Tag Archives: Github

Managing AWS Lambda Function Concurrency

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/managing-aws-lambda-function-concurrency/

One of the key benefits of serverless applications is the ease in which they can scale to meet traffic demands or requests, with little to no need for capacity planning. In AWS Lambda, which is the core of the serverless platform at AWS, the unit of scale is a concurrent execution. This refers to the number of executions of your function code that are happening at any given time.

Thinking about concurrent executions as a unit of scale is a fairly unique concept. In this post, I dive deeper into this and talk about how you can make use of per function concurrency limits in Lambda.

Understanding concurrency in Lambda

Instead of diving right into the guts of how Lambda works, here’s an appetizing analogy: a magical pizza.
Yes, a magical pizza!

This magical pizza has some unique properties:

  • It has a fixed maximum number of slices, such as 8.
  • Slices automatically re-appear after they are consumed.
  • When you take a slice from the pizza, it does not re-appear until it has been completely consumed.
  • One person can take multiple slices at a time.
  • You can easily ask to have the number of slices increased, but they remain fixed at any point in time otherwise.

Now that the magical pizza’s properties are defined, here’s a hypothetical situation of some friends sharing this pizza.

Shawn, Kate, Daniela, Chuck, Ian and Avleen get together every Friday to share a pizza and catch up on their week. As there is just six of them, they can easily all enjoy a slice of pizza at a time. As they finish each slice, it re-appears in the pizza pan and they can take another slice again. Given the magical properties of their pizza, they can continue to eat all they want, but with two very important constraints:

  • If any of them take too many slices at once, the others may not get as much as they want.
  • If they take too many slices, they might also eat too much and get sick.

One particular week, some of the friends are hungrier than the rest, taking two slices at a time instead of just one. If more than two of them try to take two pieces at a time, this can cause contention for pizza slices. Some of them would wait hungry for the slices to re-appear. They could ask for a pizza with more slices, but then run the same risk again later if more hungry friends join than planned for.

What can they do?

If the friends agreed to accept a limit for the maximum number of slices they each eat concurrently, both of these issues are avoided. Some could have a maximum of 2 of the 8 slices, or other concurrency limits that were more or less. Just so long as they kept it at or under eight total slices to be eaten at one time. This would keep any from going hungry or eating too much. The six friends can happily enjoy their magical pizza without worry!

Concurrency in Lambda

Concurrency in Lambda actually works similarly to the magical pizza model. Each AWS Account has an overall AccountLimit value that is fixed at any point in time, but can be easily increased as needed, just like the count of slices in the pizza. As of May 2017, the default limit is 1000 “slices” of concurrency per AWS Region.

Also like the magical pizza, each concurrency “slice” can only be consumed individually one at a time. After consumption, it becomes available to be consumed again. Services invoking Lambda functions can consume multiple slices of concurrency at the same time, just like the group of friends can take multiple slices of the pizza.

Let’s take our example of the six friends and bring it back to AWS services that commonly invoke Lambda:

  • Amazon S3
  • Amazon Kinesis
  • Amazon DynamoDB
  • Amazon Cognito

In a single account with the default concurrency limit of 1000 concurrent executions, any of these four services could invoke enough functions to consume the entire limit or some part of it. Just like with the pizza example, there is the possibility for two issues to pop up:

  • One or more of these services could invoke enough functions to consume a majority of the available concurrency capacity. This could cause others to be starved for it, causing failed invocations.
  • A service could consume too much concurrent capacity and cause a downstream service or database to be overwhelmed, which could cause failed executions.

For Lambda functions that are launched in a VPC, you have the potential to consume the available IP addresses in a subnet or the maximum number of elastic network interfaces to which your account has access. For more information, see Configuring a Lambda Function to Access Resources in an Amazon VPC. For information about elastic network interface limits, see Network Interfaces section in the Amazon VPC Limits topic.

One way to solve both of these problems is applying a concurrency limit to the Lambda functions in an account.

Configuring per function concurrency limits

You can now set a concurrency limit on individual Lambda functions in an account. The concurrency limit that you set reserves a portion of your account level concurrency for a given function. All of your functions’ concurrent executions count against this account-level limit by default.

If you set a concurrency limit for a specific function, then that function’s concurrency limit allocation is deducted from the shared pool and assigned to that specific function. AWS also reserves 100 units of concurrency for all functions that don’t have a specified concurrency limit set. This helps to make sure that future functions have capacity to be consumed.

Going back to the example of the consuming services, you could set throttles for the functions as follows:

Amazon S3 function = 350
Amazon Kinesis function = 200
Amazon DynamoDB function = 200
Amazon Cognito function = 150
Total = 900

With the 100 reserved for all non-concurrency reserved functions, this totals the account limit of 1000.

Here’s how this works. To start, create a basic Lambda function that is invoked via Amazon API Gateway. This Lambda function returns a single “Hello World” statement with an added sleep time between 2 and 5 seconds. The sleep time simulates an API providing some sort of capability that can take a varied amount of time. The goal here is to show how an API that is underloaded can reach its concurrency limit, and what happens when it does.
To create the example function

  1. Open the Lambda console.
  2. Choose Create Function.
  3. For Author from scratch, enter the following values:
    1. For Name, enter a value (such as concurrencyBlog01).
    2. For Runtime, choose Python 3.6.
    3. For Role, choose Create new role from template and enter a name aligned with this function, such as concurrencyBlogRole.
  4. Choose Create function.
  5. The function is created with some basic example code. Replace that code with the following:

import time
from random import randint
seconds = randint(2, 5)

def lambda_handler(event, context):
time.sleep(seconds)
return {"statusCode": 200,
"body": ("Hello world, slept " + str(seconds) + " seconds"),
"headers":
{
"Access-Control-Allow-Headers": "Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Security-Token",
"Access-Control-Allow-Methods": "GET,OPTIONS",
}}

  1. Under Basic settings, set Timeout to 10 seconds. While this function should only ever take up to 5-6 seconds (with the 5-second max sleep), this gives you a little bit of room if it takes longer.

  1. Choose Save at the top right.

At this point, your function is configured for this example. Test it and confirm this in the console:

  1. Choose Test.
  2. Enter a name (it doesn’t matter for this example).
  3. Choose Create.
  4. In the console, choose Test again.
  5. You should see output similar to the following:

Now configure API Gateway so that you have an HTTPS endpoint to test against.

  1. In the Lambda console, choose Configuration.
  2. Under Triggers, choose API Gateway.
  3. Open the API Gateway icon now shown as attached to your Lambda function:

  1. Under Configure triggers, leave the default values for API Name and Deployment stage. For Security, choose Open.
  2. Choose Add, Save.

API Gateway is now configured to invoke Lambda at the Invoke URL shown under its configuration. You can take this URL and test it in any browser or command line, using tools such as “curl”:


$ curl https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
Hello world, slept 2 seconds

Throwing load at the function

Now start throwing some load against your API Gateway + Lambda function combo. Right now, your function is only limited by the total amount of concurrency available in an account. For this example account, you might have 850 unreserved concurrency out of a full account limit of 1000 due to having configured a few concurrency limits already (also the 100 concurrency saved for all functions without configured limits). You can find all of this information on the main Dashboard page of the Lambda console:

For generating load in this example, use an open source tool called “hey” (https://github.com/rakyll/hey), which works similarly to ApacheBench (ab). You test from an Amazon EC2 instance running the default Amazon Linux AMI from the EC2 console. For more help with configuring an EC2 instance, follow the steps in the Launch Instance Wizard.

After the EC2 instance is running, SSH into the host and run the following:


sudo yum install go
go get -u github.com/rakyll/hey

“hey” is easy to use. For these tests, specify a total number of tests (5,000) and a concurrency of 50 against the API Gateway URL as follows(replace the URL here with your own):


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

The output from “hey” tells you interesting bits of information:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

Summary:
Total: 381.9978 secs
Slowest: 9.4765 secs
Fastest: 0.0438 secs
Average: 3.2153 secs
Requests/sec: 13.0891
Total data: 140024 bytes
Size/request: 28 bytes

Response time histogram:
0.044 [1] |
0.987 [2] |
1.930 [0] |
2.874 [1803] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
3.817 [1518] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
4.760 [719] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
5.703 [917] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
6.647 [13] |
7.590 [14] |
8.533 [9] |
9.477 [4] |

Latency distribution:
10% in 2.0224 secs
25% in 2.0267 secs
50% in 3.0251 secs
75% in 4.0269 secs
90% in 5.0279 secs
95% in 5.0414 secs
99% in 5.1871 secs

Details (average, fastest, slowest):
DNS+dialup: 0.0003 secs, 0.0000 secs, 0.0332 secs
DNS-lookup: 0.0000 secs, 0.0000 secs, 0.0046 secs
req write: 0.0000 secs, 0.0000 secs, 0.0005 secs
resp wait: 3.2149 secs, 0.0438 secs, 9.4472 secs
resp read: 0.0000 secs, 0.0000 secs, 0.0004 secs

Status code distribution:
[200] 4997 responses
[502] 3 responses

You can see a helpful histogram and latency distribution. Remember that this Lambda function has a random sleep period in it and so isn’t entirely representational of a real-life workload. Those three 502s warrant digging deeper, but could be due to Lambda cold-start timing and the “second” variable being the maximum of 5, causing the Lambda functions to time out. AWS X-Ray and the Amazon CloudWatch logs generated by both API Gateway and Lambda could help you troubleshoot this.

Configuring a concurrency reservation

Now that you’ve established that you can generate this load against the function, I show you how to limit it and protect a backend resource from being overloaded by all of these requests.

  1. In the console, choose Configure.
  2. Under Concurrency, for Reserve concurrency, enter 25.

  1. Click on Save in the top right corner.

You could also set this with the AWS CLI using the Lambda put-function-concurrency command or see your current concurrency configuration via Lambda get-function. Here’s an example command:


$ aws lambda get-function --function-name concurrencyBlog01 --output json --query Concurrency
{
"ReservedConcurrentExecutions": 25
}

Either way, you’ve set the Concurrency Reservation to 25 for this function. This acts as both a limit and a reservation in terms of making sure that you can execute 25 concurrent functions at all times. Going above this results in the throttling of the Lambda function. Depending on the invoking service, throttling can result in a number of different outcomes, as shown in the documentation on Throttling Behavior. This change has also reduced your unreserved account concurrency for other functions by 25.

Rerun the same load generation as before and see what happens. Previously, you tested at 50 concurrency, which worked just fine. By limiting the Lambda functions to 25 concurrency, you should see rate limiting kick in. Run the same test again:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

While this test runs, refresh the Monitoring tab on your function detail page. You see the following warning message:

This is great! It means that your throttle is working as configured and you are now protecting your downstream resources from too much load from your Lambda function.

Here is the output from a new “hey” command:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
Summary:
Total: 379.9922 secs
Slowest: 7.1486 secs
Fastest: 0.0102 secs
Average: 1.1897 secs
Requests/sec: 13.1582
Total data: 164608 bytes
Size/request: 32 bytes

Response time histogram:
0.010 [1] |
0.724 [3075] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
1.438 [0] |
2.152 [811] |∎∎∎∎∎∎∎∎∎∎∎
2.866 [11] |
3.579 [566] |∎∎∎∎∎∎∎
4.293 [214] |∎∎∎
5.007 [1] |
5.721 [315] |∎∎∎∎
6.435 [4] |
7.149 [2] |

Latency distribution:
10% in 0.0130 secs
25% in 0.0147 secs
50% in 0.0205 secs
75% in 2.0344 secs
90% in 4.0229 secs
95% in 5.0248 secs
99% in 5.0629 secs

Details (average, fastest, slowest):
DNS+dialup: 0.0004 secs, 0.0000 secs, 0.0537 secs
DNS-lookup: 0.0002 secs, 0.0000 secs, 0.0184 secs
req write: 0.0000 secs, 0.0000 secs, 0.0016 secs
resp wait: 1.1892 secs, 0.0101 secs, 7.1038 secs
resp read: 0.0000 secs, 0.0000 secs, 0.0005 secs

Status code distribution:
[502] 3076 responses
[200] 1924 responses

This looks fairly different from the last load test run. A large percentage of these requests failed fast due to the concurrency throttle failing them (those with the 0.724 seconds line). The timing shown here in the histogram represents the entire time it took to get a response between the EC2 instance and API Gateway calling Lambda and being rejected. It’s also important to note that this example was configured with an edge-optimized endpoint in API Gateway. You see under Status code distribution that 3076 of the 5000 requests failed with a 502, showing that the backend service from API Gateway and Lambda failed the request.

Other uses

Managing function concurrency can be useful in a few other ways beyond just limiting the impact on downstream services and providing a reservation of concurrency capacity. Here are two other uses:

  • Emergency kill switch
  • Cost controls

Emergency kill switch

On occasion, due to issues with applications I’ve managed in the past, I’ve had a need to disable a certain function or capability of an application. By setting the concurrency reservation and limit of a Lambda function to zero, you can do just that.

