Tag Archives: AWS CloudFormation

ICYMI: Serverless pre:Invent 2020

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/icymi-serverless-preinvent-2020/

During the last few weeks, the AWS serverless team has been releasing a wave of new features in the build-up to AWS re:Invent 2020. This post recaps some of the most important releases for serverless developers.

re:Invent is virtual and free to all attendees in 2020 – register here. See the complete list of serverless sessions planned and join the serverless DA team live on Twitch. Also, follow your DAs on Twitter for live recaps and Q&A during the event.

AWS re:Invent 2020

AWS Lambda

We launched Lambda Extensions in preview, enabling you to more easily integrate monitoring, security, and governance tools into Lambda functions. You can also build your own extensions that run code during Lambda lifecycle events, and there is an example extensions repo for starting development.

You can now send logs from Lambda functions to custom destinations by using Lambda Extensions and the new Lambda Logs API. Previously, you could only forward logs after they were written to Amazon CloudWatch Logs. Now, logging tools can receive log streams directly from the Lambda execution environment. This makes it easier to use your preferred tools for log management and analysis, including Datadog, Lumigo, New Relic, Coralogix, Honeycomb, or Sumo Logic.

Lambda Extensions API

Lambda launched support for Amazon MQ as an event source. Amazon MQ is a managed broker service for Apache ActiveMQ that simplifies deploying and scaling queues. This integration increases the range of messaging services that customers can use to build serverless applications. The event source operates in a similar way to using Amazon SQS or Amazon Kinesis. In all cases, the Lambda service manages an internal poller to invoke the target Lambda function.

We also released a new layer to make it simpler to integrate Amazon CodeGuru Profiler. This service helps identify the most expensive lines of code in a function and provides recommendations to help reduce cost. With this update, you can enable the profiler by adding the new layer and setting environment variables. There are no changes needed to the custom code in the Lambda function.

Lambda announced support for AWS PrivateLink. This allows you to invoke Lambda functions from a VPC without traversing the public internet. It provides private connectivity between your VPCs and AWS services. By using VPC endpoints to access the Lambda API from your VPC, this can replace the need for an Internet Gateway or NAT Gateway.

For developers building machine learning inferencing, media processing, high performance computing (HPC), scientific simulations, and financial modeling in Lambda, you can now use AVX2 support to help reduce duration and lower cost. By using packages compiled for AVX2 or compiling libraries with the appropriate flags, your code can then benefit from using AVX2 instructions to accelerate computation. In the blog post’s example, enabling AVX2 for an image-processing function increased performance by 32-43%.

Lambda now supports batch windows of up to 5 minutes when using SQS as an event source. This is useful for workloads that are not time-sensitive, allowing developers to reduce the number of Lambda invocations from queues. Additionally, the batch size has been increased from 10 to 10,000. This is now the same as the batch size for Kinesis as an event source, helping Lambda-based applications process more data per invocation.

Code signing is now available for Lambda, using AWS Signer. This allows account administrators to ensure that Lambda functions only accept signed code for deployment. Using signing profiles for functions, this provides granular control over code execution within the Lambda service. You can learn more about using this new feature in the developer documentation.

Amazon EventBridge

You can now use event replay to archive and replay events with Amazon EventBridge. After configuring an archive, EventBridge automatically stores all events or filtered events, based upon event pattern matching logic. You can configure a retention policy for archives to delete events automatically after a specified number of days. Event replay can help with testing new features or changes in your code, or hydrating development or test environments.

EventBridge archived events

EventBridge also launched resource policies that simplify managing access to events across multiple AWS accounts. This expands the use of a policy associated with event buses to authorize API calls. Resource policies provide a powerful mechanism for modeling event buses across multiple account and providing fine-grained access control to EventBridge API actions.

EventBridge resource policies

EventBridge announced support for Server-Side Encryption (SSE). Events are encrypted using AES-256 at no additional cost for customers. EventBridge also increased PutEvent quotas to 10,000 transactions per second in US East (N. Virginia), US West (Oregon), and Europe (Ireland). This helps support workloads with high throughput.

AWS Step Functions

Synchronous Express Workflows have been launched for AWS Step Functions, providing a new way to run high-throughput Express Workflows. This feature allows developers to receive workflow responses without needing to poll services or build custom solutions. This is useful for high-volume microservice orchestration and fast compute tasks communicating via HTTPS.

The Step Functions service recently added support for other AWS services in workflows. You can now integrate API Gateway REST and HTTP APIs. This enables you to call API Gateway directly from a state machine as an asynchronous service integration.

Step Functions now also supports Amazon EKS service integration. This allows you to build workflows with steps that synchronously launch tasks in EKS and wait for a response. In October, the service also announced support for Amazon Athena, so workflows can now query data in your S3 data lakes.

These new integrations help minimize custom code and provide built-in error handling, parameter passing, and applying recommended security settings.

AWS SAM CLI

The AWS Serverless Application Model (AWS SAM) is an AWS CloudFormation extension that makes it easier to build, manage, and maintains serverless applications. On November 10, the AWS SAM CLI tool released version 1.9.0 with support for cached and parallel builds.

By using sam build --cached, AWS SAM no longer rebuilds functions and layers that have not changed since the last build. Additionally, you can use sam build --parallel to build functions in parallel, instead of sequentially. Both of these new features can substantially reduce the build time of larger applications defined with AWS SAM.

Amazon SNS

Amazon SNS announced support for First-In-First-Out (FIFO) topics. These are used with SQS FIFO queues for applications that require strict message ordering with exactly once processing and message deduplication. This is designed for workloads that perform tasks like bank transaction logging or inventory management. You can also use message filtering in FIFO topics to publish updates selectively.

SNS FIFO

AWS X-Ray

X-Ray now integrates with Amazon S3 to trace upstream requests. If a Lambda function uses the X-Ray SDK, S3 sends tracing headers to downstream event subscribers. With this, you can use the X-Ray service map to view connections between S3 and other services used to process an application request.

AWS CloudFormation

AWS CloudFormation announced support for nested stacks in change sets. This allows you to preview changes in your application and infrastructure across the entire nested stack hierarchy. You can then review those changes before confirming a deployment. This is available in all Regions supporting CloudFormation at no extra charge.

The new CloudFormation modules feature was released on November 24. This helps you develop building blocks with embedded best practices and common patterns that you can reuse in CloudFormation templates. Modules are available in the CloudFormation registry and can be used in the same way as any native resource.

Amazon DynamoDB

For customers using DynamoDB global tables, you can now use your own encryption keys. While all data in DynamoDB is encrypted by default, this feature enables you to use customer managed keys (CMKs). DynamoDB also announced support for global tables in the Europe (Milan) and Europe (Stockholm) Regions. This feature enables you to scale global applications for local access in workloads running in different Regions and replicate tables for higher availability and disaster recovery (DR).

