM Roles for AWS Step Functions.

Screen capture from Visual Studio Code showing a selection execution role dialog with "HelloWorld_IAM_Role" selected

Selecting an IAM execution role for a state machine

Provide a name for the new state machine in your AWS account, for example, Hello-World. The name must be from one to 80 characters, and can use alphanumeric characters, dashes, or underscores.

Screen capture from a Visual Studio Code flow entering "Hello-World" as a state machine name

Naming your state machine

Press the Enter or Return key to confirm the name of your state machine. The Output console opens, and the toolkit displays the result of creating your state machine. The toolkit provides the full Amazon Resource Name (ARN) of your new state machine on completion.

Screen capture from Visual Studio Code showing the successful creation of a new state machine in the Output window

Output of creating a new state machine

You can check creation for yourself by visiting the Step Functions page in the AWS Management Console. Choose the newly-created state machine and the Definition tab. The console displays the definition of your state machine along with a preview graph.

Screen capture of the AWS Management Console showing the newly-created state machine

Viewing the new state machine in the AWS Management Console

Updating a state machine in your AWS account

It is common to change workflow definitions as you refine your application. To update your state machine in your AWS account, choose Quick Update instead of Quick Create. Select your existing workflow.

A screen capture of a Visual Studio Code dialog box with a single state machine displayed and highlighted

Selecting an existing state machine to update

The toolkit displays “Successfully updated state machine” and the ARN of your state machine in the Output window on completion.


In this post, you learn how to use the AWS Toolkit for VS Code to create and update Step Functions state machines in your local development environment. You discover how sample templates, code snippets, and automatic linting can accelerate your development workflows. Finally, you see how to create and update Step Functions workflows in your AWS account without leaving VS Code.

Install the latest release of the toolkit and start building your workflows in VS Code today.


Testing and creating CI/CD pipelines for AWS Step Functions

Post Syndicated from Matt Noyce original https://aws.amazon.com/blogs/devops/testing-and-creating-ci-cd-pipelines-for-aws-step-functions-using-aws-codepipeline-and-aws-codebuild/

AWS Step Functions allow users to easily create workflows that are highly available, serverless, and intuitive. Step Functions natively integrate with a variety of AWS services including, but not limited to, AWS Lambda, AWS Batch, AWS Fargate, and Amazon SageMaker. It offers the ability to natively add error handling, retry logic, and complex branching, all through an easy-to-use JSON-based language known as the Amazon States Language.

AWS CodePipeline is a fully managed Continuous Delivery System that allows for easy and highly configurable methods for automating release pipelines. CodePipeline allows the end-user the ability to build, test, and deploy their most critical applications and infrastructure in a reliable and repeatable manner.

AWS CodeCommit is a fully managed and secure source control repository service. It eliminates the need to support and scale infrastructure to support highly available and critical code repository systems.

This blog post demonstrates how to create a CI/CD pipeline to comprehensively test an AWS Step Function state machine from start to finish using CodeCommit, AWS CodeBuild, CodePipeline, and Python.

CI/CD pipeline steps

The pipeline contains the following steps, as shown in the following diagram.

CI/CD pipeline steps

  1. Pull the source code from source control.
  2. Lint any configuration files.
  3. Run unit tests against the AWS Lambda functions in codebase.
  4. Deploy the test pipeline.
  5. Run end-to-end tests against the test pipeline.
  6. Clean up test state machine and test infrastructure.
  7. Send approval to approvers.
  8. Deploy to Production.


In order to get started building this CI/CD pipeline there are a few prerequisites that must be met:

  1. Create or use an existing AWS account (instructions on creating an account can be found here).
  2. Define or use the example AWS Step Function states language definition (found below).
  3. Write the appropriate unit tests for your Lambda functions.
  4. Determine end-to-end tests to be run against AWS Step Function state machine.

The CodePipeline project

The following screenshot depicts what the CodePipeline project looks like, including the set of stages run in order to securely, reliably, and confidently deploy the AWS Step Function state machine to Production.

CodePipeline project

Creating a CodeCommit repository

To begin, navigate to the AWS console to create a new CodeCommit repository for your state machine.

CodeCommit repository

In this example, the repository is named CalculationStateMachine, as it contains the contents of the state machine definition, Python tests, and CodeBuild configurations.

CodeCommit structure

Breakdown of repository structure

In the CodeCommit repository above we have the following folder structure:

  1. config – this is where all of the Buildspec files will live for our AWS CodeBuild jobs.
  2. lambdas – this is where we will store all of our AWS Lambda functions.
  3. tests – this is the top-level folder for unit and end-to-end tests. It contains two sub-folders (unit and e2e).
  4. cloudformation – this is where we will add any extra CloudFormation templates.

Defining the state machine

Inside of the CodeCommit repository, create a State Machine Definition file called sm_def.json that defines the state machine in Amazon States Language.

This example creates a state machine that invokes a collection of Lambda functions to perform calculations on the given input values. Take note that it also performs a check against a specific value and, through the use of a Choice state, either continues the pipeline or exits it.

sm_def.json file:

  "Comment": "CalulationStateMachine",
  "StartAt": "CleanInput",
  "States": {
    "CleanInput": {
      "Type": "Task",
      "Resource": "arn:aws:states:::lambda:invoke",
      "Parameters": {
        "FunctionName": "CleanInput",
        "Payload": {
          "input.$": "$"
      "Next": "Multiply"
    "Multiply": {
      "Type": "Task",
      "Resource": "arn:aws:states:::lambda:invoke",
      "Parameters": {
        "FunctionName": "Multiply",
        "Payload": {
          "input.$": "$.Payload"
      "Next": "Choice"
    "Choice": {
      "Type": "Choice",
      "Choices": [
          "Variable": "$.Payload.result",
          "NumericGreaterThanEquals": 20,
          "Next": "Subtract"
      "Default": "Notify"
    "Subtract": {
      "Type": "Task",
      "Resource": "arn:aws:states:::lambda:invoke",
      "Parameters": {
        "FunctionName": "Subtract",
        "Payload": {
          "input.$": "$.Payload"
      "Next": "Add"
    "Notify": {
      "Type": "Task",
      "Resource": "arn:aws:states:::sns:publish",
      "Parameters": {
        "TopicArn": "arn:aws:sns:us-east-1:657860672583:CalculateNotify",
        "Message.$": "$$",
        "Subject": "Failed Test"
      "End": true
    "Add": {
      "Type": "Task",
      "Resource": "arn:aws:states:::lambda:invoke",
      "Parameters": {
        "FunctionName": "Add",
        "Payload": {
          "input.$": "$.Payload"
      "Next": "Divide"
    "Divide": {
      "Type": "Task",
      "Resource": "arn:aws:states:::lambda:invoke",
      "Parameters": {
        "FunctionName": "Divide",
        "Payload": {
          "input.$": "$.Payload"
      "End": true

This will yield the following AWS Step Function state machine after the pipeline completes:

State machine

CodeBuild Spec files

The CI/CD pipeline uses a collection of CodeBuild BuildSpec files chained together through CodePipeline. The following sections demonstrate what these BuildSpec files look like and how they can be used to chain together and build a full CI/CD pipeline.

AWS States Language linter

In order to determine whether or not the State Machine Definition is valid, include a stage in your CodePipeline configuration to evaluate it. Through the use of a Ruby Gem called statelint, you can verify the validity of your state machine definition as follows:

lint_buildspec.yaml file:

version: 0.2
  git-credential-helper: yes
      ruby: 2.6
      - yum -y install rubygems
      - gem install statelint

      - statelint sm_def.json

If your configuration is valid, you do not see any output messages. If the configuration is invalid, you receive a message telling you that the definition is invalid and the pipeline terminates.

Lambda unit testing

In order to test your Lambda function code, you need to evaluate whether or not it passes a set of tests. You can test each individual Lambda function deployed and used inside of the state machine. You can feed various inputs into your Lambda functions and assert that the output is what you expect it to be. In this case, you use Python pytest to kick-off tests and validate results.

unit_test_buildspec.yaml file:

version: 0.2
  git-credential-helper: yes
      python: 3.8
      - pip3 install -r tests/requirements.txt

      - pytest -s -vvv tests/unit/ --junitxml=reports/unit.xml

      - "**/*"
    base-directory: "reports"

Take note that in the CodeCommit repository includes a directory called tests/unit, which includes a collection of unit tests that are run and validated against your Lambda function code. Another very important part of this BuildSpec file is the reports section, which generates reports and metrics about the results, trends, and overall success of your tests.

CodeBuild test reports

After running the unit tests, you are able to see reports about the results of the run. Take note of the reports section of the BuildSpec file, along with the –junitxml=reports/unit.xml command run along with the pytest command. This generates a set of reports that can be visualized in CodeBuild.

Navigate to the specific CodeBuild project you want to examine and click on the specific execution of interest. There is a tab called Reports, as seen in the following screenshot:

Test reports

Select the specific report of interest to see a breakdown of the tests that have run, as shown in the following screenshot:

Test visualization

With Report Groups, you can also view an aggregated list of tests that have run over time. This report includes various features such as the number of average test cases that have run, average duration, and the overall pass rate, as shown in the following screenshot:

Report groups

The AWS CloudFormation template step

The following BuildSpec file is used to generate an AWS CloudFormation template that inject the State Machine Definition into AWS CloudFormation.

template_sm_buildspec.yaml file:

version: 0.2
  git-credential-helper: yes
      python: 3.8

      - python template_statemachine_cf.py

The Python script that templates AWS CloudFormation to deploy the State Machine Definition given the sm_def.json file in your repository follows:

template_statemachine_cf.py file:

import sys
import json

def read_sm_def (
    sm_def_file: str
) -> dict:
    Reads state machine definition from a file and returns it as a dictionary.

        sm_def_file (str) = the name of the state machine definition file.

        sm_def_dict (dict) = the state machine definition as a dictionary.

        with open(f"{sm_def_file}", "r") as f:
            return f.read()
    except IOError as e:
        print("Path does not exist!")

def template_state_machine(
    sm_def: dict
) -> dict:
    Templates out the CloudFormation for creating a state machine.

        sm_def (dict) = a dictionary definition of the aws states language state machine.

        templated_cf (dict) = a dictionary definition of the state machine.
    templated_cf = {
        "AWSTemplateFormatVersion": "2010-09-09",
        "Description": "Creates the Step Function State Machine and associated IAM roles and policies",
        "Parameters": {
            "StateMachineName": {
                "Description": "The name of the State Machine",
                "Type": "String"
        "Resources": {
            "StateMachineLambdaRole": {
                "Type": "AWS::IAM::Role",
                "Properties": {
                    "AssumeRolePolicyDocument": {
                        "Version": "2012-10-17",
                        "Statement": [
                                "Effect": "Allow",
                                "Principal": {
                                    "Service": "states.amazonaws.com"
                                "Action": "sts:AssumeRole"
                    "Policies": [
                            "PolicyName": {
                                "Fn::Sub": "States-Lambda-Execution-${AWS::StackName}-Policy"
                            "PolicyDocument": {
                                "Version": "2012-10-17",
                                "Statement": [
                                        "Effect": "Allow",
                                        "Action": [
                                        "Resource": "*"
                                        "Effect": "Allow",
                                        "Action": [
                                        "Resource": "*"
            "StateMachine": {
                "Type": "AWS::StepFunctions::StateMachine",
                "Properties": {
                    "DefinitionString": sm_def,
                    "RoleArn": {
                        "Fn::GetAtt": [
                    "StateMachineName": {
                        "Ref": "StateMachineName"

    return templated_cf

sm_def_dict = read_sm_def(


cfm_sm_def = template_state_machine(

with open("sm_cfm.json", "w") as f:

Deploying the test pipeline

In order to verify the full functionality of an entire state machine, you should stand it up so that it can be tested appropriately. This is an exact replica of what you will deploy to Production: a completely separate stack from the actual production stack that is deployed after passing appropriate end-to-end tests and approvals. You can take advantage of the AWS CloudFormation target supported by CodePipeline. Please take note of the configuration in the following screenshot, which shows how to configure this step in the AWS console:

Deploy test pipeline

End-to-end testing

In order to validate that the entire state machine works and executes without issues given any specific changes, feed it some sample inputs and make assertions on specific output values. If the specific assertions pass and you get the output that you expect to receive, you can proceed to the manual approval phase.

e2e_tests_buildspec.yaml file:

version: 0.2
  git-credential-helper: yes
      python: 3.8
      - pip3 install -r tests/requirements.txt

      - pytest -s -vvv tests/e2e/ --junitxml=reports/e2e.xml

      - "**/*"
    base-directory: "reports"

Manual approval (SNS topic notification)

In order to proceed forward in the CI/CD pipeline, there should be a formal approval phase before moving forward with a deployment to Production. Using the Manual Approval stage in AWS CodePipeline, you can configure the pipeline to halt and send a message to an Amazon SNS topic before moving on further. The SNS topic can have a variety of subscribers, but in this case, subscribe an approver email address to the topic so that they can be notified whenever an approval is requested. Once the approver approves the pipeline to move to Production, the pipeline will proceed with deploying the production version of the Step Function state machine.

