Tag Archives: software

digiKam 5.6.0 is released

Post Syndicated from ris original https://lwn.net/Articles/726278/rss

The digiKam Team has released
version 5.6.0 of the digiKam Software Collection for photo management. “With this version the HTML gallery and the video slideshow tools are back, database shrinking (e.g. purging stale thumbnails) is also supported on MySQL, grouping items feature has been improved, the support for custom sidecars type-mime have been added, the geolocation bookmarks introduce fixes to be fully functional with bundles, the support for custom sidecars, and of course a lots of bug has been fixed.

CoderDojo Coolest Projects 2017

Post Syndicated from Ben Nuttall original https://www.raspberrypi.org/blog/coderdojo-coolest-projects-2017/

When I heard we were merging with CoderDojo, I was delighted. CoderDojo is a wonderful organisation with a spectacular community, and it’s going to be great to join forces with the team and work towards our common goal: making a difference to the lives of young people by making technology accessible to them.

You may remember that last year Philip and I went along to Coolest Projects, CoderDojo’s annual event at which their global community showcase their best makes. It was awesome! This year a whole bunch of us from the Raspberry Pi Foundation attended Coolest Projects with our new Irish colleagues, and as expected, the projects on show were as cool as can be.

Coolest Projects 2017 attendee

Crowd at Coolest Projects 2017

This year’s coolest projects!

Young maker Benjamin demoed his brilliant RGB LED table tennis ball display for us, and showed off his brilliant project tutorial website codemakerbuddy.com, which he built with Python and Flask. [Click on any of the images to enlarge them.]

Coolest Projects 2017 LED ping-pong ball display
Coolest Projects 2017 Benjamin and Oly

Next up, Aimee showed us a recipes app she’d made with the MIT App Inventor. It was a really impressive and well thought-out project.

Coolest Projects 2017 Aimee's cook book
Coolest Projects 2017 Aimee's setup

This very successful OpenCV face detection program with hardware installed in a teddy bear was great as well:

Coolest Projects 2017 face detection bear
Coolest Projects 2017 face detection interface
Coolest Projects 2017 face detection database

Helen’s and Oly’s favourite project involved…live bees!

Coolest Projects 2017 live bees


Its creator, 12-year-old Amy, said she wanted to do something to help the Earth. Her project uses various sensors to record data on the bee population in the hive. An adjacent monitor displays the data in a web interface:

Coolest Projects 2017 Aimee's bees

Coolest robots

I enjoyed seeing lots of GPIO Zero projects out in the wild, including this robotic lawnmower made by Kevin and Zach:

Raspberry Pi Lawnmower

Kevin and Zach’s Raspberry Pi lawnmower project with Python and GPIO Zero, showed at CoderDojo Coolest Projects 2017

Philip’s favourite make was a Pi-powered robot you can control with your mind! According to the maker, Laura, it worked really well with Philip because he has no hair.

Philip Colligan on Twitter

This is extraordinary. Laura from @CoderDojo Romania has programmed a mind controlled robot using @Raspberry_Pi @coolestprojects

And here are some pictures of even more cool robots we saw:

Coolest Projects 2017 coolest robot no.1
Coolest Projects 2017 coolest robot no.2
Coolest Projects 2017 coolest robot no.3

Games, toys, activities

Oly and I were massively impressed with the work of Mogamad, Daniel, and Basheerah, who programmed a (borrowed) Amazon Echo to make a voice-controlled text-adventure game using Java and the Alexa API. They’ve inspired me to try something similar using the AIY projects kit and adventurelib!

Coolest Projects 2017 Mogamad, Daniel, Basheerah, Oly
Coolest Projects 2017 Alexa text-based game

Christopher Hill did a brilliant job with his Home Alone LEGO house. He used sensors to trigger lights and sounds to make it look like someone’s at home, like in the film. I should have taken a video – seeing it in action was great!

Coolest Projects 2017 Lego home alone house
Coolest Projects 2017 Lego home alone innards
Coolest Projects 2017 Lego home alone innards closeup

Meanwhile, the Northern Ireland Raspberry Jam group ran a DOTS board activity, which turned their area into a conductive paint hazard zone.

Coolest Projects 2017 NI Jam DOTS activity 1
Coolest Projects 2017 NI Jam DOTS activity 2
Coolest Projects 2017 NI Jam DOTS activity 3
Coolest Projects 2017 NI Jam DOTS activity 4
Coolest Projects 2017 NI Jam DOTS activity 5
Coolest Projects 2017 NI Jam DOTS activity 6

Creativity and ingenuity

We really enjoyed seeing so many young people collaborating, experimenting, and taking full advantage of the opportunity to make real projects. And we loved how huge the range of technologies in use was: people employed all manner of hardware and software to bring their ideas to life.

Philip Colligan on Twitter

Wow! Look at that room full of awesome young people. @coolestprojects #coolestprojects @CoderDojo

Congratulations to the Coolest Projects 2017 prize winners, and to all participants. Here are some of the teams that won in the different categories:

Coolest Projects 2017 winning team 1
Coolest Projects 2017 winning team 2
Coolest Projects 2017 winning team 3

Take a look at the gallery of all winners over on Flickr.

The wow factor

Raspberry Pi co-founder and Foundation trustee Pete Lomas came along to the event as well. Here’s what he had to say:

It’s hard to describe the scale of the event, and photos just don’t do it justice. The first thing that hit me was the sheer excitement of the CoderDojo ninjas [the children attending Dojos]. Everyone was setting up for their time with the project judges, and their pure delight at being able to show off their creations was evident in both halls. Time and time again I saw the ninjas apply their creativity to help save the planet or make someone’s life better, and it’s truly exciting that we are going to help that continue and expand.

Even after 8 hours, enthusiasm wasn’t flagging – the awards ceremony was just brilliant, with ninjas high-fiving the winners on the way to the stage. This speaks volumes about the ethos and vision of the CoderDojo founders, where everyone is a winner just by being part of a community of worldwide friends. It was a brilliant introduction, and if this weekend was anything to go by, our merger certainly is a marriage made in Heaven.

Join this awesome community!

If all this inspires you as much as it did us, consider looking for a CoderDojo near you – and sign up as a volunteer! There’s plenty of time for young people to build up skills and start working on a project for next year’s event. Check out coolestprojects.com for more information.

The post CoderDojo Coolest Projects 2017 appeared first on Raspberry Pi.

NSA Insider Security Post-Snowden

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/06/nsa_insider_sec.html

According to a recently declassified report obtained under FOIA, the NSA’s attempts to protect itself against insider attacks aren’t going very well:

The N.S.A. failed to consistently lock racks of servers storing highly classified data and to secure data center machine rooms, according to the report, an investigation by the Defense Department’s inspector general completed in 2016.


The agency also failed to meaningfully reduce the number of officials and contractors who were empowered to download and transfer data classified as top secret, as well as the number of “privileged” users, who have greater power to access the N.S.A.’s most sensitive computer systems. And it did not fully implement software to monitor what those users were doing.

In all, the report concluded, while the post-Snowden initiative — called “Secure the Net” by the N.S.A. — had some successes, it “did not fully meet the intent of decreasing the risk of insider threats to N.S.A. operations and the ability of insiders to exfiltrate data.”

Marcy Wheeler comments:

The IG report examined seven of the most important out of 40 “Secure the Net” initiatives rolled out since Snowden began leaking classified information. Two of the initiatives aspired to reduce the number of people who had the kind of access Snowden did: those who have privileged access to maintain, configure, and operate the NSA’s computer systems (what the report calls PRIVACs), and those who are authorized to use removable media to transfer data to or from an NSA system (what the report calls DTAs).

But when DOD’s inspectors went to assess whether NSA had succeeded in doing this, they found something disturbing. In both cases, the NSA did not have solid documentation about how many such users existed at the time of the Snowden leak. With respect to PRIVACs, in June 2013 (the start of the Snowden leak), “NSA officials stated that they used a manually kept spreadsheet, which they no longer had, to identify the initial number of privileged users.” The report offered no explanation for how NSA came to no longer have that spreadsheet just as an investigation into the biggest breach thus far at NSA started. With respect to DTAs, “NSA did not know how many DTAs it had because the manually kept list was corrupted during the months leading up to the security breach.”

There seem to be two possible explanations for the fact that the NSA couldn’t track who had the same kind of access that Snowden exploited to steal so many documents. Either the dog ate their homework: Someone at NSA made the documents unavailable (or they never really existed). Or someone fed the dog their homework: Some adversary made these lists unusable. The former would suggest the NSA had something to hide as it prepared to explain why Snowden had been able to walk away with NSA’s crown jewels. The latter would suggest that someone deliberately obscured who else in the building might walk away with the crown jewels. Obscuring that list would be of particular value if you were a foreign adversary planning on walking away with a bunch of files, such as the set of hacking tools the Shadow Brokers have since released, which are believed to have originated at NSA.

Read the whole thing. Securing against insiders, especially those with technical access, is difficult, but I had assumed the NSA did more post-Snowden.

How to Create an AMI Builder with AWS CodeBuild and HashiCorp Packer – Part 2

Post Syndicated from Heitor Lessa original https://aws.amazon.com/blogs/devops/how-to-create-an-ami-builder-with-aws-codebuild-and-hashicorp-packer-part-2/

Written by AWS Solutions Architects Jason Barto and Heitor Lessa

In Part 1 of this post, we described how AWS CodeBuild, AWS CodeCommit, and HashiCorp Packer can be used to build an Amazon Machine Image (AMI) from the latest version of Amazon Linux. In this post, we show how to use AWS CodePipeline, AWS CloudFormation, and Amazon CloudWatch Events to continuously ship new AMIs. We use Ansible by Red Hat to harden the OS on the AMIs through a well-known set of security controls outlined by the Center for Internet Security in its CIS Amazon Linux Benchmark.