With the reservation set to zero every invocation of a Lambda function results in being throttled. You could then work on the related parts of the infrastructure or application that aren’t working, and then reconfigure the concurrency limit to allow invocations again.

Cost controls

While I mentioned how you might want to use concurrency limits to control the downstream impact to services or databases that your Lambda function might call, another resource that you might be cautious about is money. Setting the concurrency throttle is another way to help control costs during development and testing of your application.

You might want to prevent against a function performing a recursive action too quickly or a development workload generating too high of a concurrency. You might also want to protect development resources connected to this function from generating too much cost, such as APIs that your Lambda function calls.

Conclusion

Concurrent executions as a unit of scale are a fairly unique characteristic about Lambda functions. Placing limits on how many concurrency “slices” that your function can consume can prevent a single function from consuming all of the available concurrency in an account. Limits can also prevent a function from overwhelming a backend resource that isn’t as scalable.

Unlike monolithic applications or even microservices where there are mixed capabilities in a single service, Lambda functions encourage a sort of “nano-service” of small business logic directly related to the integration model connected to the function. I hope you’ve enjoyed this post and configure your concurrency limits today!

Running Windows Containers on Amazon ECS

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/running-windows-containers-on-amazon-ecs/

This post was developed and written by Jeremy Cowan, Thomas Fuller, Samuel Karp, and Akram Chetibi.

Containers have revolutionized the way that developers build, package, deploy, and run applications. Initially, containers only supported code and tooling for Linux applications. With the release of Docker Engine for Windows Server 2016, Windows developers have started to realize the gains that their Linux counterparts have experienced for the last several years.

This week, we’re adding support for running production workloads in Windows containers using Amazon Elastic Container Service (Amazon ECS). Now, Amazon ECS provides an ECS-Optimized Windows Server Amazon Machine Image (AMI). This AMI is based on the EC2 Windows Server 2016 AMI, and includes Docker 17.06 Enterprise Edition and the ECS Agent 1.16. This AMI provides improved instance and container launch time performance. It’s based on Windows Server 2016 Datacenter and includes Docker 17.06.2-ee-5, along with a new version of the ECS agent that now runs as a native Windows service.

In this post, I discuss the benefits of this new support, and walk you through getting started running Windows containers with Amazon ECS.

When AWS released the Windows Server 2016 Base with Containers AMI, the ECS agent ran as a process that made it difficult to monitor and manage. As a service, the agent can be health-checked, managed, and restarted no differently than other Windows services. The AMI also includes pre-cached images for Windows Server Core 2016 and Windows Server Nano Server 2016. By caching the images in the AMI, launching new Windows containers is significantly faster. When Docker images include a layer that’s already cached on the instance, Docker re-uses that layer instead of pulling it from the Docker registry.

The ECS agent and an accompanying ECS PowerShell module used to install, configure, and run the agent come pre-installed on the AMI. This guarantees there is a specific platform version available on the container instance at launch. Because the software is included, you don’t have to download it from the internet. This saves startup time.

The Windows-compatible ECS-optimized AMI also reports CPU and memory utilization and reservation metrics to Amazon CloudWatch. Using the CloudWatch integration with ECS, you can create alarms that trigger dynamic scaling events to automatically add or remove capacity to your EC2 instances and ECS tasks.

Getting started

To help you get started running Windows containers on ECS, I’ve forked the ECS reference architecture, to build an ECS cluster comprised of Windows instances instead of Linux instances. You can pull the latest version of the reference architecture for Windows.

The reference architecture is a layered CloudFormation stack, in that it calls other stacks to create the environment. Within the stack, the ecs-windows-cluster.yaml file contains the instructions for bootstrapping the Windows instances and configuring the ECS cluster. To configure the instances outside of AWS CloudFormation (for example, through the CLI or the console), you can add the following commands to your instance’s user data:

Import-Module ECSTools
Initialize-ECSAgent

Or

Import-Module ECSTools
Initialize-ECSAgent –Cluster MyCluster -EnableIAMTaskRole

If you don’t specify a cluster name when you initialize the agent, the instance is joined to the default cluster.

Adding -EnableIAMTaskRole when initializing the agent adds support for IAM roles for tasks. Previously, enabling this setting meant running a complex script and setting an environment variable before you could assign roles to your ECS tasks.

When you enable IAM roles for tasks on Windows, it consumes port 80 on the host. If you have tasks that listen on port 80 on the host, I recommend configuring a service for them that uses load balancing. You can use port 80 on the load balancer, and the traffic can be routed to another host port on your container instances. For more information, see Service Load Balancing.

Create a cluster

To create a new ECS cluster, choose Launch stack, or pull the GitHub project to your local machine and run the following command:

aws cloudformation create-stack –template-body file://<path to master-windows.yaml> --stack-name <name>

Upload your container image

Now that you have a cluster running, step through how to build and push an image into a container repository. You use a repository hosted in Amazon Elastic Container Registry (Amazon ECR) for this, but you could also use Docker Hub. To build and push an image to a repository, install Docker on your Windows* workstation. You also create a repository and assign the necessary permissions to the account that pushes your image to Amazon ECR. For detailed instructions, see Pushing an Image.

* If you are building an image that is based on Windows layers, then you must use a Windows environment to build and push your image to the registry.

Write your task definition

Now that your image is built and ready, the next step is to run your Windows containers using a task.

Start by creating a new task definition based on the windows-simple-iis image from Docker Hub.

  1. Open the ECS console.
  2. Choose Task Definitions, Create new task definition.
  3. Scroll to the bottom of the page and choose Configure via JSON.
  4. Copy and paste the following JSON into that field.
  5. Choose Save, Create.
{
   "family": "windows-simple-iis",
   "containerDefinitions": [
   {
     "name": "windows_sample_app",
     "image": "microsoft/iis",
     "cpu": 100,
     "entryPoint":["powershell", "-Command"],
     "command":["New-Item -Path C:\\inetpub\\wwwroot\\index.html -Type file -Value '<html><head><title>Amazon ECS Sample App</title> <style>body {margin-top: 40px; background-color: #333;} </style> </head><body> <div style=color:white;text-align:center><h1>Amazon ECS Sample App</h1> <h2>Congratulations!</h2> <p>Your application is now running on a container in Amazon ECS.</p></body></html>'; C:\\ServiceMonitor.exe w3svc"],
     "portMappings": [
     {
       "protocol": "tcp",
       "containerPort": 80,
       "hostPort": 8080
     }
     ],
     "memory": 500,
     "essential": true
   }
   ]
}

You can now go back into the Task Definition page and see windows-simple-iis as an available task definition.

There are a few important aspects of the task definition file to note when working with Windows containers. First, the hostPort is configured as 8080, which is necessary because the ECS agent currently uses port 80 to enable IAM roles for tasks required for least-privilege security configurations.

There are also some fairly standard task parameters that are intentionally not included. For example, network mode is not available with Windows at the time of this release, so keep that setting blank to allow Docker to configure WinNAT, the only option available today.

Also, some parameters work differently with Windows than they do with Linux. The CPU limits that you define in the task definition are absolute, whereas on Linux they are weights. For information about other task parameters that are supported or possibly different with Windows, see the documentation.

Run your containers

At this point, you are ready to run containers. There are two options to run containers with ECS:

  1. Task
  2. Service

A task is typically a short-lived process that ECS creates. It can’t be configured to actively monitor or scale. A service is meant for longer-running containers and can be configured to use a load balancer, minimum/maximum capacity settings, and a number of other knobs and switches to help ensure that your code keeps running. In both cases, you are able to pick a placement strategy and a specific IAM role for your container.

  1. Select the task definition that you created above and choose Action, Run Task.
  2. Leave the settings on the next page to the default values.
  3. Select the ECS cluster created when you ran the CloudFormation template.
  4. Choose Run Task to start the process of scheduling a Docker container on your ECS cluster.

You can now go to the cluster and watch the status of your task. It may take 5–10 minutes for the task to go from PENDING to RUNNING, mostly because it takes time to download all of the layers necessary to run the microsoft/iis image. After the status is RUNNING, you should see the following results:

You may have noticed that the example task definition is named windows-simple-iis:2. This is because I created a second version of the task definition, which is one of the powerful capabilities of using ECS. You can make the task definitions part of your source code and then version them. You can also roll out new versions and practice blue/green deployment, switching to reduce downtime and improve the velocity of your deployments!

After the task has moved to RUNNING, you can see your website hosted in ECS. Find the public IP or DNS for your ECS host. Remember that you are hosting on port 8080. Make sure that the security group allows ingress from your client IP address to that port and that your VPC has an internet gateway associated with it. You should see a page that looks like the following:

This is a nice start to deploying a simple single instance task, but what if you had a Web API to be scaled out and in based on usage? This is where you could look at defining a service and collecting CloudWatch data to add and remove both instances of the task. You could also use CloudWatch alarms to add more ECS container instances and keep up with the demand. The former is built into the configuration of your service.

  1. Select the task definition and choose Create Service.
  2. Associate a load balancer.
  3. Set up Auto Scaling.

The following screenshot shows an example where you would add an additional task instance when the CPU Utilization CloudWatch metric is over 60% on average over three consecutive measurements. This may not be aggressive enough for your requirements; it’s meant to show you the option to scale tasks the same way you scale ECS instances with an Auto Scaling group. The difference is that these tasks start much faster because all of the base layers are already on the ECS host.

Do not confuse task dynamic scaling with ECS instance dynamic scaling. To add additional hosts, see Tutorial: Scaling Container Instances with CloudWatch Alarms.

Conclusion

This is just scratching the surface of the flexibility that you get from using containers and Amazon ECS. For more information, see the Amazon ECS Developer Guide and ECS Resources.

– Jeremy, Thomas, Samuel, Akram

The Pi Towers Secret Santa Babbage

Post Syndicated from Mark Calleja original https://www.raspberrypi.org/blog/secret-santa-babbage/

Tired of pulling names out of a hat for office Secret Santa? Upgrade your festive tradition with a Raspberry Pi, thermal printer, and everybody’s favourite microcomputer mascot, Babbage Bear.

Raspberry Pi Babbage Bear Secret Santa

The name’s Santa. Secret Santa.

It’s that time of year again, when the cosiness gets turned up to 11 and everyone starts thinking about jolly fat men, reindeer, toys, and benevolent home invasion. At Raspberry Pi, we’re running a Secret Santa pool: everyone buys a gift for someone else in the office. Obviously, the person you buy for has to be picked in secret and at random, or the whole thing wouldn’t work. With that in mind, I created Secret Santa Babbage to do the somewhat mundane task of choosing gift recipients. This could’ve just been done with some names in a hat, but we’re Raspberry Pi! If we don’t make a Python-based Babbage robot wearing a jaunty hat and programmed to spread Christmas cheer, who will?

Secret Santa Babbage

Ho ho ho!

Mecha-Babbage Xmas shenanigans

The script the robot runs is pretty basic: a list of names entered as comma-separated strings is shuffled at the press of a GPIO button, then a name is popped off the end and stored as a variable. The name is matched to a photo of the person stored on the Raspberry Pi, and a thermal printer pinched from Alex’s super awesome PastyCam (blog post forthcoming, maybe) prints out the picture and name of the person you will need to shower with gifts at the Christmas party. (Well, OK — with one gift. No more than five quid’s worth. Nothing untoward.) There’s also a redo function, just in case you pick yourself: press another button and the last picked name — still stored as a variable — is appended to the list again, which is shuffled once more, and a new name is popped off the end.

Secret Santa Babbage prototyping

Prototyping!

As the build was a bit of a rush job undertaken at the request of our ‘Director of Vibe’ Emily, there are a few things I’d like to improve about this functionality that I didn’t get around to — more on that later. To add some extra holiday spirit to the project at the last minute, I used Pygame to play a WAV file of Santa’s jolly laugh while Babbage chooses a name for you. The file is included in the GitHub repo along with everything else, because ‘tis the season, etc., etc.

Secret Santa Babbage prototyping

Editor’s note: Considering these desk adornments, Mark’s Secret Santa gift-giver has a lot to go on.

Writing the code for Xmas Mecha-Babbage was fairly straightforward, though it uses some tricky bits for managing the thermal printer. You’ll need to install the drivers to make it go, as well as the CUPS package for managing the print hosting. You can find instructions for these things here, thanks to the wonderful Adafruit crew. Also, for reasons I couldn’t fathom, this will all only work on a Pi 2 and not a Pi 3, as there are some compatibility issues with the thermal printer otherwise. (I also tested the script on a Pi Zero W…no dice.)