This Manual Approval stage can be configured in the AWS console using a configuration similar to the following:

Manual approval

Deploying to Production

After the linting, unit testing, end-to-end testing, and the Manual Approval phases have passed, you can move on to deploying the Step Function state machine to Production. This phase is similar to the Deploy Test Stage phase, except the name of your AWS CloudFormation stack is different. In this case, you also take advantage of the AWS CloudFormation target for CodeDeploy:

Deploy to production

After this stage completes successfully, your pipeline execution is complete.


After validating that the test state machine and Lambda functions work, include a CloudFormation step that will tear-down the existing test infrastructure (as it is no longer needed). This can be configured as a new CodePipeline step similar to the below configuration:

CloudFormation Template for cleaning up resources


You have linted and validated your AWS States Language definition, unit tested your Lambda function code, deployed a test AWS state machine, run end-to-end tests, received Manual Approval to deploy to Production, and deployed to Production. This gives you and your team confidence that any changes made to your state machine and surrounding Lambda function code perform correctly in Production.


About the Author

matt noyce profile photo


Matt Noyce is a Cloud Application Architect in Professional Services at Amazon Web Services.
He works with customers to architect, design, automate, and build solutions on AWS
for their business needs.

Identifying and resolving security code vulnerabilities using Snyk in AWS CI/CD Pipeline

Post Syndicated from Jay Yeras original https://aws.amazon.com/blogs/devops/identifying-and-resolving-vulnerabilities-in-your-code/

The majority of companies have embraced open-source software (OSS) at an accelerated rate even when building proprietary applications. Some of the obvious benefits for this shift include transparency, cost, flexibility, and a faster time to market. Snyk’s unique combination of developer-first tooling and best in class security depth enables businesses to easily build security into their continuous development process.

Even for teams building proprietary code, use of open-source packages and libraries is a necessity. In reality, a developer’s own code is often a small core within the app, and the rest is open-source software. While relying on third-party elements has obvious benefits, it also presents numerous complexities. Inadvertently introducing vulnerabilities into your codebase through repositories that are maintained in a distributed fashion and with widely varying levels of security expertise can be common, and opens up applications to effective attacks downstream.

There are three common barriers to truly effective open-source security:

  1. The security task remains in the realm of security and compliance, often perpetuating the siloed structure that DevOps strives to eliminate and slowing down release pace.
  2. Current practice may offer automated scanning of repositories, but the remediation advice it provides is manual and often un-actionable.
  3. The data generated often focuses solely on public sources, without unique and timely insights.

Developer-led application security

This blog post demonstrates techniques to improve your application security posture using Snyk tools to seamlessly integrate within the developer workflow using AWS services such as Amazon ECR, AWS Lambda, AWS CodePipeline, and AWS CodeBuild. Snyk is a SaaS offering that organizations use to find, fix, prevent, and monitor open source dependencies. Snyk is a developer-first platform that can be easily integrated into the Software Development Lifecycle (SDLC). The examples presented in this post enable you to actively scan code checked into source code management, container images, and serverless, creating a highly efficient and effective method of managing the risk inherent to open source dependencies.


The examples provided in this post assume that you already have an AWS account and that your account has the ability to create new IAM roles and scope other IAM permissions. You can use your integrated development environment (IDE) of choice. The examples reference AWS Cloud9 cloud-based IDE. An AWS Quick Start for Cloud9 is available to quickly deploy to either a new or existing Amazon VPC and offers expandable Amazon EBS volume size.

Sample code and AWS CloudFormation templates are available to simplify provisioning the various services you need to configure this integration. You can fork or clone those resources. You also need a working knowledge of git and how to fork or clone within your source provider to complete these tasks.

cd ~/environment && \ 
git clone https://github.com/aws-samples/aws-modernization-with-snyk.git modernization-workshop 
cd modernization-workshop 
git submodule init 
git submodule update

Configure your CI/CD pipeline

The workflow for this example consists of a continuous integration and continuous delivery pipeline leveraging AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, Amazon ECR, and AWS Fargate, as shown in the following screenshot.

CI/CD Pipeline

For simplicity, AWS CloudFormation templates are available in the sample repo for services.yaml, pipeline.yaml, and ecs-fargate.yaml, which deploy all services necessary for this example.

Launch AWS CloudFormation templates

A detailed step-by-step guide can be found in the self-paced workshop, but if you are familiar with AWS CloudFormation, you can launch the templates in three steps. From your Cloud9 IDE terminal, change directory to the location of the sample templates and complete the following three steps.

1) Launch basic services

aws cloudformation create-stack --stack-name WorkshopServices --template-body file://services.yaml \
--capabilities CAPABILITY_NAMED_IAM until [[ `aws cloudformation describe-stacks \
--stack-name "WorkshopServices" --query "Stacks[0].[StackStatus]" \
--output text` == "CREATE_COMPLETE" ]]; do echo "The stack is NOT in a state of CREATE_COMPLETE at `date`"; sleep 30; done &&; echo "The Stack is built at `date` - Please proceed"

2) Launch Fargate:

aws cloudformation create-stack --stack-name WorkshopECS --template-body file://ecs-fargate.yaml \
--capabilities CAPABILITY_NAMED_IAM until [[ `aws cloudformation describe-stacks \ 
--stack-name "WorkshopECS" --query "Stacks[0].[StackStatus]" \ 
--output text` == "CREATE_COMPLETE" ]]; do echo "The stack is NOT in a state of CREATE_COMPLETE at `date`"; sleep 30; done &&; echo "The Stack is built at `date` - Please proceed"

3) From your Cloud9 IDE terminal, change directory to the location of the sample templates and run the following command:

aws cloudformation create-stack --stack-name WorkshopPipeline --template-body file://pipeline.yaml \
--capabilities CAPABILITY_NAMED_IAM until [[ `aws cloudformation describe-stacks \
--stack-name "WorkshopPipeline" --query "Stacks[0].[StackStatus]" \
--output text` == "CREATE_COMPLETE" ]]; do echo "The stack is NOT in a state of CREATE_COMPLETE at `date`"; sleep 30; done &&; echo "The Stack is built at `date` - Please proceed"

Improving your security posture

You need to sign up for a free account with Snyk. You may use your Google, Bitbucket, or Github credentials to sign up. Snyk utilizes these services for authentication and does not store your password. Once signed up, navigate to your name and select Account Settings. Under API Token, choose Show, which will reveal the token to copy, and copy this value. It will be unique for each user.

Save your password to the session manager

Run the following command, replacing abc123 with your unique token. This places the token in the session parameter manager.

aws ssm put-parameter --name "snykAuthToken" --value "abc123" --type SecureString

Set up application scanning

Next, you need to insert testing with Snyk after maven builds the application. The simplest method is to insert commands to download, authorize, and run the Snyk commands after maven has built the application/dependency tree.

The sample Dockerfile contains an environment variable from a value passed to the docker build command, which contains the token for Snyk. By using an environment variable, Snyk automatically detects the token when used.

#~~~~~~~SNYK Variable~~~~~~~~~~~~ 
# Declare Snyktoken as a build-arg ARG snyk_auth_token
# Set the SNYK_TOKEN environment variable ENV

Download Snyk, and run a test, looking for medium to high severity issues. If the build succeeds, post the results to Snyk for monitoring and reporting. If a new vulnerability is found, you are notified.

# package the application
RUN mvn package -Dmaven.test.skip=true

#~~~~~~~SNYK test~~~~~~~~~~~~
# download, configure and run snyk. Break build if vulns present, post results to `https://snyk.io/`
RUN curl -Lo ./snyk "https://github.com/snyk/snyk/releases/download/v1.210.0/snyk-linux"
RUN chmod -R +x ./snyk
#Auth set through environment variable
RUN ./snyk test --severity-threshold=medium
RUN ./snyk monitor

Set up docker scanning

Later in the build process, a docker image is created. Analyze it for vulnerabilities in buildspec.yml. First, pull the Snyk token snykAuthToken from the parameter store.

    SNYK_AUTH_TOKEN: "snykAuthToken"

Next, in the prebuild phase, install Snyk.

      - echo Logging in to Amazon ECR...
      - aws --version
      - $(aws ecr get-login --region $AWS_DEFAULT_REGION --no-include-email)
      - REPOSITORY_URI=$(aws ecr describe-repositories --repository-name petstore_frontend --query=repositories[0].repositoryUri --output=text)
      - IMAGE_TAG=${COMMIT_HASH:=latest}
      - PWD=$(pwd)
      - PWDUTILS=$(pwd)
      - curl -Lo ./snyk "https://github.com/snyk/snyk/releases/download/v1.210.0/snyk-linux"
      - chmod -R +x ./snyk

Next, in the build phase, pass the token to the docker compose command, where it is retrieved in the Dockerfile code you set up to test the application.

      - echo Build started on `date`
      - echo Building the Docker image...
      - cd modules/containerize-application
      - docker build --build-arg snyk_auth_token=$SNYK_AUTH_TOKEN -t $REPOSITORY_URI:latest.

You can further extend the build phase to authorize the Snyk instance for testing the Docker image that’s produced. If it passes, you can pass the results to Snyk for monitoring and reporting.

      - $PWDUTILS/snyk auth $SNYK_AUTH_TOKEN
      - $PWDUTILS/snyk test --docker $REPOSITORY_URI:latest
      - $PWDUTILS/snyk monitor --docker $REPOSITORY_URI:latest
      - docker tag $REPOSITORY_URI:latest $REPOSITORY_URI:$IMAGE_TAG

For reference, a sample buildspec.yaml configured with Snyk is available in the sample repo. You can either copy this file and overwrite your existing buildspec.yaml or open an editor and replace the contents.

Testing the application

Now that services have been provisioned and Snyk tools have been integrated into your CI/CD pipeline, any new git commit triggers a fresh build and application scanning with Snyk detects vulnerabilities in your code.

In the CodeBuild console, you can look at your build history to see why your build failed, identify security vulnerabilities, and pinpoint how to fix them.

Testing /usr/src/app...
✗ Medium severity vulnerability found in org.primefaces:primefaces
Description: Cross-site Scripting (XSS)
Info: https://snyk.io/vuln/SNYK-JAVA-ORGPRIMEFACES-31642
Introduced through: org.primefaces:[email protected]
From: org.primefaces:[email protected]
Upgrade direct dependency org.primefaces:[email protected] to org.primefaces:[email protected] (triggers upgrades to org.primefaces:[email protected])
✗ Medium severity vulnerability found in org.primefaces:primefaces
Description: Cross-site Scripting (XSS)
Info: https://snyk.io/vuln/SNYK-JAVA-ORGPRIMEFACES-31643
Introduced through: org.primefaces:[email protected]
From: org.primefaces:[email protected]
Upgrade direct dependency org.primefaces:[email protected] to org.primefaces:[email protected] (triggers upgrades to org.primefaces:[email protected])
Organisation: sample-integrations
Package manager: maven
Target file: pom.xml
Open source: no
Project path: /usr/src/app
Tested 37 dependencies for known vulnerabilities, found 2 vulnerabilities, 2 vulnerable paths.
The command '/bin/sh -c ./snyk test' returned a non-zero code: 1
[Container] 2020/02/14 03:46:22 Command did not exit successfully docker build --build-arg snyk_auth_token=$SNYK_AUTH_TOKEN -t $REPOSITORY_URI:latest . exit status 1
[Container] 2020/02/14 03:46:22 Phase complete: BUILD Success: false
[Container] 2020/02/14 03:46:22 Phase context status code: COMMAND_EXECUTION_ERROR Message: Error while executing command: docker build --build-arg snyk_auth_token=$SNYK_AUTH_TOKEN -t $REPOSITORY_URI:latest .. Reason: exit status 1


Once you remediate your vulnerabilities and check in your code, another build is triggered and an additional scan is performed by Snyk. This time, you should see the build pass with a status of Succeeded.

