Tag Archives: AWS CLI

Protecting your API using Amazon API Gateway and AWS WAF — Part I

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/protecting-your-api-using-amazon-api-gateway-and-aws-waf-part-i/

This post courtesy of Thiago Morais, AWS Solutions Architect

When you build web applications or expose any data externally, you probably look for a platform where you can build highly scalable, secure, and robust REST APIs. As APIs are publicly exposed, there are a number of best practices for providing a secure mechanism to consumers using your API.

Amazon API Gateway handles all the tasks involved in accepting and processing up to hundreds of thousands of concurrent API calls, including traffic management, authorization and access control, monitoring, and API version management.

In this post, I show you how to take advantage of the regional API endpoint feature in API Gateway, so that you can create your own Amazon CloudFront distribution and secure your API using AWS WAF.

AWS WAF is a web application firewall that helps protect your web applications from common web exploits that could affect application availability, compromise security, or consume excessive resources.

As you make your APIs publicly available, you are exposed to attackers trying to exploit your services in several ways. The AWS security team published a whitepaper solution using AWS WAF, How to Mitigate OWASP’s Top 10 Web Application Vulnerabilities.

Regional API endpoints

Edge-optimized APIs are endpoints that are accessed through a CloudFront distribution created and managed by API Gateway. Before the launch of regional API endpoints, this was the default option when creating APIs using API Gateway. It primarily helped to reduce latency for API consumers that were located in different geographical locations than your API.

When API requests predominantly originate from an Amazon EC2 instance or other services within the same AWS Region as the API is deployed, a regional API endpoint typically lowers the latency of connections. It is recommended for such scenarios.

For better control around caching strategies, customers can use their own CloudFront distribution for regional APIs. They also have the ability to use AWS WAF protection, as I describe in this post.

Edge-optimized API endpoint

The following diagram is an illustrated example of the edge-optimized API endpoint where your API clients access your API through a CloudFront distribution created and managed by API Gateway.

Regional API endpoint

For the regional API endpoint, your customers access your API from the same Region in which your REST API is deployed. This helps you to reduce request latency and particularly allows you to add your own content delivery network, as needed.

Walkthrough

In this section, you implement the following steps:

  • Create a regional API using the PetStore sample API.
  • Create a CloudFront distribution for the API.
  • Test the CloudFront distribution.
  • Set up AWS WAF and create a web ACL.
  • Attach the web ACL to the CloudFront distribution.
  • Test AWS WAF protection.

Create the regional API

For this walkthrough, use an existing PetStore API. All new APIs launch by default as the regional endpoint type. To change the endpoint type for your existing API, choose the cog icon on the top right corner:

After you have created the PetStore API on your account, deploy a stage called “prod” for the PetStore API.

On the API Gateway console, select the PetStore API and choose Actions, Deploy API.

For Stage name, type prod and add a stage description.

Choose Deploy and the new API stage is created.

Use the following AWS CLI command to update your API from edge-optimized to regional:

aws apigateway update-rest-api \
--rest-api-id {rest-api-id} \
--patch-operations op=replace,path=/endpointConfiguration/types/EDGE,value=REGIONAL

A successful response looks like the following:

{
    "description": "Your first API with Amazon API Gateway. This is a sample API that integrates via HTTP with your demo Pet Store endpoints", 
    "createdDate": 1511525626, 
    "endpointConfiguration": {
        "types": [
            "REGIONAL"
        ]
    }, 
    "id": "{api-id}", 
    "name": "PetStore"
}

After you change your API endpoint to regional, you can now assign your own CloudFront distribution to this API.

Create a CloudFront distribution

To make things easier, I have provided an AWS CloudFormation template to deploy a CloudFront distribution pointing to the API that you just created. Click the button to deploy the template in the us-east-1 Region.

For Stack name, enter RegionalAPI. For APIGWEndpoint, enter your API FQDN in the following format:

{api-id}.execute-api.us-east-1.amazonaws.com

After you fill out the parameters, choose Next to continue the stack deployment. It takes a couple of minutes to finish the deployment. After it finishes, the Output tab lists the following items:

  • A CloudFront domain URL
  • An S3 bucket for CloudFront access logs
Output from CloudFormation

Output from CloudFormation

Test the CloudFront distribution

To see if the CloudFront distribution was configured correctly, use a web browser and enter the URL from your distribution, with the following parameters:

https://{your-distribution-url}.cloudfront.net/{api-stage}/pets

You should get the following output:

[
  {
    "id": 1,
    "type": "dog",
    "price": 249.99
  },
  {
    "id": 2,
    "type": "cat",
    "price": 124.99
  },
  {
    "id": 3,
    "type": "fish",
    "price": 0.99
  }
]

Set up AWS WAF and create a web ACL

With the new CloudFront distribution in place, you can now start setting up AWS WAF to protect your API.

For this demo, you deploy the AWS WAF Security Automations solution, which provides fine-grained control over the requests attempting to access your API.

For more information about deployment, see Automated Deployment. If you prefer, you can launch the solution directly into your account using the following button.

For CloudFront Access Log Bucket Name, add the name of the bucket created during the deployment of the CloudFormation stack for your CloudFront distribution.

The solution allows you to adjust thresholds and also choose which automations to enable to protect your API. After you finish configuring these settings, choose Next.

To start the deployment process in your account, follow the creation wizard and choose Create. It takes a few minutes do finish the deployment. You can follow the creation process through the CloudFormation console.

After the deployment finishes, you can see the new web ACL deployed on the AWS WAF console, AWSWAFSecurityAutomations.

Attach the AWS WAF web ACL to the CloudFront distribution

With the solution deployed, you can now attach the AWS WAF web ACL to the CloudFront distribution that you created earlier.

To assign the newly created AWS WAF web ACL, go back to your CloudFront distribution. After you open your distribution for editing, choose General, Edit.

Select the new AWS WAF web ACL that you created earlier, AWSWAFSecurityAutomations.

Save the changes to your CloudFront distribution and wait for the deployment to finish.

Test AWS WAF protection

To validate the AWS WAF Web ACL setup, use Artillery to load test your API and see AWS WAF in action.

To install Artillery on your machine, run the following command:

$ npm install -g artillery

After the installation completes, you can check if Artillery installed successfully by running the following command:

$ artillery -V
$ 1.6.0-12

As the time of publication, Artillery is on version 1.6.0-12.

One of the WAF web ACL rules that you have set up is a rate-based rule. By default, it is set up to block any requesters that exceed 2000 requests under 5 minutes. Try this out.

First, use cURL to query your distribution and see the API output:

$ curl -s https://{distribution-name}.cloudfront.net/prod/pets
[
  {
    "id": 1,
    "type": "dog",
    "price": 249.99
  },
  {
    "id": 2,
    "type": "cat",
    "price": 124.99
  },
  {
    "id": 3,
    "type": "fish",
    "price": 0.99
  }
]

Based on the test above, the result looks good. But what if you max out the 2000 requests in under 5 minutes?

Run the following Artillery command:

artillery quick -n 2000 --count 10  https://{distribution-name}.cloudfront.net/prod/pets

What you are doing is firing 2000 requests to your API from 10 concurrent users. For brevity, I am not posting the Artillery output here.

After Artillery finishes its execution, try to run the cURL request again and see what happens:

 

$ curl -s https://{distribution-name}.cloudfront.net/prod/pets

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<HTML><HEAD><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<TITLE>ERROR: The request could not be satisfied</TITLE>
</HEAD><BODY>
<H1>ERROR</H1>
<H2>The request could not be satisfied.</H2>
<HR noshade size="1px">
Request blocked.
<BR clear="all">
<HR noshade size="1px">
<PRE>
Generated by cloudfront (CloudFront)
Request ID: [removed]
</PRE>
<ADDRESS>
</ADDRESS>
</BODY></HTML>

As you can see from the output above, the request was blocked by AWS WAF. Your IP address is removed from the blocked list after it falls below the request limit rate.

Conclusion

In this first part, you saw how to use the new API Gateway regional API endpoint together with Amazon CloudFront and AWS WAF to secure your API from a series of attacks.

In the second part, I will demonstrate some other techniques to protect your API using API keys and Amazon CloudFront custom headers.

From Framework to Function: Deploying AWS Lambda Functions for Java 8 using Apache Maven Archetype

Post Syndicated from Ryosuke Iwanaga original https://aws.amazon.com/blogs/compute/from-framework-to-function-deploying-aws-lambda-functions-for-java-8-using-apache-maven-archetype/

As a serverless computing platform that supports Java 8 runtime, AWS Lambda makes it easy to run any type of Java function simply by uploading a JAR file. To help define not only a Lambda serverless application but also Amazon API Gateway, Amazon DynamoDB, and other related services, the AWS Serverless Application Model (SAM) allows developers to use a simple AWS CloudFormation template.

AWS provides the AWS Toolkit for Eclipse that supports both Lambda and SAM. AWS also gives customers an easy way to create Lambda functions and SAM applications in Java using the AWS Command Line Interface (AWS CLI). After you build a JAR file, all you have to do is type the following commands:

aws cloudformation package 
aws cloudformation deploy

To consolidate these steps, customers can use Archetype by Apache Maven. Archetype uses a predefined package template that makes getting started to develop a function exceptionally simple.

In this post, I introduce a Maven archetype that allows you to create a skeleton of AWS SAM for a Java function. Using this archetype, you can generate a sample Java code example and an accompanying SAM template to deploy it on AWS Lambda by a single Maven action.

Prerequisites

Make sure that the following software is installed on your workstation:

  • Java
  • Maven
  • AWS CLI
  • (Optional) AWS SAM CLI

Install Archetype

After you’ve set up those packages, install Archetype with the following commands:

git clone https://github.com/awslabs/aws-serverless-java-archetype
cd aws-serverless-java-archetype
mvn install

These are one-time operations, so you don’t run them for every new package. If you’d like, you can add Archetype to your company’s Maven repository so that other developers can use it later.

With those packages installed, you’re ready to develop your new Lambda Function.