Building a Christmassy throne

The hardest (well, fiddliest) parts of making the whole build were constructing the throne and wiring the bear. Using MakerCase, Inkscape, a bit of ingenuity, and a laser cutter, I was able to rig up a Christmassy plywood throne which has a hole through the seat so I could run the wires down from Babbage and to the Pi inside. I finished the throne by rubbing a couple of fingers of beeswax into it; as well as making the wood shine just a little bit and protecting it against getting wet, this had the added bonus of making it smell awesome.

Secret Santa Babbage inside

Next year’s iteration will be mulled wine–scented.

I next soldered two LEDs to some lengths of wire, and then ran the wires through holes at the top of the throne and down the back along a small channel I had carved with a narrow chisel to connect them to the Pi’s GPIO pins. The green LED will remain on as long as Babbage is running his program, and the red one will light up while he is processing your request. Once the red LED goes off again, the next person can have a go. I also laser-cut a final piece of wood to overlay the back of Babbage’s Xmas throne and cover the wiring a bit.

Creating a Xmas cyborg bear

Taking two 6 mm tactile buttons, I clipped the spiky metal legs off one side of each (the buttons were going into a stuffed christmas toy, after all) and soldered a length of wire to each of the remaining legs. Next, I made a small incision into Babbage with my trusty Swiss army knife (in a place that actually made me cringe a little) and fed the buttons up into his paws. At some point in this process I was standing in the office wrestling with the bear and muttering to myself, which elicited some very strange looks from my colleagues.

Secret Santa Babbage throne

Poor Babbage…

One thing to note here is to make sure the wires remain attached at the solder points while you push them up into Babbage’s paws. The first time I tried it, I snapped one of my connections and had to start again. It helped to remove some stuffing like a tunnel and then replace it afterward. Moreover, you can use your fingertip to support the joints as you poke the wire in. Finally, a couple of squirts of hot glue to keep Babbage’s furry cheeks firmly on the seat, and done!

Secret Santa Babbage

Next year: Game of Thrones–inspired candy cane throne

The Secret Santa Babbage masterpiece

The whole build process was the perfect holiday mix of cheerful and macabre, and while getting the thermal printer to work was a little time-consuming, the finished product definitely raised some smiles around the office and added a bit of interesting digital flavour to a staid office tradition. And it also helped people who are new to the office or from other branches of the Foundation to know for whom they will be buying a gift.

Secret Santa Babbage

Ready to dispense Christmas cheer!

There are a few ways in which I’ll polish this project before next year, such as having the script write the names to external text files to create a record that will persist in case of a reboot, and maybe having Secret Santa Babbage play you a random Christmas carol when you squeeze his paw instead of just laughing merrily every time. (I also thought about adding electric shocks for those people who are on the naughty list, but HR said no. Bah, humbug!)

Make your own

The code and laser cut plans for the whole build are available here. If you plan to make your own, let us know which stuffed toy you will be turning into a Secret Santa cyborg! And if you’ve been working on any other Christmas-themed Raspberry Pi projects, we’d like to see those too, so tag us on social media to share the festive maker cheer.

The post The Pi Towers Secret Santa Babbage appeared first on Raspberry Pi.

AWS Contributes to Milestone 1.0 Release and Adds Model Serving Capability for Apache MXNet

Post Syndicated from Ana Visneski original https://aws.amazon.com/blogs/aws/aws-contributes-to-milestone-1-0-release-and-adds-model-serving-capability-for-apache-mxnet/

Post by Dr. Matt Wood

Today AWS announced contributions to the milestone 1.0 release of the Apache MXNet deep learning engine including the introduction of a new model-serving capability for MXNet. The new capabilities in MXNet provide the following benefits to users:

1) MXNet is easier to use: The model server for MXNet is a new capability introduced by AWS, and it packages, runs, and serves deep learning models in seconds with just a few lines of code, making them accessible over the internet via an API endpoint and thus easy to integrate into applications. The 1.0 release also includes an advanced indexing capability that enables users to perform matrix operations in a more intuitive manner.

  • Model Serving enables set up of an API endpoint for prediction: It saves developers time and effort by condensing the task of setting up an API endpoint for running and integrating prediction functionality into an application to just a few lines of code. It bridges the barrier between Python-based deep learning frameworks and production systems through a Docker container-based deployment model.
  • Advanced indexing for array operations in MXNet: It is now more intuitive for developers to leverage the powerful array operations in MXNet. They can use the advanced indexing capability by leveraging existing knowledge of NumPy/SciPy arrays. For example, it supports MXNet NDArray and Numpy ndarray as index, e.g. (a[mx.nd.array([1,2], dtype = ‘int32’]).

2) MXNet is faster: The 1.0 release includes implementation of cutting-edge features that optimize the performance of training and inference. Gradient compression enables users to train models up to five times faster by reducing communication bandwidth between compute nodes without loss in convergence rate or accuracy. For speech recognition acoustic modeling like the Alexa voice, this feature can reduce network bandwidth by up to three orders of magnitude during training. With the support of NVIDIA Collective Communication Library (NCCL), users can train a model 20% faster on multi-GPU systems.

  • Optimize network bandwidth with gradient compression: In distributed training, each machine must communicate frequently with others to update the weight-vectors and thereby collectively build a single model, leading to high network traffic. Gradient compression algorithm enables users to train models up to five times faster by compressing the model changes communicated by each instance.
  • Optimize the training performance by taking advantage of NCCL: NCCL implements multi-GPU and multi-node collective communication primitives that are performance optimized for NVIDIA GPUs. NCCL provides communication routines that are optimized to achieve high bandwidth over interconnection between multi-GPUs. MXNet supports NCCL to train models about 20% faster on multi-GPU systems.

3) MXNet provides easy interoperability: MXNet now includes a tool for converting neural network code written with the Caffe framework to MXNet code, making it easier for users to take advantage of MXNet’s scalability and performance.

  • Migrate Caffe models to MXNet: It is now possible to easily migrate Caffe code to MXNet, using the new source code translation tool for converting Caffe code to MXNet code.

MXNet has helped developers and researchers make progress with everything from language translation to autonomous vehicles and behavioral biometric security. We are excited to see the broad base of users that are building production artificial intelligence applications powered by neural network models developed and trained with MXNet. For example, the autonomous driving company TuSimple recently piloted a self-driving truck on a 200-mile journey from Yuma, Arizona to San Diego, California using MXNet. This release also includes a full-featured and performance optimized version of the Gluon programming interface. The ease-of-use associated with it combined with the extensive set of tutorials has led significant adoption among developers new to deep learning. The flexibility of the interface has driven interest within the research community, especially in the natural language processing domain.

Getting started with MXNet
Getting started with MXNet is simple. To learn more about the Gluon interface and deep learning, you can reference this comprehensive set of tutorials, which covers everything from an introduction to deep learning to how to implement cutting-edge neural network models. If you’re a contributor to a machine learning framework, check out the interface specs on GitHub.

To get started with the Model Server for Apache MXNet, install the library with the following command:

$ pip install mxnet-model-server

The Model Server library has a Model Zoo with 10 pre-trained deep learning models, including the SqueezeNet 1.1 object classification model. You can start serving the SqueezeNet model with just the following command:

$ mxnet-model-server \
  --models squeezenet=https://s3.amazonaws.com/model-server/models/squeezenet_v1.1/squeezenet_v1.1.model \
  --service dms/model_service/mxnet_vision_service.py

Learn more about the Model Server and view the source code, reference examples, and tutorials here: https://github.com/awslabs/mxnet-model-server/

-Dr. Matt Wood

Diehl: Reflecting on Haskell in 2017

Post Syndicated from ris original https://lwn.net/Articles/740627/rss

Stephen Diehl looks back
at what happened in Haskell during the past year.
Haskell has had a great year and 2017 was defined by vast quantities of new code, including 14,000 new Haskell projects on Github . The amount of writing this year was voluminous and my list of interesting work is eight times as large as last year. At least seven new companies came into existence and many existing firms unexpectedly dropped large open source Haskell projects into the public sphere. Driven by a lot of software catastrophes, the intersection of security, software correctness and formal methods have been become quite an active area of investment and research across both industry and academia. It’s really never been an easier and more exciting time to be programming professionally in the world’s most advanced (yet usable) statically typed language.

Implementing Canary Deployments of AWS Lambda Functions with Alias Traffic Shifting

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/implementing-canary-deployments-of-aws-lambda-functions-with-alias-traffic-shifting/

This post courtesy of Ryan Green, Software Development Engineer, AWS Serverless

The concepts of blue/green and canary deployments have been around for a while now and have been well-established as best-practices for reducing the risk of software deployments.

In a traditional, horizontally scaled application, copies of the application code are deployed to multiple nodes (instances, containers, on-premises servers, etc.), typically behind a load balancer. In these applications, deploying new versions of software to too many nodes at the same time can impact application availability as there may not be enough healthy nodes to service requests during the deployment. This aggressive approach to deployments also drastically increases the blast radius of software bugs introduced in the new version and does not typically give adequate time to safely assess the quality of the new version against production traffic.

In such applications, one commonly accepted solution to these problems is to slowly and incrementally roll out application software across the nodes in the fleet while simultaneously verifying application health (canary deployments). Another solution is to stand up an entirely different fleet and weight (or flip) traffic over to the new fleet after verification, ideally with some production traffic (blue/green). Some teams deploy to a single host (“one box environment”), where the new release can bake for some time before promotion to the rest of the fleet. Techniques like this enable the maintainers of complex systems to safely test in production while minimizing customer impact.

Enter Serverless

There is somewhat of an impedance mismatch when mapping these concepts to a serverless world. You can’t incrementally deploy your software across a fleet of servers when there are no servers!* In fact, even the term “deployment” takes on a different meaning with functions as a service (FaaS). In AWS Lambda, a “deployment” can be roughly modeled as a call to CreateFunction, UpdateFunctionCode, or UpdateAlias (I won’t get into the semantics of whether updating configuration counts as a deployment), all of which may affect the version of code that is invoked by clients.

The abstractions provided by Lambda remove the need for developers to be concerned about servers and Availability Zones, and this provides a powerful opportunity to greatly simplify the process of deploying software.
*Of course there are servers, but they are abstracted away from the developer.

Traffic shifting with Lambda aliases

Before the release of traffic shifting for Lambda aliases, deployments of a Lambda function could only be performed in a single “flip” by updating function code for version $LATEST, or by updating an alias to target a different function version. After the update propagates, typically within a few seconds, 100% of function invocations execute the new version. Implementing canary deployments with this model required the development of an additional routing layer, further adding development time, complexity, and invocation latency.
While rolling back a bad deployment of a Lambda function is a trivial operation and takes effect near instantaneously, deployments of new versions for critical functions can still be a potentially nerve-racking experience.

With the introduction of alias traffic shifting, it is now possible to trivially implement canary deployments of Lambda functions. By updating additional version weights on an alias, invocation traffic is routed to the new function versions based on the weight specified. Detailed CloudWatch metrics for the alias and version can be analyzed during the deployment, or other health checks performed, to ensure that the new version is healthy before proceeding.

Note: Sometimes the term “canary deployments” refers to the release of software to a subset of users. In the case of alias traffic shifting, the new version is released to some percentage of all users. It’s not possible to shard based on identity without adding an additional routing layer.

Examples

The simplest possible use of a canary deployment looks like the following:

# Update $LATEST version of function
aws lambda update-function-code --function-name myfunction ….

# Publish new version of function
aws lambda publish-version --function-name myfunction

# Point alias to new version, weighted at 5% (original version at 95% of traffic)
aws lambda update-alias --function-name myfunction --name myalias --routing-config '{"AdditionalVersionWeights" : {"2" : 0.05} }'

# Verify that the new version is healthy
…
# Set the primary version on the alias to the new version and reset the additional versions (100% weighted)
aws lambda update-alias --function-name myfunction --name myalias --function-version 2 --routing-config '{}'

This is begging to be automated! Here are a few options.

Simple deployment automation

This simple Python script runs as a Lambda function and deploys another function (how meta!) by incrementally increasing the weight of the new function version over a prescribed number of steps, while checking the health of the new version. If the health check fails, the alias is rolled back to its initial version. The health check is implemented as a simple check against the existence of Errors metrics in CloudWatch for the alias and new version.

GitHub aws-lambda-deploy repo

Install:

git clone https://github.com/awslabs/aws-lambda-deploy
cd aws-lambda-deploy
export BUCKET_NAME=[YOUR_S3_BUCKET_NAME_FOR_BUILD_ARTIFACTS]
./install.sh

Run:

# Rollout version 2 incrementally over 10 steps, with 120s between each step
aws lambda invoke --function-name SimpleDeployFunction --log-type Tail --payload \
  '{"function-name": "MyFunction",
  "alias-name": "MyAlias",
  "new-version": "2",
  "steps": 10,
  "interval" : 120,
  "type": "linear"
  }' output

Description of input parameters

  • function-name: The name of the Lambda function to deploy
  • alias-name: The name of the alias used to invoke the Lambda function
  • new-version: The version identifier for the new version to deploy
  • steps: The number of times the new version weight is increased
  • interval: The amount of time (in seconds) to wait between weight updates
  • type: The function to use to generate the weights. Supported values: “linear”

Because this runs as a Lambda function, it is subject to the maximum timeout of 5 minutes. This may be acceptable for many use cases, but to achieve a slower rollout of the new version, a different solution is required.