The DynamoDB service announced the ability to export table data to data lakes in Amazon S3. This enables you to use services like Amazon Athena and AWS Lake Formation to analyze DynamoDB data with no custom code required. This feature does not consume table capacity and does not impact performance and availability. To learn how to use this feature, see this documentation.

AWS Amplify and AWS AppSync

You can now use existing Amazon Cognito user pools and identity pools for Amplify projects, making it easier to build new applications for an existing user base. AWS Amplify Console, which provides a fully managed static web hosting service, is now available in the Europe (Milan), Middle East (Bahrain), and Asia Pacific (Hong Kong) Regions. This service makes it simpler to bring automation to deploying and hosting single-page applications and static sites.

AWS AppSync enabled AWS WAF integration, making it easier to protect GraphQL APIs against common web exploits. You can also implement rate-based rules to help slow down brute force attacks. Using AWS Managed Rules for AWS WAF provides a faster way to configure application protection without creating the rules directly. AWS AppSync also recently expanded service availability to the Asia Pacific (Hong Kong), Middle East (Bahrain), and China (Ningxia) Regions, making the service now available in 21 Regions globally.

Still looking for more?

Join the AWS Serverless Developer Advocates on Twitch throughout re:Invent for live Q&A, session recaps, and more! See this page for the full schedule.

For more serverless learning resources, visit Serverless Land.

Fast and Cost-Effective Image Manipulation with Serverless Image Handler

Post Syndicated from Ajay Swamy original https://aws.amazon.com/blogs/architecture/fast-and-cost-effective-image-manipulation-with-serverless-image-handler/

As a modern company, you most likely have both a web-based and mobile app platform to provide content to customers who view it on a range of devices. This means you need to store multiple versions of images, depending on the device. The resulting image management can be a headache as it can be expensive and cumbersome to manage.

Serverless Image Handler (SIH) is an AWS Solution Implementation you use to store a single version of every image featured in your content, while dynamically delivering different versions at runtime based on your end user’s device. The solution simplifies code, saves on storage costs, and is ideal for use with web applications and mobile apps. SIH features include the ability to resize images, change background colors, apply formatting, and add watermarks.

Architecture overview

The SIH solution utilizes an AWS CloudFormation template to deploy the solution within minutes, and it’s for those of you who have multiple image assets needing an option to dynamically change or manipulate customer-facing images. SIH deploys best-in-class AWS services such as Amazon CloudFront, Amazon API Gateway, and AWS Lambda functions, and it connects to your Amazon Simple Storage Service (Amazon S3) bucket for storage.

Deploying this solution with the default parameters builds the following environment in AWS Cloud:

SIH: Emvironment in AWS Cloud-2

SIH uses the following AWS services:

  • Amazon CloudFront to quickly and securely  deliver images to your end users at scale
  • AWS Lambda to run code for image manipulation without the need for provisioning or managing servers (thereby reducing costs and overhead)
  • Your Amazon S3 bucket for storage of your image assets
  • AWS Secrets Manager to support the signing of image URLs so that image access is protected

How does Serverless Image Handler work?

When an HTTP request is received from a customer device, it is passed from CloudFront to API Gateway, and then forwarded to the Lambda function for processing. If the image is cached by CloudFront because of an earlier request, CloudFront will return the cached image instead of forwarding the request to the API Gateway. This reduces latency and eliminates the cost of reprocessing the image.

Requests that are not cached are passed to the API Gateway, and the entire request is forwarded to the Lambda function. The Lambda function retrieves the original image from your Amazon S3 bucket and uses Sharp (the open source image processing software) to return a modified version of the image to the API Gateway. SIH also utilizes Thumbor to apply dynamic filters on the fly. Additionally, the solution generates a CloudFront domain name that supports caching in CloudFront. The newly manipulated image is now cached at CloudFront for easy access and retrieval. The end-to-end request and response can be secured by using the solution’s signed URL feature via AWS Secrets Manager, which allows you to prevent unauthorized use of your proprietary images.

Lastly, SIH uses Amazon Rekognition for face detection in images submitted for smart cropping, allowing for easy cropping for specific content and image needs.

Code example of image manipulation

Please refer to the SIH implementation guide to quickly set up and use SIH. Using Node.js, you can create an image request as illustrated below. The code block specifies the image location as myImageBucket and specifies edits of grayscale :true to change the image to grayscale.

const imageRequest = JSON.stringify({
    bucket: “myImageBucket”,
    key: “myImage.jpg”,
    edits: {
        grayscale: true
    }
});

const url = `${CloudFrontUrl}/${Buffer.from(imageRequest).toString(‘base64’)}`;

With the generated URL, SIH can serve the grayscale image.

Conclusion

If you’re looking for a fast and cost-effective solution for image management, Serverless Image Handler provides a great way to manipulate and serve images on the fly with speed and security. Learn more about SIH and watch the accompanying Solving with AWS Solutions video below.

Automate thousands of mainframe tests on AWS with the Micro Focus Enterprise Suite

Post Syndicated from Kevin Yung original https://aws.amazon.com/blogs/devops/automate-mainframe-tests-on-aws-with-micro-focus/

Micro Focus – AWS Advanced Technology Parnter, they are a global infrastructure software company with 40 years of experience in delivering and supporting enterprise software.

We have seen mainframe customers often encounter scalability constraints, and they can’t support their development and test workforce to the scale required to support business requirements. These constraints can lead to delays, reduce product or feature releases, and make them unable to respond to market requirements. Furthermore, limits in capacity and scale often affect the quality of changes deployed, and are linked to unplanned or unexpected downtime in products or services.

The conventional approach to address these constraints is to scale up, meaning to increase MIPS/MSU capacity of the mainframe hardware available for development and testing. The cost of this approach, however, is excessively high, and to ensure time to market, you may reject this approach at the expense of quality and functionality. If you’re wrestling with these challenges, this post is written specifically for you.

To accompany this post, we developed an AWS prescriptive guidance (APG) pattern for developer instances and CI/CD pipelines: Mainframe Modernization: DevOps on AWS with Micro Focus.

Overview of solution

In the APG, we introduce DevOps automation and AWS CI/CD architecture to support mainframe application development. Our solution enables you to embrace both Test Driven Development (TDD) and Behavior Driven Development (BDD). Mainframe developers and testers can automate the tests in CI/CD pipelines so they’re repeatable and scalable. To speed up automated mainframe application tests, the solution uses team pipelines to run functional and integration tests frequently, and uses systems test pipelines to run comprehensive regression tests on demand. For more information about the pipelines, see Mainframe Modernization: DevOps on AWS with Micro Focus.