Start a project

Now that you have the archetype, customize it and run the code:

cd /path/to/project_home
mvn archetype:generate \
  -DarchetypeGroupId=com.amazonaws.serverless.archetypes \
  -DarchetypeArtifactId=aws-serverless-java-archetype \
  -DarchetypeVersion=1.0.0 \
  -DarchetypeRepository=local \ # Forcing to use local maven repository
  -DinteractiveMode=false \ # For batch mode
  # You can also specify properties below interactively if you omit the line for batch mode
  -DgroupId=YOUR_GROUP_ID \
  -DartifactId=YOUR_ARTIFACT_ID \
  -Dversion=YOUR_VERSION \
  -DclassName=YOUR_CLASSNAME

You should have a directory called YOUR_ARTIFACT_ID that contains the files and folders shown below:

├── event.json
├── pom.xml
├── src
│   └── main
│       ├── java
│       │   └── Package
│       │       └── Example.java
│       └── resources
│           └── log4j2.xml
└── template.yaml

The sample code is a working example. If you install SAM CLI, you can invoke it just by the command below:

cd YOUR_ARTIFACT_ID
mvn -P invoke verify
[INFO] Scanning for projects...
[INFO]
[INFO] ---------------------------< com.riywo:foo >----------------------------
[INFO] Building foo 1.0
[INFO] --------------------------------[ jar ]---------------------------------
...
[INFO] --- maven-jar-plugin:3.0.2:jar (default-jar) @ foo ---
[INFO] Building jar: /private/tmp/foo/target/foo-1.0.jar
[INFO]
[INFO] --- maven-shade-plugin:3.1.0:shade (shade) @ foo ---
[INFO] Including com.amazonaws:aws-lambda-java-core:jar:1.2.0 in the shaded jar.
[INFO] Replacing /private/tmp/foo/target/lambda.jar with /private/tmp/foo/target/foo-1.0-shaded.jar
[INFO]
[INFO] --- exec-maven-plugin:1.6.0:exec (sam-local-invoke) @ foo ---
2018/04/06 16:34:35 Successfully parsed template.yaml
2018/04/06 16:34:35 Connected to Docker 1.37
2018/04/06 16:34:35 Fetching lambci/lambda:java8 image for java8 runtime...
java8: Pulling from lambci/lambda
Digest: sha256:14df0a5914d000e15753d739612a506ddb8fa89eaa28dcceff5497d9df2cf7aa
Status: Image is up to date for lambci/lambda:java8
2018/04/06 16:34:37 Invoking Package.Example::handleRequest (java8)
2018/04/06 16:34:37 Decompressing /tmp/foo/target/lambda.jar
2018/04/06 16:34:37 Mounting /private/var/folders/x5/ldp7c38545v9x5dg_zmkr5kxmpdprx/T/aws-sam-local-1523000077594231063 as /var/task:ro inside runtime container
START RequestId: a6ae19fe-b1b0-41e2-80bc-68a40d094d74 Version: $LATEST
Log output: Greeting is 'Hello Tim Wagner.'
END RequestId: a6ae19fe-b1b0-41e2-80bc-68a40d094d74
REPORT RequestId: a6ae19fe-b1b0-41e2-80bc-68a40d094d74	Duration: 96.60 ms	Billed Duration: 100 ms	Memory Size: 128 MB	Max Memory Used: 7 MB

{"greetings":"Hello Tim Wagner."}


[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 10.452 s
[INFO] Finished at: 2018-04-06T16:34:40+09:00
[INFO] ------------------------------------------------------------------------

This maven goal invokes sam local invoke -e event.json, so you can see the sample output to greet Tim Wagner.

To deploy this application to AWS, you need an Amazon S3 bucket to upload your package. You can use the following command to create a bucket if you want:

aws s3 mb s3://YOUR_BUCKET --region YOUR_REGION

Now, you can deploy your application by just one command!

mvn deploy \
    -DawsRegion=YOUR_REGION \
    -Ds3Bucket=YOUR_BUCKET \
    -DstackName=YOUR_STACK
[INFO] Scanning for projects...
[INFO]
[INFO] ---------------------------< com.riywo:foo >----------------------------
[INFO] Building foo 1.0
[INFO] --------------------------------[ jar ]---------------------------------
...
[INFO] --- exec-maven-plugin:1.6.0:exec (sam-package) @ foo ---
Uploading to aws-serverless-java/com.riywo:foo:1.0/924732f1f8e4705c87e26ef77b080b47  11657 / 11657.0  (100.00%)
Successfully packaged artifacts and wrote output template to file target/sam.yaml.
Execute the following command to deploy the packaged template
aws cloudformation deploy --template-file /private/tmp/foo/target/sam.yaml --stack-name <YOUR STACK NAME>
[INFO]
[INFO] --- maven-deploy-plugin:2.8.2:deploy (default-deploy) @ foo ---
[INFO] Skipping artifact deployment
[INFO]
[INFO] --- exec-maven-plugin:1.6.0:exec (sam-deploy) @ foo ---

Waiting for changeset to be created..
Waiting for stack create/update to complete
Successfully created/updated stack - archetype
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 37.176 s
[INFO] Finished at: 2018-04-06T16:41:02+09:00
[INFO] ------------------------------------------------------------------------

Maven automatically creates a shaded JAR file, uploads it to your S3 bucket, replaces template.yaml, and creates and updates the CloudFormation stack.

To customize the process, modify the pom.xml file. For example, to avoid typing values for awsRegion, s3Bucket or stackName, write them inside pom.xml and check in your VCS. Afterward, you and the rest of your team can deploy the function by typing just the following command:

mvn deploy

Options

Lambda Java 8 runtime has some types of handlers: POJO, Simple type and Stream. The default option of this archetype is POJO style, which requires to create request and response classes, but they are baked by the archetype by default. If you want to use other type of handlers, you can use handlerType property like below:

## POJO type (default)
mvn archetype:generate \
 ...
 -DhandlerType=pojo

## Simple type - String
mvn archetype:generate \
 ...
 -DhandlerType=simple

### Stream type
mvn archetype:generate \
 ...
 -DhandlerType=stream

See documentation for more details about handlers.

Also, Lambda Java 8 runtime supports two types of Logging class: Log4j 2 and LambdaLogger. This archetype creates LambdaLogger implementation by default, but you can use Log4j 2 if you want:

## LambdaLogger (default)
mvn archetype:generate \
 ...
 -Dlogger=lambda

## Log4j 2
mvn archetype:generate \
 ...
 -Dlogger=log4j2

If you use LambdaLogger, you can delete ./src/main/resources/log4j2.xml. See documentation for more details.

Conclusion

So, what’s next? Develop your Lambda function locally and type the following command: mvn deploy !

With this Archetype code example, available on GitHub repo, you should be able to deploy Lambda functions for Java 8 in a snap. If you have any questions or comments, please submit them below or leave them on GitHub.

Analyze data in Amazon DynamoDB using Amazon SageMaker for real-time prediction

Post Syndicated from YongSeong Lee original https://aws.amazon.com/blogs/big-data/analyze-data-in-amazon-dynamodb-using-amazon-sagemaker-for-real-time-prediction/

Many companies across the globe use Amazon DynamoDB to store and query historical user-interaction data. DynamoDB is a fast NoSQL database used by applications that need consistent, single-digit millisecond latency.

Often, customers want to turn their valuable data in DynamoDB into insights by analyzing a copy of their table stored in Amazon S3. Doing this separates their analytical queries from their low-latency critical paths. This data can be the primary source for understanding customers’ past behavior, predicting future behavior, and generating downstream business value. Customers often turn to DynamoDB because of its great scalability and high availability. After a successful launch, many customers want to use the data in DynamoDB to predict future behaviors or provide personalized recommendations.

DynamoDB is a good fit for low-latency reads and writes, but it’s not practical to scan all data in a DynamoDB database to train a model. In this post, I demonstrate how you can use DynamoDB table data copied to Amazon S3 by AWS Data Pipeline to predict customer behavior. I also demonstrate how you can use this data to provide personalized recommendations for customers using Amazon SageMaker. You can also run ad hoc queries using Amazon Athena against the data. DynamoDB recently released on-demand backups to create full table backups with no performance impact. However, it’s not suitable for our purposes in this post, so I chose AWS Data Pipeline instead to create managed backups are accessible from other services.

To do this, I describe how to read the DynamoDB backup file format in Data Pipeline. I also describe how to convert the objects in S3 to a CSV format that Amazon SageMaker can read. In addition, I show how to schedule regular exports and transformations using Data Pipeline. The sample data used in this post is from Bank Marketing Data Set of UCI.

The solution that I describe provides the following benefits:

  • Separates analytical queries from production traffic on your DynamoDB table, preserving your DynamoDB read capacity units (RCUs) for important production requests
  • Automatically updates your model to get real-time predictions
  • Optimizes for performance (so it doesn’t compete with DynamoDB RCUs after the export) and for cost (using data you already have)
  • Makes it easier for developers of all skill levels to use Amazon SageMaker

All code and data set in this post are available in this .zip file.

Solution architecture

The following diagram shows the overall architecture of the solution.

The steps that data follows through the architecture are as follows:

  1. Data Pipeline regularly copies the full contents of a DynamoDB table as JSON into an S3
  2. Exported JSON files are converted to comma-separated value (CSV) format to use as a data source for Amazon SageMaker.
  3. Amazon SageMaker renews the model artifact and update the endpoint.
  4. The converted CSV is available for ad hoc queries with Amazon Athena.
  5. Data Pipeline controls this flow and repeats the cycle based on the schedule defined by customer requirements.

Building the auto-updating model

This section discusses details about how to read the DynamoDB exported data in Data Pipeline and build automated workflows for real-time prediction with a regularly updated model.

Download sample scripts and data

Before you begin, take the following steps:

  1. Download sample scripts in this .zip file.
  2. Unzip the src.zip file.
  3. Find the automation_script.sh file and edit it for your environment. For example, you need to replace 's3://<your bucket>/<datasource path>/' with your own S3 path to the data source for Amazon ML. In the script, the text enclosed by angle brackets—< and >—should be replaced with your own path.
  4. Upload the json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar file to your S3 path so that the ADD jar command in Apache Hive can refer to it.

For this solution, the banking.csv  should be imported into a DynamoDB table.

Export a DynamoDB table

To export the DynamoDB table to S3, open the Data Pipeline console and choose the Export DynamoDB table to S3 template. In this template, Data Pipeline creates an Amazon EMR cluster and performs an export in the EMRActivity activity. Set proper intervals for backups according to your business requirements.