Step Functions workflow

This state machine performs essentially the same task as the simple deployment function, but it runs as an asynchronous workflow in AWS Step Functions. A nice property of Step Functions is that the maximum deployment timeout has now increased from 5 minutes to 1 year!

The step function incrementally updates the new version weight based on the steps parameter, waiting for some time based on the interval parameter, and performing health checks between updates. If the health check fails, the alias is rolled back to the original version and the workflow fails.

For example, to execute the workflow:

export STATE_MACHINE_ARN=`aws cloudformation describe-stack-resources --stack-name aws-lambda-deploy-stack --logical-resource-id DeployStateMachine --output text | cut  -d$'\t' -f3`

aws stepfunctions start-execution --state-machine-arn $STATE_MACHINE_ARN --input '{
  "function-name": "MyFunction",
  "alias-name": "MyAlias",
  "new-version": "2",
  "steps": 10,
  "interval": 120,
  "type": "linear"}'

Getting feedback on the deployment

Because the state machine runs asynchronously, retrieving feedback on the deployment requires polling for the execution status using DescribeExecution or implementing an asynchronous notification (using SNS or email, for example) from the Rollback or Finalize functions. A CloudWatch alarm could also be created to alarm based on the “ExecutionsFailed” metric for the state machine.

A note on health checks and observability

Weighted rollouts like this are considerably more successful if the code is being exercised and monitored continuously. In this example, it would help to have some automation continuously invoking the alias and reporting metrics on these invocations, such as client-side success rates and latencies.

The absence of Lambda Errors metrics used in these examples can be misleading if the function is not getting invoked. It’s also recommended to instrument your Lambda functions with custom metrics, in addition to Lambda’s built-in metrics, that can be used to monitor health during deployments.

Extensibility

These examples could be easily extended in various ways to support different use cases. For example:

  • Health check implementations: CloudWatch alarms, automatic invocations with payload assertions, querying external systems, etc.
  • Weight increase functions: Exponential, geometric progression, single canary step, etc.
  • Custom success/failure notifications: SNS, email, CI/CD systems, service discovery systems, etc.

Traffic shifting with SAM and CodeDeploy

Using the Lambda UpdateAlias operation with additional version weights provides a powerful primitive for you to implement custom traffic shifting solutions for Lambda functions.

For those not interested in building custom deployment solutions, AWS CodeDeploy provides an intuitive turn-key implementation of this functionality integrated directly into the Serverless Application Model. Traffic-shifted deployments can be declared in a SAM template, and CodeDeploy manages the function rollout as part of the CloudFormation stack update. CloudWatch alarms can also be configured to trigger a stack rollback if something goes wrong.

i.e.

MyFunction:
  Type: AWS::Serverless::Function
  Properties:
    FunctionName: MyFunction
    AutoPublishAlias: MyFunctionInvokeAlias
    DeploymentPreference:
      Type: Linear10PercentEvery1Minute
      Role:
        Fn::GetAtt: [ DeploymentRole, Arn ]
      Alarms:
       - { Ref: MyFunctionErrorsAlarm }
...

For more information about using CodeDeploy with SAM, see Automating Updates to Serverless Apps.

Conclusion

It is often the simple features that provide the most value. As I demonstrated in this post, serverless architectures allow the complex deployment orchestration used in traditional applications to be replaced with a simple Lambda function or Step Functions workflow. By allowing invocation traffic to be easily weighted to multiple function versions, Lambda alias traffic shifting provides a simple but powerful feature that I hope empowers you to easily implement safe deployment workflows for your Lambda functions.

AWS Systems Manager – A Unified Interface for Managing Your Cloud and Hybrid Resources

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/aws-systems-manager/

AWS Systems Manager is a new way to manage your cloud and hybrid IT environments. AWS Systems Manager provides a unified user interface that simplifies resource and application management, shortens the time to detect and resolve operational problems, and makes it easy to operate and manage your infrastructure securely at scale. This service is absolutely packed full of features. It defines a new experience around grouping, visualizing, and reacting to problems using features from products like Amazon EC2 Systems Manager (SSM) to enable rich operations across your resources.

As I said above, there are a lot of powerful features in this service and we won’t be able to dive deep on all of them but it’s easy to go to the console and get started with any of the tools.

Resource Groupings

Resource Groups allow you to create logical groupings of most resources that support tagging like: Amazon Elastic Compute Cloud (EC2) instances, Amazon Simple Storage Service (S3) buckets, Elastic Load Balancing balancers, Amazon Relational Database Service (RDS) instances, Amazon Virtual Private Cloud, Amazon Kinesis streams, Amazon Route 53 zones, and more. Previously, you could use the AWS Console to define resource groupings but AWS Systems Manager provides this new resource group experience via a new console and API. These groupings are a fundamental building block of Systems Manager in that they are frequently the target of various operations you may want to perform like: compliance management, software inventories, patching, and other automations.

You start by defining a group based on tag filters. From there you can view all of the resources in a centralized console. You would typically use these groupings to differentiate between applications, application layers, and environments like production or dev – but you can make your own rules about how to use them as well. If you imagine a typical 3 tier web-app you might have a few EC2 instances, an ELB, a few S3 buckets, and an RDS instance. You can define a grouping for that application and with all of those different resources simultaneously.

Insights

AWS Systems Manager automatically aggregates and displays operational data for each resource group through a dashboard. You no longer need to navigate through multiple AWS consoles to view all of your operational data. You can easily integrate your exiting Amazon CloudWatch dashboards, AWS Config rules, AWS CloudTrail trails, AWS Trusted Advisor notifications, and AWS Personal Health Dashboard performance and availability alerts. You can also easily view your software inventories across your fleet. AWS Systems Manager also provides a compliance dashboard allowing you to see the state of various security controls and patching operations across your fleets.

Acting on Insights

Building on the success of EC2 Systems Manager (SSM), AWS Systems Manager takes all of the features of SSM and provides a central place to access them. These are all the same experiences you would have through SSM with a more accesible console and centralized interface. You can use the resource groups you’ve defined in Systems Manager to visualize and act on groups of resources.

Automation


Automations allow you to define common IT tasks as a JSON document that specify a list of tasks. You can also use community published documents. These documents can be executed through the Console, CLIs, SDKs, scheduled maintenance windows, or triggered based on changes in your infrastructure through CloudWatch events. You can track and log the execution of each step in the documents and prompt for additional approvals. It also allows you to incrementally roll out changes and automatically halt when errors occur. You can start executing an automation directly on a resource group and it will be able to apply itself to the resources that it understands within the group.

Run Command

Run Command is a superior alternative to enabling SSH on your instances. It provides safe, secure remote management of your instances at scale without logging into your servers, replacing the need for SSH bastions or remote powershell. It has granular IAM permissions that allow you to restrict which roles or users can run certain commands.

Patch Manager, Maintenance Windows, and State Manager

I’ve written about Patch Manager before and if you manage fleets of Windows and Linux instances it’s a great way to maintain a common baseline of security across your fleet.

Maintenance windows allow you to schedule instance maintenance and other disruptive tasks for a specific time window.

State Manager allows you to control various server configuration details like anti-virus definitions, firewall settings, and more. You can define policies in the console or run existing scripts, PowerShell modules, or even Ansible playbooks directly from S3 or GitHub. You can query State Manager at any time to view the status of your instance configurations.

Things To Know

There’s some interesting terminology here. We haven’t done the best job of naming things in the past so let’s take a moment to clarify. EC2 Systems Manager (sometimes called SSM) is what you used before today. You can still invoke aws ssm commands. However, AWS Systems Manager builds on and enhances many of the tools provided by EC2 Systems Manager and allows those same tools to be applied to more than just EC2. When you see the phrase “Systems Manager” in the future you should think of AWS Systems Manager and not EC2 Systems Manager.

AWS Systems Manager with all of this useful functionality is provided at no additional charge. It is immediately available in all public AWS regions.

The best part about these services is that even with their tight integrations each one is designed to be used in isolation as well. If you only need one component of these services it’s simple to get started with only that component.

There’s a lot more than I could ever document in this post so I encourage you all to jump into the console and documentation to figure out where you can start using AWS Systems Manager.

Randall

Announcing Amazon FreeRTOS – Enabling Billions of Devices to Securely Benefit from the Cloud

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/announcing-amazon-freertos/

I was recently reading an article on ReadWrite.com titled “IoT devices go forth and multiply, to increase 200% by 2021“, and while the article noted the benefit for consumers and the industry of this growth, two things in the article stuck with me. The first was the specific statement that read “researchers warned that the proliferation of IoT technology will create a new bevvy of challenges. Particularly troublesome will be IoT deployments at scale for both end-users and providers.” Not only was that sentence a mouthful, but it really addressed some of the challenges that can come building solutions and deployment of this exciting new technology area. The second sentiment in the article that stayed with me was that Security issues could grow.

So the article got me thinking, how can we create these cool IoT solutions using low-cost efficient microcontrollers with a secure operating system that can easily connect to the cloud. Luckily the answer came to me by way of an exciting new open-source based offering coming from AWS that I am happy to announce to you all today. Let’s all welcome, Amazon FreeRTOS to the technology stage.

Amazon FreeRTOS is an IoT microcontroller operating system that simplifies development, security, deployment, and maintenance of microcontroller-based edge devices. Amazon FreeRTOS extends the FreeRTOS kernel, a popular real-time operating system, with libraries that enable local and cloud connectivity, security, and (coming soon) over-the-air updates.

So what are some of the great benefits of this new exciting offering, you ask. They are as follows:

  • Easily to create solutions for Low Power Connected Devices: provides a common operating system (OS) and libraries that make the development of common IoT capabilities easy for devices. For example; over-the-air (OTA) updates (coming soon) and device configuration.
  • Secure Data and Device Connections: devices only run trusted software using the Code Signing service, Amazon FreeRTOS provides a secure connection to the AWS using TLS, as well as, the ability to securely store keys and sensitive data on the device.
  • Extensive Ecosystem: contains an extensive hardware and technology ecosystem that allows you to choose a variety of qualified chipsets, including Texas Instruments, Microchip, NXP Semiconductors, and STMicroelectronics.
  • Cloud or Local Connections:  Devices can connect directly to the AWS Cloud or via AWS Greengrass.

 

What’s cool is that it is easy to get started. 

The Amazon FreeRTOS console allows you to select and download the software that you need for your solution.

There is a Qualification Program that helps to assure you that the microcontroller you choose will run consistently across several hardware options.

Finally, Amazon FreeRTOS kernel is an open-source FreeRTOS operating system that is freely available on GitHub for download.

But I couldn’t leave you without at least showing you a few snapshots of the Amazon FreeRTOS Console.

Within the Amazon FreeRTOS Console, I can select a predefined software configuration that I would like to use.

If I want to have a more customized software configuration, Amazon FreeRTOS allows you to customize a solution that is targeted for your use by adding or removing libraries.

Summary

Thanks for checking out the new Amazon FreeRTOS offering. To learn more go to the Amazon FreeRTOS product page or review the information provided about this exciting IoT device targeted operating system in the AWS documentation.

Can’t wait to see what great new IoT systems are will be enabled and created with it! Happy Coding.

Tara

 

Introducing AWS AppSync – Build data-driven apps with real-time and off-line capabilities

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/introducing-amazon-appsync/

In this day and age, it is almost impossible to do without our mobile devices and the applications that help make our lives easier. As our dependency on our mobile phone grows, the mobile application market has exploded with millions of apps vying for our attention. For mobile developers, this means that we must ensure that we build applications that provide the quality, real-time experiences that app users desire.  Therefore, it has become essential that mobile applications are developed to include features such as multi-user data synchronization, offline network support, and data discovery, just to name a few.  According to several articles, I read recently about mobile development trends on publications like InfoQ, DZone, and the mobile development blog AlleviateTech, one of the key elements in of delivering the aforementioned capabilities is with cloud-driven mobile applications.  It seems that this is especially true, as it related to mobile data synchronization and data storage.

That being the case, it is a perfect time for me to announce a new service for building innovative mobile applications that are driven by data-intensive services in the cloud; AWS AppSync. AWS AppSync is a fully managed serverless GraphQL service for real-time data queries, synchronization, communications and offline programming features. For those not familiar, let me briefly share some information about the open GraphQL specification. GraphQL is a responsive data query language and server-side runtime for querying data sources that allow for real-time data retrieval and dynamic query execution. You can use GraphQL to build a responsive API for use in when building client applications. GraphQL works at the application layer and provides a type system for defining schemas. These schemas serve as specifications to define how operations should be performed on the data and how the data should be structured when retrieved. Additionally, GraphQL has a declarative coding model which is supported by many client libraries and frameworks including React, React Native, iOS, and Android.