You’ll find the source code for this post in our GitHub repo.

At the end of this post, we will have the following architecture:


To follow along, you will need Git and a text editor. Make sure Git is configured to work with AWS CodeCommit, as described in Part 1.


In addition to the services and products used in Part 1 of this post, we also use these AWS services and third-party software:

AWS CloudFormation gives developers and systems administrators an easy way to create and manage a collection of related AWS resources, provisioning and updating them in an orderly and predictable fashion.

Amazon CloudWatch Events enables you to react selectively to events in the cloud and in your applications. Specifically, you can create CloudWatch Events rules that match event patterns, and take actions in response to those patterns.

AWS CodePipeline is a continuous integration and continuous delivery service for fast and reliable application and infrastructure updates. AWS CodePipeline builds, tests, and deploys your code every time there is a code change, based on release process models you define.

Amazon SNS is a fast, flexible, fully managed push notification service that lets you send individual messages or to fan out messages to large numbers of recipients. Amazon SNS makes it simple and cost-effective to send push notifications to mobile device users or email recipients. The service can even send messages to other distributed services.

Ansible is a simple IT automation system that handles configuration management, application deployment, cloud provisioning, ad-hoc task-execution, and multinode orchestration.

Getting Started

We use CloudFormation to bootstrap the following infrastructure:

Component Purpose
AWS CodeCommit repository Git repository where the AMI builder code is stored.
S3 bucket Build artifact repository used by AWS CodePipeline and AWS CodeBuild.
AWS CodeBuild project Executes the AWS CodeBuild instructions contained in the build specification file.
AWS CodePipeline pipeline Orchestrates the AMI build process, triggered by new changes in the AWS CodeCommit repository.
SNS topic Notifies subscribed email addresses when an AMI build is complete.
CloudWatch Events rule Defines how the AMI builder should send a custom event to notify an SNS topic.
Region AMI Builder Launch Template
N. Virginia (us-east-1)
Ireland (eu-west-1)

After launching the CloudFormation template linked here, we will have a pipeline in the AWS CodePipeline console. (Failed at this stage simply means we don’t have any data in our newly created AWS CodeCommit Git repository.)

Next, we will clone the newly created AWS CodeCommit repository.

If this is your first time connecting to a AWS CodeCommit repository, please see instructions in our documentation on Setup steps for HTTPS Connections to AWS CodeCommit Repositories.

To clone the AWS CodeCommit repository (console)

  1. From the AWS Management Console, open the AWS CloudFormation console.
  2. Choose the AMI-Builder-Blogpost stack, and then choose Output.
  3. Make a note of the Git repository URL.
  4. Use git to clone the repository.

For example: git clone https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/AMI-Builder_repo

To clone the AWS CodeCommit repository (CLI)

# Retrieve CodeCommit repo URL
git_repo=$(aws cloudformation describe-stacks --query 'Stacks[0].Outputs[?OutputKey==`GitRepository`].OutputValue' --output text --stack-name "AMI-Builder-Blogpost")

# Clone repository locally
git clone ${git_repo}

Bootstrap the Repo with the AMI Builder Structure

Now that our infrastructure is ready, download all the files and templates required to build the AMI.

Your local Git repo should have the following structure:

├── ami_builder_event.json
├── ansible
├── buildspec.yml
├── cloudformation
├── packer_cis.json

Next, push these changes to AWS CodeCommit, and then let AWS CodePipeline orchestrate the creation of the AMI:

git add .
git commit -m "My first AMI"
git push origin master

AWS CodeBuild Implementation Details

While we wait for the AMI to be created, let’s see what’s changed in our AWS CodeBuild buildspec.yml file:

      - ./packer build -color=false packer_cis.json | tee build.log
      - egrep "${AWS_REGION}\:\sami\-" build.log | cut -d' ' -f2 > ami_id.txt
      # Packer doesn't return non-zero status; we must do that if Packer build failed
      - test -s ami_id.txt || exit 1
      - sed -i.bak "s/<<AMI-ID>>/$(cat ami_id.txt)/g" ami_builder_event.json
      - aws events put-events --entries file://ami_builder_event.json
    - ami_builder_event.json
    - build.log
  discard-paths: yes

In the build phase, we capture Packer output into a file named build.log. In the post_build phase, we take the following actions:

  1. Look up the AMI ID created by Packer and save its findings to a temporary file (ami_id.txt).
  2. Forcefully make AWS CodeBuild to fail if the AMI ID (ami_id.txt) is not found. This is required because Packer doesn’t fail if something goes wrong during the AMI creation process. We have to tell AWS CodeBuild to stop by informing it that an error occurred.
  3. If an AMI ID is found, we update the ami_builder_event.json file and then notify CloudWatch Events that the AMI creation process is complete.
  4. CloudWatch Events publishes a message to an SNS topic. Anyone subscribed to the topic will be notified in email that an AMI has been created.

Lastly, the new artifacts phase instructs AWS CodeBuild to upload files built during the build process (ami_builder_event.json and build.log) to the S3 bucket specified in the Outputs section of the CloudFormation template. These artifacts can then be used as an input artifact in any later stage in AWS CodePipeline.

For information about customizing the artifacts sequence of the buildspec.yml, see the Build Specification Reference for AWS CodeBuild.

CloudWatch Events Implementation Details

CloudWatch Events allow you to extend the AMI builder to not only send email after the AMI has been created, but to hook up any of the supported targets to react to the AMI builder event. This event publication means you can decouple from Packer actions you might take after AMI completion and plug in other actions, as you see fit.

For more information about targets in CloudWatch Events, see the CloudWatch Events API Reference.

In this case, CloudWatch Events should receive the following event, match it with a rule we created through CloudFormation, and publish a message to SNS so that you can receive an email.

Example CloudWatch custom event

            "Source": "com.ami.builder",
            "DetailType": "AmiBuilder",
            "Detail": "{ \"AmiStatus\": \"Created\"}",
            "Resources": [ "ami-12cd5guf" ]

Cloudwatch Events rule

  "detail-type": [
  "source": [
  "detail": {
    "AmiStatus": [

Example SNS message sent in email

    "version": "0",
    "id": "f8bdede0-b9d7...",
    "detail-type": "AmiBuilder",
    "source": "com.ami.builder",
    "account": "<<aws_account_number>>",
    "time": "2017-04-28T17:56:40Z",
    "region": "eu-west-1",
    "resources": ["ami-112cd5guf "],
    "detail": {
        "AmiStatus": "Created"

Packer Implementation Details

In addition to the build specification file, there are differences between the current version of the HashiCorp Packer template (packer_cis.json) and the one used in Part 1.


  "variables": {
    "vpc": "{{env `BUILD_VPC_ID`}}",
    "subnet": "{{env `BUILD_SUBNET_ID`}}",
         “ami_name”: “Prod-CIS-Latest-AMZN-{{isotime \”02-Jan-06 03_04_05\”}}”
  • ami_name: Prefixes a name used by Packer to tag resources during the Builders sequence.
  • vpc and subnet: Environment variables defined by the CloudFormation stack parameters.

We no longer assume a default VPC is present and instead use the VPC and subnet specified in the CloudFormation parameters. CloudFormation configures the AWS CodeBuild project to use these values as environment variables. They are made available throughout the build process.

That allows for more flexibility should you need to change which VPC and subnet will be used by Packer to launch temporary resources.


  "builders": [{
    "ami_name": “{{user `ami_name`| clean_ami_name}}”,
    "tags": {
      "Name": “{{user `ami_name`}}”,
    "run_tags": {
      "Name": “{{user `ami_name`}}",
    "run_volume_tags": {
      "Name": “{{user `ami_name`}}",
    "snapshot_tags": {
      "Name": “{{user `ami_name`}}",
    "vpc_id": "{{user `vpc` }}",
    "subnet_id": "{{user `subnet` }}"

We now have new properties (*_tag) and a new function (clean_ami_name) and launch temporary resources in a VPC and subnet specified in the environment variables. AMI names can only contain a certain set of ASCII characters. If the input in project deviates from the expected characters (for example, includes whitespace or slashes), Packer’s clean_ami_name function will fix it.

For more information, see functions on the HashiCorp Packer website.


  "provisioners": [
        "type": "shell",
        "inline": [
            "sudo pip install ansible"
        "type": "ansible-local",
        "playbook_file": "ansible/playbook.yaml",
        "role_paths": [
        "playbook_dir": "ansible",
        "galaxy_file": "ansible/requirements.yaml"
      "type": "shell",
      "inline": [
        "rm .ssh/authorized_keys ; sudo rm /root/.ssh/authorized_keys"

We used shell provisioner to apply OS patches in Part 1. Now, we use shell to install Ansible on the target machine and ansible-local to import, install, and execute Ansible roles to make our target machine conform to our standards.

Packer uses shell to remove temporary keys before it creates an AMI from the target and temporary EC2 instance.

Ansible Implementation Details

Ansible provides OS patching through a custom Common role that can be easily customized for other tasks.

CIS Benchmark and Cloudwatch Logs are implemented through two Ansible third-party roles that are defined in ansible/requirements.yaml as seen in the Packer template.

The Ansible provisioner uses Ansible Galaxy to download these roles onto the target machine and execute them as instructed by ansible/playbook.yaml.

For information about how these components are organized, see the Playbook Roles and Include Statements in the Ansible documentation.