In this post, we focus on how to automate and scale mainframe application tests in AWS. We show you how to use AWS services and Micro Focus products to automate mainframe application tests with best practices. The solution can scale your mainframe application CI/CD pipeline to run thousands of tests in AWS within minutes, and you only pay a fraction of your current on-premises cost.

The following diagram illustrates the solution architecture.

Mainframe DevOps On AWS Architecture Overview, on the left is the conventional mainframe development environment, on the left is the CI/CD pipelines for mainframe tests in AWS

Figure: Mainframe DevOps On AWS Architecture Overview

 

Best practices

Before we get into the details of the solution, let’s recap the following mainframe application testing best practices:

  • Create a “test first” culture by writing tests for mainframe application code changes
  • Automate preparing and running tests in the CI/CD pipelines
  • Provide fast and quality feedback to project management throughout the SDLC
  • Assess and increase test coverage
  • Scale your test’s capacity and speed in line with your project schedule and requirements

Automated smoke test

In this architecture, mainframe developers can automate running functional smoke tests for new changes. This testing phase typically “smokes out” regression of core and critical business functions. You can achieve these tests using tools such as py3270 with x3270 or Robot Framework Mainframe 3270 Library.

The following code shows a feature test written in Behave and test step using py3270:

# home_loan_calculator.feature
Feature: calculate home loan monthly repayment
  the bankdemo application provides a monthly home loan repayment caculator 
  User need to input into transaction of home loan amount, interest rate and how many years of the loan maturity.
  User will be provided an output of home loan monthly repayment amount

  Scenario Outline: As a customer I want to calculate my monthly home loan repayment via a transaction
      Given home loan amount is <amount>, interest rate is <interest rate> and maturity date is <maturity date in months> months 
       When the transaction is submitted to the home loan calculator
       Then it shall show the monthly repayment of <monthly repayment>

    Examples: Homeloan
      | amount  | interest rate | maturity date in months | monthly repayment |
      | 1000000 | 3.29          | 300                     | $4894.31          |

 

# home_loan_calculator_steps.py
import sys, os
from py3270 import Emulator
from behave import *

@given("home loan amount is {amount}, interest rate is {rate} and maturity date is {maturity_date} months")
def step_impl(context, amount, rate, maturity_date):
    context.home_loan_amount = amount
    context.interest_rate = rate
    context.maturity_date_in_months = maturity_date

@when("the transaction is submitted to the home loan calculator")
def step_impl(context):
    # Setup connection parameters
    tn3270_host = os.getenv('TN3270_HOST')
    tn3270_port = os.getenv('TN3270_PORT')
	# Setup TN3270 connection
    em = Emulator(visible=False, timeout=120)
    em.connect(tn3270_host + ':' + tn3270_port)
    em.wait_for_field()
	# Screen login
    em.fill_field(10, 44, 'b0001', 5)
    em.send_enter()
	# Input screen fields for home loan calculator
    em.wait_for_field()
    em.fill_field(8, 46, context.home_loan_amount, 7)
    em.fill_field(10, 46, context.interest_rate, 7)
    em.fill_field(12, 46, context.maturity_date_in_months, 7)
    em.send_enter()
    em.wait_for_field()    

    # collect monthly replayment output from screen
    context.monthly_repayment = em.string_get(14, 46, 9)
    em.terminate()

@then("it shall show the monthly repayment of {amount}")
def step_impl(context, amount):
    print("expected amount is " + amount.strip() + ", and the result from screen is " + context.monthly_repayment.strip())
assert amount.strip() == context.monthly_repayment.strip()

To run this functional test in Micro Focus Enterprise Test Server (ETS), we use AWS CodeBuild.

We first need to build an Enterprise Test Server Docker image and push it to an Amazon Elastic Container Registry (Amazon ECR) registry. For instructions, see Using Enterprise Test Server with Docker.

Next, we create a CodeBuild project and uses the Enterprise Test Server Docker image in its configuration.

The following is an example AWS CloudFormation code snippet of a CodeBuild project that uses Windows Container and Enterprise Test Server:

  BddTestBankDemoStage:
    Type: AWS::CodeBuild::Project
    Properties:
      Name: !Sub '${AWS::StackName}BddTestBankDemo'
      LogsConfig:
        CloudWatchLogs:
          Status: ENABLED
      Artifacts:
        Type: CODEPIPELINE
        EncryptionDisabled: true
      Environment:
        ComputeType: BUILD_GENERAL1_LARGE
        Image: !Sub "${EnterpriseTestServerDockerImage}:latest"
        ImagePullCredentialsType: SERVICE_ROLE
        Type: WINDOWS_SERVER_2019_CONTAINER
      ServiceRole: !Ref CodeBuildRole
      Source:
        Type: CODEPIPELINE
        BuildSpec: bdd-test-bankdemo-buildspec.yaml

In the CodeBuild project, we need to create a buildspec to orchestrate the commands for preparing the Micro Focus Enterprise Test Server CICS environment and issue the test command. In the buildspec, we define the location for CodeBuild to look for test reports and upload them into the CodeBuild report group. The following buildspec code uses custom scripts DeployES.ps1 and StartAndWait.ps1 to start your CICS region, and runs Python Behave BDD tests:

version: 0.2
phases:
  build:
    commands:
      - |
        # Run Command to start Enterprise Test Server
        CD C:\
        .\DeployES.ps1
        .\StartAndWait.ps1

        py -m pip install behave

        Write-Host "waiting for server to be ready ..."
        do {
          Write-Host "..."
          sleep 3  
        } until(Test-NetConnection 127.0.0.1 -Port 9270 | ? { $_.TcpTestSucceeded } )

        CD C:\tests\features
        MD C:\tests\reports
        $Env:Path += ";c:\wc3270"

        $address=(Get-NetIPAddress -AddressFamily Ipv4 | where { $_.IPAddress -Match "172\.*" })
        $Env:TN3270_HOST = $address.IPAddress
        $Env:TN3270_PORT = "9270"
        
        behave.exe --color --junit --junit-directory C:\tests\reports
reports:
  bankdemo-bdd-test-report:
    files: 
      - '**/*'
    base-directory: "C:\\tests\\reports"

In the smoke test, the team may run both unit tests and functional tests. Ideally, these tests are better to run in parallel to speed up the pipeline. In AWS CodePipeline, we can set up a stage to run multiple steps in parallel. In our example, the pipeline runs both BDD tests and Robot Framework (RPA) tests.

The following CloudFormation code snippet runs two different tests. You use the same RunOrder value to indicate the actions run in parallel.