Now the power of the GraphQL open standard query language is being brought to you in a rich managed service with AWS AppSync.  With AppSync developers can simplify the retrieval and manipulation of data across multiple data sources with ease, allowing them to quickly prototype, build and create robust, collaborative, multi-user applications. AppSync keeps data updated when devices are connected, but enables developers to build solutions that work offline by caching data locally and synchronizing local data when connections become available.

Let’s discuss some key concepts of AWS AppSync and how the service works.

AppSync Concepts

  • AWS AppSync Client: service client that defines operations, wraps authorization details of requests, and manage offline logic.
  • Data Source: the data storage system or a trigger housing data
  • Identity: a set of credentials with permissions and identification context provided with requests to GraphQL proxy
  • GraphQL Proxy: the GraphQL engine component for processing and mapping requests, handling conflict resolution, and managing Fine Grained Access Control
  • Operation: one of three GraphQL operations supported in AppSync
    • Query: a read-only fetch call to the data
    • Mutation: a write of the data followed by a fetch,
    • Subscription: long-lived connections that receive data in response to events.
  • Action: a notification to connected subscribers from a GraphQL subscription.
  • Resolver: function using request and response mapping templates that converts and executes payload against data source

How It Works

A schema is created to define types and capabilities of the desired GraphQL API and tied to a Resolver function.  The schema can be created to mirror existing data sources or AWS AppSync can create tables automatically based the schema definition. Developers can also use GraphQL features for data discovery without having knowledge of the backend data sources. After a schema definition is established, an AWS AppSync client can be configured with an operation request, like a Query operation. The client submits the operation request to GraphQL Proxy along with an identity context and credentials. The GraphQL Proxy passes this request to the Resolver which maps and executes the request payload against pre-configured AWS data services like an Amazon DynamoDB table, an AWS Lambda function, or a search capability using Amazon Elasticsearch. The Resolver executes calls to one or all of these services within a single network call minimizing CPU cycles and bandwidth needs and returns the response to the client. Additionally, the client application can change data requirements in code on demand and the AppSync GraphQL API will dynamically map requests for data accordingly, allowing prototyping and faster development.

In order to take a quick peek at the service, I’ll go to the AWS AppSync console. I’ll click the Create API button to get started.

 

When the Create new API screen opens, I’ll give my new API a name, TarasTestApp, and since I am just exploring the new service I will select the Sample schema option.  You may notice from the informational dialog box on the screen that in using the sample schema, AWS AppSync will automatically create the DynamoDB tables and the IAM roles for me.It will also deploy the TarasTestApp API on my behalf.  After review of the sample schema provided by the console, I’ll click the Create button to create my test API.

After the TaraTestApp API has been created and the associated AWS resources provisioned on my behalf, I can make updates to the schema, data source, or connect my data source(s) to a resolver. I also can integrate my GraphQL API into an iOS, Android, Web, or React Native application by cloning the sample repo from GitHub and downloading the accompanying GraphQL schema.  These application samples are great to help get you started and they are pre-configured to function in offline scenarios.

If I select the Schema menu option on the console, I can update and view the TarasTestApp GraphQL API schema.


Additionally, if I select the Data Sources menu option in the console, I can see the existing data sources.  Within this screen, I can update, delete, or add data sources if I so desire.

Next, I will select the Query menu option which takes me to the console tool for writing and testing queries. Since I chose the sample schema and the AWS AppSync service did most of the heavy lifting for me, I’ll try a query against my new GraphQL API.

I’ll use a mutation to add data for the event type in my schema. Since this is a mutation and it first writes data and then does a read of the data, I want the query to return values for name and where.

If I go to the DynamoDB table created for the event type in the schema, I will see that the values from my query have been successfully written into the table. Now that was a pretty simple task to write and retrieve data based on a GraphQL API schema from a data source, don’t you think.


 Summary

AWS AppSync is currently in AWS AppSync is in Public Preview and you can sign up today. It supports development for iOS, Android, and JavaScript applications. You can take advantage of this managed GraphQL service by going to the AWS AppSync console or learn more by reviewing more details about the service by reading a tutorial in the AWS documentation for the service or checking out our AWS AppSync Developer Guide.

Tara

 

UI Testing at Scale with AWS Lambda

Post Syndicated from Stas Neyman original https://aws.amazon.com/blogs/devops/ui-testing-at-scale-with-aws-lambda/

This is a guest blog post by Wes Couch and Kurt Waechter from the Blackboard Internal Product Development team about their experience using AWS Lambda.

One year ago, one of our UI test suites took hours to run. Last month, it took 16 minutes. Today, it takes 39 seconds. Here’s how we did it.

The backstory:

Blackboard is a global leader in delivering robust and innovative education software and services to clients in higher education, government, K12, and corporate training. We have a large product development team working across the globe in at least 10 different time zones, with an internal tools team providing support for quality and workflows. We have been using Selenium Webdriver to perform automated cross-browser UI testing since 2007. Because we are now practicing continuous delivery, the automated UI testing challenge has grown due to the faster release schedule. On top of that, every commit made to each branch triggers an execution of our automated UI test suite. If you have ever implemented an automated UI testing infrastructure, you know that it can be very challenging to scale and maintain. Although there are services that are useful for testing different browser/OS combinations, they don’t meet our scale needs.

It used to take three hours to synchronously run our functional UI suite, which revealed the obvious need for parallel execution. Previously, we used Mesos to orchestrate a Selenium Grid Docker container for each test run. This way, we were able to run eight concurrent threads for test execution, which took an average of 16 minutes. Although this setup is fine for a single workflow, the cracks started to show when we reached the scale required for Blackboard’s mature product lines. Going beyond eight concurrent sessions on a single container introduced performance problems that impact the reliability of tests (for example, issues in Webdriver or the browser popping up frequently). We tried Mesos and considered Kubernetes for Selenium Grid orchestration, but the answer to scaling a Selenium Grid was to think smaller, not larger. This led to our breakthrough with AWS Lambda.

The solution:

We started using AWS Lambda for UI testing because it doesn’t require costly infrastructure or countless man hours to maintain. The steps we outline in this blog post took one work day, from inception to implementation. By simply packaging the UI test suite into a Lambda function, we can execute these tests in parallel on a massive scale. We use a custom JUnit test runner that invokes the Lambda function with a request to run each test from the suite. The runner then aggregates the results returned from each Lambda test execution.

Selenium is the industry standard for testing UI at scale. Although there are other options to achieve the same thing in Lambda, we chose this mature suite of tools. Selenium is backed by Google, Firefox, and others to help the industry drive their browsers with code. This makes Lambda and Selenium a compelling stack for achieving UI testing at scale.

Making Chrome Run in Lambda

Currently, Chrome for Linux will not run in Lambda due to an absent mount point. By rebuilding Chrome with a slight modification, as Marco Lüthy originally demonstrated, you can run it inside Lambda anyway! It took about two hours to build the current master branch of Chromium to build on a c4.4xlarge. Unfortunately, the current version of ChromeDriver, 2.33, does not support any version of Chrome above 62, so we’ll be using Marco’s modified version of version 60 for the near future.

Required System Libraries

The Lambda runtime environment comes with a subset of common shared libraries. This means we need to include some extra libraries to get Chrome and ChromeDriver to work. Anything that exists in the java resources folder during compile time is included in the base directory of the compiled jar file. When this jar file is deployed to Lambda, it is placed in the /var/task/ directory. This allows us to simply place the libraries in the java resources folder under a folder named lib/ so they are right where they need to be when the Lambda function is invoked.

To get these libraries, create an EC2 instance and choose the Amazon Linux AMI.

Next, use ssh to connect to the server. After you connect to the new instance, search for the libraries to find their locations.

sudo find / -name libgconf-2.so.4
sudo find / -name libORBit-2.so.0

Now that you have the locations of the libraries, copy these files from the EC2 instance and place them in the java resources folder under lib/.

Packaging the Tests

To deploy the test suite to Lambda, we used a simple Gradle tool called ShadowJar, which is similar to the Maven Shade Plugin. It packages the libraries and dependencies inside the jar that is built. Usually test dependencies and sources aren’t included in a jar, but for this instance we want to include them. To include the test dependencies, add this section to the build.gradle file.

shadowJar {
   from sourceSets.test.output
   configurations = [project.configurations.testRuntime]
}

Deploying the Test Suite

Now that our tests are packaged with the dependencies in a jar, we need to get them into a running Lambda function. We use  simple SAM  templates to upload the packaged jar into S3, and then deploy it to Lambda with our settings.

{
   "AWSTemplateFormatVersion": "2010-09-09",
   "Transform": "AWS::Serverless-2016-10-31",
   "Resources": {
       "LambdaTestHandler": {
           "Type": "AWS::Serverless::Function",
           "Properties": {
               "CodeUri": "./build/libs/your-test-jar-all.jar",
               "Runtime": "java8",
               "Handler": "com.example.LambdaTestHandler::handleRequest",
               "Role": "<YourLambdaRoleArn>",
               "Timeout": 300,
               "MemorySize": 1536
           }
       }
   }
}

We use the maximum timeout available to ensure our tests have plenty of time to run. We also use the maximum memory size because this ensures our Lambda function can support Chrome and other resources required to run a UI test.

Specifying the handler is important because this class executes the desired test. The test handler should be able to receive a test class and method. With this information it will then execute the test and respond with the results.

public LambdaTestResult handleRequest(TestRequest testRequest, Context context) {
   LoggerContainer.LOGGER = new Logger(context.getLogger());
  
   BlockJUnit4ClassRunner runner = getRunnerForSingleTest(testRequest);
  
   Result result = new JUnitCore().run(runner);

   return new LambdaTestResult(result);
}

Creating a Lambda-Compatible ChromeDriver

We provide developers with an easily accessible ChromeDriver for local test writing and debugging. When we are running tests on AWS, we have configured ChromeDriver to run them in Lambda.

To configure ChromeDriver, we first need to tell ChromeDriver where to find the Chrome binary. Because we know that ChromeDriver is going to be unzipped into the root task directory, we should point the ChromeDriver configuration at that location.

The settings for getting ChromeDriver running are mostly related to Chrome, which must have its working directories pointed at the tmp/ folder.

Start with the default DesiredCapabilities for ChromeDriver, and then add the following settings to enable your ChromeDriver to start in Lambda.

public ChromeDriver createLambdaChromeDriver() {
   ChromeOptions options = new ChromeOptions();

   // Set the location of the chrome binary from the resources folder
   options.setBinary("/var/task/chrome");

   // Include these settings to allow Chrome to run in Lambda
   options.addArguments("--disable-gpu");
   options.addArguments("--headless");
   options.addArguments("--window-size=1366,768");
   options.addArguments("--single-process");
   options.addArguments("--no-sandbox");
   options.addArguments("--user-data-dir=/tmp/user-data");
   options.addArguments("--data-path=/tmp/data-path");
   options.addArguments("--homedir=/tmp");
   options.addArguments("--disk-cache-dir=/tmp/cache-dir");
  
   DesiredCapabilities desiredCapabilities = DesiredCapabilities.chrome();
   desiredCapabilities.setCapability(ChromeOptions.CAPABILITY, options);
  
   return new ChromeDriver(desiredCapabilities);
}

Executing Tests in Parallel

You can approach parallel test execution in Lambda in many different ways. Your approach depends on the structure and design of your test suite. For our solution, we implemented a custom test runner that uses reflection and JUnit libraries to create a list of test cases we want run. When we have the list, we create a TestRequest object to pass into the Lambda function that we have deployed. In this TestRequest, we place the class name, test method, and the test run identifier. When the Lambda function receives this TestRequest, our LambdaTestHandler generates and runs the JUnit test. After the test is complete, the test result is sent to the test runner. The test runner compiles a result after all of the tests are complete. By executing the same Lambda function multiple times with different test requests, we can effectively run the entire test suite in parallel.

To get screenshots and other test data, we pipe those files during test execution to an S3 bucket under the test run identifier prefix. When the tests are complete, we link the files to each test execution in the report generated from the test run. This lets us easily investigate test executions.