The following Ansible playbook (ansible</playbook.yaml) controls the execution order and custom properties:

- hosts: localhost
  connection: local
  gather_facts: true    # gather OS info that is made available for tasks/roles
  become: yes           # majority of CIS tasks require root
    # CIS Controls whitepaper:  http://bit.ly/2mGAmUc
    # AWS CIS Whitepaper:       http://bit.ly/2m2Ovrh
    # 3.4.2 and 3.4.3 effectively blocks access to all ports to the machine
    ## This can break automation; ignoring it as there are stronger mechanisms than that
      - 3.4.2 
      - 3.4.3
    # CloudWatch Logs will be used instead of Rsyslog/Syslog-ng
    ## Same would be true if any other software doesn't support Rsyslog/Syslog-ng mechanisms
    # Autofs is not installed in newer versions, let's ignore
      - 1.1.19
    # Cloudwatch Logs role configuration
      - file: /var/log/messages
        group_name: "system_logs"
    - common
    - anthcourtney.cis-amazon-linux
    - dharrisio.aws-cloudwatch-logs-agent

Both third-party Ansible roles can be easily configured through variables (vars). We use Ansible playbook variables to exclude CIS controls that don’t apply to our case and to instruct the CloudWatch Logs agent to stream the /var/log/messages log file to CloudWatch Logs.

If you need to add more OS or application logs, you can easily duplicate the playbook and make changes. The CloudWatch Logs agent will ship configured log messages to CloudWatch Logs.

For more information about parameters you can use to further customize third-party roles, download Ansible roles for the Cloudwatch Logs Agent and CIS Amazon Linux from the Galaxy website.

Committing Changes

Now that Ansible and CloudWatch Events are configured as a part of the build process, commiting any changes to the AWS CodeComit Git Repository will triger a new AMI build process that can be followed through the AWS CodePipeline console.

When the build is complete, an email will be sent to the email address you provided as a part of the CloudFormation stack deployment. The email serves as notification that an AMI has been built and is ready for use.


We used AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, Packer, and Ansible to build a pipeline that continuously builds new, hardened CIS AMIs. We used Amazon SNS so that email addresses subscribed to a SNS topic are notified upon completion of the AMI build.

By treating our AMI creation process as code, we can iterate and track changes over time. In this way, it’s no different from a software development workflow. With that in mind, software patches, OS configuration, and logs that need to be shipped to a central location are only a git commit away.

Next Steps

Here are some ideas to extend this AMI builder:

  • Hook up a Lambda function in Cloudwatch Events to update EC2 Auto Scaling configuration upon completion of the AMI build.
  • Use AWS CodePipeline parallel steps to build multiple Packer images.
  • Add a commit ID as a tag for the AMI you created.
  • Create a scheduled Lambda function through Cloudwatch Events to clean up old AMIs based on timestamp (name or additional tag).
  • Implement Windows support for the AMI builder.
  • Create a cross-account or cross-region AMI build.

Cloudwatch Events allow the AMI builder to decouple AMI configuration and creation so that you can easily add your own logic using targets (AWS Lambda, Amazon SQS, Amazon SNS) to add events or recycle EC2 instances with the new AMI.

If you have questions or other feedback, feel free to leave it in the comments or contribute to the AMI Builder repo on GitHub.

Three Men Sentenced Following £2.5m Internet Piracy Case

Post Syndicated from Andy original https://torrentfreak.com/three-men-sentenced-following-2-5m-internet-piracy-case-170622/

While legal action against low-level individual file-sharers is extremely rare in the UK, the country continues to pose a risk for those engaged in larger-scale infringement.

That is largely due to the activities of the Police Intellectual Property Crime Unit and private anti-piracy outfits such as the Federation Against Copyright Theft (FACT). Investigations are often a joint effort which can take many years to complete, but the outcomes can often involve criminal sentences.

That was the profile of another Internet piracy case that concluded in London this week. It involved three men from the UK, Eric Brooks, 43, from Bolton, Mark Valentine, 44, from Manchester, and Craig Lloyd, 33, from Wolverhampton.

The case began when FACT became aware of potentially infringing activity back in February 2011. The anti-piracy group then investigated for more than a year before handing the case to police in March 2012.

On July 4, 2012, officers from City of London Police arrested Eric Brooks’ at his home in Bolton following a joint raid with FACT. Computer equipment was seized containing evidence that Brooks had been running a Netherlands-based server hosting more than £100,000 worth of pirated films, music, games, software and ebooks.

According to police, a spreadsheet on Brooks’ computer revealed he had hundreds of paying customers, all recruited from online forums. Using PayPal or utilizing bank transfers, each paid money to access the server. Police mentioned no group or site names in information released this week.

“Enquiries with PayPal later revealed that [Brooks] had made in excess of £500,000 in the last eight years from his criminal business and had in turn defrauded the film and TV industry alone of more than £2.5 million,” police said.

“As his criminal enterprise affected not only the film and TV but the wider entertainment industry including music, games, books and software it is thought that he cost the wider industry an amount much higher than £2.5 million.”

On the same day police arrested Brooks, Mark Valentine’s home in Manchester had a similar unwelcome visit. A day later, Craig Lloyd’s home in Wolverhampton become the third target for police.

Computer equipment was seized from both addresses which revealed that the pair had been paying for access to Brooks’ servers in order to service their own customers.

“They too had used PayPal as a means of taking payment and had earned thousands of pounds from their criminal actions; Valentine gaining £34,000 and Lloyd making over £70,000,” police revealed.

But after raiding the trio in 2012, it took more than four years to charge the men. In a feature common to many FACT cases, all three were charged with Conspiracy to Defraud rather than copyright infringement offenses. All three men pleaded guilty before trial.

On Monday, the men were sentenced at Inner London Crown Court. Brooks was sentenced to 24 months in prison, suspended for 12 months and ordered to complete 140 hours of unpaid work.

Valentine and Lloyd were each given 18 months in prison, suspended for 12 months. Each was ordered to complete 80 hours unpaid work.

Detective Constable Chris Glover, who led the investigation for the City of London Police, welcomed the sentencing.

“The success of this investigation is a result of co-ordinated joint working between the City of London Police and FACT. Brooks, Valentine and Lloyd all thought that they were operating under the radar and doing something which they thought was beyond the controls of law enforcement,” Glover said.

“Brooks, Valentine and Lloyd will now have time in prison to reflect on their actions and the result should act as deterrent for anyone else who is enticed by abusing the internet to the detriment of the entertainment industry.”

While even suspended sentences are a serious matter, none of the men will see the inside of a cell if they meet the conditions of their sentence for the next 12 months. For a case lasting four years involving such large sums of money, that is probably a disappointing result for FACT and the police.

Nevertheless, the men won’t be allowed to enjoy the financial proceeds of their piracy, if indeed any money is left. City of London Police say the trio will be subject to a future confiscation hearing to seize any proceeds of crime.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Building Loosely Coupled, Scalable, C# Applications with Amazon SQS and Amazon SNS

Post Syndicated from Tara Van Unen original https://aws.amazon.com/blogs/compute/building-loosely-coupled-scalable-c-applications-with-amazon-sqs-and-amazon-sns/

Stephen Liedig, Solutions Architect


One of the many challenges professional software architects and developers face is how to make cloud-native applications scalable, fault-tolerant, and highly available.

Fundamental to your project success is understanding the importance of making systems highly cohesive and loosely coupled. That means considering the multi-dimensional facets of system coupling to support the distributed nature of the applications that you are building for the cloud.

By that, I mean addressing not only the application-level coupling (managing incoming and outgoing dependencies), but also considering the impacts of of platform, spatial, and temporal coupling of your systems. Platform coupling relates to the interoperability, or lack thereof, of heterogeneous systems components. Spatial coupling deals with managing components at a network topology level or protocol level. Temporal, or runtime coupling, refers to the ability of a component within your system to do any kind of meaningful work while it is performing a synchronous, blocking operation.

The AWS messaging services, Amazon SQS and Amazon SNS, help you deal with these forms of coupling by providing mechanisms for:

  • Reliable, durable, and fault-tolerant delivery of messages between application components
  • Logical decomposition of systems and increased autonomy of components
  • Creating unidirectional, non-blocking operations, temporarily decoupling system components at runtime
  • Decreasing the dependencies that components have on each other through standard communication and network channels

Following on the recent topic, Building Scalable Applications and Microservices: Adding Messaging to Your Toolbox, in this post, I look at some of the ways you can introduce SQS and SNS into your architectures to decouple your components, and show how you can implement them using C#.


To illustrate some of these concepts, consider a web application that processes customer orders. As good architects and developers, you have followed best practices and made your application scalable and highly available. Your solution included implementing load balancing, dynamic scaling across multiple Availability Zones, and persisting orders in a Multi-AZ Amazon RDS database instance, as in the following diagram.

In this example, the application is responsible for handling and persisting the order data, as well as dealing with increases in traffic for popular items.

One potential point of vulnerability in the order processing workflow is in saving the order in the database. The business expects that every order has been persisted into the database. However, any potential deadlock, race condition, or network issue could cause the persistence of the order to fail. Then, the order is lost with no recourse to restore the order.

With good logging capability, you may be able to identify when an error occurred and which customer’s order failed. This wouldn’t allow you to “restore” the transaction, and by that stage, your customer is no longer your customer.

As illustrated in the following diagram, introducing an SQS queue helps improve your ordering application. Using the queue isolates the processing logic into its own component and runs it in a separate process from the web application. This, in turn, allows the system to be more resilient to spikes in traffic, while allowing work to be performed only as fast as necessary in order to manage costs.

In addition, you now have a mechanism for persisting orders as messages (with the queue acting as a temporary database), and have moved the scope of your transaction with your database further down the stack. In the event of an application exception or transaction failure, this ensures that the order processing can be retired or redirected to the Amazon SQS Dead Letter Queue (DLQ), for re-processing at a later stage. (See the recent post, Using Amazon SQS Dead-Letter Queues to Control Message Failure, for more information on dead-letter queues.)