#...
        - Name: Tests
          Actions:
            - Name: RunBDDTest
              ActionTypeId:
                Category: Build
                Owner: AWS
                Provider: CodeBuild
                Version: 1
              Configuration:
                ProjectName: !Ref BddTestBankDemoStage
                PrimarySource: Config
              InputArtifacts:
                - Name: DemoBin
                - Name: Config
              RunOrder: 1
            - Name: RunRbTest
              ActionTypeId:
                Category: Build
                Owner: AWS
                Provider: CodeBuild
                Version: 1
              Configuration:
                ProjectName : !Ref RpaTestBankDemoStage
                PrimarySource: Config
              InputArtifacts:
                - Name: DemoBin
                - Name: Config
              RunOrder: 1  
#...

The following screenshot shows the example actions on the CodePipeline console that use the preceding code.

Screenshot of CodePipeine parallel execution tests using a same run order value

Figure – Screenshot of CodePipeine parallel execution tests

Both DBB and RPA tests produce jUnit format reports, which CodeBuild can ingest and show on the CodeBuild console. This is a great way for project management and business users to track the quality trend of an application. The following screenshot shows the CodeBuild report generated from the BDD tests.

CodeBuild report generated from the BDD tests showing 100% pass rate

Figure – CodeBuild report generated from the BDD tests

Automated regression tests

After you test the changes in the project team pipeline, you can automatically promote them to another stream with other team members’ changes for further testing. The scope of this testing stream is significantly more comprehensive, with a greater number and wider range of tests and higher volume of test data. The changes promoted to this stream by each team member are tested in this environment at the end of each day throughout the life of the project. This provides a high-quality delivery to production, with new code and changes to existing code tested together with hundreds or thousands of tests.

In enterprise architecture, it’s commonplace to see an application client consuming web services APIs exposed from a mainframe CICS application. One approach to do regression tests for mainframe applications is to use Micro Focus Verastream Host Integrator (VHI) to record and capture 3270 data stream processing and encapsulate these 3270 data streams as business functions, which in turn are packaged as web services. When these web services are available, they can be consumed by a test automation product, which in our environment is Micro Focus UFT One. This uses the Verastream server as the orchestration engine that translates the web service requests into 3270 data streams that integrate with the mainframe CICS application. The application is deployed in Micro Focus Enterprise Test Server.

The following diagram shows the end-to-end testing components.

Regression Test the end-to-end testing components using ECS Container for Exterprise Test Server, Verastream Host Integrator and UFT One Container, all integration points are using Elastic Network Load Balancer

Figure – Regression Test Infrastructure end-to-end Setup

To ensure we have the coverage required for large mainframe applications, we sometimes need to run thousands of tests against very large production volumes of test data. We want the tests to run faster and complete as soon as possible so we reduce AWS costs—we only pay for the infrastructure when consuming resources for the life of the test environment when provisioning and running tests.

Therefore, the design of the test environment needs to scale out. The batch feature in CodeBuild allows you to run tests in batches and in parallel rather than serially. Furthermore, our solution needs to minimize interference between batches, a failure in one batch doesn’t affect another running in parallel. The following diagram depicts the high-level design, with each batch build running in its own independent infrastructure. Each infrastructure is launched as part of test preparation, and then torn down in the post-test phase.

Regression Tests in CodeBuoild Project setup to use batch mode, three batches running in independent infrastructure with containers

Figure – Regression Tests in CodeBuoild Project setup to use batch mode

Building and deploying regression test components

Following the design of the parallel regression test environment, let’s look at how we build each component and how they are deployed. The followings steps to build our regression tests use a working backward approach, starting from deployment in the Enterprise Test Server:

  1. Create a batch build in CodeBuild.
  2. Deploy to Enterprise Test Server.
  3. Deploy the VHI model.
  4. Deploy UFT One Tests.
  5. Integrate UFT One into CodeBuild and CodePipeline and test the application.

Creating a batch build in CodeBuild

We update two components to enable a batch build. First, in the CodePipeline CloudFormation resource, we set BatchEnabled to be true for the test stage. The UFT One test preparation stage uses the CloudFormation template to create the test infrastructure. The following code is an example of the AWS CloudFormation snippet with batch build enabled:

#...
        - Name: SystemsTest
          Actions:
            - Name: Uft-Tests
              ActionTypeId:
                Category: Build
                Owner: AWS
                Provider: CodeBuild
                Version: 1
              Configuration:
                ProjectName : !Ref UftTestBankDemoProject
                PrimarySource: Config
                BatchEnabled: true
                CombineArtifacts: true
              InputArtifacts:
                - Name: Config
                - Name: DemoSrc
              OutputArtifacts:
                - Name: TestReport                
              RunOrder: 1
#...

Second, in the buildspec configuration of the test stage, we provide a build matrix setting. We use the custom environment variable TEST_BATCH_NUMBER to indicate which set of tests runs in each batch. See the following code:

version: 0.2
batch:
  fast-fail: true
  build-matrix:
    static:
      ignore-failure: false
    dynamic:
      env:
        variables:
          TEST_BATCH_NUMBER:
            - 1
            - 2
            - 3 
phases:
  pre_build:
commands:
#...

After setting up the batch build, CodeBuild creates multiple batches when the build starts. The following screenshot shows the batches on the CodeBuild console.

Regression tests Codebuild project ran in batch mode, three batches ran in prallel successfully

Figure – Regression tests Codebuild project ran in batch mode

Deploying to Enterprise Test Server

ETS is the transaction engine that processes all the online (and batch) requests that are initiated through external clients, such as 3270 terminals, web services, and websphere MQ. This engine provides support for various mainframe subsystems, such as CICS, IMS TM and JES, as well as code-level support for COBOL and PL/I. The following screenshot shows the Enterprise Test Server administration page.

Enterprise Server Administrator window showing configuration for CICS

Figure – Enterprise Server Administrator window

In this mainframe application testing use case, the regression tests are CICS transactions, initiated from 3270 requests (encapsulated in a web service). For more information about Enterprise Test Server, see the Enterprise Test Server and Micro Focus websites.

In the regression pipeline, after the stage of mainframe artifact compiling, we bake in the artifact into an ETS Docker container and upload the image to an Amazon ECR repository. This way, we have an immutable artifact for all the tests.

During each batch’s test preparation stage, a CloudFormation stack is deployed to create an Amazon ECS service on Windows EC2. The stack uses a Network Load Balancer as an integration point for the VHI’s integration.