One core node(m3.xlarge) provides the default capacity for the EMR cluster and should be suitable for the solution in this post. Leave the option to resize the cluster before running enabled in the TableBackupActivity activity to let Data Pipeline scale the cluster to match the table size. The process of converting to CSV format and renewing models happens in this EMR cluster.

For a more in-depth look at how to export data from DynamoDB, see Export Data from DynamoDB in the Data Pipeline documentation.

Add the script to an existing pipeline

After you export your DynamoDB table, you add an additional EMR step to EMRActivity by following these steps:

  1. Open the Data Pipeline console and choose the ID for the pipeline that you want to add the script to.
  2. For Actions, choose Edit.
  3. In the editing console, choose the Activities category and add an EMR step using the custom script downloaded in the previous section, as shown below.

Paste the following command into the new step after the data ­­upload step:

s3://#{myDDBRegion}.elasticmapreduce/libs/script-runner/script-runner.jar,s3://<your bucket name>/automation_script.sh,#{output.directoryPath},#{myDDBRegion}

The element #{output.directoryPath} references the S3 path where the data pipeline exports DynamoDB data as JSON. The path should be passed to the script as an argument.

The bash script has two goals, converting data formats and renewing the Amazon SageMaker model. Subsequent sections discuss the contents of the automation script.

Automation script: Convert JSON data to CSV with Hive

We use Apache Hive to transform the data into a new format. The Hive QL script to create an external table and transform the data is included in the custom script that you added to the Data Pipeline definition.

When you run the Hive scripts, do so with the -e option. Also, define the Hive table with the 'org.openx.data.jsonserde.JsonSerDe' row format to parse and read JSON format. The SQL creates a Hive EXTERNAL table, and it reads the DynamoDB backup data on the S3 path passed to it by Data Pipeline.

Note: You should create the table with the “EXTERNAL” keyword to avoid the backup data being accidentally deleted from S3 if you drop the table.

The full automation script for converting follows. Add your own bucket name and data source path in the highlighted areas.

#!/bin/bash
hive -e "
ADD jar s3://<your bucket name>/json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar ; 
DROP TABLE IF EXISTS blog_backup_data ;
CREATE EXTERNAL TABLE blog_backup_data (
 customer_id map<string,string>,
 age map<string,string>, job map<string,string>, 
 marital map<string,string>,education map<string,string>, 
 default map<string,string>, housing map<string,string>,
 loan map<string,string>, contact map<string,string>, 
 month map<string,string>, day_of_week map<string,string>, 
 duration map<string,string>, campaign map<string,string>,
 pdays map<string,string>, previous map<string,string>, 
 poutcome map<string,string>, emp_var_rate map<string,string>, 
 cons_price_idx map<string,string>, cons_conf_idx map<string,string>,
 euribor3m map<string,string>, nr_employed map<string,string>, 
 y map<string,string> ) 
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe' 
LOCATION '$1/';

INSERT OVERWRITE DIRECTORY 's3://<your bucket name>/<datasource path>/' 
SELECT concat( customer_id['s'],',', 
 age['n'],',', job['s'],',', 
 marital['s'],',', education['s'],',', default['s'],',', 
 housing['s'],',', loan['s'],',', contact['s'],',', 
 month['s'],',', day_of_week['s'],',', duration['n'],',', 
 campaign['n'],',',pdays['n'],',',previous['n'],',', 
 poutcome['s'],',', emp_var_rate['n'],',', cons_price_idx['n'],',',
 cons_conf_idx['n'],',', euribor3m['n'],',', nr_employed['n'],',', y['n'] ) 
FROM blog_backup_data
WHERE customer_id['s'] > 0 ; 

After creating an external table, you need to read data. You then use the INSERT OVERWRITE DIRECTORY ~ SELECT command to write CSV data to the S3 path that you designated as the data source for Amazon SageMaker.

Depending on your requirements, you can eliminate or process the columns in the SELECT clause in this step to optimize data analysis. For example, you might remove some columns that have unpredictable correlations with the target value because keeping the wrong columns might expose your model to “overfitting” during the training. In this post, customer_id  columns is removed. Overfitting can make your prediction weak. More information about overfitting can be found in the topic Model Fit: Underfitting vs. Overfitting in the Amazon ML documentation.

Automation script: Renew the Amazon SageMaker model

After the CSV data is replaced and ready to use, create a new model artifact for Amazon SageMaker with the updated dataset on S3.  For renewing model artifact, you must create a new training job.  Training jobs can be run using the AWS SDK ( for example, Amazon SageMaker boto3 ) or the Amazon SageMaker Python SDK that can be installed with “pip install sagemaker” command as well as the AWS CLI for Amazon SageMaker described in this post.

In addition, consider how to smoothly renew your existing model without service impact, because your model is called by applications in real time. To do this, you need to create a new endpoint configuration first and update a current endpoint with the endpoint configuration that is just created.

#!/bin/bash
## Define variable 
REGION=$2
DTTIME=`date +%Y-%m-%d-%H-%M-%S`
ROLE="<your AmazonSageMaker-ExecutionRole>" 


# Select containers image based on region.  
case "$REGION" in
"us-west-2" )
    IMAGE="174872318107.dkr.ecr.us-west-2.amazonaws.com/linear-learner:latest"
    ;;
"us-east-1" )
    IMAGE="382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:latest" 
    ;;
"us-east-2" )
    IMAGE="404615174143.dkr.ecr.us-east-2.amazonaws.com/linear-learner:latest" 
    ;;
"eu-west-1" )
    IMAGE="438346466558.dkr.ecr.eu-west-1.amazonaws.com/linear-learner:latest" 
    ;;
 *)
    echo "Invalid Region Name"
    exit 1 ;  
esac

# Start training job and creating model artifact 
TRAINING_JOB_NAME=TRAIN-${DTTIME} 
S3OUTPUT="s3://<your bucket name>/model/" 
INSTANCETYPE="ml.m4.xlarge"
INSTANCECOUNT=1
VOLUMESIZE=5 
aws sagemaker create-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --algorithm-specification TrainingImage=${IMAGE},TrainingInputMode=File --role-arn ${ROLE}  --input-data-config '[{ "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": "s3://<your bucket name>/<datasource path>/", "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "text/csv", "CompressionType": "None" , "RecordWrapperType": "None"  }]'  --output-data-config S3OutputPath=${S3OUTPUT} --resource-config  InstanceType=${INSTANCETYPE},InstanceCount=${INSTANCECOUNT},VolumeSizeInGB=${VOLUMESIZE} --stopping-condition MaxRuntimeInSeconds=120 --hyper-parameters feature_dim=20,predictor_type=binary_classifier  

# Wait until job completed 
aws sagemaker wait training-job-completed-or-stopped --training-job-name ${TRAINING_JOB_NAME}  --region ${REGION}

# Get newly created model artifact and create model
MODELARTIFACT=`aws sagemaker describe-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --query 'ModelArtifacts.S3ModelArtifacts' --output text `
MODELNAME=MODEL-${DTTIME}
aws sagemaker create-model --region ${REGION} --model-name ${MODELNAME}  --primary-container Image=${IMAGE},ModelDataUrl=${MODELARTIFACT}  --execution-role-arn ${ROLE}

# create a new endpoint configuration 
CONFIGNAME=CONFIG-${DTTIME}
aws sagemaker  create-endpoint-config --region ${REGION} --endpoint-config-name ${CONFIGNAME}  --production-variants  VariantName=Users,ModelName=${MODELNAME},InitialInstanceCount=1,InstanceType=ml.m4.xlarge

# create or update the endpoint
STATUS=`aws sagemaker describe-endpoint --endpoint-name  ServiceEndpoint --query 'EndpointStatus' --output text --region ${REGION} `
if [[ $STATUS -ne "InService" ]] ;
then
    aws sagemaker  create-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}    
else
    aws sagemaker  update-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}
fi

Grant permission

Before you execute the script, you must grant proper permission to Data Pipeline. Data Pipeline uses the DataPipelineDefaultResourceRole role by default. I added the following policy to DataPipelineDefaultResourceRole to allow Data Pipeline to create, delete, and update the Amazon SageMaker model and data source in the script.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:DescribeTrainingJob",
 "sagemaker:CreateModel",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:DescribeEndpoint",
 "sagemaker:CreateEndpoint",
 "sagemaker:UpdateEndpoint",
 "iam:PassRole"
 ],
 "Resource": "*"
 }
 ]
}

Use real-time prediction

After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint. This approach is useful for interactive web, mobile, or desktop applications.

Following, I provide a simple Python code example that queries against Amazon SageMaker endpoint URL with its name (“ServiceEndpoint”) and then uses them for real-time prediction.

=== Python sample for real-time prediction ===

#!/usr/bin/env python
import boto3
import json 

client = boto3.client('sagemaker-runtime', region_name ='<your region>' )
new_customer_info = '34,10,2,4,1,2,1,1,6,3,190,1,3,4,3,-1.7,94.055,-39.8,0.715,4991.6'
response = client.invoke_endpoint(
    EndpointName='ServiceEndpoint',
    Body=new_customer_info, 
    ContentType='text/csv'
)
result = json.loads(response['Body'].read().decode())
print(result)
--- output(response) ---
{u'predictions': [{u'score': 0.7528127431869507, u'predicted_label': 1.0}]}

Solution summary

The solution takes the following steps:

  1. Data Pipeline exports DynamoDB table data into S3. The original JSON data should be kept to recover the table in the rare event that this is needed. Data Pipeline then converts JSON to CSV so that Amazon SageMaker can read the data.Note: You should select only meaningful attributes when you convert CSV. For example, if you judge that the “campaign” attribute is not correlated, you can eliminate this attribute from the CSV.
  2. Train the Amazon SageMaker model with the new data source.
  3. When a new customer comes to your site, you can judge how likely it is for this customer to subscribe to your new product based on “predictedScores” provided by Amazon SageMaker.
  4. If the new user subscribes your new product, your application must update the attribute “y” to the value 1 (for yes). This updated data is provided for the next model renewal as a new data source. It serves to improve the accuracy of your prediction. With each new entry, your application can become smarter and deliver better predictions.

Running ad hoc queries using Amazon Athena

Amazon Athena is a serverless query service that makes it easy to analyze large amounts of data stored in Amazon S3 using standard SQL. Athena is useful for examining data and collecting statistics or informative summaries about data. You can also use the powerful analytic functions of Presto, as described in the topic Aggregate Functions of Presto in the Presto documentation.