You can also drill down into the CodeBuild logs and see that Snyk successfully scanned the Docker Image and found no package dependency issues with your Docker container!

[Container] 2020/02/14 03:54:14 Running command $PWDUTILS/snyk test --docker $REPOSITORY_URI:latest
Testing 300326902600.dkr.ecr.us-west-2.amazonaws.com/petstore_frontend:latest...
Organisation: sample-integrations
Package manager: rpm
Docker image: 300326902600.dkr.ecr.us-west-2.amazonaws.com/petstore_frontend:latest
✓ Tested 190 dependencies for known vulnerabilities, no vulnerable paths found.


Snyk provides detailed reports for your imported projects. You can navigate to Projects and choose View Report to set the frequency with which the project is checked for vulnerabilities. You can also choose View Report and then the Dependencies tab to see which libraries were used. Snyk offers a comprehensive database and remediation guidance for known vulnerabilities in their Vulnerability DB. Specifics on potential vulnerabilities that may exist in your code would be contingent on the particular open source dependencies used with your application.

Cleaning up

Remember to delete any resources you may have created in order to avoid additional costs. If you used the AWS CloudFormation templates provided here, you can safely remove them by deleting those stacks from the AWS CloudFormation Console.


In this post, you learned how to leverage various AWS services to build a fully automated CI/CD pipeline and cloud IDE development environment. You also learned how to utilize Snyk to seamlessly integrate with AWS and secure your open-source dependencies and container images. If you are interested in learning more about DevSecOps with Snyk and AWS, then I invite you to check out this workshop and watch this video.


About the Author

Author Photo


Jay is a Senior Partner Solutions Architect at AWS bringing over 20 years of experience in various technical roles. He holds a Master of Science degree in Computer Information Systems and is a subject matter expert and thought leader for strategic initiatives that help customers embrace a DevOps culture.



NextGen Healthcare: Build and Deployment Pipelines with AWS

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/nextgen-healthcare-build-and-deployment-pipelines-with-aws/

Owen Zacharias, Vice President of Application Delivery at NextGen Healthcare, explains to AWS Solutions Architect Andrea Sabet how his company developed a series of build and deployment pipelines using native AWS services in the highly regulated healthcare sector.

Learn how the following services can be used to build and deploy infrastructure and application code:

Discover how AWS resources can be rapidly created and updated as part of a CI/CD pipeline while ensuring HIPAA compliance through approved/vetted AWS Identity and Access Management (IAM) roles that AWS CloudFormation is permitted to assume.

February’s AWS Architecture Monthly magazine is all about healthcare. Check it out on Kindle Newsstand, download the PDF, or see it on Flipboard.

*Check out more This Is My Architecture video series.

Customizing triggers for AWS CodePipeline with AWS Lambda and Amazon CloudWatch Events

Post Syndicated from Bryant Bost original https://aws.amazon.com/blogs/devops/adding-custom-logic-to-aws-codepipeline-with-aws-lambda-and-amazon-cloudwatch-events/

AWS CodePipeline is a fully managed continuous delivery service that helps automate the build, test, and deploy processes of your application. Application owners use CodePipeline to manage releases by configuring “pipeline,” workflow constructs that describe the steps, from source code to deployed application, through which an application progresses as it is released. If you are new to CodePipeline, check out Getting Started with CodePipeline to get familiar with the core concepts and terminology.


In a default setup, a pipeline is kicked-off whenever a change in the configured pipeline source is detected. CodePipeline currently supports sourcing from AWS CodeCommit, GitHub, Amazon ECR, and Amazon S3. When using CodeCommit, Amazon ECR, or Amazon S3 as the source for a pipeline, CodePipeline uses an Amazon CloudWatch Event to detect changes in the source and immediately kick off a pipeline. When using GitHub as the source for a pipeline, CodePipeline uses a webhook to detect changes in a remote branch and kick off the pipeline. Note that CodePipeline also supports beginning pipeline executions based on periodic checks, although this is not a recommended pattern.

CodePipeline supports adding a number of custom actions and manual approvals to ensure that pipeline functionality is flexible and code releases are deliberate; however, without further customization, pipelines will still be kicked-off for every change in the pipeline source. To customize the logic that controls pipeline executions in the event of a source change, you can introduce a custom CloudWatch Event, which can result in the following benefits:

  • Multiple pipelines with a single source: Trigger select pipelines when multiple pipelines are listening to a single source. This can be useful if your organization is using monorepos, or is using a single repository to host configuration files for multiple instances of identical stacks.
  • Avoid reacting to unimportant files: Avoid triggering a pipeline when changing files that do not affect the application functionality (e.g. documentation files, readme files, and .gitignore files).
  • Conditionally kickoff pipelines based on environmental conditions: Use custom code to evaluate whether a pipeline should be triggered. This allows for further customization beyond polling a source repository or relying on a push event. For example, you could create custom logic to automatically reschedule deployments on holidays to the next available workday.

This post explores and demonstrates how to customize the actions that invoke a pipeline by modifying the default CloudWatch Events configuration that is used for CodeCommit, ECR, or S3 sources. To illustrate this customization, we will walk through two examples: prevent updates to documentation files from triggering a pipeline, and manage execution of multiple pipelines monitoring a single source repository.

The key concepts behind customizing pipeline invocations extend to GitHub sources and webhooks as well; however, creating a custom webhook is outside the scope of this post.

Sample Architecture

This post is only interested in controlling the execution of the pipeline (as opposed to the deploy, test, or approval stages), so it uses simple source and pipeline configurations. The sample architecture considers a simple CodePipeline with only two stages: source and build.

Example CodePipeline Architecture

Example CodePipeline Architecture with Custom CloudWatch Event Configuration

The sample CodeCommit repository consists only of buildspec.yml, readme.md, and script.py files.

Normally, after you create a pipeline, it automatically triggers a pipeline execution to release the latest version of your source code. From then on, every time you make a change to your source location, a new pipeline execution is triggered. In addition, you can manually re-run the last revision through a pipeline using the “Release Change” button in the console. This architecture uses a custom CloudWatch Event and AWS Lambda function to avoid commits that change only the readme.md file from initiating an execution of the pipeline.

Creating a custom CloudWatch Event

When we create a CodePipeline that monitors a CodeCommit (or other) source, a default CloudWatch Events rule is created to trigger our pipeline for every change to the CodeCommit repository. This CloudWatch Events rule monitors the CodeCommit repository for changes, and triggers the pipeline for events matching the referenceCreated or referenceUpdated CodeCommit Event (refer to CodeCommit Event Types for more information).

Default CloudWatch Events Rule to Trigger CodePipeline

Default CloudWatch Events Rule to Trigger CodePipeline

To introduce custom logic and control the events that kickoff the pipeline, this example configures the default CloudWatch Events rule to detect changes in the source and trigger a Lambda function rather than invoke the pipeline directly. The example uses a CodeCommit source, but the same principle applies to Amazon S3 and Amazon ECR sources as well, as these both use CloudWatch Events rules to notify CodePipeline of changes.

Custom CloudWatch Events Rule to Trigger CodePipeline

Custom CloudWatch Events Rule to Trigger CodePipeline

When a change is introduced to the CodeCommit repository, the configured Lambda function receives an event from CloudWatch signaling that there has been a source change.

   "detail-type":"CodeCommit Repository State Change",
      "callerUserArn":"arn:aws:sts::accountNumber:assumed-role/admin/roleName ",

The Lambda function is responsible for determining whether a source change necessitates kicking-off the pipeline, which in the example is necessary if the change contains modifications to files other than readme.md. To implement this, the Lambda function uses the commitId and oldCommitId fields provided in the body of the CloudWatch event message to determine which files have changed. If the function determines that a change has occurred to a “non-ignored” file, then the function programmatically executes the pipeline. Note that for S3 sources, it may be necessary to process an entire file zip archive, or to retrieve past versions of an artifact.

import boto3

files_to_ignore = [ "readme.md" ]

codecommit_client = boto3.client('codecommit')
codepipeline_client = boto3.client('codepipeline')

def lambda_handler(event, context):
    # Extract commits
    old_commit_id = event["detail"]["oldCommitId"]
    new_commit_id = event["detail"]["commitId"]
    # Get commit differences
    codecommit_response = codecommit_client.get_differences(
    # Search commit differences for files to ignore
    for difference in codecommit_response["differences"]:
        file_name = difference["afterBlob"]["path"].lower()
        # If non-ignored file is present, kickoff pipeline
        if file_name not in files_to_ignore:
            codepipeline_response = codepipeline_client.start_pipeline_execution(
            # Break to avoid executing the pipeline twice

Multiple pipelines sourcing from a single repository

Architectures that use a single-source repository monitored by multiple pipelines can add custom logic to control the types of events that trigger a specific pipeline to execute. Without customization, any change to the source repository would trigger all pipelines.

Consider the following example:

  • A CodeCommit repository contains a number of config files (for example, config_1.json and config_2.json).
  • Multiple pipelines (for example, codepipeline-customization-sandbox-pipeline-1 and codepipeline-customization-sandbox-pipeline-2) source from this CodeCommit repository.
  • Whenever a config file is updated, a custom CloudWatch Event triggers a Lambda function that is used to determine which config files changed, and therefore which pipelines should be executed.
Example CodePipeline Architecture

Example CodePipeline Architecture for Monorepos with Custom CloudWatch Event Configuration

This example follows the same pattern of creating a custom CloudWatch Event and Lambda function shown in the preceding example. However, in this scenario, the Lambda function is responsible for determining which files changed and which pipelines should be kicked off as a result. To execute this logic, the Lambda function uses the config_file_mapping variable to map files to corresponding pipelines. Pipelines are only executed if their designated config file has changed.

Note that the config_file_mapping can be exported to Amazon S3 or Amazon DynamoDB for more complex use cases.

import boto3

# Map config files to pipelines
config_file_mapping = {
        "config_1.json" : "codepipeline-customization-sandbox-pipeline-1",
        "config_2.json" : "codepipeline-customization-sandbox-pipeline-2"
codecommit_client = boto3.client('codecommit')
codepipeline_client = boto3.client('codepipeline')

def lambda_handler(event, context):
    # Extract commits
    old_commit_id = event["detail"]["oldCommitId"]
    new_commit_id = event["detail"]["commitId"]
    # Get commit differences
    codecommit_response = codecommit_client.get_differences(
    # Search commit differences for files that trigger executions
    for difference in codecommit_response["differences"]:
        file_name = difference["afterBlob"]["path"].lower()
        # If file corresponds to pipeline, execute pipeline
        if file_name in config_file_mapping:
            codepipeline_response = codepipeline_client.start_pipeline_execution(


For the first example, updates affecting only the readme.md file are completely ignored by the pipeline, while updates affecting other files begin a normal pipeline execution. For the second example, the two pipelines monitor the same source repository; however, codepipeline-customization-sandbox-pipeline-1 is executed only when config_1.json is updated and codepipeline-customization-sandbox-pipeline-2 is executed only when config_2.json is updated.

These CloudWatch Event and Lambda function combinations serve as a good general examples of the introduction of custom logic to pipeline kickoffs, and can be expanded to account for variously complex processing logic.


To avoid additional infrastructure costs from the examples described in this post, be sure to delete all CodeCommit repositories, CodePipeline pipelines, Lambda functions, and CodeBuild projects. When you delete a CodePipeline, the CloudWatch Events rule that was created automatically is deleted, even if the rule has been customized.