Scaling the order processing nodes

This change allows you now to scale the web application frontend independently from the processing nodes. The frontend application can continue to scale based on metrics such as CPU usage, or the number of requests hitting the load balancer. Processing nodes can scale based on the number of orders in the queue. Here is an example of scale-in and scale-out alarms that you would associate with the scaling policy.

Scale-out Alarm

aws cloudwatch put-metric-alarm --alarm-name AddCapacityToCustomerOrderQueue --metric-name ApproximateNumberOfMessagesVisible --namespace "AWS/SQS" 
--statistic Average --period 300 --threshold 3 --comparison-operator GreaterThanOrEqualToThreshold --dimensions Name=QueueName,Value=customer-orders
--evaluation-periods 2 --alarm-actions <arn of the scale-out autoscaling policy>

Scale-in Alarm

aws cloudwatch put-metric-alarm --alarm-name RemoveCapacityFromCustomerOrderQueue --metric-name ApproximateNumberOfMessagesVisible --namespace "AWS/SQS" 
 --statistic Average --period 300 --threshold 1 --comparison-operator LessThanOrEqualToThreshold --dimensions Name=QueueName,Value=customer-orders
 --evaluation-periods 2 --alarm-actions <arn of the scale-in autoscaling policy>

In the above example, use the ApproximateNumberOfMessagesVisible metric to discover the queue length and drive the scaling policy of the Auto Scaling group. Another useful metric is ApproximateAgeOfOldestMessage, when applications have time-sensitive messages and developers need to ensure that messages are processed within a specific time period.

Scaling the order processing implementation

On top of scaling at an infrastructure level using Auto Scaling, make sure to take advantage of the processing power of your Amazon EC2 instances by using as many of the available threads as possible. There are several ways to implement this. In this post, we build a Windows service that uses the BackgroundWorker class to process the messages from the queue.

Here’s a closer look at the implementation. In the first section of the consuming application, use a loop to continually poll the queue for new messages, and construct a ReceiveMessageRequest variable.

public static void PollQueue()
    while (_running)
        Task<ReceiveMessageResponse> receiveMessageResponse;

        // Pull messages off the queue
        using (var sqs = new AmazonSQSClient())
            const int maxMessages = 10;  // 1-10

            //Receiving a message
            var receiveMessageRequest = new ReceiveMessageRequest
                // Get URL from Configuration
                QueueUrl = _queueUrl, 
                // The maximum number of messages to return. 
                // Fewer messages might be returned. 
                MaxNumberOfMessages = maxMessages, 
                // A list of attributes that need to be returned with message.
                AttributeNames = new List<string> { "All" },
                // Enable long polling. 
                // Time to wait for message to arrive on queue.
                WaitTimeSeconds = 5 

            receiveMessageResponse = sqs.ReceiveMessageAsync(receiveMessageRequest);

The WaitTimeSeconds property of the ReceiveMessageRequest specifies the duration (in seconds) that the call waits for a message to arrive in the queue before returning a response to the calling application. There are a few benefits to using long polling:

  • It reduces the number of empty responses by allowing SQS to wait until a message is available in the queue before sending a response.
  • It eliminates false empty responses by querying all (rather than a limited number) of the servers.
  • It returns messages as soon any message becomes available.

For more information, see Amazon SQS Long Polling.

After you have returned messages from the queue, you can start to process them by looping through each message in the response and invoking a new BackgroundWorker thread.

// Process messages
if (receiveMessageResponse.Result.Messages != null)
    foreach (var message in receiveMessageResponse.Result.Messages)
        Console.WriteLine("Received SQS message, starting worker thread");

        // Create background worker to process message
        BackgroundWorker worker = new BackgroundWorker();
        worker.DoWork += (obj, e) => ProcessMessage(message);
    Console.WriteLine("No messages on queue");

The event handler, ProcessMessage, is where you implement business logic for processing orders. It is important to have a good understanding of how long a typical transaction takes so you can set a message VisibilityTimeout that is long enough to complete your operation. If order processing takes longer than the specified timeout period, the message becomes visible on the queue. Other nodes may pick it and process the same order twice, leading to unintended consequences.

Handling Duplicate Messages

In order to manage duplicate messages, seek to make your processing application idempotent. In mathematics, idempotent describes a function that produces the same result if it is applied to itself:

f(x) = f(f(x))

No matter how many times you process the same message, the end result is the same (definition from Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions, Hohpe and Wolf, 2004).

There are several strategies you could apply to achieve this:

  • Create messages that have inherent idempotent characteristics. That is, they are non-transactional in nature and are unique at a specified point in time. Rather than saying “place new order for Customer A,” which adds a duplicate order to the customer, use “place order <orderid> on <timestamp> for Customer A,” which creates a single order no matter how often it is persisted.
  • Deliver your messages via an Amazon SQS FIFO queue, which provides the benefits of message sequencing, but also mechanisms for content-based deduplication. You can deduplicate using the MessageDeduplicationId property on the SendMessage request or by enabling content-based deduplication on the queue, which generates a hash for MessageDeduplicationId, based on the content of the message, not the attributes.
var sendMessageRequest = new SendMessageRequest
    QueueUrl = _queueUrl,
    MessageBody = JsonConvert.SerializeObject(order),
    MessageGroupId = Guid.NewGuid().ToString("N"),
    MessageDeduplicationId = Guid.NewGuid().ToString("N")
  • If using SQS FIFO queues is not an option, keep a message log of all messages attributes processed for a specified period of time, as an alternative to message deduplication on the receiving end. Verifying the existence of the message in the log before processing the message adds additional computational overhead to your processing. This can be minimized through low latency persistence solutions such as Amazon DynamoDB. Bear in mind that this solution is dependent on the successful, distributed transaction of the message and the message log.

Handling exceptions

Because of the distributed nature of SQS queues, it does not automatically delete the message. Therefore, you must explicitly delete the message from the queue after processing it, using the message ReceiptHandle property (see the following code example).

However, if at any stage you have an exception, avoid handling it as you normally would. The intention is to make sure that the message ends back on the queue, so that you can gracefully deal with intermittent failures. Instead, log the exception to capture diagnostic information, and swallow it.

By not explicitly deleting the message from the queue, you can take advantage of the VisibilityTimeout behavior described earlier. Gracefully handle the message processing failure and make the unprocessed message available to other nodes to process.

In the event that subsequent retries fail, SQS automatically moves the message to the configured DLQ after the configured number of receives has been reached. You can further investigate why the order process failed. Most importantly, the order has not been lost, and your customer is still your customer.

private static void ProcessMessage(Message message)
    using (var sqs = new AmazonSQSClient())
            Console.WriteLine("Processing message id: {0}", message.MessageId);

            // Implement messaging processing here
            // Ensure no downstream resource contention (parallel processing)
            // <your order processing logic in here…>
            Console.WriteLine("{0} Thread {1}: {2}", DateTime.Now.ToString("s"), Thread.CurrentThread.ManagedThreadId, message.MessageId);
            // Delete the message off the queue. 
            // Receipt handle is the identifier you must provide 
            // when deleting the message.
            var deleteRequest = new DeleteMessageRequest(_queueName, message.ReceiptHandle);
            Console.WriteLine("Processed message id: {0}", message.MessageId);

        catch (Exception ex)
            // Do nothing.
            // Swallow exception, message will return to the queue when 
            // visibility timeout has been exceeded.
            Console.WriteLine("Could not process message due to error. Exception: {0}", ex.Message);

Using SQS to adapt to changing business requirements

One of the benefits of introducing a message queue is that you can accommodate new business requirements without dramatically affecting your application.

If, for example, the business decided that all orders placed over $5000 are to be handled as a priority, you could introduce a new “priority order” queue. The way the orders are processed does not change. The only significant change to the processing application is to ensure that messages from the “priority order” queue are processed before the “standard order” queue.

The following diagram shows how this logic could be isolated in an “order dispatcher,” whose only purpose is to route order messages to the appropriate queue based on whether the order exceeds $5000. Nothing on the web application or the processing nodes changes other than the target queue to which the order is sent. The rates at which orders are processed can be achieved by modifying the poll rates and scalability settings that I have already discussed.

Extending the design pattern with Amazon SNS

Amazon SNS supports reliable publish-subscribe (pub-sub) scenarios and push notifications to known endpoints across a wide variety of protocols. It eliminates the need to periodically check or poll for new information and updates. SNS supports:

  • Reliable storage of messages for immediate or delayed processing
  • Publish / subscribe – direct, broadcast, targeted “push” messaging
  • Multiple subscriber protocols
  • Amazon SQS, HTTP, HTTPS, email, SMS, mobile push, AWS Lambda

With these capabilities, you can provide parallel asynchronous processing of orders in the system and extend it to support any number of different business use cases without affecting the production environment. This is commonly referred to as a “fanout” scenario.

Rather than your web application pushing orders to a queue for processing, send a notification via SNS. The SNS messages are sent to a topic and then replicated and pushed to multiple SQS queues and Lambda functions for processing.

As the diagram above shows, you have the development team consuming “live” data as they work on the next version of the processing application, or potentially using the messages to troubleshoot issues in production.

Marketing is consuming all order information, via a Lambda function that has subscribed to the SNS topic, inserting the records into an Amazon Redshift warehouse for analysis.

All of this, of course, is happening without affecting your order processing application.


While I haven’t dived deep into the specifics of each service, I have discussed how these services can be applied at an architectural level to build loosely coupled systems that facilitate multiple business use cases. I’ve also shown you how to use infrastructure and application-level scaling techniques, so you can get the most out of your EC2 instances.