With the Data Pipeline scheduled activity, recent CSV data is always located in S3 so that you can run ad hoc queries against the data using Amazon Athena. I show this with example SQL statements following. For an in-depth description of this process, see the post Interactive SQL Queries for Data in Amazon S3 on the AWS News Blog. 

Creating an Amazon Athena table and running it

Simply, you can create an EXTERNAL table for the CSV data on S3 in Amazon Athena Management Console.

=== Table Creation ===
CREATE EXTERNAL TABLE datasource (
 age int, 
 job string, 
 marital string , 
 education string, 
 default string, 
 housing string, 
 loan string, 
 contact string, 
 month string, 
 day_of_week string, 
 duration int, 
 campaign int, 
 pdays int , 
 previous int , 
 poutcome string, 
 emp_var_rate double, 
 cons_price_idx double,
 cons_conf_idx double, 
 euribor3m double, 
 nr_employed double, 
 y int 
)
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' ESCAPED BY '\\' LINES TERMINATED BY '\n' 
LOCATION 's3://<your bucket name>/<datasource path>/';

The following query calculates the correlation coefficient between the target attribute and other attributes using Amazon Athena.

=== Sample Query ===

SELECT corr(age,y) AS correlation_age_and_target, 
 corr(duration,y) AS correlation_duration_and_target, 
 corr(campaign,y) AS correlation_campaign_and_target,
 corr(contact,y) AS correlation_contact_and_target
FROM ( SELECT age , duration , campaign , y , 
 CASE WHEN contact = 'telephone' THEN 1 ELSE 0 END AS contact 
 FROM datasource 
 ) datasource ;

Conclusion

In this post, I introduce an example of how to analyze data in DynamoDB by using table data in Amazon S3 to optimize DynamoDB table read capacity. You can then use the analyzed data as a new data source to train an Amazon SageMaker model for accurate real-time prediction. In addition, you can run ad hoc queries against the data on S3 using Amazon Athena. I also present how to automate these procedures by using Data Pipeline.

You can adapt this example to your specific use case at hand, and hopefully this post helps you accelerate your development. You can find more examples and use cases for Amazon SageMaker in the video AWS 2017: Introducing Amazon SageMaker on the AWS website.

 


Additional Reading

If you found this post useful, be sure to check out Serving Real-Time Machine Learning Predictions on Amazon EMR and Analyzing Data in S3 using Amazon Athena.

 


About the Author

Yong Seong Lee is a Cloud Support Engineer for AWS Big Data Services. He is interested in every technology related to data/databases and helping customers who have difficulties in using AWS services. His motto is “Enjoy life, be curious and have maximum experience.”

 

 

Implementing safe AWS Lambda deployments with AWS CodeDeploy

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/implementing-safe-aws-lambda-deployments-with-aws-codedeploy/

This post courtesy of George Mao, AWS Senior Serverless Specialist – Solutions Architect

AWS Lambda and AWS CodeDeploy recently made it possible to automatically shift incoming traffic between two function versions based on a preconfigured rollout strategy. This new feature allows you to gradually shift traffic to the new function. If there are any issues with the new code, you can quickly rollback and control the impact to your application.

Previously, you had to manually move 100% of traffic from the old version to the new version. Now, you can have CodeDeploy automatically execute pre- or post-deployment tests and automate a gradual rollout strategy. Traffic shifting is built right into the AWS Serverless Application Model (SAM), making it easy to define and deploy your traffic shifting capabilities. SAM is an extension of AWS CloudFormation that provides a simplified way of defining serverless applications.

In this post, I show you how to use SAM, CloudFormation, and CodeDeploy to accomplish an automated rollout strategy for safe Lambda deployments.

Scenario

For this walkthrough, you write a Lambda application that returns a count of the S3 buckets that you own. You deploy it and use it in production. Later on, you receive requirements that tell you that you need to change your Lambda application to count only buckets that begin with the letter “a”.

Before you make the change, you need to be sure that your new Lambda application works as expected. If it does have issues, you want to minimize the number of impacted users and roll back easily. To accomplish this, you create a deployment process that publishes the new Lambda function, but does not send any traffic to it. You use CodeDeploy to execute a PreTraffic test to ensure that your new function works as expected. After the test succeeds, CodeDeploy automatically shifts traffic gradually to the new version of the Lambda function.

Your Lambda function is exposed as a REST service via an Amazon API Gateway deployment. This makes it easy to test and integrate.

Prerequisites

To execute the SAM and CloudFormation deployment, you must have the following IAM permissions:

  • cloudformation:*
  • lambda:*
  • codedeploy:*
  • iam:create*

You may use the AWS SAM Local CLI or the AWS CLI to package and deploy your Lambda application. If you choose to use SAM Local, be sure to install it onto your system. For more information, see AWS SAM Local Installation.

All of the code used in this post can be found in this GitHub repository: https://github.com/aws-samples/aws-safe-lambda-deployments.

Walkthrough

For this post, use SAM to define your resources because it comes with built-in CodeDeploy support for safe Lambda deployments.  The deployment is handled and automated by CloudFormation.

SAM allows you to define your Serverless applications in a simple and concise fashion, because it automatically creates all necessary resources behind the scenes. For example, if you do not define an execution role for a Lambda function, SAM automatically creates one. SAM also creates the CodeDeploy application necessary to drive the traffic shifting, as well as the IAM service role that CodeDeploy uses to execute all actions.

Create a SAM template

To get started, write your SAM template and call it template.yaml.

AWSTemplateFormatVersion : '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An example SAM template for Lambda Safe Deployments.

Resources:

  returnS3Buckets:
    Type: AWS::Serverless::Function
    Properties:
      Handler: returnS3Buckets.handler
      Runtime: nodejs6.10
      AutoPublishAlias: live
      Policies:
        - Version: "2012-10-17"
          Statement: 
          - Effect: "Allow"
            Action: 
              - "s3:ListAllMyBuckets"
            Resource: '*'
      DeploymentPreference:
          Type: Linear10PercentEvery1Minute
          Hooks:
            PreTraffic: !Ref preTrafficHook
      Events:
        Api:
          Type: Api
          Properties:
            Path: /test
            Method: get

  preTrafficHook:
    Type: AWS::Serverless::Function
    Properties:
      Handler: preTrafficHook.handler
      Policies:
        - Version: "2012-10-17"
          Statement: 
          - Effect: "Allow"
            Action: 
              - "codedeploy:PutLifecycleEventHookExecutionStatus"
            Resource:
              !Sub 'arn:aws:codedeploy:${AWS::Region}:${AWS::AccountId}:deploymentgroup:${ServerlessDeploymentApplication}/*'
        - Version: "2012-10-17"
          Statement: 
          - Effect: "Allow"
            Action: 
              - "lambda:InvokeFunction"
            Resource: !Ref returnS3Buckets.Version
      Runtime: nodejs6.10
      FunctionName: 'CodeDeployHook_preTrafficHook'
      DeploymentPreference:
        Enabled: false
      Timeout: 5
      Environment:
        Variables:
          NewVersion: !Ref returnS3Buckets.Version

This template creates two functions:

  • returnS3Buckets
  • preTrafficHook

The returnS3Buckets function is where your application logic lives. It’s a simple piece of code that uses the AWS SDK for JavaScript in Node.JS to call the Amazon S3 listBuckets API action and return the number of buckets.

'use strict';

var AWS = require('aws-sdk');
var s3 = new AWS.S3();

exports.handler = (event, context, callback) => {
	console.log("I am here! " + context.functionName  +  ":"  +  context.functionVersion);

	s3.listBuckets(function (err, data){
		if(err){
			console.log(err, err.stack);
			callback(null, {
				statusCode: 500,
				body: "Failed!"
			});
		}
		else{
			var allBuckets = data.Buckets;

			console.log("Total buckets: " + allBuckets.length);
			callback(null, {
				statusCode: 200,
				body: allBuckets.length
			});
		}
	});	
}

Review the key parts of the SAM template that defines returnS3Buckets:

  • The AutoPublishAlias attribute instructs SAM to automatically publish a new version of the Lambda function for each new deployment and link it to the live alias.
  • The Policies attribute specifies additional policy statements that SAM adds onto the automatically generated IAM role for this function. The first statement provides the function with permission to call listBuckets.
  • The DeploymentPreference attribute configures the type of rollout pattern to use. In this case, you are shifting traffic in a linear fashion, moving 10% of traffic every minute to the new version. For more information about supported patterns, see Serverless Application Model: Traffic Shifting Configurations.
  • The Hooks attribute specifies that you want to execute the preTrafficHook Lambda function before CodeDeploy automatically begins shifting traffic. This function should perform validation testing on the newly deployed Lambda version. This function invokes the new Lambda function and checks the results. If you’re satisfied with the tests, instruct CodeDeploy to proceed with the rollout via an API call to: codedeploy.putLifecycleEventHookExecutionStatus.
  • The Events attribute defines an API-based event source that can trigger this function. It accepts requests on the /test path using an HTTP GET method.
'use strict';

const AWS = require('aws-sdk');
const codedeploy = new AWS.CodeDeploy({apiVersion: '2014-10-06'});
var lambda = new AWS.Lambda();

exports.handler = (event, context, callback) => {

	console.log("Entering PreTraffic Hook!");
	
	// Read the DeploymentId & LifecycleEventHookExecutionId from the event payload
    var deploymentId = event.DeploymentId;
	var lifecycleEventHookExecutionId = event.LifecycleEventHookExecutionId;

	var functionToTest = process.env.NewVersion;
	console.log("Testing new function version: " + functionToTest);

	// Perform validation of the newly deployed Lambda version
	var lambdaParams = {
		FunctionName: functionToTest,
		InvocationType: "RequestResponse"
	};

	var lambdaResult = "Failed";
	lambda.invoke(lambdaParams, function(err, data) {
		if (err){	// an error occurred
			console.log(err, err.stack);
			lambdaResult = "Failed";
		}
		else{	// successful response
			var result = JSON.parse(data.Payload);
			console.log("Result: " +  JSON.stringify(result));

			// Check the response for valid results
			// The response will be a JSON payload with statusCode and body properties. ie:
			// {
			//		"statusCode": 200,
			//		"body": 51
			// }
			if(result.body == 9){	
				lambdaResult = "Succeeded";
				console.log ("Validation testing succeeded!");
			}
			else{
				lambdaResult = "Failed";
				console.log ("Validation testing failed!");
			}

			// Complete the PreTraffic Hook by sending CodeDeploy the validation status
			var params = {
				deploymentId: deploymentId,
				lifecycleEventHookExecutionId: lifecycleEventHookExecutionId,
				status: lambdaResult // status can be 'Succeeded' or 'Failed'
			};
			
			// Pass AWS CodeDeploy the prepared validation test results.
			codedeploy.putLifecycleEventHookExecutionStatus(params, function(err, data) {
				if (err) {
					// Validation failed.
					console.log('CodeDeploy Status update failed');
					console.log(err, err.stack);
					callback("CodeDeploy Status update failed");
				} else {
					// Validation succeeded.
					console.log('Codedeploy status updated successfully');
					callback(null, 'Codedeploy status updated successfully');
				}
			});
		}  
	});
}

The hook is hardcoded to check that the number of S3 buckets returned is 9.