The following code is an example of the CloudFormation snippet to create an Amazon ECS service using an Enterprise Test Server Docker image:

#...
  EtsService:
    DependsOn:
    - EtsTaskDefinition
    - EtsContainerSecurityGroup
    - EtsLoadBalancerListener
    Properties:
      Cluster: !Ref 'WindowsEcsClusterArn'
      DesiredCount: 1
      LoadBalancers:
        -
          ContainerName: !Sub "ets-${AWS::StackName}"
          ContainerPort: 9270
          TargetGroupArn: !Ref EtsPort9270TargetGroup
      HealthCheckGracePeriodSeconds: 300          
      TaskDefinition: !Ref 'EtsTaskDefinition'
    Type: "AWS::ECS::Service"

  EtsTaskDefinition:
    Properties:
      ContainerDefinitions:
        -
          Image: !Sub "${AWS::AccountId}.dkr.ecr.us-east-1.amazonaws.com/systems-test/ets:latest"
          LogConfiguration:
            LogDriver: awslogs
            Options:
              awslogs-group: !Ref 'SystemsTestLogGroup'
              awslogs-region: !Ref 'AWS::Region'
              awslogs-stream-prefix: ets
          Name: !Sub "ets-${AWS::StackName}"
          cpu: 4096
          memory: 8192
          PortMappings:
            -
              ContainerPort: 9270
          EntryPoint:
          - "powershell.exe"
          Command: 
          - '-F'
          - .\StartAndWait.ps1
          - 'bankdemo'
          - C:\bankdemo\
          - 'wait'
      Family: systems-test-ets
    Type: "AWS::ECS::TaskDefinition"
#...

Deploying the VHI model

In this architecture, the VHI is a bridge between mainframe and clients.

We use the VHI designer to capture the 3270 data streams and encapsulate the relevant data streams into a business function. We can then deliver this function as a web service that can be consumed by a test management solution, such as Micro Focus UFT One.

The following screenshot shows the setup for getCheckingDetails in VHI. Along with this procedure we can also see other procedures (eg calcCostLoan) defined that get generated as a web service. The properties associated with this procedure are available on this screen to allow for the defining of the mapping of the fields between the associated 3270 screens and exposed web service.

example of VHI designer to capture the 3270 data streams and encapsulate the relevant data streams into a business function getCheckingDetails

Figure – Setup for getCheckingDetails in VHI

The following screenshot shows the editor for this procedure and is initiated by the selection of the Procedure Editor. This screen presents the 3270 screens that are involved in the business function that will be generated as a web service.

VHI designer Procedure Editor shows the procedure

Figure – VHI designer Procedure Editor shows the procedure

After you define the required functional web services in VHI designer, the resultant model is saved and deployed into a VHI Docker image. We use this image and the associated model (from VHI designer) in the pipeline outlined in this post.

For more information about VHI, see the VHI website.

The pipeline contains two steps to deploy a VHI service. First, it installs and sets up the VHI models into a VHI Docker image, and it’s pushed into Amazon ECR. Second, a CloudFormation stack is deployed to create an Amazon ECS Fargate service, which uses the latest built Docker image. In AWS CloudFormation, the VHI ECS task definition defines an environment variable for the ETS Network Load Balancer’s DNS name. Therefore, the VHI can bootstrap and point to an ETS service. In the VHI stack, it uses a Network Load Balancer as an integration point for UFT One test integration.

The following code is an example of a ECS Task Definition CloudFormation snippet that creates a VHI service in Amazon ECS Fargate and integrates it with an ETS server:

#...
  VhiTaskDefinition:
    DependsOn:
    - EtsService
    Type: AWS::ECS::TaskDefinition
    Properties:
      Family: systems-test-vhi
      NetworkMode: awsvpc
      RequiresCompatibilities:
        - FARGATE
      ExecutionRoleArn: !Ref FargateEcsTaskExecutionRoleArn
      Cpu: 2048
      Memory: 4096
      ContainerDefinitions:
        - Cpu: 2048
          Name: !Sub "vhi-${AWS::StackName}"
          Memory: 4096
          Environment:
            - Name: esHostName 
              Value: !GetAtt EtsInternalLoadBalancer.DNSName
            - Name: esPort
              Value: 9270
          Image: !Ref "${AWS::AccountId}.dkr.ecr.us-east-1.amazonaws.com/systems-test/vhi:latest"
          PortMappings:
            - ContainerPort: 9680
          LogConfiguration:
            LogDriver: awslogs
            Options:
              awslogs-group: !Ref 'SystemsTestLogGroup'
              awslogs-region: !Ref 'AWS::Region'
              awslogs-stream-prefix: vhi

#...

Deploying UFT One Tests

UFT One is a test client that uses each of the web services created by the VHI designer to orchestrate running each of the associated business functions. Parameter data is supplied to each function, and validations are configured against the data returned. Multiple test suites are configured with different business functions with the associated data.

The following screenshot shows the test suite API_Bankdemo3, which is used in this regression test process.

the screenshot shows the test suite API_Bankdemo3 in UFT One test setup console, the API setup for getCheckingDetails

Figure – API_Bankdemo3 in UFT One Test Editor Console

For more information, see the UFT One website.

Integrating UFT One and testing the application

The last step is to integrate UFT One into CodeBuild and CodePipeline to test our mainframe application. First, we set up CodeBuild to use a UFT One container. The Docker image is available in Docker Hub. Then we author our buildspec. The buildspec has the following three phrases:

  • Setting up a UFT One license and deploying the test infrastructure
  • Starting the UFT One test suite to run regression tests
  • Tearing down the test infrastructure after tests are complete

The following code is an example of a buildspec snippet in the pre_build stage. The snippet shows the command to activate the UFT One license:

version: 0.2
batch: 
# . . .
phases:
  pre_build:
    commands:
      - |
        # Activate License
        $process = Start-Process -NoNewWindow -RedirectStandardOutput LicenseInstall.log -Wait -File 'C:\Program Files (x86)\Micro Focus\Unified Functional Testing\bin\HP.UFT.LicenseInstall.exe' -ArgumentList @('concurrent', 10600, 1, ${env:AUTOPASS_LICENSE_SERVER})        
        Get-Content -Path LicenseInstall.log
        if (Select-String -Path LicenseInstall.log -Pattern 'The installation was successful.' -Quiet) {
          Write-Host 'Licensed Successfully'
        } else {
          Write-Host 'License Failed'
          exit 1
        }
#...