Pro Tip: Dynamically Loading Binaries

AWS Lambda has a limit of 250 MB of uncompressed space for packaged Lambda functions. Because we have libraries and other dependencies to our test suite, we hit this limit when we tried to upload a function that contained Chrome and ChromeDriver (~140 MB). This test suite was not originally intended to be used with Lambda. Otherwise, we would have scrutinized some of the included libraries. To get around this limit, we used the Lambda functions temporary directory, which allows up to 500 MB of space at runtime. Downloading these binaries at runtime moves some of that space requirement into the temporary directory. This allows more room for libraries and dependencies. You can do this by grabbing Chrome and ChromeDriver from an S3 bucket and marking them as executable using built-in Java libraries. If you take this route, be sure to point to the new location for these executables in order to create a ChromeDriver.

private static void downloadS3ObjectToExecutableFile(String key) throws IOException {
   File file = new File("/tmp/" + key);

   GetObjectRequest request = new GetObjectRequest("s3-bucket-name", key);

   FileUtils.copyInputStreamToFile(s3client.getObject(request).getObjectContent(), file);
   file.setExecutable(true);
}

Lambda-Selenium Project Source

We have compiled an open source example that you can grab from the Blackboard Github repository. Grab the code and try it out!

https://blackboard.github.io/lambda-selenium/

Conclusion

One year ago, one of our UI test suites took hours to run. Last month, it took 16 minutes. Today, it takes 39 seconds. Thanks to AWS Lambda, we can reduce our build times and perform automated UI testing at scale!

Serverless Automated Cost Controls, Part1

Post Syndicated from Shankar Ramachandran original https://aws.amazon.com/blogs/compute/serverless-automated-cost-controls-part1/

This post courtesy of Shankar Ramachandran, Pubali Sen, and George Mao

In line with AWS’s continual efforts to reduce costs for customers, this series focuses on how customers can build serverless automated cost controls. This post provides an architecture blueprint and a sample implementation to prevent budget overruns.

This solution uses the following AWS products:

  • AWS Budgets – An AWS Cost Management tool that helps customers define and track budgets for AWS costs, and forecast for up to three months.
  • Amazon SNS – An AWS service that makes it easy to set up, operate, and send notifications from the cloud.
  • AWS Lambda – An AWS service that lets you run code without provisioning or managing servers.

You can fine-tune a budget for various parameters, for example filtering by service or tag. The Budgets tool lets you post notifications on an SNS topic. A Lambda function that subscribes to the SNS topic can act on the notification. Any programmatically implementable action can be taken.

The diagram below describes the architecture blueprint.

In this post, we describe how to use this blueprint with AWS Step Functions and IAM to effectively revoke the ability of a user to start new Amazon EC2 instances, after a budget amount is exceeded.

Freedom with guardrails

AWS lets you quickly spin up resources as you need them, deploying hundreds or even thousands of servers in minutes. This means you can quickly develop and roll out new applications. Teams can experiment and innovate more quickly and frequently. If an experiment fails, you can always de-provision those servers without risk.

This improved agility also brings in the need for effective cost controls. Your Finance and Accounting department must budget, monitor, and control the AWS spend. For example, this could be a budget per project. Further, Finance and Accounting must take appropriate actions if the budget for the project has been exceeded, for example. Call it “freedom with guardrails” – where Finance wants to give developers freedom, but with financial constraints.

Architecture

This section describes how to use the blueprint introduced earlier to implement a “freedom with guardrails” solution.

  1. The budget for “Project Beta” is set up in Budgets. In this example, we focus on EC2 usage and identify the instances that belong to this project by filtering on the tag Project with the value Beta. For more information, see Creating a Budget.
  2. The budget configuration also includes settings to send a notification on an SNS topic when the usage exceeds 100% of the budgeted amount. For more information, see Creating an Amazon SNS Topic for Budget Notifications.
  3. The master Lambda function receives the SNS notification.
  4. It triggers execution of a Step Functions state machine with the parameters for completing the configured action.
  5. The action Lambda function is triggered as a task in the state machine. The function interacts with IAM to effectively remove the user’s permissions to create an EC2 instance.

This decoupled modular design allows for extensibility.  New actions (serially or in parallel) can be added by simply adding new steps.

Implementing the solution

All the instructions and code needed to implement the architecture have been posted on the Serverless Automated Cost Controls GitHub repo. We recommend that you try this first in a Dev/Test environment.

This implementation description can be broken down into two parts:

  1. Create a solution stack for serverless automated cost controls.
  2. Verify the solution by testing the EC2 fleet.

To tie this back to the “freedom with guardrails” scenario, the Finance department performs a one-time implementation of the solution stack. To simulate resources for Project Beta, the developers spin up the test EC2 fleet.

Prerequisites

There are two prerequisites:

  • Make sure that you have the necessary IAM permissions. For more information, see the section titled “Required IAM permissions” in the README.
  • Define and activate a cost allocation tag with the key Project. For more information, see Using Cost Allocation Tags. It can take up to 12 hours for the tags to propagate to Budgets.

Create resources

The solution stack includes creating the following resources:

  • Three Lambda functions
  • One Step Functions state machine
  • One SNS topic
  • One IAM group
  • One IAM user
  • IAM policies as needed
  • One budget

Two of the Lambda functions were described in the previous section, to a) receive the SNS notification and b) trigger the Step Functions state machine. Another Lambda function is used to create the budget, as a custom AWS CloudFormation resource. The SNS topic connects Budgets with Lambda function A. Lambda function B is configured as a task in Step Functions. A budget for $2 is created which is filtered by Service: EC2 and Tag: Project, Beta. A test IAM group and user is created to enable you to validate this Cost Control Solution.

To create the serverless automated cost control solution stack, choose the button below. It takes few minutes to spin up the stack. You can monitor the progress in the CloudFormation console.

When you see the CREATE_COMPLETE status for the stack you had created, choose Outputs. Copy the following four values that you need later:

  • TemplateURL
  • UserName
  • SignInURL
  • Password

Verify the stack

The next step is to verify the serverless automated cost controls solution stack that you just created. To do this, spin up an EC2 fleet of t2.micro instances, representative of the resources needed for Project Beta, and tag them with Project, Beta.

  1. Browse to the SignInURL, and log in using the UserName and Password values copied on from the stack output.
  2. In the CloudFormation console, choose Create Stack.
  3. For Choose a template, select Choose an Amazon S3 template URL and paste the TemplateURL value from the preceding section. Choose Next.
  4. Give this stack a name, such as “testEc2FleetForProjectBeta”. Choose Next.
  5. On the Specify Details page, enter parameters such as the UserName and Password copied in the previous section. Choose Next.
  6. Ignore any errors related to listing IAM roles. The test user has a minimal set of permissions that is just sufficient to spin up this test stack (in line with security best practices).
  7. On the Options page, choose Next.
  8. On the Review page, choose Create. It takes a few minutes to spin up the stack, and you can monitor the progress in the CloudFormation console. 
  9. When you see the status “CREATE_COMPLETE”, open the EC2 console to verify that four t2.micro instances have been spun up, with the tag of Project, Beta.

The hourly cost for these instances depends on the region in which they are running. On the average (irrespective of the region), you can expect the aggregate cost for this EC2 fleet to exceed the set $2 budget in 48 hours.

Verify the solution

The first step is to identify the test IAM group that was created in the previous section. The group should have “projectBeta” in the name, prepended with the CloudFormation stack name and appended with an alphanumeric string. Verify that the managed policy associated is: “EC2FullAccess”, which indicates that the users in this group have unrestricted access to EC2.

There are two stages of verification for this serverless automated cost controls solution: simulating a notification and waiting for a breach.

Simulated notification

Because it takes at least a few hours for the aggregate cost of the EC2 fleet to breach the set budget, you can verify the solution by simulating the notification from Budgets.

  1. Log in to the SNS console (using your regular AWS credentials).
  2. Publish a message on the SNS topic that has “budgetNotificationTopic” in the name. The complete name is appended by the CloudFormation stack identifier.  
  3. Copy the following text as the body of the notification: “This is a mock notification”.
  4. Choose Publish.
  5. Open the IAM console to verify that the policy for the test group has been switched to “EC2ReadOnly”. This prevents users in this group from creating new instances.
  6. Verify that the test user created in the previous section cannot spin up new EC2 instances.  You can log in as the test user and try creating a new EC2 instance (via the same CloudFormation stack or the EC2 console). You should get an error message indicating that you do not have the necessary permissions.
  7. If you are proceeding to stage 2 of the verification, then you must switch the permissions back to “EC2FullAccess” for the test group, which can be done in the IAM console.

Automatic notification

Within 48 hours, the aggregate cost of the EC2 fleet spun up in the earlier section breaches the budget rule and triggers an automatic notification. This results in the permissions getting switched out, just as in the simulated notification.

Clean up

Use the following steps to delete your resources and stop incurring costs.

  1. Open the CloudFormation console.
  2. Delete the EC2 fleet by deleting the appropriate stack (for example, delete the stack named “testEc2FleetForProjectBeta”).                                               
  3. Next, delete the “costControlStack” stack.                                                                                                                                                    

Conclusion

Using Lambda in tandem with Budgets, you can build Serverless automated cost controls on AWS. Find all the resources (instructions, code) for implementing the solution discussed in this post on the Serverless Automated Cost Controls GitHub repo.

Stay tuned to this series for more tips about building serverless automated cost controls. In the next post, we discuss using smart lighting to influence developer behavior and describe a solution to encourage cost-aware development practices.

If you have questions or suggestions, please comment below.

 

How to Enable Caching for AWS CodeBuild

Post Syndicated from Karthik Thirugnanasambandam original https://aws.amazon.com/blogs/devops/how-to-enable-caching-for-aws-codebuild/

AWS CodeBuild is a fully managed build service. There are no servers to provision and scale, or software to install, configure, and operate. You just specify the location of your source code, choose your build settings, and CodeBuild runs build scripts for compiling, testing, and packaging your code.

A typical application build process includes phases like preparing the environment, updating the configuration, downloading dependencies, running unit tests, and finally, packaging the built artifact.

Downloading dependencies is a critical phase in the build process. These dependent files can range in size from a few KBs to multiple MBs. Because most of the dependent files do not change frequently between builds, you can noticeably reduce your build time by caching dependencies.

In this post, I will show you how to enable caching for AWS CodeBuild.

Requirements

  • Create an Amazon S3 bucket for storing cache archives (You can use existing s3 bucket as well).
  • Create a GitHub account (if you don’t have one).

Create a sample build project:

1. Open the AWS CodeBuild console at https://console.aws.amazon.com/codebuild/.

2. If a welcome page is displayed, choose Get started.

If a welcome page is not displayed, on the navigation pane, choose Build projects, and then choose Create project.

3. On the Configure your project page, for Project name, type a name for this build project. Build project names must be unique across each AWS account.

4. In Source: What to build, for Source provider, choose GitHub.

5. In Environment: How to build, for Environment image, select Use an image managed by AWS CodeBuild.

  • For Operating system, choose Ubuntu.
  • For Runtime, choose Java.
  • For Version,  choose aws/codebuild/java:openjdk-8.
  • For Build specification, select Insert build commands.

Note: The build specification file (buildspec.yml) can be configured in two ways. You can package it along with your source root directory, or you can override it by using a project environment configuration. In this example, I will use the override option and will use the console editor to specify the build specification.

6. Under Build commands, click Switch to editor to enter the build specification.

Copy the following text.

version: 0.2

phases:
  build:
    commands:
      - mvn install
      
cache:
  paths:
    - '/root/.m2/**/*'

Note: The cache section in the build specification instructs AWS CodeBuild about the paths to be cached. Like the artifacts section, the cache paths are relative to $CODEBUILD_SRC_DIR and specify the directories to be cached. In this example, Maven stores the downloaded dependencies to the /root/.m2/ folder, but other tools use different folders. For example, pip uses the /root/.cache/pip folder, and Gradle uses the /root/.gradle/caches folder. You might need to configure the cache paths based on your language platform.

7. In Artifacts: Where to put the artifacts from this build project:

  • For Type, choose No artifacts.

8. In Cache:

  • For Type, choose Amazon S3.
  • For Bucket, choose your S3 bucket.
  • For Path prefix, type cache/archives/

9. In Service role, the Create a service role in your account option will display a default role name.  You can accept the default name or type your own.

If you already have an AWS CodeBuild service role, choose Choose an existing service role from your account.

10. Choose Continue.

11. On the Review page, to run a build, choose Save and build.

Review build and cache behavior:

Let us review our first build for the project.

In the first run, where no cache exists, overall build time would look something like below (notice the time for DOWNLOAD_SOURCE, BUILD and POST_BUILD):

If you check the build logs, you will see log entries for dependency downloads. The dependencies are downloaded directly from configured external repositories. At the end of the log, you will see an entry for the cache uploaded to your S3 bucket.

Let’s review the S3 bucket for the cached archive. You’ll see the cache from our first successful build is uploaded to the configured S3 path.

Let’s try another build with the same CodeBuild project. This time the build should pick up the dependencies from the cache.