Review the key parts of the SAM template that defines preTrafficHook:

  • The Policies attribute specifies additional policy statements that SAM adds onto the automatically generated IAM role for this function. The first statement provides permissions to call the CodeDeploy PutLifecycleEventHookExecutionStatus API action. The second statement provides permissions to invoke the specific version of the returnS3Buckets function to test
  • This function has traffic shifting features disabled by setting the DeploymentPreference option to false.
  • The FunctionName attribute explicitly tells CloudFormation what to name the function. Otherwise, CloudFormation creates the function with the default naming convention: [stackName]-[FunctionName]-[uniqueID].  Name the function with the “CodeDeployHook_” prefix because the CodeDeployServiceRole role only allows InvokeFunction on functions named with that prefix.
  • Set the Timeout attribute to allow enough time to complete your validation tests.
  • Use an environment variable to inject the ARN of the newest deployed version of the returnS3Buckets function. The ARN allows the function to know the specific version to invoke and perform validation testing on.

Deploy the function

Your SAM template is all set and the code is written—you’re ready to deploy the function for the first time. Here’s how to do it via the SAM CLI. Replace “sam” with “cloudformation” to use CloudFormation instead.

First, package the function. This command returns a CloudFormation importable file, packaged.yaml.

sam package –template-file template.yaml –s3-bucket mybucket –output-template-file packaged.yaml

Now deploy everything:

sam deploy –template-file packaged.yaml –stack-name mySafeDeployStack –capabilities CAPABILITY_IAM

At this point, both Lambda functions have been deployed within the CloudFormation stack mySafeDeployStack. The returnS3Buckets has been deployed as Version 1:

SAM automatically created a few things, including the CodeDeploy application, with the deployment pattern that you specified (Linear10PercentEvery1Minute). There is currently one deployment group, with no action, because no deployments have occurred. SAM also created the IAM service role that this CodeDeploy application uses:

There is a single managed policy attached to this role, which allows CodeDeploy to invoke any Lambda function that begins with “CodeDeployHook_”.

An API has been set up called safeDeployStack. It targets your Lambda function with the /test resource using the GET method. When you test the endpoint, API Gateway executes the returnS3Buckets function and it returns the number of S3 buckets that you own. In this case, it’s 51.

Publish a new Lambda function version

Now implement the requirements change, which is to make returnS3Buckets count only buckets that begin with the letter “a”. The code now looks like the following (see returnS3BucketsNew.js in GitHub):

'use strict';

var AWS = require('aws-sdk');
var s3 = new AWS.S3();

exports.handler = (event, context, callback) => {
	console.log("I am here! " + context.functionName  +  ":"  +  context.functionVersion);

	s3.listBuckets(function (err, data){
		if(err){
			console.log(err, err.stack);
			callback(null, {
				statusCode: 500,
				body: "Failed!"
			});
		}
		else{
			var allBuckets = data.Buckets;

			console.log("Total buckets: " + allBuckets.length);
			//callback(null, allBuckets.length);

			//  New Code begins here
			var counter=0;
			for(var i  in allBuckets){
				if(allBuckets[i].Name[0] === "a")
					counter++;
			}
			console.log("Total buckets starting with a: " + counter);

			callback(null, {
				statusCode: 200,
				body: counter
			});
			
		}
	});	
}

Repackage and redeploy with the same two commands as earlier:

sam package –template-file template.yaml –s3-bucket mybucket –output-template-file packaged.yaml
	
sam deploy –template-file packaged.yaml –stack-name mySafeDeployStack –capabilities CAPABILITY_IAM

CloudFormation understands that this is a stack update instead of an entirely new stack. You can see that reflected in the CloudFormation console:

During the update, CloudFormation deploys the new Lambda function as version 2 and adds it to the “live” alias. There is no traffic routing there yet. CodeDeploy now takes over to begin the safe deployment process.

The first thing CodeDeploy does is invoke the preTrafficHook function. Verify that this happened by reviewing the Lambda logs and metrics:

The function should progress successfully, invoke Version 2 of returnS3Buckets, and finally invoke the CodeDeploy API with a success code. After this occurs, CodeDeploy begins the predefined rollout strategy. Open the CodeDeploy console to review the deployment progress (Linear10PercentEvery1Minute):

Verify the traffic shift

During the deployment, verify that the traffic shift has started to occur by running the test periodically. As the deployment shifts towards the new version, a larger percentage of the responses return 9 instead of 51. These numbers match the S3 buckets.

A minute later, you see 10% more traffic shifting to the new version. The whole process takes 10 minutes to complete. After completion, open the Lambda console and verify that the “live” alias now points to version 2:

After 10 minutes, the deployment is complete and CodeDeploy signals success to CloudFormation and completes the stack update.

Check the results

If you invoke the function alias manually, you see the results of the new implementation.

aws lambda invoke –function [lambda arn to live alias] out.txt

You can also execute the prod stage of your API and verify the results by issuing an HTTP GET to the invoke URL:

Summary

This post has shown you how you can safely automate your Lambda deployments using the Lambda traffic shifting feature. You used the Serverless Application Model (SAM) to define your Lambda functions and configured CodeDeploy to manage your deployment patterns. Finally, you used CloudFormation to automate the deployment and updates to your function and PreTraffic hook.

Now that you know all about this new feature, you’re ready to begin automating Lambda deployments with confidence that things will work as designed. I look forward to hearing about what you’ve built with the AWS Serverless Platform.

Now You Can Create Encrypted Amazon EBS Volumes by Using Your Custom Encryption Keys When You Launch an Amazon EC2 Instance

Post Syndicated from Nishit Nagar original https://aws.amazon.com/blogs/security/create-encrypted-amazon-ebs-volumes-custom-encryption-keys-launch-amazon-ec2-instance-2/

Amazon Elastic Block Store (EBS) offers an encryption solution for your Amazon EBS volumes so you don’t have to build, maintain, and secure your own infrastructure for managing encryption keys for block storage. Amazon EBS encryption uses AWS Key Management Service (AWS KMS) customer master keys (CMKs) when creating encrypted Amazon EBS volumes, providing you all the benefits associated with using AWS KMS. You can specify either an AWS managed CMK or a customer-managed CMK to encrypt your Amazon EBS volume. If you use a customer-managed CMK, you retain granular control over your encryption keys, such as having AWS KMS rotate your CMK every year. To learn more about creating CMKs, see Creating Keys.

In this post, we demonstrate how to create an encrypted Amazon EBS volume using a customer-managed CMK when you launch an EC2 instance from the EC2 console, AWS CLI, and AWS SDK.

Creating an encrypted Amazon EBS volume from the EC2 console

Follow these steps to launch an EC2 instance from the EC2 console with Amazon EBS volumes that are encrypted by customer-managed CMKs:

  1. Sign in to the AWS Management Console and open the EC2 console.
  2. Select Launch instance, and then, in Step 1 of the wizard, select an Amazon Machine Image (AMI).
  3. In Step 2 of the wizard, select an instance type, and then provide additional configuration details in Step 3. For details about configuring your instances, see Launching an Instance.
  4. In Step 4 of the wizard, specify additional EBS volumes that you want to attach to your instances.
  5. To create an encrypted Amazon EBS volume, first add a new volume by selecting Add new volume. Leave the Snapshot column blank.
  6. In the Encrypted column, select your CMK from the drop-down menu. You can also paste the full Amazon Resource Name (ARN) of your custom CMK key ID in this box. To learn more about finding the ARN of a CMK, see Working with Keys.
  7. Select Review and Launch. Your instance will launch with an additional Amazon EBS volume with the key that you selected. To learn more about the launch wizard, see Launching an Instance with Launch Wizard.

Creating Amazon EBS encrypted volumes from the AWS CLI or SDK

You also can use RunInstances to launch an instance with additional encrypted Amazon EBS volumes by setting Encrypted to true and adding kmsKeyID along with the actual key ID in the BlockDeviceMapping object, as shown in the following command:

$> aws ec2 run-instances –image-id ami-b42209de –count 1 –instance-type m4.large –region us-east-1 –block-device-mappings file://mapping.json

In this example, mapping.json describes the properties of the EBS volume that you want to create:


{
"DeviceName": "/dev/sda1",
"Ebs": {
"DeleteOnTermination": true,
"VolumeSize": 100,
"VolumeType": "gp2",
"Encrypted": true,
"kmsKeyID": "arn:aws:kms:us-east-1:012345678910:key/abcd1234-a123-456a-a12b-a123b4cd56ef"
}
}

You can also launch instances with additional encrypted EBS data volumes via an Auto Scaling or Spot Fleet by creating a launch template with the above BlockDeviceMapping. For example:

$> aws ec2 create-launch-template –MyLTName –image-id ami-b42209de –count 1 –instance-type m4.large –region us-east-1 –block-device-mappings file://mapping.json

To learn more about launching an instance with the AWS CLI or SDK, see the AWS CLI Command Reference.

In this blog post, we’ve demonstrated a single-step, streamlined process for creating Amazon EBS volumes that are encrypted under your CMK when you launch your EC2 instance, thereby streamlining your instance launch workflow. To start using this functionality, navigate to the EC2 console.