One of the many benefits of using these managed services is how quickly and easily you can implement powerful messaging capabilities in your systems, and lower the capital and operational costs of managing your own messaging middleware.

Using Amazon SQS and Amazon SNS together can provide you with a powerful mechanism for decoupling application components. This should be part of design considerations as you architect for the cloud.

For more information, see the Amazon SQS Developer Guide and Amazon SNS Developer Guide. You’ll find tutorials on all the concepts covered in this post, and more. To can get started using the AWS console or SDK of your choice visit:

Happy messaging!

AWS Marketplace Update – SaaS Contracts in Action

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-marketplace-update-saas-contracts-in-action/

AWS Marketplace lets AWS customers find and use products and services offered by members of the AWS Partner Network (APN). Some marketplace offerings are billed on an hourly basis, many with a cost-saving annual option designed to line up with the procurement cycles of our enterprise customers. Other offerings are available in SaaS (Software as a Service) form and are billed based on consumption units specified by the seller. The SaaS model (described in New – SaaS subscriptions on AWS Marketplace) give sellers the flexibility to bill for actual usage: number of active hosts, number of requests, GB of log files processed, and so forth.

Recently we extended the SaaS model with the addition of SaaS contracts, which my colleague Brad Lyman introduced in his post, Announcing SaaS Contracts, a Feature to Simplify SaaS Procurement on AWS Marketplace. The contracts give our customers the opportunity save money by setting up monthly subscriptions that can be expanded to cover a one, two, or three year contract term, with automatic, configurable renewals. Sellers can provide services that require up-front payment or that offer discounts in exchange for a usage commitment.

Since Brad has already covered the seller side of this powerful and flexible new model, I would like to show you what it is like to purchase a SaaS contract. Let’s say that I want to use Splunk Cloud. I simply search for it as usual:

I click on Splunk Cloud and see that it is available in SaaS Contract form:

I can also see and review the pricing options, noting that pricing varies by location, index volume, and subscription duration:

I click on Continue. Since I do not have a contract with Splunk for this software, I’ll be redirected to the vendor’s site to create one as part of the process. I choose my location, index volume, and contract duration, and opt for automatic renewal, and then click on Create Contract:

This sets up my subscription, and I need only set up my account with Splunk:

I click on Set Up Your Account and I am ready to move forward by setting up my custom URL on the Splunk site:

This feature is available now and you can start using it today.



Roku Sales Banned in Mexico Over Piracy Concerns

Post Syndicated from Ernesto original https://torrentfreak.com/roku-sales-banned-in-mexico-over-piracy-concerns-170619/

Online streaming piracy is on the rise and many people use dedicated media players to watch it through their regular TV.

While a lot of attention has been on Kodi, there are other players on the market that allow people to do the same. Roku, for example, has been doing very well too.

Like Kodi, Roku media players don’t offer any pirated content out of the box. In fact, they can be hooked up to a wide variety of legal streaming options including HBO Go, Hulu, and Netflix. Still, there is also a market for third-party pirate channels, outside the Roku Channel Store, which turn the boxes into pirate tools.

This pirate angle has now resulted in a ban on Roku sales in Mexico, according to a report in Milenio.

The ban was issued by the Superior Court of Justice of the City of Mexico, following a complaint from Cablevision. The order in question prohibits stores such as Amazon, Liverpool, El Palacio de Hierro, and Sears from importing and selling the devices.

In addition, the court also instructs banks including Banorte and BBVA Bancomer to stop processing payments from a long list of accounts linked to pirated services on Roku.

The main reason for the order is the availability of pirated content through Roku, but banning the device itself is utterly comprehensive. It would be similar to banning all Android-based devices because certain apps allow users to stream copyrighted content without permission.


Roku has yet to release an official statement on the court order. TorrentFreak reached out to the company but hadn’t heard back at the time of publication.

It’s clear, however, that streaming players are among the top concerns for copyright holders. Motion Picture Association boss Stan McCoy recently characterized the use of streaming players to access infringing content as “Piracy 3.0.

“If you think of old-fashioned peer-to-peer piracy as 1.0, and then online illegal streaming websites as 2.0, in the audio-visual sector, in particular, we now face challenge number 3.0, which is what I’ll call the challenge of illegal streaming devices,” McCoy said earlier this month.

Unlike the court order in Mexico, however, McCoy stressed that the devices themselves, and software such as Kodi, are ‘probably’ not illegal. However, copyright-infringing pirate add-ons have the capability to turn them into an unprecedented piracy threat.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Weekly roundup: Successful juggling

Post Syndicated from Eevee original https://eev.ee/dev/2017/06/19/weekly-roundup-successful-juggling/

Despite flipping my sleep, as I seem to end up doing every month now, I’ve had a pretty solid week. We finally got our hands on a Switch, so I just played Zelda to stay up a ridiculously long time and restore my schedule pretty quickly.

  • potluck: I started building the potluck game in LÖVE, and it’s certainly come along much faster — I have map transitions, dialogue, and a couple moving platforms working. I still don’t quite know what this game is, but I’m starting to get some ideas.

    I also launched GAMES MADE QUICK??? 1½, a game jam for making a game while watching GDQ, instead of just plain watching GDQ. I intend to spend the week working on the potluck game, though I’m not sure whether I’ll finish it then.

  • fox flux: I started planning out a more interesting overworld and doodled a couple relevant tiles. Terrain is still hard. Also some more player frames.

  • art: I finally finished a glorious new banner, which now hangs proudly above my Twitter and Patreon. I did a bedtime slate doodle. I made and animated a low-poly Yoshi. I sketched Styx based on a photo.

    I keep wishing I have time to dedicate to painting experiments, but I guess this is pretty good output.

  • veekun: Wow! I touched veekun on three separate occasions. I have basic item data actually physically dumping now, I fixed some stuff with Pokémon, and I got evolutions working. Progress! Getting there! So close!

  • blog: Per request, I wrote about digital painting software, though it was hampered slightly by the fact that most of it doesn’t run on my operating system.

I seem to be maintaining tangible momentum on multiple big projects, which is fantastic. And there’s still 40% of the month left! I’m feeling pretty good about where I’m standing; if I can get potluck and veekun done soon, that’ll be a medium and a VERY LARGE weight off my shoulders.

AIMS Desktop 2017.1 released

Post Syndicated from corbet original https://lwn.net/Articles/725712/rss

The AIMS desktop is a
Debian-derived distribution aimed at mathematical and scientific use. This
project’s first public release, based on Debian 9, is now available.
It is a GNOME-based distribution with a bunch of add-on software.
It is maintained by AIMS (The African Institute for Mathematical
Sciences), a pan-African network of centres of excellence enabling Africa’s
talented students to become innovators driving the continent’s scientific,
educational and economic self-sufficiency.

Comodo DNS Blocks TorrentFreak Over “Hacking and Warez “

Post Syndicated from Ernesto original https://torrentfreak.com/comodo-dns-blocks-torrentfreak-over-hacking-and-warez-170617/

Website blocking has become one of the go-to methods for reducing online copyright infringement.

In addition to court-ordered blockades, various commercial vendors also offer a broad range of blocking tools. This includes Comodo, which offers a free DNS service that keeps people away from dangerous sites.

The service labeled SecureDNS is part of the Comodo Internet Security bundle but can be used by the general public as well, without charge. Just change the DNS settings on your computer or any other device, and you’re ready to go.

“As a leading provider of computer security solutions, Comodo is keenly aware of the dangers that plague the Internet today. SecureDNS helps users keep safe online with its malware domain filtering feature,” the company explains.

Aside from malware and spyware, Comodo also blocks access to sites that offer access to pirated content. Or put differently, they try to do this. But it’s easier said than done.

This week we were alerted to the fact that Comodo blocks direct access to TorrentFreak. Those who try to access our news site get an ominous warning instead, suggesting that we might share pirated content.

“This website has been blocked temporarily because of the following reason(s): Hacking/Warez: Site may offer illegal sharing of copyrighted software or media,” the warning reads, adding that several users also reported the site to be unsafe.

TorrentFreak blocked

People can still access the site by clicking on a big red cross, although that’s something Comodo doesn’t recommend. However, it is quite clear that new readers will be pretty spooked by the alarming message.

We assume that TorrentFreak was added to Comodo’s blocklist by mistake. And while mistakes can happen everywhere, this once again show that overblocking is a serious concern.

We are lucky enough that readers alerted us to the problem, but in other cases, it could easily go unnoticed.

Interestingly, the ‘piracy’ blocklist is not as stringent as the above would suggest. While we replicated the issue, we also checked several other known ‘pirate’ sites including The Pirate Bay, RARBG, GoMovies, and Pubfilm. These could all be accessed through SecureDNS without any warning.

TorrentFreak contacted Comodo for a comment on their curious blocking efforts, but we have yet to hear back from the company. In the meantime, Comodo SecureDNS users may want to consider switching to a more open DNS provider.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

“Kodi Boxes Are a Fire Risk”: Awful Timing or Opportunism?

Post Syndicated from Andy original https://torrentfreak.com/kodi-boxes-are-a-fire-risk-awful-timing-or-opportunism-170618/

Anyone who saw the pictures this week couldn’t have failed to be moved by the plight of Londoners caught up in the Grenfell Tower inferno. The apocalyptic images are likely to stay with people for years to come and the scars for those involved may never heal.

As the building continued to smolder and the death toll increased, UK tabloids provided wall-to-wall coverage of the disaster. On Thursday, however, The Sun took a short break to put out yet another sensationalized story about Kodi. Given the week’s events, it was bound to raise eyebrows.

“HOT GOODS: Kodi boxes are a fire hazard because thousands of IPTV devices nabbed by customs ‘failed UK electrical standards’,” the headline reads.