For scenarios which need you to define additional custom logic to control the execution of one or multiple pipelines, configuring a CloudWatch Event to trigger a Lambda function allows you to customize the conditions and types of events that can kick-off your pipeline.

Build ARM-based applications using CodeBuild

Post Syndicated from Eddie Moser original https://aws.amazon.com/blogs/devops/build-arm-based-applications-using-codebuild/

AWS CodeBuild has announced support for ARM-based workloads, which will allow you to build and test your software updates natively, without needing to emulate or cross-compile. ARM is a quickly growing platform for application development today and if you rely on emulation and/or cross-compile, the downside is time and reliability. However, a more native approach can be faster and more reliable: Enter ARM-based workload support.

In this post, you will learn how to build a sample Java application with an ARM-based Docker image, you will then upload the artifact to an S3 bucket.


A new repository in CodeCommit with the code from the sample Java application linked above has already been created. A working knowledge of git and how to fork or clone within your source provider is a pre-requisite.

Configuration Steps

Working with our source code:

  1. Fork or clone the repo and upload/push the code to your source provider of choice. As of this writing, CodeBuild supports the following Source Providers: S3, CodeCommit, BitBucket, GitHub, and GitHub Enterprise.
  2. Go to your IDE of choice* and within your repo/source create a new file named buildspec.yml and copy in the following code. *In this post, the AWS Cloud9 IDE will be referenced when discussing edits. (buildspec.yml reference page)
    version: 0.2
               java: corretto8
                - echo Starting Java build at `date`
                - mvn package
                - echo Finished build of Java Sample at `date`
            - 'target/aws-java-sample-1.0.jar'

    For this sample, specify that your container run an Amazon Corretto 8 Java environment. An artifact file will also be output, which we will be sent to an S3 bucket later in the process.

    The two phases are:

    1. Install – Since version 0.2 is being used, the Install phase is required to specify the runtime-version.
    2. Build – This phase is where the commands used to build the software will be passed.
  3. Once the buildspec.yml file has been added and saved, you will commit your changes and push your code to your source.
    We are doing a git push to our repo.


Creating your CodeBuild Project:

Now that you have created your source code, it’s time to create your CodeBuild project. For this post, The AWS Management Console will be used, though other tools such as AWS Cloud Dvelopement Kit (CDK), AWS CloudFormation, or the AWS CLI can also be leveraged.

Creating your artifact destination:

The first thing you are going to do is create where your artifact will be stored. For this blog, you are going to put your artifact into an S3 bucket.

1) In the console search bar type ‘S3.’

2) Select ‘S3’ to go to the S3 Console

image displaying how to search for the S3 service in the AWS Management Console

3) Select ‘Create bucket’ from the top left of the console.

image showing where to click to create your S3 Bucket


4) Type in your bucket name and Region and click ‘Next.’ For this blog, you are going to use the name “mydemobuildbucket.” It is important to note that it must an be all lowercase and globally unique name.

image showing the fields in the name and region of the S3 bucket creation.

5) Leave the defaults as is for the configuration page and select ‘Next.’

image displaying to leave the configuration options as they are and click next.

6) Under the permissions tab, choose to ‘Block all public access’ to the bucket, then click ‘Next.’ This well help keep your artifact secure.

image displaying to select block all public access and select next. this is important to secure our bucket.

7) The Review pane is where you can verify all of your settings. Once you have confirmed that all settings are correct, click ‘Create bucket’ to finish.

image showing the summary of the bucket creation process and to click create bucket.

You should see your S3 Bucket. With your bucket, you can now create your build project.


Create CodeBuild Project:

If you have worked with CodeBuild in the past, most of this will look familiar, however, as part of the ARM release, a few new options have been added within the Build Environment section that will let you build and test any of your ARM-based applications.

1) Go to the console search and type ‘CodeBuild’ and select the service.

image showing how to search for the CodeBuild service in the AWS Management Console

2) In the top right corner click ‘Create build project.’

Image showing where to click to create a build project

3) Enter a name for your project. (‘myDemoBuild’ will be used as the default name in this post.) Descriptions are optional but can be useful.

image showing entering our project name myDemoBuild and an optional description

4) Select your source provider. I am going to use CodeCommit and select my repo and the branch where my new code is located.

image shows selecing our Source provider, Repository name, reference type, and branch name.

5) This is where the differences are that I mentioned earlier. We are now going to setup our Build Environment. For ARM support we must select the following options:

  1. Operating System: Amazon Linux 2 (At time of publishing, ARM support only supports using the Amazon Linux 2 operating system.)
  2. Runtime(s): Standard
  3. Image: amazonlinux-aarch64-standard

You can either create a new service role or select an existing service role if you have previously created one. I am going to create a new role called myDemoRole. The system will automatically create the required permissions to allow CodeBuild to access the resources based on your input from the Project. In a production environment, I would recommend creating a service role that follows a least access needed principal, instead of creating a holistically new role.

image showing the environment settings for CodeBuild.

6) Configure buildspec settings. I am going to select ‘Use a buildspec file’ and leave the name blank as it will default to buildspec.yml. However, you can select a specific name if you have multiple buildspec files for use with difference environments. E.g., buildspec-prod.yml, buildspec-staging.yml, buildspec-dev.yml

Image showing us select to use a buildspec file.

7) Configure your artifact settings. I am going to upload my artifact to the S3 Bucket we created earlier. I have named the file artifact.zip for simplicity, but any name can be used. I have selected to Zip the artifact file, however, that is not required.

image showing the artifact configuration for our CodeBuild project.

8) Configure logging. I am going to enable CloudWatch logging so that the build logs are uploaded to the logging service.

image showing configuring logs which is an optional step.

9) Select ‘Create build project.’

image showing the review panel where you can review all of the settings for your CodeBuild Project.

Run the build:

Now that your application is created, your S3 bucket has been built, and you’ve created your build project, it is time to run your build. If everything is successful, your artifact file should be stored in your S3 bucket.

1) After you have created your build project, you should now be in the build page which allows you to run/edit/delete your build project. Select ‘Start build’ in the top right part of the page.

image showing how to start the build you just created.

2) You can review or override the build settings that you configured when setting up the project. Once you have verified settings, click ‘Start build’ in the top right.

image showing the verify run options and to kick off the build.

3) Once your build has been started, it will run through the steps of you buildspec file (this can take a while depending on your application). Once complete, the status should show “Succeeded.”

image showing where to check for build status.

If for any reason your build did not succeed, look in the phase details to find the error. Validate all of your settings are correct and use the documentation to help you troubleshoot any issues.

4) Now that your build has been successful, verify that your artifact is in the S3 bucket you created.

image showing where you will find the Artifact in the S3 Bucket.


Clean Up

Reminder, if you created any resources just for testing purposes, you should delete them to keep from incurring additional cost.

Make sure and check the following when cleaning up:

  • S3 bucket
  • CodeBuild Project
  • CodeCommit repository
  • Cloud9 Environment


We have walked through the process of using CodeBuild to build a sample Java application in the new ARM environment. Now that you have built your ARM-based artifact, you can download it for any local use or get started developing your own ARM-based applications using AWS Developer Tools.


Receive AWS Developer Tools Notifications over Slack using AWS Chatbot

Post Syndicated from Anushri Anwekar original https://aws.amazon.com/blogs/devops/receive-aws-developer-tools-notifications-over-slack-using-aws-chatbot/

Developers often use Slack to communicate with each other about their code. With AWS Chatbot, you can configure notifications for developer tools resources such as repositories, build projects, deployment applications, and pipelines so that users in Slack channels are automatically notified about important events. When a deployment fails, a build succeeds, or a pull request is created, developers get notifications where they’re most likely to see and react to them.

The AWS services which currently support notifications are:

In this post, I walk you through the high-level steps for creating a notification that alerts users in a Slack channel every time a pull request is created in a CodeCommit repository.

Solution overview

You can create both the notification rule to listen for required events and the Amazon SNS topic used for notifications on the same web page. You can then configure AWS Chatbot so that notifications sent to that Amazon SNS topic appears in a Slack channel.

To set up notifications, follow the following process, as shown in the following diagram:

  1. Create a notification rule for a repository. This includes creating an Amazon SNS topic to use for notifications.
  2. Configure AWS Chatbot to send notifications from that Amazon SNS topic to a Slack channel.
  3. Test it out and enjoy receiving notifications in your team’s Slack channel.

This diagram describes the notification workflow and how impacted services are connected.


To follow along with this example, you need an AWS account, an IAM user or role with administrative access, a CodeCommit repository, and a Slack channel.

Configuration steps

Step 1: Create notification rule in CodeCommit

Follow these steps to create a notification rule in CodeCommit:

1 . Select the repository in CodeCommit about which you want to be notified. In the following screenshot, I have selected a repository called Hello-Dublin. Screen-shot of the repository view

2. Select a repository for which you want to receive notifications. Choose Notify, then Create notification rule.Screen-shot of how to select option to create a notification rule

3. Provide a name for your notification rule. I suggest leaving the default Detail Type as Full. By selecting Full, you get extra information beyond what is present in the resource events. Also, you get updated information about your selected event types whenever new information is added about them.

  • For example, if you want to receive notifications whenever a comment is made on a pull request, select Basic, and your notification informs you that a comment has been made.
  • If you select Full, the notification also specifies the exact comment that was made. If the notification feature is enhanced and extra information is added to be a part of the notification, you start receiving the new information without modifying your existing notification rule.

4. In Event types, in Pull request, select Created.

5. In Targets, choose Create SNS topic. This automatically sets up a new Amazon SNS topic to use for notifications, applying a policy that allows notification events to be sent to it.

6. Finish creating the rule. Keep a note of the Amazon SNS ARN, as you need this information to configure Slack integration in the next step.

For complete step-by-step instructions for creating a notification rule, see Create a Notification Rule.

Step 2: Integrate your Amazon SNS topic with AWS Chatbot

Follow these steps to integrate your Amazon SNS topic with AWS Chatbot.

1. Open up your Slack channel. You need information about it as well as your notification rule to complete integration.

2. Open the AWS Chatbot console and choose Try the AWS Chatbot beta.

3. Choose Configure new client, then Slack, then Configure.

4. AWS Chatbot asks for permission to access your Slack workplace, as seen in the following screenshot. Once you give permission, you are asked to configure your Slack channel.

Screen-shot of a prompt about AWS Chatbot requesting permission to access the notifications Slack workspace

Step 3: Test the notification

In your repository, create a pull request. In this example, I named the pull request This is a new pull request. Watch as a notification about that event appears in your Slack channel, as seen in the following screenshot.

Example of a notification received on a Slack channel when a new pull request is created

Step 4: Clean-up

If you created notification rule just for testing purposes, you should delete the SNS topic to avoid any further charges.


And that’s it! You can use notifications to help developers to stay informed about the key events happening in their software development life cycle. You can set up notification rules for build projects, deployment applications, pipelines, and repositories, and stay informed about key events such as pull request creation, comments made on your code or commits, build state/phase change, deployment project status change, manual pipelines approval, or pipeline execution status change. For more information, see the notifications documentation.

Integrating SonarQube as a pull request approver on AWS CodeCommit

Post Syndicated from David Jackson original https://aws.amazon.com/blogs/devops/integrating-sonarqube-as-a-pull-request-approver-on-aws-codecommit/

Integrating SonarQube as a pull request approver on AWS CodeCommit

On Nov 25th, AWS CodeCommit launched a new feature that allows customers to configure approval rules on pull requests. Approval rules act as a gate on your source code changes. Pull requests which fail to satisfy the required approvals cannot be merged into your important branches. Additionally, CodeCommit launched the ability to create approval rule templates, which are rulesets that can automatically be applied to all pull requests created for one or more repositories in your AWS account. With templates, it becomes simple to create rules like “require one approver from my team” for any number of repositories in your AWS account.