If you have feedback about this blog post, submit comments in the Comments section below. If you have questions about this blog post, start a new thread on the Amazon EC2 forum or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Tag Amazon EBS Snapshots on Creation and Implement Stronger Security Policies

Post Syndicated from Woo Kim original https://aws.amazon.com/blogs/compute/tag-amazon-ebs-snapshots-on-creation-and-implement-stronger-security-policies/

This blog was contributed by Rucha Nene, Sr. Product Manager for Amazon EBS

AWS customers use tags to track ownership of resources, implement compliance protocols, control access to resources via IAM policies, and drive their cost accounting processes. Last year, we made tagging for Amazon EC2 instances and Amazon EBS volumes easier by adding the ability to tag these resources upon creation. We are now extending this capability to EBS snapshots.

Earlier, you could tag your EBS snapshots only after the resource had been created and sometimes, ended up with EBS snapshots in an untagged state if tagging failed. You also could not control the actions that users and groups could take over specific snapshots, or enforce tighter security policies.

To address these issues, we are making tagging for EBS snapshots more flexible and giving customers more control over EBS snapshots by introducing two new capabilities:

  • Tag on creation for EBS snapshots – You can now specify tags for EBS snapshots as part of the API call that creates the resource or via the Amazon EC2 Console when creating an EBS snapshot.
  • Resource-level permission and enforced tag usage – The CreateSnapshot, DeleteSnapshot, and ModifySnapshotAttrribute API actions now support IAM resource-level permissions. You can now write IAM policies that mandate the use of specific tags when taking actions on EBS snapshots.

Tag on creation

You can now specify tags for EBS snapshots as part of the API call that creates the resources. The resource creation and the tagging are performed atomically; both must succeed in order for the operation CreateSnapshot to succeed. You no longer need to build tagging scripts that run after EBS snapshots have been created.

Here’s how you specify tags when you create an EBS snapshot, using the console:

  1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
  2. In the navigation pane, choose Snapshots, Create Snapshot.
  3. On the Create Snapshot page, select the volume for which to create a snapshot.
  4. (Optional) Choose Add tags to your snapshot. For each tag, provide a tag key and a tag value.
  5. Choose Create Snapshot.

Using the AWS CLI:

aws ec2 create-snapshot --volume-id vol-0c0e757e277111f3c --description 'Prod_Backup' --tag-specifications 
'ResourceType=snapshot,Tags=[{Key=costcenter,Value=115},{Key=IsProd,Value=Yes}]'

To learn more, see Using Tags.

Resource-level permissions and enforced tag usage

CreateSnapshot, DeleteSnapshot, and ModifySnapshotAttribute now support resource-level permissions, which allow you to exercise more control over EBS snapshots. You can write IAM policies that give you precise control over access to resources and let you specify which users are able to create snapshots for a given set of volumes. You can also enforce the use of specific tags to help track resources and achieve more accurate cost allocation reporting.

For example, here’s a statement that requires that the costcenter tag (with a value of “115”) be present on the volume from which snapshots are being created. It requires that this tag be applied to all newly created snapshots. In addition, it requires that the created snapshots are tagged with User:username for the customer.

{
   "Version":"2012-10-17",
   "Statement":[
      {
         "Effect":"Allow",
         "Action":"ec2:CreateSnapshot",
         "Resource":"arn:aws:ec2:us-east-1:123456789012:volume/*",
	   "Condition": {
		"StringEquals":{
               "ec2:ResourceTag/costcenter":"115"
}
 }
	
      },
      {
         "Sid":"AllowCreateTaggedSnapshots",
         "Effect":"Allow",
         "Action":"ec2:CreateSnapshot",
         "Resource":"arn:aws:ec2:us-east-1::snapshot/*",
         "Condition":{
            "StringEquals":{
               "aws:RequestTag/costcenter":"115",
		   "aws:RequestTag/User":"${aws:username}"
            },
            "ForAllValues:StringEquals":{
               "aws:TagKeys":[
                  "costcenter",
			"User"
               ]
            }
         }
      },
      {
         "Effect":"Allow",
         "Action":"ec2:CreateTags",
         "Resource":"arn:aws:ec2:us-east-1::snapshot/*",
         "Condition":{
            "StringEquals":{
               "ec2:CreateAction":"CreateSnapshot"
            }
         }
      }
   ]
}

To implement stronger compliance and security policies, you could also restrict access to DeleteSnapshot, if the resource is not tagged with the user’s name. Here’s a statement that allows the deletion of a snapshot only if the snapshot is tagged with User:username for the customer.

{
   "Version":"2012-10-17",
   "Statement":[
      {
         "Effect":"Allow",
         "Action":"ec2:DeleteSnapshot",
         "Resource":"arn:aws:ec2:us-east-1::snapshot/*",
         "Condition":{
            "StringEquals":{
               "ec2:ResourceTag/User":"${aws:username}"
            }
         }
      }
   ]
}

To learn more and to see some sample policies, see IAM Policies for Amazon EC2 and Working with Snapshots.

Available Now

These new features are available now in all AWS Regions. You can start using it today from the Amazon EC2 Console, AWS Command Line Interface (CLI), or the AWS APIs.

Performing Unit Testing in an AWS CodeStar Project

Post Syndicated from Jerry Mathen Jacob original https://aws.amazon.com/blogs/devops/performing-unit-testing-in-an-aws-codestar-project/

In this blog post, I will show how you can perform unit testing as a part of your AWS CodeStar project. AWS CodeStar helps you quickly develop, build, and deploy applications on AWS. With AWS CodeStar, you can set up your continuous delivery (CD) toolchain and manage your software development from one place.

Because unit testing tests individual units of application code, it is helpful for quickly identifying and isolating issues. As a part of an automated CI/CD process, it can also be used to prevent bad code from being deployed into production.

Many of the AWS CodeStar project templates come preconfigured with a unit testing framework so that you can start deploying your code with more confidence. The unit testing is configured to run in the provided build stage so that, if the unit tests do not pass, the code is not deployed. For a list of AWS CodeStar project templates that include unit testing, see AWS CodeStar Project Templates in the AWS CodeStar User Guide.

The scenario

As a big fan of superhero movies, I decided to list my favorites and ask my friends to vote on theirs by using a WebService endpoint I created. The example I use is a Python web service running on AWS Lambda with AWS CodeCommit as the code repository. CodeCommit is a fully managed source control system that hosts Git repositories and works with all Git-based tools.

Here’s how you can create the WebService endpoint:

Sign in to the AWS CodeStar console. Choose Start a project, which will take you to the list of project templates.

create project

For code edits I will choose AWS Cloud9, which is a cloud-based integrated development environment (IDE) that you use to write, run, and debug code.

choose cloud9

Here are the other tasks required by my scenario:

  • Create a database table where the votes can be stored and retrieved as needed.
  • Update the logic in the Lambda function that was created for posting and getting the votes.
  • Update the unit tests (of course!) to verify that the logic works as expected.

For a database table, I’ve chosen Amazon DynamoDB, which offers a fast and flexible NoSQL database.

Getting set up on AWS Cloud9

From the AWS CodeStar console, go to the AWS Cloud9 console, which should take you to your project code. I will open up a terminal at the top-level folder under which I will set up my environment and required libraries.

Use the following command to set the PYTHONPATH environment variable on the terminal.

export PYTHONPATH=/home/ec2-user/environment/vote-your-movie

You should now be able to use the following command to execute the unit tests in your project.

python -m unittest discover vote-your-movie/tests

cloud9 setup

Start coding

Now that you have set up your local environment and have a copy of your code, add a DynamoDB table to the project by defining it through a template file. Open template.yml, which is the Serverless Application Model (SAM) template file. This template extends AWS CloudFormation to provide a simplified way of defining the Amazon API Gateway APIs, AWS Lambda functions, and Amazon DynamoDB tables required by your serverless application.

AWSTemplateFormatVersion: 2010-09-09
Transform:
- AWS::Serverless-2016-10-31
- AWS::CodeStar

Parameters:
  ProjectId:
    Type: String
    Description: CodeStar projectId used to associate new resources to team members

Resources:
  # The DB table to store the votes.
  MovieVoteTable:
    Type: AWS::Serverless::SimpleTable
    Properties:
      PrimaryKey:
        # Name of the "Candidate" is the partition key of the table.
        Name: Candidate
        Type: String
  # Creating a new lambda function for retrieving and storing votes.
  MovieVoteLambda:
    Type: AWS::Serverless::Function
    Properties:
      Handler: index.handler
      Runtime: python3.6
      Environment:
        # Setting environment variables for your lambda function.
        Variables:
          TABLE_NAME: !Ref "MovieVoteTable"
          TABLE_REGION: !Ref "AWS::Region"
      Role:
        Fn::ImportValue:
          !Join ['-', [!Ref 'ProjectId', !Ref 'AWS::Region', 'LambdaTrustRole']]
      Events:
        GetEvent:
          Type: Api
          Properties:
            Path: /
            Method: get
        PostEvent:
          Type: Api
          Properties:
            Path: /
            Method: post

We’ll use Python’s boto3 library to connect to AWS services. And we’ll use Python’s mock library to mock AWS service calls for our unit tests.
Use the following command to install these libraries:

pip install --upgrade boto3 mock -t .

install dependencies

Add these libraries to the buildspec.yml, which is the YAML file that is required for CodeBuild to execute.

version: 0.2

phases:
  install:
    commands:

      # Upgrade AWS CLI to the latest version
      - pip install --upgrade awscli boto3 mock

  pre_build:
    commands:

      # Discover and run unit tests in the 'tests' directory. For more information, see <https://docs.python.org/3/library/unittest.html#test-discovery>
      - python -m unittest discover tests

  build:
    commands:

      # Use AWS SAM to package the application by using AWS CloudFormation
      - aws cloudformation package --template template.yml --s3-bucket $S3_BUCKET --output-template template-export.yml

artifacts:
  type: zip
  files:
    - template-export.yml

Open the index.py where we can write the simple voting logic for our Lambda function.

import json
import datetime
import boto3
import os

table_name = os.environ['TABLE_NAME']
table_region = os.environ['TABLE_REGION']