The following command in the buildspec deploys the test infrastructure using the AWS Command Line Interface (AWS CLI)

aws cloudformation deploy --stack-name $stack_name `
--template-file cicd-pipeline/systems-test-pipeline/systems-test-service.yaml `
--parameter-overrides EcsCluster=$cluster_arn `
--capabilities CAPABILITY_IAM

Because ETS and VHI are both deployed with a load balancer, the build detects when the load balancers become healthy before starting the tests. The following AWS CLI commands detect the load balancer’s target group health:

$vhi_health_state = (aws elbv2 describe-target-health --target-group-arn $vhi_target_group_arn --query 'TargetHealthDescriptions[0].TargetHealth.State' --output text)
$ets_health_state = (aws elbv2 describe-target-health --target-group-arn $ets_target_group_arn --query 'TargetHealthDescriptions[0].TargetHealth.State' --output text)          

When the targets are healthy, the build moves into the build stage, and it uses the UFT One command line to start the tests. See the following code:

$process = Start-Process -Wait  -NoNewWindow -RedirectStandardOutput UFTBatchRunnerCMD.log `
-FilePath "C:\Program Files (x86)\Micro Focus\Unified Functional Testing\bin\UFTBatchRunnerCMD.exe" `
-ArgumentList @("-source", "${env:CODEBUILD_SRC_DIR_DemoSrc}\bankdemo\tests\API_Bankdemo\API_Bankdemo${env:TEST_BATCH_NUMBER}")

The next release of Micro Focus UFT One (November or December 2020) will provide an exit status to indicate a test’s success or failure.

When the tests are complete, the post_build stage tears down the test infrastructure. The following AWS CLI command tears down the CloudFormation stack:


#...
	post_build:
	  finally:
	  	- |
		  Write-Host "Clean up ETS, VHI Stack"
		  #...
		  aws cloudformation delete-stack --stack-name $stack_name
          aws cloudformation wait stack-delete-complete --stack-name $stack_name

At the end of the build, the buildspec is set up to upload UFT One test reports as an artifact into Amazon Simple Storage Service (Amazon S3). The following screenshot is the example of a test report in HTML format generated by UFT One in CodeBuild and CodePipeline.

UFT One HTML report shows regression testresult and test detals

Figure – UFT One HTML report

A new release of Micro Focus UFT One will provide test report formats supported by CodeBuild test report groups.

Conclusion

In this post, we introduced the solution to use Micro Focus Enterprise Suite, Micro Focus UFT One, Micro Focus VHI, AWS developer tools, and Amazon ECS containers to automate provisioning and running mainframe application tests in AWS at scale.

The on-demand model allows you to create the same test capacity infrastructure in minutes at a fraction of your current on-premises mainframe cost. It also significantly increases your testing and delivery capacity to increase quality and reduce production downtime.

A demo of the solution is available in AWS Partner Micro Focus website AWS Mainframe CI/CD Enterprise Solution. If you’re interested in modernizing your mainframe applications, please visit Micro Focus and contact AWS mainframe business development at [email protected].

References

Micro Focus

 

Peter Woods

Peter Woods

Peter has been with Micro Focus for almost 30 years, in a variety of roles and geographies including Technical Support, Channel Sales, Product Management, Strategic Alliances Management and Pre-Sales, primarily based in Europe but for the last four years in Australia and New Zealand. In his current role as Pre-Sales Manager, Peter is charged with driving and supporting sales activity within the Application Modernization and Connectivity team, based in Melbourne.

Leo Ervin

Leo Ervin

Leo Ervin is a Senior Solutions Architect working with Micro Focus Enterprise Solutions working with the ANZ team. After completing a Mathematics degree Leo started as a PL/1 programming with a local insurance company. The next step in Leo’s career involved consulting work in PL/1 and COBOL before he joined a start-up company as a technical director and partner. This company became the first distributor of Micro Focus software in the ANZ region in 1986. Leo’s involvement with Micro Focus technology has continued from this distributorship through to today with his current focus on cloud strategies for both DevOps and re-platform implementations.

Kevin Yung

Kevin Yung

Kevin is a Senior Modernization Architect in AWS Professional Services Global Mainframe and Midrange Modernization (GM3) team. Kevin currently is focusing on leading and delivering mainframe and midrange applications modernization for large enterprise customers.

Rapid and flexible Infrastructure as Code using the AWS CDK with AWS Solutions Constructs

Post Syndicated from Biff Gaut original https://aws.amazon.com/blogs/devops/rapid-flexible-infrastructure-with-solutions-constructs-cdk/

Introduction

As workloads move to the cloud and all infrastructure becomes virtual, infrastructure as code (IaC) becomes essential to leverage the agility of this new world. JSON and YAML are the powerful, declarative modeling languages of AWS CloudFormation, allowing you to define complex architectures using IaC. Just as higher level languages like BASIC and C abstracted away the details of assembly language and made developers more productive, the AWS Cloud Development Kit (AWS CDK) provides a programming model above the native template languages, a model that makes developers more productive when creating IaC. When you instantiate CDK objects in your Typescript (or Python, Java, etc.) application, those objects “compile” into a YAML template that the CDK deploys as an AWS CloudFormation stack.

AWS Solutions Constructs take this simplification a step further by providing a library of common service patterns built on top of the CDK. These multi-service patterns allow you to deploy multiple resources with a single object, resources that follow best practices by default – both independently and throughout their interaction.

Comparison of an Application stack with Assembly Language, 4th generation language and Object libraries such as Hibernate with an IaC stack of CloudFormation, AWS CDK and AWS Solutions Constructs

Application Development Stack vs. IaC Development Stack

Solution overview

To demonstrate how using Solutions Constructs can accelerate the development of IaC, in this post you will create an architecture that ingests and stores sensor readings using Amazon Kinesis Data Streams, AWS Lambda, and Amazon DynamoDB.

An architecture diagram showing sensor readings being sent to a Kinesis data stream. A Lambda function will receive the Kinesis records and store them in a DynamoDB table.

Prerequisite – Setting up the CDK environment

Tip – If you want to try this example but are concerned about the impact of changing the tools or versions on your workstation, try running it on AWS Cloud9. An AWS Cloud9 environment is launched with an AWS Identity and Access Management (AWS IAM) role and doesn’t require configuring with an access key. It uses the current region as the default for all CDK infrastructure.

To prepare your workstation for CDK development, confirm the following:

  • Node.js 10.3.0 or later is installed on your workstation (regardless of the language used to write CDK apps).
  • You have configured credentials for your environment. If you’re running locally you can do this by configuring the AWS Command Line Interface (AWS CLI).
  • TypeScript 2.7 or later is installed globally (npm -g install typescript)

Before creating your CDK project, install the CDK toolkit using the following command:

npm install -g aws-cdk

Create the CDK project

  1. First create a project folder called stream-ingestion with these two commands:

mkdir stream-ingestion
cd stream-ingestion

  1. Now create your CDK application using this command:

npx [email protected] init app --language=typescript

Tip – This example will be written in TypeScript – you can also specify other languages for your projects.

At this time, you must use the same version of the CDK and Solutions Constructs. We’re using version 1.68.0 of both based upon what’s available at publication time, but you can update this with a later version for your projects in the future.