Another sensational ‘Kodi’ headline

“It’s estimated that thousands of Brits have bought so-called Kodi boxes which can be connected to telly sets to stream pay-per-view sport and films for free,” the piece continued.

“But they could be a fire hazard, according to the Federation Against Copyright Theft (FACT), which has been nabbing huge deliveries of the devices as they arrive in the UK.”

As the image below shows, “Kodi box” fire hazard claims appeared next to images from other news articles about the huge London fire. While all separate stories, the pairing is not a great look.

A ‘Kodi Box’, as depicted in The Sun

FACT chief executive Kieron Sharp told The Sun that his group had uncovered two parcels of 2,000 ‘Kodi’ boxes and found that they “failed electrical safety standards”, making them potentially dangerous. While that may well be the case, the big question is all about timing.

It’s FACT’s job to reduce copyright infringement on behalf of clients such as The Premier League so it’s no surprise that they’re making a sustained effort to deter the public from buying these devices. That being said, it can’t have escaped FACT or The Sun that fire and death are extremely sensitive topics this week.

That leaves us with a few options including unfortunate opportunism or perhaps terrible timing, but let’s give the benefit of the doubt for a moment.

There’s a good argument that FACT and The Sun brought a valid issue to the public’s attention at a time when fire safety is on everyone’s lips. So, to give credit where it’s due, providing people with a heads-up about potentially dangerous devices is something that most people would welcome.

However, it’s difficult to offer congratulations on the PSA when the story as it appears in The Sun does nothing – absolutely nothing – to help people stay safe.

If some boxes are a risk (and that’s certainly likely given the level of Far East imports coming into the UK) which ones are dangerous? Where were they manufactured? Who sold them? What are the serial numbers? Which devices do people need to get out of their houses?

Sadly, none of these questions were answered or even addressed in the article, making it little more than scaremongering. Only making matters worse, the piece notes that it isn’t even clear how many of the seized devices are indeed a fire risk and that more tests need to be done. Is this how we should tackle such an important issue during an extremely sensitive week?

Timing and lack of useful information aside, one then has to question the terminology employed in the article.

As a piece of computer software, Kodi cannot catch fire. So, what we’re actually talking about here is small computers coming into the country without passing safety checks. The presence of Kodi on the devices – if indeed Kodi was even installed pre-import – is absolutely irrelevant.

Anti-piracy groups warning people of the dangers associated with their piracy habits is nothing new. For years, Internet users have been told that their computers will become malware infested if they share files or stream infringing content. While in some cases that may be true, there’s rarely any effort by those delivering the warnings to inform people on how to stay safe.

A classic example can be found in the numerous reports put out by the Digital Citizens Alliance in the United States. The DCA has produced several and no doubt expensive reports which claim to highlight the risks Internet users are exposed to on ‘pirate’ sites.

The DCA claims to do this in the interests of consumers but the group offers no practical advice on staying safe nor does it provide consumers with risk reduction strategies. Like many high-level ‘drug prevention’ documents shuffled around government, it could be argued that on a ‘street’ level their reports are next to useless.

Demonizing piracy is a well-worn and well-understood strategy but if warnings are to be interpreted as representing genuine concern for the welfare of people, they have to be a lot more substantial than mere scaremongering.

Anyone concerned about potentially dangerous devices can check out these useful guides from Electrical Safety First (pdf) and the Electrical Safety Council (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Digital painter rundown

Post Syndicated from Eevee original https://eev.ee/blog/2017/06/17/digital-painter-rundown/

Another patron post! IndustrialRobot asks:

You should totally write about drawing/image manipulation programs! (Inspired by https://eev.ee/blog/2015/05/31/text-editor-rundown/)

This is a little trickier than a text editor comparison — while most text editors are cross-platform, quite a few digital art programs are not. So I’m effectively unable to even try a decent chunk of the offerings. I’m also still a relatively new artist, and image editors are much harder to briefly compare than text editors…

Right, now that your expectations have been suitably lowered:


I do all of my digital art in Krita. It’s pretty alright.

Okay so Krita grew out of Calligra, which used to be KOffice, which was an office suite designed for KDE (a Linux desktop environment). I bring this up because KDE has a certain… reputation. With KDE, there are at least three completely different ways to do anything, each of those ways has ludicrous amounts of customization and settings, and somehow it still can’t do what you want.

Krita inherits this aesthetic by attempting to do literally everything. It has 17 different brush engines, more than 70 layer blending modes, seven color picker dockers, and an ungodly number of colorspaces. It’s clearly intended primarily for drawing, but it also supports animation and vector layers and a pretty decent spread of raster editing tools. I just right now discovered that it has Photoshop-like “layer styles” (e.g. drop shadow), after a year and a half of using it.

In fairness, Krita manages all of this stuff well enough, and (apparently!) it manages to stay out of your way if you’re not using it. In less fairness, they managed to break erasing with a Wacom tablet pen for three months?

I don’t want to rag on it too hard; it’s an impressive piece of work, and I enjoy using it! The emotion it evokes isn’t so much frustration as… mystified bewilderment.

I once filed a ticket suggesting the addition of a brush size palette — a panel showing a grid of fixed brush sizes that makes it easy to switch between known sizes with a tablet pen (and increases the chances that you’ll be able to get a brush back to the right size again). It’s a prominent feature of Paint Tool SAI and Clip Studio Paint, and while I’ve never used either of those myself, I’ve seen a good few artists swear by it.

The developer response was that I could emulate the behavior by creating brush presets. But that’s flat-out wrong: getting the same effect would require creating a ton of brush presets for every brush I have, plus giving them all distinct icons so the size is obvious at a glance. Even then, it would be much more tedious to use and fill my presets with junk.

And that sort of response is what’s so mysterious to me. I’ve never even been able to use this feature myself, but a year of amateur painting with Krita has convinced me that it would be pretty useful. But a developer didn’t see the use and suggested an incredibly tedious alternative that only half-solves the problem and creates new ones. Meanwhile, of the 28 existing dockable panels, a quarter of them are different ways to choose colors.

What is Krita trying to be, then? What does Krita think it is? Who precisely is the target audience? I have no idea.

Anyway, I enjoy drawing in Krita well enough. It ships with a respectable set of brushes, and there are plenty more floating around. It has canvas rotation, canvas mirroring, perspective guide tools, and other art goodies. It doesn’t colordrop on right click by default, which is arguably a grave sin (it shows a customizable radial menu instead), but that’s easy to rebind. It understands having a background color beneath a bottom transparent layer, which is very nice. You can also toggle any brush between painting and erasing with the press of a button, and that turns out to be very useful.

It doesn’t support infinite canvases, though it does offer a one-click button to extend the canvas in a given direction. I’ve never used it (and didn’t even know what it did until just now), but would totally use an infinite canvas.

I haven’t used the animation support too much, but it’s pretty nice to have. Granted, the only other animation software I’ve used is Aseprite, so I don’t have many points of reference here. It’s a relatively new addition, too, so I assume it’ll improve over time.

The one annoyance I remember with animation was really an interaction with a larger annoyance, which is: working with selections kind of sucks. You can’t drag a selection around with the selection tool; you have to switch to the move tool. That would be fine if you could at least drag the selection ring around with the selection tool, but you can’t do that either; dragging just creates a new selection.

If you want to copy a selection, you have to explicitly copy it to the clipboard and paste it, which creates a new layer. Ctrl-drag with the move tool doesn’t work. So then you have to merge that layer down, which I think is where the problem with animation comes in: a new layer is non-animated by default, meaning it effectively appears in any frame, so simply merging it down with merge it onto every single frame of the layer below. And you won’t even notice until you switch frames or play back the animation. Not ideal.

This is another thing that makes me wonder about Krita’s sense of identity. It has a lot of fancy general-purpose raster editing features that even GIMP is still struggling to implement, like high color depth support and non-destructive filters, yet something as basic as working with selections is clumsy. (In fairness, GIMP is a bit clumsy here too, but it has a consistent notion of “floating selection” that’s easy enough to work with.)

I don’t know how well Krita would work as a general-purpose raster editor; I’ve never tried to use it that way. I can’t think of anything obvious that’s missing. The only real gotcha is that some things you might expect to be tools, like smudge or clone, are just types of brush in Krita.


Ah, GIMP — open source’s answer to Photoshop.

It’s very obviously intended for raster editing, and I’m pretty familiar with it after half a lifetime of only using Linux. I even wrote a little Scheme script for it ages ago to automate some simple edits to a couple hundred files, back before I was aware of ImageMagick. I don’t know what to say about it, specifically; it’s fairly powerful and does a wide variety of things.

In fact I’d say it’s almost frustratingly intended for raster editing. I used GIMP in my first attempts at digital painting, before I’d heard of Krita. It was okay, but so much of it felt clunky and awkward. Painting is split between a pencil tool, a paintbrush tool, and an airbrush tool; I don’t really know why. The default brushes are largely uninteresting. Instead of brush presets, there are tool presets that can be saved for any tool; it’s a neat idea, but doesn’t feel like a real substitute for brush presets.

Much of the same functionality as Krita is there, but it’s all somehow more clunky. I’m sure it’s possible to fiddle with the interface to get something friendlier for painting, but I never really figured out how.

And then there’s the surprising stuff that’s missing. There’s no canvas rotation, for example. There’s only one type of brush, and it just stamps the same pattern along a path. I don’t think it’s possible to smear or blend or pick up color while painting. The only way to change the brush size is via the very sensitive slider on the tool options panel, which I remember being a little annoying with a tablet pen. Also, you have to specifically enable tablet support? It’s not difficult or anything, but I have no idea why the default is to ignore tablet pressure and treat it like a regular mouse cursor.