VOTES_TABLE = boto3.resource('dynamodb', region_name=table_region).Table(table_name)
CANDIDATES = {"A": "Black Panther", "B": "Captain America: Civil War", "C": "Guardians of the Galaxy", "D": "Thor: Ragnarok"}

def handler(event, context):
    if event['httpMethod'] == 'GET':
        resp = VOTES_TABLE.scan()
        return {'statusCode': 200,
                'body': json.dumps({item['Candidate']: int(item['Votes']) for item in resp['Items']}),
                'headers': {'Content-Type': 'application/json'}}

    elif event['httpMethod'] == 'POST':
        try:
            body = json.loads(event['body'])
        except:
            return {'statusCode': 400,
                    'body': 'Invalid input! Expecting a JSON.',
                    'headers': {'Content-Type': 'application/json'}}
        if 'candidate' not in body:
            return {'statusCode': 400,
                    'body': 'Missing "candidate" in request.',
                    'headers': {'Content-Type': 'application/json'}}
        if body['candidate'] not in CANDIDATES.keys():
            return {'statusCode': 400,
                    'body': 'You must vote for one of the following candidates - {}.'.format(get_allowed_candidates()),
                    'headers': {'Content-Type': 'application/json'}}

        resp = VOTES_TABLE.update_item(
            Key={'Candidate': CANDIDATES.get(body['candidate'])},
            UpdateExpression='ADD Votes :incr',
            ExpressionAttributeValues={':incr': 1},
            ReturnValues='ALL_NEW'
        )
        return {'statusCode': 200,
                'body': "{} now has {} votes".format(CANDIDATES.get(body['candidate']), resp['Attributes']['Votes']),
                'headers': {'Content-Type': 'application/json'}}

def get_allowed_candidates():
    l = []
    for key in CANDIDATES:
        l.append("'{}' for '{}'".format(key, CANDIDATES.get(key)))
    return ", ".join(l)

What our code basically does is take in the HTTPS request call as an event. If it is an HTTP GET request, it gets the votes result from the table. If it is an HTTP POST request, it sets a vote for the candidate of choice. We also validate the inputs in the POST request to filter out requests that seem malicious. That way, only valid calls are stored in the table.

In the example code provided, we use a CANDIDATES variable to store our candidates, but you can store the candidates in a JSON file and use Python’s json library instead.

Let’s update the tests now. Under the tests folder, open the test_handler.py and modify it to verify the logic.

import os
# Some mock environment variables that would be used by the mock for DynamoDB
os.environ['TABLE_NAME'] = "MockHelloWorldTable"
os.environ['TABLE_REGION'] = "us-east-1"

# The library containing our logic.
import index

# Boto3's core library
import botocore
# For handling JSON.
import json
# Unit test library
import unittest
## Getting StringIO based on your setup.
try:
    from StringIO import StringIO
except ImportError:
    from io import StringIO
## Python mock library
from mock import patch, call
from decimal import Decimal

@patch('botocore.client.BaseClient._make_api_call')
class TestCandidateVotes(unittest.TestCase):

    ## Test the HTTP GET request flow. 
    ## We expect to get back a successful response with results of votes from the table (mocked).
    def test_get_votes(self, boto_mock):
        # Input event to our method to test.
        expected_event = {'httpMethod': 'GET'}
        # The mocked values in our DynamoDB table.
        items_in_db = [{'Candidate': 'Black Panther', 'Votes': Decimal('3')},
                        {'Candidate': 'Captain America: Civil War', 'Votes': Decimal('8')},
                        {'Candidate': 'Guardians of the Galaxy', 'Votes': Decimal('8')},
                        {'Candidate': "Thor: Ragnarok", 'Votes': Decimal('1')}
                    ]
        # The mocked DynamoDB response.
        expected_ddb_response = {'Items': items_in_db}
        # The mocked response we expect back by calling DynamoDB through boto.
        response_body = botocore.response.StreamingBody(StringIO(str(expected_ddb_response)),
                                                        len(str(expected_ddb_response)))
        # Setting the expected value in the mock.
        boto_mock.side_effect = [expected_ddb_response]
        # Expecting that there would be a call to DynamoDB Scan function during execution with these parameters.
        expected_calls = [call('Scan', {'TableName': os.environ['TABLE_NAME']})]

        # Call the function to test.
        result = index.handler(expected_event, {})

        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 200

        result_body = json.loads(result.get('body'))
        # Verifying that the results match to that from the table.
        assert len(result_body) == len(items_in_db)
        for i in range(len(result_body)):
            assert result_body.get(items_in_db[i].get("Candidate")) == int(items_in_db[i].get("Votes"))

        assert boto_mock.call_count == 1
        boto_mock.assert_has_calls(expected_calls)

    ## Test the HTTP POST request flow that places a vote for a selected candidate.
    ## We expect to get back a successful response with a confirmation message.
    def test_place_valid_candidate_vote(self, boto_mock):
        # Input event to our method to test.
        expected_event = {'httpMethod': 'POST', 'body': "{\"candidate\": \"D\"}"}
        # The mocked response in our DynamoDB table.
        expected_ddb_response = {'Attributes': {'Candidate': "Thor: Ragnarok", 'Votes': Decimal('2')}}
        # The mocked response we expect back by calling DynamoDB through boto.
        response_body = botocore.response.StreamingBody(StringIO(str(expected_ddb_response)),
                                                        len(str(expected_ddb_response)))
        # Setting the expected value in the mock.
        boto_mock.side_effect = [expected_ddb_response]
        # Expecting that there would be a call to DynamoDB UpdateItem function during execution with these parameters.
        expected_calls = [call('UpdateItem', {
                                                'TableName': os.environ['TABLE_NAME'], 
                                                'Key': {'Candidate': 'Thor: Ragnarok'},
                                                'UpdateExpression': 'ADD Votes :incr',
                                                'ExpressionAttributeValues': {':incr': 1},
                                                'ReturnValues': 'ALL_NEW'
                                            })]
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 200

        assert result.get('body') == "{} now has {} votes".format(
            expected_ddb_response['Attributes']['Candidate'], 
            expected_ddb_response['Attributes']['Votes'])

        assert boto_mock.call_count == 1
        boto_mock.assert_has_calls(expected_calls)

    ## Test the HTTP POST request flow that places a vote for an non-existant candidate.
    ## We expect to get back a successful response with a confirmation message.
    def test_place_invalid_candidate_vote(self, boto_mock):
        # Input event to our method to test.
        # The valid IDs for the candidates are A, B, C, and D
        expected_event = {'httpMethod': 'POST', 'body': "{\"candidate\": \"E\"}"}
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 400
        assert result.get('body') == 'You must vote for one of the following candidates - {}.'.format(index.get_allowed_candidates())

    ## Test the HTTP POST request flow that places a vote for a selected candidate but associated with an invalid key in the POST body.
    ## We expect to get back a failed (400) response with an appropriate error message.
    def test_place_invalid_data_vote(self, boto_mock):
        # Input event to our method to test.
        # "name" is not the expected input key.
        expected_event = {'httpMethod': 'POST', 'body': "{\"name\": \"D\"}"}
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 400
        assert result.get('body') == 'Missing "candidate" in request.'

    ## Test the HTTP POST request flow that places a vote for a selected candidate but not as a JSON string which the body of the request expects.
    ## We expect to get back a failed (400) response with an appropriate error message.
    def test_place_malformed_json_vote(self, boto_mock):
        # Input event to our method to test.
        # "body" receives a string rather than a JSON string.
        expected_event = {'httpMethod': 'POST', 'body': "Thor: Ragnarok"}
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 400
        assert result.get('body') == 'Invalid input! Expecting a JSON.'

if __name__ == '__main__':
    unittest.main()

I am keeping the code samples well commented so that it’s clear what each unit test accomplishes. It tests the success conditions and the failure paths that are handled in the logic.

In my unit tests I use the patch decorator (@patch) in the mock library. @patch helps mock the function you want to call (in this case, the botocore library’s _make_api_call function in the BaseClient class).
Before we commit our changes, let’s run the tests locally. On the terminal, run the tests again. If all the unit tests pass, you should expect to see a result like this:

You:~/environment $ python -m unittest discover vote-your-movie/tests
.....
----------------------------------------------------------------------
Ran 5 tests in 0.003s

OK
You:~/environment $

Upload to AWS

Now that the tests have passed, it’s time to commit and push the code to source repository!

Add your changes

From the terminal, go to the project’s folder and use the following command to verify the changes you are about to push.

git status

To add the modified files only, use the following command:

git add -u

Commit your changes

To commit the changes (with a message), use the following command:

git commit -m "Logic and tests for the voting webservice."

Push your changes to AWS CodeCommit

To push your committed changes to CodeCommit, use the following command:

git push

In the AWS CodeStar console, you can see your changes flowing through the pipeline and being deployed. There are also links in the AWS CodeStar console that take you to this project’s build runs so you can see your tests running on AWS CodeBuild. The latest link under the Build Runs table takes you to the logs.

unit tests at codebuild

After the deployment is complete, AWS CodeStar should now display the AWS Lambda function and DynamoDB table created and synced with this project. The Project link in the AWS CodeStar project’s navigation bar displays the AWS resources linked to this project.

codestar resources

Because this is a new database table, there should be no data in it. So, let’s put in some votes. You can download Postman to test your application endpoint for POST and GET calls. The endpoint you want to test is the URL displayed under Application endpoints in the AWS CodeStar console.

Now let’s open Postman and look at the results. Let’s create some votes through POST requests. Based on this example, a valid vote has a value of A, B, C, or D.
Here’s what a successful POST request looks like:

POST success

Here’s what it looks like if I use some value other than A, B, C, or D:

 

POST Fail

Now I am going to use a GET request to fetch the results of the votes from the database.

GET success

And that’s it! You have now created a simple voting web service using AWS Lambda, Amazon API Gateway, and DynamoDB and used unit tests to verify your logic so that you ship good code.
Happy coding!

How to migrate a Hue database from an existing Amazon EMR cluster

Post Syndicated from Anvesh Ragi original https://aws.amazon.com/blogs/big-data/how-to-migrate-a-hue-database-from-an-existing-amazon-emr-cluster/

Hadoop User Experience (Hue) is an open-source, web-based, graphical user interface for use with Amazon EMR and Apache Hadoop. The Hue database stores things like users, groups, authorization permissions, Apache Hive queries, Apache Oozie workflows, and so on.

There might come a time when you want to migrate your Hue database to a new EMR cluster. For example, you might want to upgrade from an older version of the Amazon EMR AMI (Amazon Machine Image), but your Hue application and its database have had a lot of customization.You can avoid re-creating these user entities and retain query/workflow histories in Hue by migrating the existing Hue database, or remote database in Amazon RDS, to a new cluster.