A common problem for software developers is accidentally or unintentionally merging code with bugs, defects, or security vulnerabilities into important master branches. Once bad code is merged into a master branch, it can be difficult to remove. It’s also potentially costly if the code is deployed into production environments and causes outages or other serious issues. Using CodeCommit’s new features, adding required approvers to your repository pull requests can help identify and mitigate those issues before they are merged into your master branches.

The most rudimentary use of required approvers is to require at least one team member to approve each pull request. While adding human team members as approvers is an important part of the pull request workflow, this feature can also be used to require ‘robot’ approvers of your pull requests, and you can trigger them automatically on each new or updated pull request. Robotic approvers can help find issues that humans miss and enforce best practices regarding code style, test coverage, and more.

Customers have been asking us how we can integrate code review tools with AWS CodeCommit pull requests. I encourage you to check out Amazon CodeGuru Reviewer, which is a service that uses program analysis and machine learning to detect potential defects that are difficult for developers to find and recommends fixes in your Java code, and was launched in preview at the AWS Re:Invent 2019 conference. Another popular tool is SonarQube, which is an open-source platform for performing code quality analysis. It helps detect defects, bugs, and security vulnerabilities in your pull requests. This blog post shows you how to integrate SonarQube into the pull requests workflow.

This post shows…

Time to read10 minutes
Time to complete20 minutes
Cost to complete (estimated)$0.40/month for secret, ~$0.02 per build on CodeBuild. $0-1 for CodeCommit user depending on current free tier status. (at publication time)
Learning levelIntermediate (200)
Services usedAWS CodeCommit, AWS CodeBuild, AWS CloudFormation, Amazon Elastic Compute Cloud (EC2), AWS CloudWatch Events, AWS Identity and Access Management, AWS Secrets Manager

Solution overview

In this solution, you create a CodeCommit repository that requires a successful SonarQube quality analysis before pull requests can be merged. You can create the required AWS resources in your account by using the provided AWS CloudFormation template. This template creates the following resources:

  • A new CodeCommit repository, containing a starter Java project that uses the Apache Maven build system, as well as a custom buildspec.yml file to facilitate communication with SonarQube and CodeCommit.
  • An AWS CodeBuild project which invokes your SonarQube instance on build, then reports the status of the analysis back to CodeCommit.
  • An Amazon CloudWatch Events Rule, which listens for pullRequestCreated and pullRequestSourceBranchUpdated events from CodeCommit, and invokes your CodeBuild project.
  • An AWS Secrets Manager secret, which securely stores and provides the username and password of your SonarQube user to the CodeBuild project on-demand.
  • IAM roles for CodeBuild and CloudWatch events.

Although this tutorial showcases a Java project with Maven, the design principles should also apply for other languages and build systems with SonarQube integrations.


The following diagram shows the flow of data, starting with a new or updated pull request on CodeCommit. CloudWatch Events listens for these events and invokes your CodeBuild project. The CodeBuild container clones your repository source commit, performs a Maven install, and invokes the quality analysis on SonarQube, using the credentials obtained from AWS Secrets Manager. When finished, CodeBuild leaves a comment on your pull request, and potentially approves your pull request.


Diagram showing the flow of data between the AWS service components, as well as the SonarQube.


For this walkthrough, you require:

  • An AWS account
  • A SonarQube server instance (Optional setup instructions included if you don’t have one already)

SonarQube instance setup (Optional)

This tutorial shows a basic setup of SonarQube on Amazon EC2 for informational purposes only. It does not include details about securing your Amazon EC2 instance or SonarQube installation. Please be sure you have secured your environments before placing sensitive data on them.

  1. To start, get a SonarQube server instance up and running. If you are already using SonarQube, feel free to skip these instructions and just note down your host URL and port number for later. If you don’t have one already, I recommend using a fresh Amazon EC2 instance for the job. You can get up and running quickly in just a few commands. I’ve selected an Amazon Linux 2 AMI for my EC2 instance.
  2. Download and install the latest JDK 11 module. Because I am using an Amazon Linux 2 EC2 instance, I can directly install Amazon Corretto 11 with yum.

$ sudo yum install java-11-amazon-corretto-headless

  1. After it’s installed, verify you’re using this version of Java:

$ sudo alternatives --config java

  1. Choose the Java 11 version you just installed.
  2. Download the latest SonarQube installation.
  3. Copy the zip-file onto your Amazon EC2 instance.
  4. Unzip the file into your home directory:

$ unzip sonarqube-8.0.zip -d ~/

This will copy the files into a directory like /home/ec2-user/sonarqube-8.0.

Now, start the server!

$ ~/sonarqube-8.0/bin/linux-x86-64/sonar.sh start

This should start a SonarQube server running on an address like http://<instance-address>:9000. It may take a few moments for the server to start.


Follow these steps to create automated pull request approvals.

Create a SonarQube User

Get started by creating a SonarQube user from your SonarQube webpage. This user is the identity used by the robot caller to your SonarQube for this workflow.

  1. Go to the Administration tab on your SonarQube instance.
  2. Choose Security, then Users, as shown in the following screenshot.Screenshot showing where to find the user management options inside SonarQube.
  3. Choose Create User. Fill in the form, and note down the Login and Password You will need to provide these values when creating the following AWS resources.
  4. Choose Create.

Create AWS resources

For this integration, you need to create some AWS resources:

  • AWS CodeCommit repository
  • AWS CodeBuild project
  • Amazon CloudWatch Events rule (to trigger builds when pull requests are created or updated)
  • IAM role (for CodeBuild to assume)
  • IAM role (for CloudWatch Events to assume and invoke CodeBuild)
  • AWS Secrets Manager secret (to store and manage your SonarQube user credentials)

I have created an AWS CloudFormation template to provision these resources for you. You can download the template from the sample repository on GitHub for this blog demo. This repository also contains the sample code which will be uploaded to your CodeCommit repository. The contents of this GitHub repository will automatically be copied into your new CodeCommit repository for you when you create this CloudFormation stack. This is because I’ve conveniently uploaded a zip-file of the contents into a publicly-readable S3 bucket, and am using it within this CloudFormation template.

  1. Download or copy the CloudFormation template from GitHub and save it as template.yaml on your local computer.
  2. At the CloudFormation console, choose Create Stack (with new resources).
  3. Choose Upload a template file.
  4. Choose Choose file and select the template.yaml file you just saved.
  5. Choose Next.
  6. Give your stack a name, optionally update the CodeCommit repository name and description, and paste in the username and password of the SonarQube user you created.
  7. Choose Next.
  8. Review the stack options and choose Next.
  9. On Step 4, review your stack, acknowledge the required capabilities, and choose Create Stack.
  10. Wait for the stack creation to complete before proceeding.
  11. Before leaving the AWS CloudFormation console, choose the Resources tab and note down the newly created CodeBuildRole’s Physical Id, as shown in the following screenshot. You need this in the next step. Screenshot showing the Physical Id of the CodeBuild role created through CloudFormation.

Create an Approval Rule Template

Now that your resources are created, create an Approval Rule Template in the CodeCommit console. This template allows you to define a required approver for new pull requests on specific repositories.

  1. On the CodeCommit console home page, choose Approval rule templates in the left panel. Choose Create template.
  2. Give the template a name (like Require SonarQube approval) and optionally, a description.
  3. Set the number of approvals needed as 1.
  4. Under Approval pool members, choose Add.
  5. Set the approver type to Fully qualified ARN. Since the approver will be the identity obtained by assuming the CodeBuild execution role, your approval pool ARN should be the following string:
    arn:aws:sts::<Your AccountId>:assumed-role/<Your CodeBuild IAM role name>/*
    The CodeBuild IAM role name is the Physical Id of the role you created and noted down above. You can also find the full name either in the IAM console or the AWS CloudFormation stack details. Adding this role to the approval pool allows any identity assuming your CodeBuild role to satisfy this approval rule.
  6. Under Associated repositories, find and choose your repository (PullRequestApproverBlogDemo). This ensures that any pull requests subsequently created on your repository will have this rule by default.
  7. Choose Create.

Update the repository with a SonarQube endpoint URL

For this step, you update your CodeCommit repository code to include the endpoint URL of your SonarQube instance. This allows CodeBuild to know where to go to invoke your SonarQube.

You can use the AWS Management Console to make this code change.

  1. Head back to the CodeCommit home page and choose your repository name from the Repositories list.
  2. You need a new branch on which to update the code. From the repository page, choose Branches, then Create branch.
  3. Give the new branch a name (such as update-url) and make sure you are branching from master. Choose Create branch.
  4. You should now see two branches in the table. Choose the name of your new branch (update-url) to start browsing the code on this branch. On the update-url branch, open the buildspec.yml file by choosing it.
  5. Choose Edit to make a change.
  6. In the pre_build steps, modify line 17 with your SonarQube instance url and listen port number, as shown in the following screenshot.Screenshot showing buildspec yaml code.
  7. To save, scroll down and fill out the author, email, and commit message. When you’re happy, commit this by choosing Commit changes.

Create a Pull Request

You are now ready to create a pull request!

  1. From the CodeCommit console main page, choose Repositories and PullRequestApproverBlogDemo.
  2. In the left navigation panel, choose Pull Requests.
  3. Choose Create pull request.
  4. Select master as your destination branch, and your new branch (update-url) as the source branch.
  5. Choose Compare.
  6. Give your pull request a title and description, and choose Create pull request.

It’s time to see the magic in action. Now that you’ve created your pull request, you should already see that your pull request requires one approver but is not yet approved. This rule comes from the template you created and associated earlier.

You’ll see images like the following screenshot if you browse through the tabs on your pull request:

Screenshot showing that your pull request has 0 of 1 rule satisfied, with 0 approvals. Screenshot showing a table of approval rules on this pull request which were applied by a template. Require SonarQube approval is listed but not yet satisfied.

Thanks to the CloudWatch Events Rule, CodeBuild should already be hard at work cloning your repository, performing a build, and invoking your SonarQube instance. It is able to find the SonarQube URL you provided because CodeBuild is cloning the source branch of your pull request. If you choose to peek at your project in the CodeBuild console, you should see an in-progress build.

Once the build has completed, head back over to your CodeCommit pull request page. If all went well, you’ll be able to see that SonarQube approved your pull request and left you a comment. (Or alternatively, failed and also left you a comment while not approving).

The Activity tab should resemble that in the following screenshot:

Screenshot showing that a comment was made by SonarQube through CodeBuild, and that the quality gate passed. The comment includes a link back to the SonarQube instance.

The Approvals tab should resemble that in the following screenshot:

Screenshot of Approvals tab on the pull request. The approvals table shows an approval by the SonarQube and that the rule to require SonarQube approval is satisfied.

Suppose you need to make a change to your pull request. If you perform updates to your source branch, the approval status will be reset. As your push completes, a new SonarQube analysis will begin just as it did the first time.

Once your SonarQube thresholds are satisfied and your pull request is approved, feel free to merge it!


To avoid incurring additional charges, you may want to delete the AWS resources you created for this project. To do this, simply navigate to the CloudFormation console, select the stack you created above, and choose Delete. If you are sure you want to delete, confirm by choosing Delete stack. CloudFormation will delete all the resources you created with this stack.


In this tutorial, you created a workflow to watch for pull request changes to your repository, triggered a CodeBuild project execution which invoked your SonarQube for code quality analysis, and then reported back to CodeCommit to approve your pull request.

I hope this guide illustrates the potential power of combining pull request approval rules with robotic approvers. While this example is specifically about integrating SonarQube, the same pattern can be used to invoke other robotic approvers using CodeBuild, or by invoking an AWS Lambda function instead.

This tutorial was written and tested using SonarQube Version 8.0 (build 29455).

DevOps at re:Invent 2019!

Post Syndicated from Matt Dwyer original https://aws.amazon.com/blogs/devops/devops-at-reinvent-2019/

re:Invent 2019 is fast approaching (NEXT WEEK!) and we here at the AWS DevOps blog wanted to take a moment to highlight DevOps focused presentations, share some tips from experienced re:Invent pro’s, and highlight a few sessions that still have availability for pre-registration. We’ve broken down the track into one overarching leadership session and four topic areas: (a) architecture, (b) culture, (c) software delivery/operations, and (d) AWS tools, services, and CLI.