As I mentioned above, there’s also no support for high color depth or non-destructive editing, which is honestly a little embarrassing. Those are the major things Serious Professionals™ have been asking for for ages, and GIMP has been trying to provide them, but it’s taking a very long time. The first signs of GEGL, a new library intended to provide these features, appeared in GIMP 2.6… in 2008. The last major release was in 2012. GIMP has been working on this new plumbing for almost as long as Krita’s entire development history. (To be fair, Krita has also raised almost €90,000 from three Kickstarters to fund its development; I don’t know that GIMP is funded at all.)

I don’t know what’s up with GIMP nowadays. It’s still under active development, but the exact status and roadmap are a little unclear. I still use it for some general-purpose editing, but I don’t see any reason to use it to draw.

I do know that canvas rotation will be in the next release, and there was some experimentation with embedding MyPaint’s brush engine (though when I tried it it was basically unusable), so maybe GIMP is interested in wooing artists? I guess we’ll see.


Ah, MyPaint. I gave it a try once. Once.

It’s a shame, really. It sounds pretty great: specifically built for drawing, has very powerful brushes, supports an infinite canvas, supports canvas rotation, has a simple UI that gets out of your way. Perfect.

Or so it seems. But in MyPaint’s eagerness to shed unnecessary raster editing tools, it forgot a few of the more useful ones. Like selections.

MyPaint has no notion of a selection, nor of copy/paste. If you want to move a head to align better to a body, for example, the sanctioned approach is to duplicate the layer, erase the head from the old layer, erase everything but the head from the new layer, then move the new layer.

I can’t find anything that resembles HSL adjustment, either. I guess the workaround for that is to create H/S/L layers and floodfill them with different colors until you get what you want.

I can’t work seriously without these basic editing tools. I could see myself doodling in MyPaint, but Krita works just as well for doodling as for serious painting, so I’ve never gone back to it.


Drawpile is the modern equivalent to OpenCanvas, I suppose? It lets multiple people draw on the same canvas simultaneously. (I would not recommend it as a general-purpose raster editor.)

It’s a little clunky in places — I sometimes have bugs where keyboard focus gets stuck in the chat, or my tablet cursor becomes invisible — but the collaborative part works surprisingly well. It’s not a brush powerhouse or anything, and I don’t think it allows textured brushes, but it supports tablet pressure and canvas rotation and locked alpha and selections and whatnot.

I’ve used it a couple times, and it’s worked well enough that… well, other people made pretty decent drawings with it? I’m not sure I’ve managed yet. And I wouldn’t use it single-player. Still, it’s fun.


Aseprite is for pixel art so it doesn’t really belong here at all. But it’s very good at that and I like it a lot.

That’s all

I can’t name any other serious contender that exists for Linux.

I’m dimly aware of a thing called “Photo Shop” that’s more intended for photos but functions as a passable painter. More artists seem to swear by Paint Tool SAI and Clip Studio Paint. Also there’s Paint.NET, but I have no idea how well it’s actually suited for painting.

And that’s it! That’s all I’ve got. Krita for drawing, GIMP for editing, Drawpile for collaborative doodling.

[$] The Brave web browser

Post Syndicated from jake original https://lwn.net/Articles/725261/rss

The Brave web browser is a project from
a new company called Brave Software. It was founded by Brendan Eich, who is the
inventor of JavaScript and former developer and CTO at Mozilla; he
hopes to dramatically re-invent the advertising model of the web while
strengthening user anonymity and security. Brave’s value proposition is
that instead of being served advertisements from web sites that use the
revenue to pay their bills, users can opt to directly pay the content
providers of their choosing with cryptocurrency. Also, there is a
recognition of the
utility of targeted advertising, so users have an option of saving a local,
protected profile that can be used anonymously to obtain targeted
advertisements instead of having their online behavior tracked and sold by
a third party.

Notes on open-sourcing abandoned code

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/06/notes-on-open-sourcing-abandoned-code.html

Some people want a law that compels companies to release their source code for “abandoned software”, in the name of cybersecurity, so that customers who bought it can continue to patch bugs long after the seller has stopped supporting the product. This is a bad policy, for a number of reasons.

Code is Speech

First of all, code is speech. That was the argument why Phil Zimmerman could print the source code to PGP in a book, ship it overseas, and then have somebody scan the code back into a computer. Compelled speech is a violation of free speech. That was one of the arguments in the Apple vs. FBI case, where the FBI demanded that Apple write code for them, compelling speech.

Compelling the opening of previously closed source is compelled speech.

There might still be legal arguments that get away with it. After all state already compels some speech, such as warning labels, where is services a narrow, legitimate government interest. So the courts may allow it. Also, like many free-speech issues (e.g. the legality of hate-speech), people may legitimately disagree with the courts about what “is” legal and what “should” be legal.

But here’s the thing. What rights “should” be protected changes depending on what side you are on. Whether something deserves the protection of “free speech” depends upon whether the speaker is “us” or the speaker is “them”. If it’s “them”, then you’ll find all sorts of reasons why their speech is a special case, and what it doesn’t deserve protection.

That’s what’s happening here. The legitimate government purpose of “product safety” looms large, the “code is speech” doesn’t, because they hate closed-source code, and hate Microsoft in particular. The open-source community has been strong on “code is speech” when it applies to them, but weak when it applies to closed-source.

Define abandoned

What, precisely, does ‘abandoned’ mean? Consider Windows 3.1. Microsoft hasn’t sold it for decades. Yet, it’s not precisely abandoned either, because they still sell modern versions of Windows. Being forced to show even 30 year old source code would give competitors a significant advantage in creating Windows-compatible code like WINE.

When code is truly abandoned, such as when the vendor has gone out of business, chances are good they don’t have the original source code anyway. Thus, in order for this policy to have any effect, you’d have to force vendors to give a third-party escrow service a copy of their code whenever they release a new version of their product.

All the source code

And that is surprisingly hard and costly. Most companies do not precisely know what source code their products are based upon. Yes, technically, all the code is in that ZIP file they gave to the escrow service, but it doesn’t build. Essential build steps are missing, so that source code won’t compile. It’s like the dependency hell that many open-source products experience, such as downloading and installing two different versions of Python at different times during the build. Except, it’s a hundred times worse.

Often times building closed-source requires itself an obscure version of a closed-source tool that itself has been abandoned by its original vendor. You often times can’t even define which is the source code. For example, engine control units (ECUs) are Matlab code that compiles down to C, which is then integrated with other C code, all of which is (using a special compiler) is translated to C. Unless you have all these closed source products, some of which are no longer sold, the source-code to the ECU will not help you in patch bugs.

For small startups running fast, such as off Kickstarter, forcing them to escrow code that actually builds would force upon them an undue burden, harming innovation.

Binary patch and reversing

Then there is the issue of why you need the source code in the first place. Here’s the deal with binary exploits like buffer-overflows: if you know enough to exploit it, you know enough to patch it. Just add some binary code onto the end of the function the program that verifies the input, then replace where the vulnerability happens to a jump instruction to the new code.

I know this is possible and fairly trivial because I’ve done it myself. Indeed, one of the reason Microsoft has signed kernel components is specifically because they got tired of me patching the live kernel this way (and, almost sued me for reverse engineering their code in violation of their EULA).

Given the aforementioned difficulties in building software, this would be the easier option for third parties trying to fix bugs. The only reason closed-source companies don’t do this already is because they need to fix their products permanently anyway, which involves checking in the change into their source control systems and rebuilding.


So what we see here is that there is no compelling benefit to forcing vendors to release code for “abandoned” products, while at the same time, there are significant costs involved, not the least of which is a violation of the principle that “code is speech”.

It doesn’t exist as a serious proposal. It only exists as a way to support open-source advocacy and security advocacy. Both would gladly stomp on your rights and drive up costs in order to achieve their higher moral goal.

Bonus: so let’s say you decide that “Window XP” has been abandoned, which is exactly the intent of proponents. You think what would happen is that we (the open-source community) would then be able to continue to support WinXP and patch bugs.

But what we’d see instead is a lot more copies of WinXP floating around, with vulnerabilities, as people decided to use it instead of paying hundreds of dollars for a new Windows 10 license.

Indeed, part of the reason for Micrsoft abandoning WinXP is because it’s riddled with flaws that can’t practically be fixed, whereas the new features of Win10 fundamentally fixes them. Getting rid of SMBv1 is just one of many examples.

New – Auto Scaling for Amazon DynamoDB

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-auto-scaling-for-amazon-dynamodb/

Amazon DynamoDB has more than one hundred thousand customers, spanning a wide range of industries and use cases. These customers depend on DynamoDB’s consistent performance at any scale and presence in 16 geographic regions around the world. A recent trend we’ve been observing is customers using DynamoDB to power their serverless applications. This is a good match: with DynamoDB, you don’t have to think about things like provisioning servers, performing OS and database software patching, or configuring replication across availability zones to ensure high availability – you can simply create tables and start adding data, and let DynamoDB handle the rest.

DynamoDB provides a provisioned capacity model that lets you set the amount of read and write capacity required by your applications. While this frees you from thinking about servers and enables you to change provisioning for your table with a simple API call or button click in the AWS Management Console, customers have asked us how we can make managing capacity for DynamoDB even easier.

Today we are introducing Auto Scaling for DynamoDB to help automate capacity management for your tables and global secondary indexes. You simply specify the desired target utilization and provide upper and lower bounds for read and write capacity. DynamoDB will then monitor throughput consumption using Amazon CloudWatch alarms and then will adjust provisioned capacity up or down as needed. Auto Scaling will be on by default for all new tables and indexes, and you can also configure it for existing ones.