Let’s explore the files in the application this command created:

  • bin/stream-ingestion.ts – This is the module that launches the application. The key line of code is:

new StreamIngestionStack(app, 'StreamIngestionStack');

This creates the actual stack, and it’s in StreamIngestionStack that you will write the CDK code that defines the resources in your architecture.

  • lib/stream-ingestion-stack.ts – This is the important class. In the constructor of StreamIngestionStack you will add the constructs that will create your architecture.

During the deployment process, the CDK uploads your Lambda function to an Amazon S3 bucket so it can be incorporated into your stack.

  1. To create that S3 bucket and any other infrastructure the CDK requires, run this command:

cdk bootstrap

The CDK uses the same supporting infrastructure for all projects within a region, so you only need to run the bootstrap command once in any region in which you create CDK stacks.

  1. To install the required Solutions Constructs packages for our architecture, run the these two commands from the command line:

npm install @aws-solutions-constructs/[email protected]
npm install @aws-solutions-constructs/[email protected]

Write the code

First you will write the Lambda function that processes the Kinesis data stream messages.

  1. Create a folder named lambda under stream-ingestion
  2. Within the lambda folder save a file called lambdaFunction.js with the following contents:
var AWS = require("aws-sdk");

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

AWS.config.update({ region: process.env.AWS_REGION });

// We will configure our construct to 
// look for the .handler function
exports.handler = async function (event) {
  try {
    // Kinesis will deliver records 
    // in batches, so we need to iterate through
    // each record in the batch
    for (let record of event.Records) {
      const reading = parsePayload(record.kinesis.data);
      await writeRecord(record.kinesis.partitionKey, reading);
    };
  } catch (err) {
    console.log(`Write failed, err:\n${JSON.stringify(err, null, 2)}`);
    throw err;
  }
  return;
};

// Write the provided sensor reading data to the DynamoDB table
async function writeRecord(partitionKey, reading) {

  var params = {
    // Notice that Constructs automatically sets up 
    // an environment variable with the table name.
    TableName: process.env.DDB_TABLE_NAME,
    Item: {
      partitionKey: { S: partitionKey },  // sensor Id
      timestamp: { S: reading.timestamp },
      value: { N: reading.value}
    },
  };

  // Call DynamoDB to add the item to the table
  await ddb.putItem(params).promise();
}

// Decode the payload and extract the sensor data from it
function parsePayload(payload) {

  const decodedPayload = Buffer.from(payload, "base64").toString(
    "ascii"
  );

  // Our CLI command will send the records to Kinesis
  // with the values delimited by '|'
  const payloadValues = decodedPayload.split("|", 2)
  return {
    value: payloadValues[0],
    timestamp: payloadValues[1]
  }
}

We won’t spend a lot of time explaining this function – it’s pretty straightforward and heavily commented. It receives an event with one or more sensor readings, and for each reading it extracts the pertinent data and saves it to the DynamoDB table.

You will use two Solutions Constructs to create your infrastructure:

The aws-kinesisstreams-lambda construct deploys an Amazon Kinesis data stream and a Lambda function.

  • aws-kinesisstreams-lambda creates the Kinesis data stream and Lambda function that subscribes to that stream. To support this, it also creates other resources, such as IAM roles and encryption keys.

The aws-lambda-dynamodb construct deploys a Lambda function and a DynamoDB table.

  • aws-lambda-dynamodb creates an Amazon DynamoDB table and a Lambda function with permission to access the table.
  1. To deploy the first of these two constructs, replace the code in lib/stream-ingestion-stack.ts with the following code:
import * as cdk from "@aws-cdk/core";
import * as lambda from "@aws-cdk/aws-lambda";
import { KinesisStreamsToLambda } from "@aws-solutions-constructs/aws-kinesisstreams-lambda";

import * as ddb from "@aws-cdk/aws-dynamodb";
import { LambdaToDynamoDB } from "@aws-solutions-constructs/aws-lambda-dynamodb";

export class StreamIngestionStack extends cdk.Stack {
  constructor(scope: cdk.Construct, id: string, props?: cdk.StackProps) {
    super(scope, id, props);

    const kinesisLambda = new KinesisStreamsToLambda(
      this,
      "KinesisLambdaConstruct",
      {
        lambdaFunctionProps: {
          // Where the CDK can find the lambda function code
          runtime: lambda.Runtime.NODEJS_10_X,
          handler: "lambdaFunction.handler",
          code: lambda.Code.fromAsset("lambda"),
        },
      }
    );

    // Next Solutions Construct goes here
  }
}

Let’s explore this code:

  • It instantiates a new KinesisStreamsToLambda object. This Solutions Construct will launch a new Kinesis data stream and a new Lambda function, setting up the Lambda function to receive all the messages in the Kinesis data stream. It will also deploy all the additional resources and policies required for the architecture to follow best practices.
  • The third argument to the constructor is the properties object, where you specify overrides of default values or any other information the construct needs. In this case you provide properties for the encapsulated Lambda function that informs the CDK where to find the code for the Lambda function that you stored as lambda/lambdaFunction.js earlier.
  1. Now you’ll add the second construct that connects the Lambda function to a new DynamoDB table. In the same lib/stream-ingestion-stack.ts file, replace the line // Next Solutions Construct goes here with the following code:
    // Define the primary key for the new DynamoDB table
    const primaryKeyAttribute: ddb.Attribute = {
      name: "partitionKey",
      type: ddb.AttributeType.STRING,
    };

    // Define the sort key for the new DynamoDB table
    const sortKeyAttribute: ddb.Attribute = {
      name: "timestamp",
      type: ddb.AttributeType.STRING,
    };

    const lambdaDynamoDB = new LambdaToDynamoDB(
      this,
      "LambdaDynamodbConstruct",
      {
        // Tell construct to use the Lambda function in
        // the first construct rather than deploy a new one
        existingLambdaObj: kinesisLambda.lambdaFunction,
        tablePermissions: "Write",
        dynamoTableProps: {
          partitionKey: primaryKeyAttribute,
          sortKey: sortKeyAttribute,
          billingMode: ddb.BillingMode.PROVISIONED,
          removalPolicy: cdk.RemovalPolicy.DESTROY
        },
      }
    );

    // Add autoscaling
    const readScaling = lambdaDynamoDB.dynamoTable.autoScaleReadCapacity({
      minCapacity: 1,
      maxCapacity: 50,
    });

    readScaling.scaleOnUtilization({
      targetUtilizationPercent: 50,
    });

Let’s explore this code:

  • The first two const objects define the names and types for the partition key and sort key of the DynamoDB table.
  • The LambdaToDynamoDB construct instantiated creates a new DynamoDB table and grants access to your Lambda function. The key to this call is the properties object you pass in the third argument.
    • The first property sent to LambdaToDynamoDB is existingLambdaObj – by setting this value to the Lambda function created by KinesisStreamsToLambda, you’re telling the construct to not create a new Lambda function, but to grant the Lambda function in the other Solutions Construct access to the DynamoDB table. This illustrates how you can chain many Solutions Constructs together to create complex architectures.
    • The second property sent to LambdaToDynamoDB tells the construct to limit the Lambda function’s access to the table to write only.
    • The third property sent to LambdaToDynamoDB is actually a full properties object defining the DynamoDB table. It provides the two attribute definitions you created earlier as well as the billing mode. It also sets the RemovalPolicy to DESTROY. This policy setting ensures that the table is deleted when you delete this stack – in most cases you should accept the default setting to protect your data.
  • The last two lines of code show how you can use statements to modify a construct outside the constructor. In this case we set up auto scaling on the new DynamoDB table, which we can access with the dynamoTable property on the construct we just instantiated.