In total there will be 145 DevOps track sessions, stretched over 5 days, and divided into four distinct session types:

  • Sessions (34) are one-hour presentations delivered by AWS experts and customer speakers who share their expertise / use cases
  • Workshops (20) are two-hours and fifteen minutes, hands-on sessions where you work in teams to solve problems using AWS services
  • Chalk Talks (41) are interactive white-boarding sessions with a smaller audience. They typically begin with a 10–15-minute presentation delivered by an AWS expert, followed by 45–50-minutes of Q&A
  • Builders Sessions (50) are one-hour, small group sessions with six customers and one AWS expert, who is there to help, answer questions, and provide guidance
  • Select DevOps focused sessions have been highlighted below. If you want to view and/or register for any session, including Keynotes, builders’ fairs, and demo theater sessions, you can access the event catalog using your re:Invent registration credentials.

Reserve your seat for AWS re:Invent activities today >>

re:Invent TIP #1: Identify topics you are interested in before attending re:Invent and reserve a seat. We hold space in sessions, workshops, and chalk talks for walk-ups, however, if you want to get into a popular session be prepared to wait in line!

Please see below for select sessions, workshops, and chalk talks that will be conducted during re:Invent.


[Session] Leadership Session: Developer Tools on AWS (DOP210-L) — SPACE AVAILABLE! REGISTER TODAY!

Speaker 1: Ken Exner – Director, AWS Dev Tools, Amazon Web Services
Speaker 2: Kyle Thomson – SDE3, Amazon Web Services

Join Ken Exner, GM of AWS Developer Tools, as he shares the state of developer tooling on AWS, as well as the future of development on AWS. Ken uses insight from his position managing Amazon’s internal tooling to discuss Amazon’s practices and patterns for releasing software to the cloud. Additionally, Ken provides insight and updates across many areas of developer tooling, including infrastructure as code, authoring and debugging, automation and release, and observability. Throughout this session Ken will recap recent launches and show demos for some of the latest features.

re:Invent TIP #2: Leadership Sessions are a topic area’s State of the Union, where AWS leadership will share the vision and direction for a given topic at AWS.re:Invent.


[Session] Amazon’s approach to failing successfully (DOP208-RDOP208-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Becky Weiss – Senior Principal Engineer, Amazon Web Services

Welcome to the real world, where things don’t always go your way. Systems can fail despite being designed to be highly available, scalable, and resilient. These failures, if used correctly, can be a powerful lever for gaining a deep understanding of how a system actually works, as well as a tool for learning how to avoid future failures. In this session, we cover Amazon’s favorite techniques for defining and reviewing metrics—watching the systems before they fail—as well as how to do an effective postmortem that drives both learning and meaningful improvement.

[Session] Improving resiliency with chaos engineering (DOP309-RDOP309-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker 1: Olga Hall – Senior Manager, Tech Program Management
Speaker 2: Adrian Hornsby – Principal Evangelist, Amazon Web Services

Failures are inevitable. Regardless of the engineering efforts put into building resilient systems and handling edge cases, sometimes a case beyond our reach turns a benign failure into a catastrophic one. Therefore, we should test and continuously improve our system’s resilience to failures to minimize impact on a user’s experience. Chaos engineering is one of the best ways to achieve that. In this session, you learn how Amazon Prime Video has implemented chaos engineering into its regular testing methods, helping it achieve increased resiliency.

[Session] Amazon’s approach to security during development (DOP310-RDOP310-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Colm MacCarthaigh – Senior Principal Engineer, Amazon Web Services

At AWS we say that security comes first—and we really mean it. In this session, hear about how AWS teams both minimize security risks in our products and respond to security issues proactively. We talk through how we integrate security reviews, penetration testing, code analysis, and formal verification into the development process. Additionally, we discuss how AWS engineering teams react quickly and decisively to new security risks as they emerge. We also share real-life firefighting examples and the lessons learned in the process.

[Session] Amazon’s approach to building resilient services (DOP342-RDOP342-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Marc Brooker – Senior Principal Engineer, Amazon Web Services

One of the biggest challenges of building services and systems is predicting the future. Changing load, business requirements, and customer behavior can all change in unexpected ways. In this talk, we look at how AWS builds, monitors, and operates services that handle the unexpected. Learn how to make your own services handle a changing world, from basic design principles to patterns you can apply today.

re:Invent TIP #3: Not sure where to spend your time? Let an AWS Hero give you some pointers. AWS Heroes are prominent AWS advocates who are passionate about sharing AWS knowledge with others. They have written guides to help attendees find relevant activities by providing recommendations based on specific demographics or areas of interest.


[Session] Driving change and building a high-performance DevOps culture (DOP207-R; DOP207-R1)

Speaker: Mark Schwartz – Enterprise Strategist, Amazon Web Services

When it comes to digital transformation, every enterprise is different. There is often a person or group with a vision, knowledge of good practices, a sense of urgency, and the energy to break through impediments. They may be anywhere in the organizational structure: high, low, or—in a typical scenario—somewhere in middle management. Mark Schwartz, an enterprise strategist at AWS and the author of “The Art of Business Value” and “A Seat at the Table: IT Leadership in the Age of Agility,” shares some of his research into building a high-performance culture by driving change from every level of the organization.

[Session] Amazon’s approach to running service-oriented organizations (DOP301-R; DOP301-R1DOP301-R2)

Speaker: Andy Troutman – Director AWS Developer Tools, Amazon Web Services

Amazon’s “two-pizza teams” are famously small teams that support a single service or feature. Each of these teams has the autonomy to build and operate their service in a way that best supports their customers. But how do you coordinate across tens, hundreds, or even thousands of two-pizza teams? In this session, we explain how Amazon coordinates technology development at scale by focusing on strategies that help teams coordinate while maintaining autonomy to drive innovation.

re:Invent TIP #4: The max number of 60-minute sessions you can attend during re:Invent is 24! These sessions (e.g., sessions, chalk talks, builders sessions) will usually make up the bulk of your agenda.


[Session] Strategies for securing code in the cloud and on premises. Speakers: (DOP320-RDOP320-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker 1: Craig Smith – Senior Solutions Architect
Speaker 2: Lee Packham – Solutions Architect

Some people prefer to keep their code and tooling on premises, though this can create headaches and slow teams down. Others prefer keeping code off of laptops that can be misplaced. In this session, we walk through the alternatives and recommend best practices for securing your code in cloud and on-premises environments. We demonstrate how to use services such as Amazon WorkSpaces to keep code secure in the cloud. We also show how to connect tools such as Amazon Elastic Container Registry (Amazon ECR) and AWS CodeBuild with your on-premises environments so that your teams can go fast while keeping your data off of the public internet.

[Session] Deploy your code, scale your application, and lower Cloud costs using AWS Elastic Beanstalk (DOP326) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Prashant Prahlad – Sr. Manager

You can effortlessly convert your code into web applications without having to worry about provisioning and managing AWS infrastructure, applying patches and updates to your platform or using a variety of tools to monitor health of your application. In this session, we show how anyone- not just professional developers – can use AWS Elastic Beanstalk in various scenarios: From an administrator moving a Windows .NET workload into the Cloud, a developer building a containerized enterprise app as a Docker image, to a data scientist being able to deploy a machine learning model, all without the need to understand or manage the infrastructure details.

[Session] Amazon’s approach to high-availability deployment (DOP404-RDOP404-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Peter Ramensky – Senior Manager

Continuous-delivery failures can lead to reduced service availability and bad customer experiences. To maximize the rate of successful deployments, Amazon’s development teams implement guardrails in the end-to-end release process to minimize deployment errors, with a goal of achieving zero deployment failures. In this session, learn the continuous-delivery practices that we invented that help raise the bar and prevent costly deployment failures.

[Session] Introduction to DevOps on AWS (DOP209-R; DOP209-R1)

Speaker 1: Jonathan Weiss – Senior Manager
Speaker 2: Sebastien Stormacq – Senior Technical Evangelist

How can you accelerate the delivery of new, high-quality services? Are you able to experiment and get feedback quickly from your customers? How do you scale your development team from 1 to 1,000? To answer these questions, it is essential to leverage some key DevOps principles and use CI/CD pipelines so you can iterate on and quickly release features. In this talk, we walk you through the journey of a single developer building a successful product and scaling their team and processes to hundreds or thousands of deployments per day. We also walk you through best practices and using AWS tools to achieve your DevOps goals.

[Workshop] DevOps essentials: Introductory workshop on CI/CD practices (DOP201-R; DOP201-R1; DOP201-R2; DOP201-R3)

Speaker 1: Leo Zhadanovsky – Principal Solutions Architect
Speaker 2: Karthik Thirugnanasambandam – Partner Solutions Architect

In this session, learn how to effectively leverage various AWS services to improve developer productivity and reduce the overall time to market for new product capabilities. We demonstrate a prescriptive approach to incrementally adopt and embrace some of the best practices around continuous integration and delivery using AWS developer tools and third-party solutions, including, AWS CodeCommit, AWS CodeBuild, Jenkins, AWS CodePipeline, AWS CodeDeploy, AWS X-Ray and AWS Cloud9. We also highlight some best practices and productivity tips that can help make your software release process fast, automated, and reliable.

[Workshop] Implementing GitFLow with AWS tools (DOP202-R; DOP202-R1; DOP202-R2)

Speaker 1: Amit Jha – Sr. Solutions Architect
Speaker 2: Ashish Gore – Sr. Technical Account Manager

Utilizing short-lived feature branches is the development method of choice for many teams. In this workshop, you learn how to use AWS tools to automate merge-and-release tasks. We cover high-level frameworks for how to implement GitFlow using AWS CodePipeline, AWS CodeCommit, AWS CodeBuild, and AWS CodeDeploy. You also get an opportunity to walk through a prebuilt example and examine how the framework can be adopted for individual use cases.

[Chalk Talk] Generating dynamic deployment pipelines with AWS CDK (DOP311-R; DOP311-R1; DOP311-R2)

Speaker 1: Flynn Bundy – AppDev Consultant
Speaker 2: Koen van Blijderveen – Senior Security Consultant

In this session we dive deep into dynamically generating deployment pipelines that deploy across multiple AWS accounts and Regions. Using the power of the AWS Cloud Development Kit (AWS CDK), we demonstrate how to simplify and abstract the creation of deployment pipelines to suit a range of scenarios. We highlight how AWS CodePipeline—along with AWS CodeBuild, AWS CodeCommit, and AWS CodeDeploy—can be structured together with the AWS deployment framework to get the most out of your infrastructure and application deployments.

[Chalk Talk] Customize AWS CloudFormation with open-source tools (DOP312-R; DOP312-R1; DOP312-E)

Speaker 1: Luis Colon – Senior Developer Advocate
Speaker 2: Ryan Lohan – Senior Software Engineer

In this session, we showcase some of the best open-source tools available for AWS CloudFormation customers, including conversion and validation utilities. Get a glimpse of the many open-source projects that you can use as you create and maintain your AWS CloudFormation stacks.

[Chalk Talk] Optimizing Java applications for scale on AWS (DOP314-R; DOP314-R1; DOP314-R2)

Speaker 1: Sam Fink – SDE II
Speaker 2: Kyle Thomson – SDE3

Executing at scale in the cloud can require more than the conventional best practices. During this talk, we offer a number of different Java-related tools you can add to your AWS tool belt to help you more efficiently develop Java applications on AWS—as well as strategies for optimizing those applications. We adapt the talk on the fly to cover the topics that interest the group most, including more easily accessing Amazon DynamoDB, handling high-throughput uploads to and downloads from Amazon Simple Storage Service (Amazon S3), troubleshooting Amazon ECS services, working with local AWS Lambda invocations, optimizing the Java SDK, and more.

[Chalk Talk] Securing your CI/CD tools and environments (DOP316-R; DOP316-R1; DOP316-R2)

Speaker: Leo Zhadanovsky – Principal Solutions Architect

In this session, we discuss how to configure security for AWS CodePipeline, deployments in AWS CodeDeploy, builds in AWS CodeBuild, and git access with AWS CodeCommit. We discuss AWS Identity and Access Management (IAM) best practices, to allow you to set up least-privilege access to these services. We also demonstrate how to ensure that your pipelines meet your security and compliance standards with the CodePipeline AWS Config integration, as well as manual approvals. Lastly, we show you best-practice patterns for integrating security testing of your deployment artifacts inside of your CI/CD pipelines.