Even if you’re not around, DynamoDB Auto Scaling will be monitoring your tables and indexes to automatically adjust throughput in response to changes in application traffic. This can make it easier to administer your DynamoDB data, help you maximize availability for your applications, and help you reduce your DynamoDB costs.

Let’s see how it works…

Using Auto Scaling
The DynamoDB Console now proposes a comfortable set of default parameters when you create a new table. You can accept them as-is or you can uncheck Use default settings and enter your own parameters:

Here’s how you enter your own parameters:

Target utilization is expressed in terms of the ratio of consumed capacity to provisioned capacity. The parameters above would allow for sufficient headroom to allow consumed capacity to double due to a burst in read or write requests (read Capacity Unit Calculations to learn more about the relationship between DynamoDB read and write operations and provisioned capacity). Changes in provisioned capacity take place in the background.

Auto Scaling in Action
In order to see this important new feature in action, I followed the directions in the Getting Started Guide. I launched a fresh EC2 instance, installed (sudo pip install boto3) and configured (aws configure) the AWS SDK for Python. Then I used the code in the Python and DynamoDB section to create and populate a table with some data, and manually configured the table for 5 units each of read and write capacity.

I took a quick break in order to have clean, straight lines for the CloudWatch metrics so that I could show the effect of Auto Scaling. Here’s what the metrics look like before I started to apply a load:

I modified the code in Step 3 to continually issue queries for random years in the range of 1920 to 2007, ran a single copy of the code, and checked the read metrics a minute or two later:

The consumed capacity is higher than the provisioned capacity, resulting in a large number of throttled reads. Time for Auto Scaling!

I returned to the console and clicked on the Capacity tab for my table. Then I clicked on Read capacity, accepted the default values, and clicked on Save:

DynamoDB created a new IAM role (DynamoDBAutoscaleRole) and a pair of CloudWatch alarms to manage the Auto Scaling of read capacity:

DynamoDB Auto Scaling will manage the thresholds for the alarms, moving them up and down as part of the scaling process. The first alarm was triggered and the table state changed to Updating while additional read capacity was provisioned:

The change was visible in the read metrics within minutes:

I started a couple of additional copies of my modified query script and watched as additional capacity was provisioned, as indicated by the red line:

I killed all of the scripts and turned my attention to other things while waiting for the scale-down alarm to trigger. Here’s what I saw when I came back:

The next morning I checked my Scaling activities and saw that the alarm had triggered several more times overnight:

This was also visible in the metrics:

Until now, you would prepare for this situation by setting your read capacity well about your expected usage, and pay for the excess capacity (the space between the blue line and the red line). Or, you might set it too low, forget to monitor it, and run out of capacity when traffic picked up. With Auto Scaling you can get the best of both worlds: an automatic response when an increase in demand suggests that more capacity is needed, and another automated response when the capacity is no longer needed.

Things to Know
DynamoDB Auto Scaling is designed to accommodate request rates that vary in a somewhat predictable, generally periodic fashion. If you need to accommodate unpredictable bursts of read activity, you should use Auto Scaling in combination with DAX (read Amazon DynamoDB Accelerator (DAX) – In-Memory Caching for Read-Intensive Workloads to learn more). Also, the AWS SDKs will detect throttled read and write requests and retry them after a suitable delay.

I mentioned the DynamoDBAutoscaleRole earlier. This role provides Auto Scaling with the privileges that it needs to have in order for it to be able to scale your tables and indexes up and down. To learn more about this role and the permissions that it uses, read Grant User Permissions for DynamoDB Auto Scaling.

Auto Scaling has complete CLI and API support, including the ability to enable and disable the Auto Scaling policies. If you have some predictable, time-bound spikes in traffic, you can programmatically disable an Auto Scaling policy, provision higher throughput for a set period of time, and then enable Auto Scaling again later.

As noted on the Limits in DynamoDB page, you can increase provisioned capacity as often as you would like and as high as you need (subject to per-account limits that we can increase on request). You can decrease capacity up to nine times per day for each table or global secondary index.

You pay for the capacity that you provision, at the regular DynamoDB prices. You can also purchase DynamoDB Reserved Capacity to further savings.

Available Now
This feature is available now in all regions and you can start using it today!


Latency Distribution Graph in AWS X-Ray

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/latency-distribution-graph-in-aws-x-ray/

We’re continuing to iterate on the AWS X-Ray service based on customer feedback and today we’re excited to release a set of tools to help you quickly dive deep on latencies in your applications. Visual Node and Edge latency distribution graphs are shown in a handy new “Service Details” side bar in your X-Ray Service Map.

The X-Ray service graph gives you a visual representation of services and their interactions over a period of time that you select. The nodes represent services and the edges between the nodes represent calls between the services. The nodes and edges each have a set of statistics associated with them. While the visualizations provided in the service map are useful for estimating the average latency in an application they don’t help you to dive deep on specific issues. Most of the time issues occur at statistical outliers. To alleviate this X-Ray computes histograms like the one above help you solve those 99th percentile bugs.

To see a Response Distribution for a Node just click on it in the service graph. You can also click on the edges between the nodes to see the Response Distribution from the viewpoint of the calling service.

The team had a few interesting problems to solve while building out this feature and I wanted to share a bit of that with you now! Given the large number of traces an app can produce it’s not a great idea (for your browser) to plot every single trace client side. Instead most plotting libraries, when dealing with many points, use approximations and bucketing to get a network and performance friendly histogram. If you’ve used monitoring software in the past you’ve probably seen as you zoom in on the data you get higher fidelity. The interesting thing about the latencies coming in from X-Ray is that they vary by several orders of magnitude.

If the latencies were distributed between strictly 0s and 1s you could easily just create 10 buckets of 100 milliseconds. If your apps are anything like mine there’s a lot of interesting stuff happening in the outliers, so it’s beneficial to have more fidelity at 1% and 99% than it is at 50%. The problem with fixed bucket sizes is that they’re not necessarily giving you an accurate summary of data. So X-Ray, for now, uses dynamic bucket sizing based on the t-digests algorithm by Ted Dunning and Otmar Ertl. One of the distinct advantages of this algorithm over other approximation algorithms is its accuracy and precision at extremes (where most errors typically are).

An additional advantage of X-Ray over other monitoring software is the ability to measure two perspectives of latency simultaneously. Developers almost always have some view into the server side latency from their application logs but with X-Ray you can examine latency from the view of each of the clients, services, and microservices that you’re interacting with. You can even dive deeper by adding additional restrictions and queries on your selection. You can identify the specific users and clients that are having issues at that 99th percentile.

This info has already been available in API calls to GetServiceGraph as ResponseTimeHistogram but now we’re exposing it in the console as well to make it easier for customers to consume. For more information check out the documentation here.


ACME v2 API Endpoint Coming January 2018

Post Syndicated from Let's Encrypt - Free SSL/TLS Certificates original https://letsencrypt.org//2017/06/14/acme-v2-api.html

Let’s Encrypt will add support for the IETF-standardized ACME v2 protocol in January of 2018. We will be adding a new ACME v2 API endpoint alongside our existing ACME v1 protocol API endpoint. We are not setting an end-of-life date for our ACME v1 API at this time, though we recommend that people move to the ACME v2 endpoint as soon as possible once it’s available. For most subscribers, this will happen automatically via a hosting provider or normal ACME client software update.

The ACME protocol, initially developed by the team behind Let’s Encrypt, is at the very heart of the CA service we provide. It’s the primary way in which we interact with our subscribers so that they can get and manage certificates. The ACME v1 protocol we use today was designed to ensure that our validation, issuance, and management methods are fully automated, consistent, compliant, and secure. In these respects, the current ACME v1 protocol has served us well.

There are three primary reasons why we’re starting a transition to ACME v2.

First, ACME v2 will be an IETF standard, and it’s important to us that we support true standards. While ACME v1 is a well-documented public specification, developed in a relatively open manner by individuals from a number of different organizations (including Mozilla, the Electronic Frontier Foundation, and the University of Michigan), it did not benefit from having been developed within a standards body with a greater diversity of inputs and procedures based on years of experience. It was always our intent for ACME v1 to form the basis for an IETF standardization process.

Second, ACME v2 was designed with additional input from other CAs besides Let’s Encrypt, so it should be easier for other CAs to use. We want a standardized ACME to work for many CAs, and ACME v1, while usable by other CAs, was designed with Let’s Encrypt in particular in mind. ACME v2 should meet more needs.

Third, ACME v2 brings some technical improvements that will allow us to better serve our subscribers going forward.

We are not setting an end-of-life date for the ACME v1 protocol because we don’t yet have enough data to determine when would be an appropriate date. Once we’re confident that we can predict an appropriate end-of-life date for our ACME v1 API endpoint we’ll announce one.

ACME v2 is the result of great work by the ACME IETF working group. In particular, we were happy to see the ACME working group take into account the needs of other organizations that may use ACME in the future. Certificate issuance and management protocols are a critical component of the Web’s trust model, and the Web will be better off if CAs can use a standardized public protocol that has been thoroughly vetted.

We’d like to thank our community, including our sponsors, for making everything we did this past year possible. Please consider getting involved or making a donation. If your company or organization would like to sponsor Let’s Encrypt please email us at sponsor@letsencrypt.org.

Tails 3.0 is out

Post Syndicated from ris original https://lwn.net/Articles/725303/rss

Tails 3.0 has been released.
Tails, the amnesic incognito live system, is a Debian-based live system
aimed at preserving privacy and anonymity. Version 3.0 is based on Debian
9 (stretch). “It brings a completely new startup and shutdown experience, a lot of polishing to the desktop, security improvements in depth, and major upgrades to a lot of the included software.