In the second run, there was a cache hit (cache was generated from the first run):

You’ll notice a few things:

  1. DOWNLOAD_SOURCE took slightly longer. Because, in addition to the source code, this time the build also downloaded the cache from user’s s3 bucket.
  2. BUILD time was faster. As the dependencies didn’t need to get downloaded, but were reused from cache.
  3. POST_BUILD took slightly longer, but was relatively the same.

Overall, build duration was improved with cache.

Best practices for cache

  • By default, the cache archive is encrypted on the server side with the customer’s artifact KMS key.
  • You can expire the cache by manually removing the cache archive from S3. Alternatively, you can expire the cache by using an S3 lifecycle policy.
  • You can override cache behavior by updating the project. You can use the AWS CodeBuild the AWS CodeBuild console, AWS CLI, or AWS SDKs to update the project. You can also invalidate cache setting by using the new InvalidateProjectCache API. This API forces a new InvalidationKey to be generated, ensuring that future builds receive an empty cache. This API does not remove the existing cache, because this could cause inconsistencies with builds currently in flight.
  • The cache can be enabled for any folders in the build environment, but we recommend you only cache dependencies/files that will not change frequently between builds. Also, to avoid unexpected application behavior, don’t cache configuration and sensitive information.

Conclusion

In this blog post, I showed you how to enable and configure cache setting for AWS CodeBuild. As you see, this can save considerable build time. It also improves resiliency by avoiding external network connections to an artifact repository.

I hope you found this post useful. Feel free to leave your feedback or suggestions in the comments.

Access Resources in a VPC from AWS CodeBuild Builds

Post Syndicated from John Pignata original https://aws.amazon.com/blogs/devops/access-resources-in-a-vpc-from-aws-codebuild-builds/

John Pignata, Startup Solutions Architect, Amazon Web Services

In this blog post we’re going to discuss a new AWS CodeBuild feature that is available starting today. CodeBuild builds can now access resources in a VPC directly without these resources being exposed to the public internet. These resources include Amazon Relational Database Service (Amazon RDS) databases, Amazon ElastiCache clusters, internal services running on Amazon Elastic Compute Cloud (Amazon EC2), and Amazon EC2 Container Service (Amazon ECS), or any service endpoints that are only reachable from within a specific VPC.

CodeBuild is a fully managed build service that compiles source code, runs tests, and produces software packages that are ready to deploy. As part of the build process, developers often require access to resources that should be isolated from the public Internet. Now CodeBuild builds can be optionally configured to have VPC connectivity and access these resources directly.

Accessing Resources in a VPC

You can configure builds to have access to a VPC when you create a CodeBuild project or you can update an existing CodeBuild project with VPC configuration attributes. Here’s how it looks in the console:

 

To configure VPC connectivity: select a VPC, one or more subnets within that VPC, and one or more VPC security groups that CodeBuild should apply when attaching to your VPC. Once configured, commands running as part of your build will be able to access resources in your VPC without transiting across the public Internet.

Use Cases

The availability of VPC connectivity from CodeBuild builds unlocks many potential uses. For example, you can:

  • Run integration tests from your build against data in an Amazon RDS instance that’s isolated on a private subnet.
  • Query data in an ElastiCache cluster directly from tests.
  • Interact with internal web services hosted on Amazon EC2, Amazon ECS, or services that use internal Elastic Load Balancing.
  • Retrieve dependencies from self-hosted, internal artifact repositories such as PyPI for Python, Maven for Java, npm for Node.js, and so on.
  • Access objects in an Amazon S3 bucket configured to allow access only through a VPC endpoint.
  • Query external web services that require fixed IP addresses through the Elastic IP address of the NAT gateway associated with your subnet(s).

… and more! Your builds can now access any resource that’s hosted in your VPC without any compromise on network isolation.

Internet Connectivity

CodeBuild requires access to resources on the public Internet to successfully execute builds. At a minimum, it must be able to reach your source repository system (such as AWS CodeCommit, GitHub, Bitbucket), Amazon Simple Storage Service (Amazon S3) to deliver build artifacts, and Amazon CloudWatch Logs to stream logs from the build process. The interface attached to your VPC will not be assigned a public IP address so to enable Internet access from your builds, you will need to set up a managed NAT Gateway or NAT instance for the subnets you configure. You must also ensure your security groups allow outbound access to these services.

IP Address Space

Each running build will be assigned an IP address from one of the subnets in your VPC that you designate for CodeBuild to use. As CodeBuild scales to meet your build volume, ensure that you select subnets with enough address space to accommodate your expected number of concurrent builds.

Service Role Permissions

CodeBuild requires new permissions in order to manage network interfaces on your VPCs. If you create a service role for your new projects, these permissions will be included in that role’s policy automatically. For existing service roles, you can edit the policy document to include the additional actions. For the full policy document to apply to your service role, see Advanced Setup in the CodeBuild documentation.

For more information, see VPC Support in the CodeBuild documentation. We hope you find the ability to access internal resources on a VPC useful in your build processes! If you have any questions or feedback, feel free to reach out to us through the AWS CodeBuild forum or leave a comment!

Resume AWS Step Functions from Any State

Post Syndicated from Andy Katz original https://aws.amazon.com/blogs/compute/resume-aws-step-functions-from-any-state/


Yash Pant, Solutions Architect, AWS


Aaron Friedman, Partner Solutions Architect, AWS

When we discuss how to build applications with customers, we often align to the Well Architected Framework pillars of security, reliability, performance efficiency, cost optimization, and operational excellence. Designing for failure is an essential component to developing well architected applications that are resilient to spurious errors that may occur.

There are many ways you can use AWS services to achieve high availability and resiliency of your applications. For example, you can couple Elastic Load Balancing with Auto Scaling and Amazon EC2 instances to build highly available applications. Or use Amazon API Gateway and AWS Lambda to rapidly scale out a microservices-based architecture. Many AWS services have built in solutions to help with the appropriate error handling, such as Dead Letter Queues (DLQ) for Amazon SQS or retries in AWS Batch.

AWS Step Functions is an AWS service that makes it easy for you to coordinate the components of distributed applications and microservices. Step Functions allows you to easily design for failure, by incorporating features such as error retries and custom error handling from AWS Lambda exceptions. These features allow you to programmatically handle many common error modes and build robust, reliable applications.

In some rare cases, however, your application may fail in an unexpected manner. In these situations, you might not want to duplicate in a repeat execution those portions of your state machine that have already run. This is especially true when orchestrating long-running jobs or executing a complex state machine as part of a microservice. Here, you need to know the last successful state in your state machine from which to resume, so that you don’t duplicate previous work. In this post, we present a solution to enable you to resume from any given state in your state machine in the case of an unexpected failure.

Resuming from a given state

To resume a failed state machine execution from the state at which it failed, you first run a script that dynamically creates a new state machine. When the new state machine is executed, it resumes the failed execution from the point of failure. The script contains the following two primary steps:

  1. Parse the execution history of the failed execution to find the name of the state at which it failed, as well as the JSON input to that state.
  2. Create a new state machine, which adds an additional state to failed state machine, called "GoToState". "GoToState" is a choice state at the beginning of the state machine that branches execution directly to the failed state, allowing you to skip states that had succeeded in the previous execution.

The full script along with a CloudFormation template that creates a demo of this is available in the aws-sfn-resume-from-any-state GitHub repo.

Diving into the script

In this section, we walk you through the script and highlight the core components of its functionality. The script contains a main function, which adds a command line parameter for the failedExecutionArn so that you can easily call the script from the command line:

python gotostate.py --failedExecutionArn '<Failed_Execution_Arn>'

Identifying the failed state in your execution

First, the script extracts the name of the failed state along with the input to that state. It does so by using the failed state machine execution history, which is identified by the Amazon Resource Name (ARN) of the execution. The failed state is marked in the execution history, along with the input to that state (which is also the output of the preceding successful state). The script is able to parse these values from the log.

The script loops through the execution history of the failed state machine, and traces it backwards until it finds the failed state. If the state machine failed in a parallel state, then it must restart from the beginning of the parallel state. The script is able to capture the name of the parallel state that failed, rather than any substate within the parallel state that may have caused the failure. The following code is the Python function that does this.


def parseFailureHistory(failedExecutionArn):

    '''
    Parses the execution history of a failed state machine to get the name of failed state and the input to the failed state:
    Input failedExecutionArn = A string containing the execution ARN of a failed state machine y
    Output = A list with two elements: [name of failed state, input to failed state]
    '''
    failedAtParallelState = False
    try:
        #Get the execution history
        response = client.get\_execution\_history(
            executionArn=failedExecutionArn,
            reverseOrder=True
        )
        failedEvents = response['events']
    except Exception as ex:
        raise ex
    #Confirm that the execution actually failed, raise exception if it didn't fail.
    try:
        failedEvents[0]['executionFailedEventDetails']
    except:
        raise('Execution did not fail')
        
    '''
    If you have a 'States.Runtime' error (for example, if a task state in your state machine attempts to execute a Lambda function in a different region than the state machine), get the ID of the failed state, and use it to determine the failed state name and input.
    '''
    
    if failedEvents[0]['executionFailedEventDetails']['error'] == 'States.Runtime':
        failedId = int(filter(str.isdigit, str(failedEvents[0]['executionFailedEventDetails']['cause'].split()[13])))
        failedState = failedEvents[-1 \* failedId]['stateEnteredEventDetails']['name']
        failedInput = failedEvents[-1 \* failedId]['stateEnteredEventDetails']['input']
        return (failedState, failedInput)
        
    '''
    You need to loop through the execution history, tracing back the executed steps.
    The first state you encounter is the failed state. If you failed on a parallel state, you need the name of the parallel state rather than the name of a state within a parallel state that it failed on. This is because you can only attach goToState to the parallel state, but not a substate within the parallel state.
    This loop starts with the ID of the latest event and uses the previous event IDs to trace back the execution to the beginning (id 0). However, it returns as soon it finds the name of the failed state.
    '''

    currentEventId = failedEvents[0]['id']
    while currentEventId != 0:
        #multiply event ID by -1 for indexing because you're looking at the reversed history
        currentEvent = failedEvents[-1 \* currentEventId]
        
        '''
        You can determine if the failed state was a parallel state because it and an event with 'type'='ParallelStateFailed' appears in the execution history before the name of the failed state
        '''

        if currentEvent['type'] == 'ParallelStateFailed':
            failedAtParallelState = True

        '''
        If the failed state is not a parallel state, then the name of failed state to return is the name of the state in the first 'TaskStateEntered' event type you run into when tracing back the execution history
        '''

        if currentEvent['type'] == 'TaskStateEntered' and failedAtParallelState == False:
            failedState = currentEvent['stateEnteredEventDetails']['name']
            failedInput = currentEvent['stateEnteredEventDetails']['input']
            return (failedState, failedInput)

        '''
        If the failed state was a parallel state, then you need to trace execution back to the first event with 'type'='ParallelStateEntered', and return the name of the state
        '''

        if currentEvent['type'] == 'ParallelStateEntered' and failedAtParallelState:
            failedState = failedState = currentEvent['stateEnteredEventDetails']['name']
            failedInput = currentEvent['stateEnteredEventDetails']['input']
            return (failedState, failedInput)
        #Update the ID for the next execution of the loop
        currentEventId = currentEvent['previousEventId']
        

Create the new state machine

The script uses the name of the failed state to create the new state machine, with "GoToState" branching execution directly to the failed state.

To do this, the script requires the Amazon States Language (ASL) definition of the failed state machine. It modifies the definition to append "GoToState", and create a new state machine from it.

The script gets the ARN of the failed state machine from the execution ARN of the failed state machine. This ARN allows it to get the ASL definition of the failed state machine by calling the DesribeStateMachine API action. It creates a new state machine with "GoToState".

When the script creates the new state machine, it also adds an additional input variable called "resuming". When you execute this new state machine, you specify this resuming variable as true in the input JSON. This tells "GoToState" to branch execution to the state that had previously failed. Here’s the function that does this:

def attachGoToState(failedStateName, stateMachineArn):

    '''
    Given a state machine ARN and the name of a state in that state machine, create a new state machine that starts at a new choice state called 'GoToState'. "GoToState" branches to the named state, and sends the input of the state machine to that state, when a variable called "resuming" is set to True.
    Input failedStateName = A string with the name of the failed state
          stateMachineArn = A string with the ARN of the state machine
    Output response from the create_state_machine call, which is the API call that creates a new state machine
    '''

    try:
        response = client.describe\_state\_machine(
            stateMachineArn=stateMachineArn
        )
    except:
        raise('Could not get ASL definition of state machine')
    roleArn = response['roleArn']
    stateMachine = json.loads(response['definition'])
    #Create a name for the new state machine
    newName = response['name'] + '-with-GoToState'
    #Get the StartAt state for the original state machine, because you point the 'GoToState' to this state
    originalStartAt = stateMachine['StartAt']

    '''
    Create the GoToState with the variable $.resuming.
    If new state machine is executed with $.resuming = True, then the state machine skips to the failed state.
    Otherwise, it executes the state machine from the original start state.
    '''

    goToState = {'Type':'Choice', 'Choices':[{'Variable':'$.resuming', 'BooleanEquals':False, 'Next':originalStartAt}], 'Default':failedStateName}
    #Add GoToState to the set of states in the new state machine
    stateMachine['States']['GoToState'] = goToState
    #Add StartAt
    stateMachine['StartAt'] = 'GoToState'
    #Create new state machine
    try:
        response = client.create_state_machine(
            name=newName,
            definition=json.dumps(stateMachine),
            roleArn=roleArn
        )
    except:
        raise('Failed to create new state machine with GoToState')
    return response

Testing the script

Now that you understand how the script works, you can test it out.