[Chalk Talk] Amazon’s approach to automated testing (DOP317-R; DOP317-R1; DOP317-R2)

Speaker 1: Carlos Arguelles – Principal Engineer
Speaker 2: Charlie Roberts – Senior SDET

Join us for a session about how Amazon uses testing strategies to build a culture of quality. Learn Amazon’s best practices around load testing, unit testing, integration testing, and UI testing. We also discuss what parts of testing are automated and how we take advantage of tools, and share how we strategize to fail early to ensure minimum impact to end users.

[Chalk Talk] Building and deploying applications on AWS with Python (DOP319-R; DOP319-R1; DOP319-R2)

Speaker 1: James Saryerwinnie – Senior Software Engineer
Speaker 2: Kyle Knapp – Software Development Engineer

In this session, hear from core developers of the AWS SDK for Python (Boto3) as we walk through the design of sample Python applications. We cover best practices in using Boto3 and look at other libraries to help build these applications, including AWS Chalice, a serverless microframework for Python. Additionally, we discuss testing and deployment strategies to manage the lifecycle of your applications.

[Chalk Talk] Deploying AWS CloudFormation StackSets across accounts and Regions (DOP325-R; DOP325-R1)

Speaker 1: Mahesh Gundelly – Software Development Manager
Speaker 2: Prabhu Nakkeeran – Software Development Manager

AWS CloudFormation StackSets can be a critical tool to efficiently manage deployments of resources across multiple accounts and regions. In this session, we cover how AWS CloudFormation StackSets can help you ensure that all of your accounts have the proper resources in place to meet security, governance, and regulation requirements. We also cover how to make the most of the latest functionalities and discuss best practices, including how to plan for safe deployments with minimal blast radius for critical changes.

[Chalk Talk] Monitoring and observability of serverless apps using AWS X-Ray (DOP327-R; DOP327-R1; DOP327-R2)

Speaker 1 (R, R1, R2): Shengxin Li – Software Development Engineer
Speaker 2 (R, R1): Sirirat Kongdee – Solutions Architect
Speaker 3 (R2): Eric Scholz – Solutions Architect, Amazon

Monitoring and observability are essential parts of DevOps best practices. You need monitoring to debug and trace unhandled errors, performance bottlenecks, and customer impact in the distributed nature of a microservices architecture. In this chalk talk, we show you how to integrate the AWS X-Ray SDK to your code to provide observability to your overall application and drill down to each service component. We discuss how X-Ray can be used to analyze, identify, and alert on performance issues and errors and how it can help you troubleshoot application issues faster.

[Chalk Talk] Optimizing deployment strategies for speed & safety (DOP341-R; DOP341-R1; DOP341-R2)

Speaker: Karan Mahant – Software Development Manager, Amazon

Modern application development moves fast and demands continuous delivery. However, the greatest risk to an application’s availability can occur during deployments. Join us in this chalk talk to learn about deployment strategies for web servers and for Amazon EC2, container-based, and serverless architectures. Learn how you can optimize your deployments to increase productivity during development cycles and mitigate common risks when deploying to production by using canary and blue/green deployment strategies. Further, we share our learnings from operating production services at AWS.

[Chalk Talk] Continuous integration using AWS tools (DOP216-R; DOP216-R1; DOP216-R2)

Speaker: Richard Boyd – Sr Developer Advocate, Amazon Web Services

Today, more teams are adopting continuous-integration (CI) techniques to enable collaboration, increase agility, and deliver a high-quality product faster. Cloud-based development tools such as AWS CodeCommit and AWS CodeBuild can enable teams to easily adopt CI practices without the need to manage infrastructure. In this session, we showcase best practices for continuous integration and discuss how to effectively use AWS tools for CI.

re:Invent TIP #5: If you’re traveling to another session across campus, give yourself at least 60 minutes!


[Session] Best practices for authoring AWS CloudFormation (DOP302-R; DOP302-R1)

Speaker 1: Olivier Munn – Sr Product Manager Technical, Amazon Web Services
Speaker 2: Dan Blanco – Developer Advocate, Amazon Web Services

Incorporating infrastructure as code into software development practices can help teams and organizations improve automation and throughput without sacrificing quality and uptime. In this session, we cover multiple best practices for writing, testing, and maintaining AWS CloudFormation template code. You learn about IDE plug-ins, reusability, testing tools, modularizing stacks, and more. During the session, we also review sample code that showcases some of the best practices in a way that lends more context and clarity.

[Chalk Talk] Using AWS tools to author and debug applications (DOP215-RDOP215-R1DOP215-R2) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Fabian Jakobs – Principal Engineer, Amazon Web Services

Every organization wants its developers to be faster and more productive. AWS Cloud9 lets you create isolated cloud-based development environments for each project and access them from a powerful web-based IDE anywhere, anytime. In this session, we demonstrate how to use AWS Cloud9 and provide an overview of IDE toolkits that can be used to author application code.

[Session] Migrating .Net frameworks to the cloud (DOP321) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Robert Zhu – Principal Technical Evangelist, Amazon Web Services

Learn how to migrate your .NET application to AWS with minimal steps. In this demo-heavy session, we share best practices for migrating a three-tiered application on ASP.NET and SQL Server to AWS. Throughout the process, you get to see how AWS Toolkit for Visual Studio can enable you to fully leverage AWS services such as AWS Elastic Beanstalk, modernizing your application for more agile and flexible development.

[Session] Deep dive into AWS Cloud Development Kit (DOP402-R; DOP402-R1)

Speaker 1: Elad Ben-Israel – Principal Software Engineer, Amazon Web Services
Speaker 2: Jason Fulghum – Software Development Manager, Amazon Web Services

The AWS Cloud Development Kit (AWS CDK) is a multi-language, open-source framework that enables developers to harness the full power of familiar programming languages to define reusable cloud components and provision applications built from those components using AWS CloudFormation. In this session, you develop an AWS CDK application and learn how to quickly assemble AWS infrastructure. We explore the AWS Construct Library and show you how easy it is to configure your cloud resources, manage permissions, connect event sources, and build and publish your own constructs.

[Session] Introduction to the AWS CLI v2 (DOP406-R; DOP406-R1)

Speaker 1: James Saryerwinnie – Senior Software Engineer, Amazon Web Services
Speaker 2: Kyle Knapp – Software Development Engineer, Amazon Web Services

The AWS Command Line Interface (AWS CLI) is a command-line tool for interacting with AWS services and managing your AWS resources. We’ve taken all of the lessons learned from AWS CLI v1 (launched in 2013), and have been working on AWS CLI v2—the next major version of the AWS CLI—for the past year. AWS CLI v2 includes features such as improved installation mechanisms, a better getting-started experience, interactive workflows for resource management, and new high-level commands. Come hear from the core developers of the AWS CLI about how to upgrade and start using AWS CLI v2 today.

[Session] What’s new in AWS CloudFormation (DOP408-R; DOP408-R1; DOP408-R2)

Speaker 1: Jing Ling – Senior Product Manager, Amazon Web Services
Speaker 2: Luis Colon – Senior Developer Advocate, Amazon Web Services

AWS CloudFormation is one of the most widely used AWS tools, enabling infrastructure as code, deployment automation, repeatability, compliance, and standardization. In this session, we cover the latest improvements and best practices for AWS CloudFormation customers in particular, and for seasoned infrastructure engineers in general. We cover new features and improvements that span many use cases, including programmability options, cross-region and cross-account automation, operational safety, and additional integration with many other AWS services.

[Workshop] Get hands-on with Python/boto3 with no or minimal Python experience (DOP203-R; DOP203-R1; DOP203-R2)

Speaker 1: Herbert-John Kelly – Solutions Architect, Amazon Web Services
Speaker 2: Carl Johnson – Enterprise Solutions Architect, Amazon Web Services

Learning a programming language can seem like a huge investment. However, solving strategic business problems using modern technology approaches, like machine learning and big-data analytics, often requires some understanding. In this workshop, you learn the basics of using Python, one of the most popular programming languages that can be used for small tasks like simple operations automation, or large tasks like analyzing billions of records and training machine-learning models. You also learn about and use the AWS SDK (software development kit) for Python, called boto3, to write a Python program running on and interacting with resources in AWS.

[Workshop] Building reusable AWS CloudFormation templates (DOP304-R; DOP304-R1; DOP304-R2)

Speaker 1: Chelsey Salberg – Front End Engineer, Amazon Web Services
Speaker 2: Dan Blanco – Developer Advocate, Amazon Web Services

AWS CloudFormation gives you an easy way to define your infrastructure as code, but are you using it to its full potential? In this workshop, we take real-world architecture from a sandbox template to production-ready reusable code. We start by reviewing an initial template, which you update throughout the session to incorporate AWS CloudFormation features, like nested stacks and intrinsic functions. By the end of the workshop, expect to have a set of AWS CloudFormation templates that demonstrate the same best practices used in AWS Quick Starts.

[Workshop] Building a scalable serverless application with AWS CDK (DOP306-R; DOP306-R1; DOP306-R2; DOP306-R3)

Speaker 1: David Christiansen – Senior Partner Solutions Architect, Amazon Web Services
Speaker 2: Daniele Stroppa – Solutions Architect, Amazon Web Services

Dive into AWS and build a web application with the AWS Mythical Mysfits tutorial. In this workshop, you build a serverless application using AWS Lambda, Amazon API Gateway, and the AWS Cloud Development Kit (AWS CDK). Through the tutorial, you get hands-on experience using AWS CDK to model and provision a serverless distributed application infrastructure, you connect your application to a backend database, and you capture and analyze data on user behavior. Other AWS services that are utilized include Amazon Kinesis Data Firehose and Amazon DynamoDB.

[Chalk Talk] Assembling an AWS CloudFormation authoring tool chain (DOP313-R; DOP313-R1; DOP313-R2)

Speaker 1: Nathan McCourtney – Sr System Development Engineer, Amazon Web Services
Speaker 2: Dan Blanco – Developer Advocate, Amazon Web Services

In this session, we provide a prescriptive tool chain and methodology to improve your coding productivity as you create and maintain AWS CloudFormation stacks. We cover authoring recommendations from editors and plugins, to setting up a deployment pipeline for your AWS CloudFormation code.

[Chalk Talk] Build using JavaScript with AWS Amplify, AWS Lambda, and AWS Fargate (DOP315-R; DOP315-R1; DOP315-R2)

Speaker 1: Trivikram Kamat – Software Development Engineer, Amazon Web Services
Speaker 2: Vinod Dinakaran – Software Development Manager, Amazon Web Services

Learn how to build applications with AWS Amplify on the front end and AWS Fargate and AWS Lambda on the backend, and protocols (like HTTP/2), using the JavaScript SDKs in the browser and node. Leverage the AWS SDK for JavaScript’s modular NPM packages in resource-constrained environments, and benefit from the built-in async features to run your node and mobile applications, and SPAs, at scale.