By default, Hue user information and query histories are stored in a local MySQL database on the EMR cluster’s master node. However, you can create one or more Hue-enabled clusters using a configuration stored in Amazon S3 and a remote MySQL database in Amazon RDS. This allows you to preserve user information and query history that Hue creates without keeping your Amazon EMR cluster running.

This post describes the step-by-step process for migrating the Hue database from an existing EMR cluster.

Note: Amazon EMR supports different Hue versions across different AMI releases. Keep in mind the compatibility of Hue versions between the old and new clusters in this migration activity. Currently, Hue 3.x.x versions are not compatible with Hue 4.x.x versions, and therefore a migration between these two Hue versions might create issues. In addition, Hue 3.10.0 is not backward compatible with its previous 3.x.x versions.

Before you begin

First, let’s create a new testUser in Hue on an existing EMR cluster, as shown following:

You will use these credentials later to log in to Hue on the new EMR cluster and validate whether you have successfully migrated the Hue database.

Let’s get started!

Migration how-to

Follow these steps to migrate your database to a new EMR cluster and then validate the migration process.

1.) Make a backup of the existing Hue database.

Use SSH to connect to the master node of the old cluster, as shown following (if you are using Linux/Unix/macOS), and dump the Hue database to a JSON file.

$ ssh -i ~/key.pem [email protected]
$ /usr/lib/hue/build/env/bin/hue dumpdata > ./hue-mysql.json

Edit the hue-mysql.json output file by removing all JSON objects that have useradmin.userprofile in the model field, and save the file. For example, remove the objects as shown following:

{
  "pk": 1,
  "model": "useradmin.userprofile",
  "fields": {
    "last_activity": "2018-01-10T11:41:04",
    "creation_method": "HUE",
    "first_login": false,
    "user": 1,
    "home_directory": "/user/hue_admin"
  }
},

2.) Store the hue-mysql.json file on persistent storage like Amazon S3.

You can copy the file from the old EMR cluster to Amazon S3 using the AWS CLI or Secure Copy (SCP) client. For example, the following uses the AWS CLI:

$ aws s3 cp ./hue-mysql.json s3://YourBucketName/folder/

3.) Recover/reload the backed-up Hue database into the new EMR cluster.

a.) Use SSH to connect to the master node of the new EMR cluster, and stop the Hue service that is already running.

$ ssh -i ~/key.pem [email protected]
$ sudo stop hue
hue stop/waiting

b.) Connect to the Hue database—either the local MySQL database or the remote database in Amazon RDS for your cluster as shown following, using the mysql client.

$ mysql -h HOST –u USER –pPASSWORD

For a local MySQL database, you can find the hostname, user name, and password for connecting to the database in the /etc/hue/conf/hue.ini file on the master node.

[[database]]
    engine = mysql
    name = huedb
    case_insensitive_collation = utf8_unicode_ci
    test_charset = utf8
    test_collation = utf8_bin
    host = ip-172-31-37-133.us-west-2.compute.internal
    user = hue
    test_name = test_huedb
    password = QdWbL3Ai6GcBqk26
    port = 3306

Based on the preceding example configuration, the sample command is as follows. (Replace the host, user, and password details based on your EMR cluster settings.)

$ mysql -h ip-172-31-37-133.us-west-2.compute.internal -u hue -pQdWbL3Ai6GcBqk26

c.) Drop the existing Hue database with the name huedb from the MySQL server.

mysql> DROP DATABASE IF EXISTS huedb;

d.) Create a new empty database with the same name huedb.

mysql> CREATE DATABASE huedb DEFAULT CHARACTER SET utf8 DEFAULT COLLATE=utf8_bin;

e.) Now, synchronize Hue with its database huedb.

$ sudo /usr/lib/hue/build/env/bin/hue syncdb --noinput
$ sudo /usr/lib/hue/build/env/bin/hue migrate

(This populates the new huedb with all Hue tables that are required.)

f.) Log in to MySQL again, and drop the foreign key to clean tables.

mysql> SHOW CREATE TABLE huedb.auth_permission;

In the following example, replace <id value> with the actual value from the preceding output.

mysql> ALTER TABLE huedb.auth_permission DROP FOREIGN KEY
content_type_id_refs_id_<id value>;

g.) Delete the contents of the django_content_type

mysql> DELETE FROM huedb.django_content_type;

h.) Download the backed-up Hue database dump from Amazon S3 to the new EMR cluster, and load it into Hue.

$ aws s3 cp s3://YourBucketName/folder/hue-mysql.json ./
$ sudo /usr/lib/hue/build/env/bin/hue loaddata ./hue-mysql.json

i.) In MySQL, add the foreign key content_type_id back to the auth_permission

mysql> use huedb;
mysql> ALTER TABLE huedb.auth_permission ADD FOREIGN KEY (`content_type_id`) REFERENCES `django_content_type` (`id`);

j.) Start the Hue service again.

$ sudo start hue
hue start/running, process XXXX

That’s it! Now, verify whether you can successfully access the Hue UI, and sign in using your existing testUser credentials.

After a successful sign in to Hue on the new EMR cluster, you should see a similar Hue homepage as shown following with testUser as the user signed in:

Conclusion

You have now learned how to migrate an existing Hue database to a new Amazon EMR cluster and validate the migration process. If you have any similar Amazon EMR administration topics that you want to see covered in a future post, please let us know in the comments below.


Additional Reading

If you found this post useful, be sure to check out Anomaly Detection Using PySpark, Hive, and Hue on Amazon EMR and Dynamically Create Friendly URLs for Your Amazon EMR Web Interfaces.


About the Author


Anvesh Ragi is a Big Data Support Engineer with Amazon Web Services. He works closely with AWS customers to provide them architectural and engineering assistance for their data processing workflows. In his free time, he enjoys traveling and going for hikes.

Amazon ECS Service Discovery

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-ecs-service-discovery/

Amazon ECS now includes integrated service discovery. This makes it possible for an ECS service to automatically register itself with a predictable and friendly DNS name in Amazon Route 53. As your services scale up or down in response to load or container health, the Route 53 hosted zone is kept up to date, allowing other services to lookup where they need to make connections based on the state of each service. You can see a demo of service discovery in an imaginary social networking app over at: https://servicediscovery.ranman.com/.

Service Discovery


Part of the transition to microservices and modern architectures involves having dynamic, autoscaling, and robust services that can respond quickly to failures and changing loads. Your services probably have complex dependency graphs of services they rely on and services they provide. A modern architectural best practice is to loosely couple these services by allowing them to specify their own dependencies, but this can be complicated in dynamic environments as your individual services are forced to find their own connection points.

Traditional approaches to service discovery like consul, etcd, or zookeeper all solve this problem well, but they require provisioning and maintaining additional infrastructure or installation of agents in your containers or on your instances. Previously, to ensure that services were able to discover and connect with each other, you had to configure and run your own service discovery system or connect every service to a load balancer. Now, you can enable service discovery for your containerized services in the ECS console, AWS CLI, or using the ECS API.

Introducing Amazon Route 53 Service Registry and Auto Naming APIs

Amazon ECS Service Discovery works by communicating with the Amazon Route 53 Service Registry and Auto Naming APIs. Since we haven’t talked about it before on this blog, I want to briefly outline how these Route 53 APIs work. First, some vocabulary:

  • Namespaces – A namespace specifies a domain name you want to route traffic to (e.g. internal, local, corp). You can think of it as a logical boundary between which services should be able to discover each other. You can create a namespace with a call to the aws servicediscovery create-private-dns-namespace command or in the ECS console. Namespaces are roughly equivalent to hosted zones in Route 53. A namespace contains services, our next vocabulary word.
  • Service – A service is a specific application or set of applications in your namespace like “auth”, “timeline”, or “worker”. A service contains service instances.
  • Service Instance – A service instance contains information about how Route 53 should respond to DNS queries for a resource.

Route 53 provides APIs to create: namespaces, A records per task IP, and SRV records per task IP + port.

When we ask Route 53 for something like: worker.corp we should get back a set of possible IPs that could fulfill that request. If the application we’re connecting to exposes dynamic ports then the calling application can easily query the SRV record to get more information.

ECS service discovery is built on top of the Route 53 APIs and manages all of the underlying API calls for you. Now that we understand how the service registry, works lets take a look at the ECS side to see service discovery in action.

Amazon ECS Service Discovery

Let’s launch an application with service discovery! First, I’ll create two task definitions: “flask-backend” and “flask-worker”. Both are simple AWS Fargate tasks with a single container serving HTTP requests. I’ll have flask-backend ask worker.corp to do some work and I’ll return the response as well as the address Route 53 returned for worker. Something like the code below:

@app.route("/")
namespace = os.getenv("namespace")
worker_host = "worker" + namespace
def backend():
    r = requests.get("http://"+worker_host)
    worker = socket.gethostbyname(worker_host)
    return "Worker Message: {]\nFrom: {}".format(r.content, worker)

 

Now, with my containers and task definitions in place, I’ll create a service in the console.

As I move to step two in the service wizard I’ll fill out the service discovery section and have ECS create a new namespace for me.

I’ll also tell ECS to monitor the health of the tasks in my service and add or remove them from Route 53 as needed. Then I’ll set a TTL of 10 seconds on the A records we’ll use.

I’ll repeat those same steps for my “worker” service and after a minute or so most of my tasks should be up and running.

Over in the Route 53 console I can see all the records for my tasks!

We can use the Route 53 service discovery APIs to list all of our available services and tasks and programmatically reach out to each one. We could easily extend to any number of services past just backend and worker. I’ve created a simple demo of an imaginary social network with services like “auth”, “feed”, “timeline”, “worker”, “user” and more here: https://servicediscovery.ranman.com/. You can see the code used to run that page on github.

Available Now
Amazon ECS service discovery is available now in US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland). AWS Fargate is currently only available in US East (N. Virginia). When you use ECS service discovery, you pay for the Route 53 resources that you consume, including each namespace that you create, and for the lookup queries your services make. Container level health checks are provided at no cost. For more information on pricing check out the documentation.

Please let us know what you’ll be building or refactoring with service discovery either in the comments or on Twitter!

Randall

 

P.S. Every blog post I write is made with a tremendous amount of help from numerous AWS colleagues. To everyone that helped build service discovery across all of our teams – thank you :)!