The following screenshot shows an example state machine that has failed, called "TestMachine". This state machine successfully completed "FirstState" and "ChoiceState", but when it branched to "FirstMatchState", it failed.

Use the script to create a new state machine that allows you to rerun this state machine, but skip the "FirstState" and the "ChoiceState" steps that already succeeded. You can do this by calling the script as follows:

python gotostate.py --failedExecutionArn 'arn:aws:states:us-west-2:<AWS_ACCOUNT_ID>:execution:TestMachine-with-GoToState:b2578403-f41d-a2c7-e70c-7500045288595

This creates a new state machine called "TestMachine-with-GoToState", and returns its ARN, along with the input that had been sent to "FirstMatchState". You can then inspect the input to determine what caused the error. In this case, you notice that the input to "FirstMachState" was the following:

{
"foo": 1,
"Message": true
}

However, this state machine expects the "Message" field of the JSON to be a string rather than a Boolean. Execute the new "TestMachine-with-GoToState" state machine, change the input to be a string, and add the "resuming" variable that "GoToState" requires:

{
"foo": 1,
"Message": "Hello!",
"resuming":true
}

When you execute the new state machine, it skips "FirstState" and "ChoiceState", and goes directly to "FirstMatchState", which was the state that failed:

Look at what happens when you have a state machine with multiple parallel steps. This example is included in the GitHub repository associated with this post. The repo contains a CloudFormation template that sets up this state machine and provides instructions to replicate this solution.

The following state machine, "ParallelStateMachine", takes an input through two subsequent parallel states before doing some final processing and exiting, along with the JSON with the ASL definition of the state machine.

{
  "Comment": "An example of the Amazon States Language using a parallel state to execute two branches at the same time.",
  "StartAt": "Parallel",
  "States": {
    "Parallel": {
      "Type": "Parallel",
      "ResultPath":"$.output",
      "Next": "Parallel 2",
      "Branches": [
        {
          "StartAt": "Parallel Step 1, Process 1",
          "States": {
            "Parallel Step 1, Process 1": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
              "End": true
            }
          }
        },
        {
          "StartAt": "Parallel Step 1, Process 2",
          "States": {
            "Parallel Step 1, Process 2": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
              "End": true
            }
          }
        }
      ]
    },
    "Parallel 2": {
      "Type": "Parallel",
      "Next": "Final Processing",
      "Branches": [
        {
          "StartAt": "Parallel Step 2, Process 1",
          "States": {
            "Parallel Step 2, Process 1": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXXX:function:LambdaB",
              "End": true
            }
          }
        },
        {
          "StartAt": "Parallel Step 2, Process 2",
          "States": {
            "Parallel Step 2, Process 2": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
              "End": true
            }
          }
        }
      ]
    },
    "Final Processing": {
      "Type": "Task",
      "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaC",
      "End": true
    }
  }
}

First, use an input that initially fails:

{
  "Message": "Hello!"
}

This fails because the state machine expects you to have a variable in the input JSON called "foo" in the second parallel state to run "Parallel Step 2, Process 1" and "Parallel Step 2, Process 2". Instead, the original input gets processed by the first parallel state and produces the following output to pass to the second parallel state:

{
"output": [
    {
      "Message": "Hello!"
    },
    {
      "Message": "Hello!"
    }
  ],
}

Run the script on the failed state machine to create a new state machine that allows it to resume directly at the second parallel state instead of having to redo the first parallel state. This creates a new state machine called "ParallelStateMachine-with-GoToState". The following JSON was created by the script to define the new state machine in ASL. It contains the "GoToState" value that was attached by the script.

{
   "Comment":"An example of the Amazon States Language using a parallel state to execute two branches at the same time.",
   "States":{
      "Final Processing":{
         "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaC",
         "End":true,
         "Type":"Task"
      },
      "GoToState":{
         "Default":"Parallel 2",
         "Type":"Choice",
         "Choices":[
            {
               "Variable":"$.resuming",
               "BooleanEquals":false,
               "Next":"Parallel"
            }
         ]
      },
      "Parallel":{
         "Branches":[
            {
               "States":{
                  "Parallel Step 1, Process 1":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 1, Process 1"
            },
            {
               "States":{
                  "Parallel Step 1, Process 2":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:LambdaA",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 1, Process 2"
            }
         ],
         "ResultPath":"$.output",
         "Type":"Parallel",
         "Next":"Parallel 2"
      },
      "Parallel 2":{
         "Branches":[
            {
               "States":{
                  "Parallel Step 2, Process 1":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 2, Process 1"
            },
            {
               "States":{
                  "Parallel Step 2, Process 2":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 2, Process 2"
            }
         ],
         "Type":"Parallel",
         "Next":"Final Processing"
      }
   },
   "StartAt":"GoToState"
}

You can then execute this state machine with the correct input by adding the "foo" and "resuming" variables:

{
  "foo": 1,
  "output": [
    {
      "Message": "Hello!"
    },
    {
      "Message": "Hello!"
    }
  ],
  "resuming": true
}

This yields the following result. Notice that this time, the state machine executed successfully to completion, and skipped the steps that had previously failed.


Conclusion

When you’re building out complex workflows, it’s important to be prepared for failure. You can do this by taking advantage of features such as automatic error retries in Step Functions and custom error handling of Lambda exceptions.

Nevertheless, state machines still have the possibility of failing. With the methodology and script presented in this post, you can resume a failed state machine from its point of failure. This allows you to skip the execution of steps in the workflow that had already succeeded, and recover the process from the point of failure.

To see more examples, please visit the Step Functions Getting Started page.

If you have questions or suggestions, please comment below.

Under the Hood: Task Networking for Amazon ECS

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/under-the-hood-task-networking-for-amazon-ecs/

This post courtsey of ECS Sr. Software Dev Engineer Anirudh Aithal.

Today, AWS announced Task Networking for Amazon ECS, which enables elastic network interfaces to be attached to containers.

In this post, I take a closer look at how this new container-native “awsvpc” network mode is implemented using container networking interface plugins on ECS managed instances (referred to as container instances).

This post is a deep dive into how task networking works with Amazon ECS. If you want to learn more about how you can start using task networking for your containerized applications, see Introducing Cloud Native Networking for Amazon ECS Containers. Cloud Native Computing Foundation (CNCF) hosts the Container Networking Interface (CNI) project, which consists of a specification and libraries for writing plugins to configure network interfaces in Linux containers. For more about cloud native computing in AWS, see Adrian Cockcroft’s post on Cloud Native Computing.

Container instance setup

Before I discuss the details of enabling task networking on container instances, look at how a typical instance looks in ECS.

The diagram above shows a typical container instance. The ECS agent, which itself is running as a container, is responsible for:

  • Registering the EC2 instance with the ECS backend
  • Ensuring that task state changes communicated to it by the ECS backend are enacted on the container instance
  • Interacting with the Docker daemon to create, start, stop, and monitor
  • Relaying container state and task state transitions to the ECS backend

Because the ECS agent is just acting as the supervisor for containers under its management, it offloads the problem of setting up networking for containers to either the Docker daemon (for containers configured with one of Docker’s default networking modes) or a set of CNI plugins (for containers in task with networking mode set to awsvpc).

In either case, network stacks of containers are configured via network namespaces. As per the ip-netns(8) manual, “A network namespace is logically another copy of the network stack, with its own routes, firewall rules, and network devices.” The network namespace construct makes the partitioning of network stack between processes and containers running on a host possible.

Network namespaces and CNI plugins

CNI plugins are executable files that comply with the CNI specification and configure the network connectivity of containers. The CNI project defines a specification for the plugins and provides a library for interacting with plugins, thus providing a consistent, reliable, and simple interface with which to interact with the plugins.

You specify the container or its network namespace and invoke the plugin with the ADD command to add network interfaces to a container, and then the DEL command to tear them down. For example, the reference bridge plugin adds all containers on the same host into a bridge that resides in the host network namespace.

This plugin model fits in nicely with the ECS agent’s “minimal intrusion in the container lifecycle” model, as the agent doesn’t need to concern itself with the details of the network setup for containers. It’s also an extensible model, which allows the agent to switch to a different set of plugins if the need arises in future. Finally, the ECS agent doesn’t need to monitor the liveliness of these plugins as they are only invoked when required.

Invoking CNI plugins from the ECS agent

When ECS attaches an elastic network interface to the instance and sends the message to the agent to provision the elastic network interface for containers in a task, the elastic network interface (as with any network device) shows up in the global default network namespace of the host. The ECS agent invokes a chain of CNI plugins to ensure that the elastic network interface is configured appropriately in the container’s network namespace. You can review these plugins in the amazon-ecs-cni-plugins GitHub repo.

The first plugin invoked in this chain is the ecs-eni plugin, which ensures that the elastic network interface is attached to container’s network namespace and configured with the VPC-allocated IP addresses and the default route to use the subnet gateway. The container also needs to make HTTP requests to the credentials endpoint (hosted by the ECS agent) for getting IAM role credentials. This is handled by the ecs-bridge and ecs-ipam plugins, which are invoked next. The CNI library provides mechanisms to interpret the results from the execution of these plugins, which results in an efficient error handling in the agent. The following diagram illustrates the different steps in this process:

To avoid the race condition between configuring the network stack and commands being invoked in application containers, the ECS agent creates an additional “pause” container for each task before starting the containers in the task definition. It then sets up the network namespace of the pause container by executing the previously mentioned CNI plugins. It also starts the rest of the containers in the task so that they share their network stack of the pause container. This means that all containers in a task are addressable by the IP addresses of the elastic network interface, and they can communicate with each other over the localhost interface.

In this example setup, you have two containers in a task behind an elastic network interface. The following commands show that they have a similar view of the network stack and can talk to each other over the localhost interface.

List the last three containers running on the host (you launched a task with two containers and the ECS agent launched the additional container to configure the network namespace):

$ docker ps -n 3 --format "{{.ID}}\t{{.Names}}\t{{.Command}}\t{{.Status}}"
7d7b7fbc30b9	ecs-front-envoy-5-envoy-sds-ecs-ce8bd9eca6dd81a8d101	"/bin/sh -c '/usr/..."	Up 3 days
dfdcb2acfc91	ecs-front-envoy-5-front-envoy-faeae686adf9c1d91000	"/bin/sh -c '/usr/..."	Up 3 days
f731f6dbb81c	ecs-front-envoy-5-internalecspause-a8e6e19e909fa9c9e901	"./pause"	Up 3 days

List interfaces for these containers and make sure that they are the same:

$ for id in `docker ps -n 3 -q`; do pid=`docker inspect $id -f '{{.State.Pid}}'`; echo container $id; sudo nsenter -t $pid -n ip link show; done
container 7d7b7fbc30b9
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
3: [email protected]: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default
    link/ether 0a:58:a9:fe:ac:0c brd ff:ff:ff:ff:ff:ff link-netnsid 0
27: eth12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP mode DEFAULT group default qlen 1000
    link/ether 02:5a:a1:1a:43:42 brd ff:ff:ff:ff:ff:ff

container dfdcb2acfc91
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
3: [email protected]: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default
    link/ether 0a:58:a9:fe:ac:0c brd ff:ff:ff:ff:ff:ff link-netnsid 0
27: eth12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP mode DEFAULT group default qlen 1000
    link/ether 02:5a:a1:1a:43:42 brd ff:ff:ff:ff:ff:ff

container f731f6dbb81c
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
3: [email protected]: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default
    link/ether 0a:58:a9:fe:ac:0c brd ff:ff:ff:ff:ff:ff link-netnsid 0
27: eth12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP mode DEFAULT group default qlen 1000
    link/ether 02:5a:a1:1a:43:42 brd ff:ff:ff:ff:ff:ff

Conclusion

All of this work means that you can use the new awsvpc networking mode and benefit from native networking support for your containers. You can learn more about using awsvpc mode in Introducing Cloud Native Networking for Amazon ECS Containers or the ECS documentation.

I appreciate your feedback in the comments section. You can also reach me on GitHub in either the ECS CNI Plugins or the ECS Agent repositories.