[Chalk Talk] Scaling CI/CD adoption using AWS CodePipeline and AWS CloudFormation (DOP318-R; DOP318-R1; DOP318-R2)

Speaker 1: Andrew Baird – Principal Solutions Architect, Amazon Web Services
Speaker 2: Neal Gamradt – Applications Architect, WarnerMedia

Enabling CI/CD across your organization through repeatable patterns and infrastructure-as-code templates can unlock development speed while encouraging best practices. The SEAD Architecture team at WarnerMedia helps encourage CI/CD adoption across their company. They do so by creating and maintaining easily extensible infrastructure-as-code patterns for creating new services and deploying to them automatically using CI/CD. In this session, learn about the patterns they have created and the lessons they have learned.

re:Invent TIP #6: There are lots of extra activities at re:Invent. Expect your evenings to fill up onsite! Check out the peculiar programs including, board games, bingo, arts & crafts or ‘80s sing-alongs…

Notifying 3rd Party Services of CodeBuild State Changes

Post Syndicated from Nick Lee original https://aws.amazon.com/blogs/devops/notifying-3rd-party-services-of-codebuild-state-changes/

It is often useful to notify other systems of the build status of a code change, such as by creating release tickets in your project-tracking software when a build succeeds, or posting a message to your team’s chat solution. A previous blog post showed you how to integrate AWS Lambda and Amazon SNS to extend AWS CodeCommit to send email notifications for file changes. This blog post shows you how to integrate AWS Lambda, AWS Systems Manager Parameter Store, Amazon DynamoDB and Amazon CloudWatch Events to extend AWS CodeBuild by adding webhook functionality, allowing you to make authenticated API calls to 3rd-party services in response to CodeBuild state changes. It also provides an example of how to use this solution to create an issue in JIRA, a popular issue and project-tracking software solution, in response to a CodeBuild build status change.

Some of the services used include:

  • Amazon DynamoDB: a fully-managed key-value and document database that delivers single-digit millisecond performance at any scale. This solution uses it as a registry for webhook receivers, and takes advantage of its on-demand capacity mode so that you only pay for the resources you consume.
  • AWS Lambda: a popular serverless service that lets you run code without provisioning or managing servers. This solution uses a Lambda function to query DynamoDB for a list of webhook receivers and to notify those receivers of CodeBuild build status changes.
  • Amazon CloudWatch Events: Amazon CloudWatch Events delivers a near real-time stream of system events which allow you to detect changes to your AWS resources and to set up rules to respond to those changes (for example, by invoking a Lambda function in response to build notifications).
  • AWS Systems Manager Parameter Store: a secure, hierarchical storage solution which can be used to store items such as configuration data, passwords, database strings, and license codes. This solution uses SSM Parameter Store to store the HTTP endpoints for 3rd party providers and custom headers, rather than storing them in plaintext in DynamoDB.

To help you quickly deploy the solution, I have made it available as an AWS CloudFormation template. AWS CloudFormation is a management tool that provides a common language to describe and provision all of the infrastructure resources in AWS.


The following diagram shows how this solution uses AWS services to invoke 3rd-party services in response to CodeBuild state changes.

An overview of the workflow for this solution, showing CodeBuild publishing to CloudWatch Events which invokes the Lambda to notify the 3rd party service.

CodeBuild publishes several useful CloudWatch events, which can notify you of build state changes and build phase transitions. By setting up a CloudWatch event rule, you can detect when a CodeBuild job enters a specific state. In this solution, I create a CloudWatch event rule which captures CodeBuild state changes for all AWS CodeBuild projects in an account, then invokes a Lambda function to handle these change notifications. When this Lambda function is triggered, the following steps are executed:

  1. Query the CodeBuildWebhooks DynamoDB table to find any registered webhook receivers for the CodeBuild project which triggered the event rule.
  2. For each registered receiver:
    1. Obtain the HTTP endpoint and any custom headers from SSM Parameter Store. Some headers/endpoints may be considered sensitive, so the solution stores them in SSM Parameter Store as SecureStrings where needed. The DynamoDB records reference the relevant SSM Parameter by name. The parameter names must all be prefixed with /webhooks/ in order for the webhook Lambda function to access them.
    2. After obtaining the URL for the webhook receiver from SSM Parameter Store, the Lambda function checks if the record from DynamoDB contains a custom HTTP body template. If so, it loads this template, substituting any placeholder values. If no custom template is found, a default template is used.
    3. Finally, the HTTP request is sent with the processed body template.

I use Python and Boto 3 to implement this function. The full source code is published on GitHub. You can find it in the aws-codebuild-webhooks repository.

Getting started

The following sections describe the steps to deploy and use the solution.

Deploying the Solution

There is an AWS CloudFormation template, template.yaml, in the source code which uses the AWS Serverless Application Model to define required components of this solution. For convenience, I have made it available as a one-click launch template:

When launching the stack, the default behavior is to expect SSM parameters to be encrypted using the AWS KMS AWS managed CMK for SSM. However, you can input a different Key ID as the value for the SSMKeyId parameter if required. The above launch stack button deploys the solution in us-east-1, however links for other regions are available on the solution GitHub page.

The template deploys:

  • A Lambda function and associated IAM role for sending HTTP requests
  • A DynamoDB table for registering webhook receivers
  • A CloudWatch event rule for triggering the Lambda function in response to CodeBuild events

The Lambda function code demonstrates how to make authenticated HTTP requests to 3rd party services. You can extend the sample code to add in additional features such as deployment of the Lambda function in a VPC to access private resources like an on-premises Jira.

Example: Creating a Ticket in Jira

To demonstrate the solution, I set up a webhook to create a bug ticket in Jira whenever a build fails. In order to follow this example, you need to install and configure the AWS CLI.

First off, I store the Jira URL securely in the SSM parameter store:

aws ssm put-parameter --cli-input-json '{
  "Name": "/webhooks/jira-issues-webhook-url",
  "Value": "https://<my-jira-server>/rest/api/latest/issue/",
  "Type": "String",
  "Description": "Jira issues Rest API URL"

For this sample, I use basic authentication with the JIRA Rest API. After following Jira’s instructions to generate a BASE64-encoded authorization string, I store the headers as a JSON string in SSM:

aws ssm put-parameter --cli-input-json '{
  "Name": "/webhooks/jira-basic-auth-headers",
  "Value": "{\"Authorization\": \"Basic <base64 encoded useremail:api_token>\"}",
  "Type": "SecureString",
  "Description": "Jira basic auth headers for CodeBuild webhooks"

For more authentication options, consult the Jira docs.

Now I need to register the webhook receiver in my CodeBuildWebhooks DynamoDB table. In order to make requests to the JIRA REST API, my Lambda function must supply a JSON string containing a payload accepted by the Jira API for creating issues. To do this, I save the following JSON as item.json in my current working directory:

  "project": {"S": "MyCodeBuildProject"},
  "hook_url_param_name": {"S": "/webhooks/jira-issues-webhook-url"},
  "hook_headers_param_name": {"S": "/webhooks/jira-basic-auth-headers"},
  "statuses": {"L": [{"S": "FAILED"}]},
  "template": {"S": "{\"fields\": {\"project\":{\"id\": \"10000\"},\"summary\": \"$PROJECT build failing\",\"description\": \"AWS CodeBuild project $PROJECT latest build $STATUS\",\"issuetype\":{\"id\": \"10004\"}}}"}

In the template, my project ID is 10000 and the bug issue type is 10004. You can obtain this information from your JIRA instance by invoking the “createmeta” API.

Finally, I register the webhook receiver in my CodeBuildWebhooks DynamoDB table, referencing the JSON file I just created:

aws dynamodb put-item --table-name CodeBuildWebhooks --item file://item.json

That’s it! The next time my CodeBuild project fails, an issue is created in JIRA for someone to action, as shown in the following screenshot:

A Jira Kanban board showing the newly created issue for the failing CodeBuild project

You could extend this example to populate other fields Jira such as Labels, Components, or Assignee.


To remove the resources created as part of this blog post, first delete the stack:

aws cloudformation delete-stack --stack-name aws-codebuild-webhooks

Then delete the parameters from SSM Parameter Store:

aws ssm delete-parameters --names /webhooks/jira-issues-webhook-url /webhooks/jira-basic-auth-headers


In this blog post, I showed you how to use an AWS CloudFormation template to quickly build a sample solution that can help you integrate AWS CodeBuild with other 3rd party tools via AWS Lambda.

The CloudFormation template used in this post and Lambda function can be found in the aws-codebuild-webhooks GitHub repository, along with other examples.

If you have questions or other feedback about this example, please open an issue or submit a pull request.

About the Author

Nick Lee is part of the AWS Solution Builders team in the UK. Nick works with the AWS Solution Architecture community to create standardized tools, code samples, demonstrations and quick starts.



A simpler deployment experience with AWS SAM CLI

Post Syndicated from Eric Johnson original https://aws.amazon.com/blogs/compute/a-simpler-deployment-experience-with-aws-sam-cli/

The AWS Serverless Application Model (SAM) CLI provides developers with a local tool for managing serverless applications on AWS. The command line tool allows developers to initialize and configure applications, debug locally using IDEs like Visual Studio Code or JetBrains WebStorm, and deploy to the AWS Cloud.

On November 25, we announced improvements to the deployment process using the SAM CLI. These improvements allow users to deploy serverless applications with less manual setup, fewer repeated steps, and shorter CLI commands.

To install the latest version of the AWS SAM CLI, please refer to the installation section of the AWS SAM page.

What’s new?

Amazon S3 bucket management

Previously, developers had to manually create and manage an Amazon S3 bucket to host deployment artifacts for each desired Region. With this latest release, the SAM CLI automatically creates a Region-specific bucket via AWS CloudFormation, based on your local AWS credentials. If you deploy an application to a Region where no bucket exists, a new managed bucket is created in the new Region.

Minimized deployment commands

Before this update, a minimal deployment process would look like this:

sam package --s3-bucket my-regional-bucket --output-template-file out.yaml
sam deploy --template-file out.yaml --capabilities CAPABILITY_IAM --stack-name MyStackName

This series of commands was required at every deployment. With this latest update to SAM CLI, the package and deployment commands have been combined. The syntax is now:

sam deploy

The guided deployment

How does SAM CLI know where to deploy and what to name the application? The answer to this is found in the “guided deployment.” This is an interactive version of the deployment process that collects and saves information needed to deploy the application.

If sam deploy is running and cannot find the required information for deployment, the process errors out, recommending that the guided deployment process be run. To use the guided process:

sam deploy -g or --guided

SAM guided deploy

Once the information is collected, it is saved in the application as the samconfig.toml file. Subsequent calls to sam deploy use the existing data to deploy. If you update a setting between deployments, run the sam deploy -g command again to update the stored values.

Frequently asked questions

How many buckets are created?

When you run the sam deploy -g command with provided values, SAM checks the account for an existing SAM deployment bucket in that Region. This Regional bucket is created via CloudFormation by SAM as an artifact repository for all applications for the current account in the current Region. For a root level account, there is only a single bucket per Region that contains deployed SAM serverless applications.

What if the Region is changed for the application?

If you change the Region in samconfig.toml before running sam deploy, the process errors out. The selected deployment Region does not match the artifacts bucket Region stored in the samconfig.toml file. The error also occurs if you use the –region flag, and a Region is different to the Region in the samconfig.toml file. To change the Region for a deployment, use the sam deploy -g option to update the Region. SAM verifies that a bucket for the new Region exists, or creates one automatically.

What if the samconfig.toml file is deleted?

If the samconfig.toml file is deleted, SAM treats the application as new. We recommend that you use the -g flag to reconfigure the application.

What about backwards compatibility?

If you are using SAM for a non-interactive deployment, it is possible to pass all required information as parameters. For example, for a continuous integration continuous delivery (CICD) pipeline:

SAM deploy values

This same deployment is achieved using the older process with the following commands:

sam package --s3-bucket aws-sam-cli-managed-default-samclisourcebucket-xic3fipuh9n9 --output-template-file out.yaml
sam deploy --template-file out.yaml --capabilities CAPABILITY_IAM --stack-name sam-app --region us-west-2

The package command still exists in the latest version of SAM CLI for backwards compatibility with existing CICD processes.

Updated user experience

Along a streamlined process for deploying applications, the new version of SAM CLI brings an improved user interface. This provides developers with more feedback and validation choices. First, during the deployment process, all deployment parameters are displayed:

SAM deploy values

Once the changeset is created, the developer is presented with all the proposed changes.

SAM change-set report

Developers also have the option to confirm the changes, or cancel the deployment. This option is a setting in the samconfig.toml file that can be turned on or off as needed.

SAM change-set prompt

As the changeset is applied, the console displays the changes being made in the AWS Cloud.

SAM deploy status

Finally, the resulting output is displayed.


By streamlining the deployment process, removing the need to manage an S3 bucket, and providing clear deployment feedback and data, the latest version SAM CLI makes serverless development easier for developers.

Happy coding and deploying!