That’s all it takes to create the all resources to deploy your architecture.

  1. Save all the files, then compile the Typescript into a CDK program using this command:

npm run build

  1. Finally, launch the stack using this command:

cdk deploy

(Enter “y” in response to Do you wish to deploy all these changes (y/n)?)

You will see some warnings where you override CDK default values. Because you are doing this intentionally you may disregard these, but it’s always a good idea to review these warnings when they occur.

Tip – Many mysterious CDK project errors stem from mismatched versions. If you get stuck on an inexplicable error, check package.json and confirm that all CDK and Solutions Constructs libraries have the same version number (with no leading caret ^). If necessary, correct the version numbers, delete the package-lock.json file and node_modules tree and run npm install. Think of this as the “turn it off and on again” first response to CDK errors.

You have now deployed the entire architecture for the demo – open the CloudFormation stack in the AWS Management Console and take a few minutes to explore all 12 resources that the program deployed (and the 380 line template generated to created them).

Feed the Stream

Now use the CLI to send some data through the stack.

Go to the Kinesis Data Streams console and copy the name of the data stream. Replace the stream name in the following command and run it from the command line.

aws kinesis put-records \
--stream-name StreamIngestionStack-KinesisLambdaConstructKinesisStreamXXXXXXXX-XXXXXXXXXXXX \
--records \
PartitionKey=1301,'Data=15.4|2020-08-22T01:16:36+00:00' \
PartitionKey=1503,'Data=39.1|2020-08-22T01:08:15+00:00'

Tip – If you are using the AWS CLI v2, the previous command will result in an “Invalid base64…” error because v2 expects the inputs to be Base64 encoded by default. Adding the argument --cli-binary-format raw-in-base64-out will fix the issue.

To confirm that the messages made it through the service, open the DynamoDB console – you should see the two records in the table.

Now that you’ve got it working, pause to think about what you just did. You deployed a system that can ingest and store sensor readings and scale to handle heavy loads. You did that by instantiating two objects – well under 60 lines of code. Experiment with changing some property values and deploying the changes by running npm run build and cdk deploy again.

Cleanup

To clean up the resources in the stack, run this command:

cdk destroy

Conclusion

Just as languages like BASIC and C allowed developers to write programs at a higher level of abstraction than assembly language, the AWS CDK and AWS Solutions Constructs allow us to create CloudFormation stacks in Typescript, Java, or Python instead JSON or YAML. Just as there will always be a place for assembly language, there will always be situations where we want to write CloudFormation templates manually – but for most situations, we can now use the AWS CDK and AWS Solutions Constructs to create complex and complete architectures in a fraction of the time with very little code.

AWS Solutions Constructs can currently be used in CDK applications written in Typescript, Javascript, Java and Python and will be available in C# applications soon.

About the Author

Biff Gaut has been shipping software since 1983, from small startups to large IT shops. Along the way he has contributed to 2 books, spoken at several conferences and written many blog posts. He is now a Principal Solutions Architect at AWS working on the AWS Solutions Constructs team, helping customers deploy better architectures more quickly.

Building a cross-account CI/CD pipeline for single-tenant SaaS solutions

Post Syndicated from Rafael Ramos original https://aws.amazon.com/blogs/devops/cross-account-ci-cd-pipeline-single-tenant-saas/

With the increasing demand from enterprise customers for a pay-as-you-go consumption model, more and more independent software vendors (ISVs) are shifting their business model towards software as a service (SaaS). Usually this kind of solution is architected using a multi-tenant model. It means that the infrastructure resources and applications are shared across multiple customers, with mechanisms in place to isolate their environments from each other. However, you may not want or can’t afford to share resources for security or compliance reasons, so you need a single-tenant environment.

To achieve this higher level of segregation across the tenants, it’s recommended to isolate the environments on the AWS account level. This strategy brings benefits, such as no network overlapping, no account limits sharing, and simplified usage tracking and billing, but it comes with challenges from an operational standpoint. Whereas multi-tenant solutions require management of a single shared production environment, single-tenant installations consist of dedicated production environments for each customer, without any shared resources across the tenants. When the number of tenants starts to grow, delivering new features at a rapid pace becomes harder to accomplish, because each new version needs to be manually deployed on each tenant environment.

This post describes how to automate this deployment process to deliver software quickly, securely, and less error-prone for each existing tenant. I demonstrate all the steps to build and configure a CI/CD pipeline using AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, and AWS CloudFormation. For each new version, the pipeline automatically deploys the same application version on the multiple tenant AWS accounts.

There are different caveats to build such cross-account CI/CD pipelines on AWS. Because of that, I use AWS Command Line Interface (AWS CLI) to manually go through the process and demonstrate in detail the various configuration aspects you have to handle, such as artifact encryption, cross-account permission granting, and pipeline actions.

Single-tenancy vs. multi-tenancy

One of the first aspects to consider when architecting your SaaS solution is its tenancy model. Each brings their own benefits and architectural challenges. On multi-tenant installations, each customer shares the same set of resources, including databases and applications. With this mode, you can use the servers’ capacity more efficiently, which generally leads to significant cost-saving opportunities. On the other hand, you have to carefully secure your solution to prevent a customer from accessing sensitive data from another. Designing for high availability becomes even more critical on multi-tenant workloads, because more customers are affected in the event of downtime.

Because the environments are by definition isolated from each other, single-tenant solutions are simpler to design when it comes to security, networking isolation, and data segregation. Likewise, you can customize the applications per customer, and have different versions for specific tenants. You also have the advantage of eliminating the noisy-neighbor effect, and can plan the infrastructure for the customer’s scalability requirements. As a drawback, in comparison with multi-tenant, the single-tenant model is operationally more complex because you have more servers and applications to maintain.

Which tenancy model to choose depends ultimately on whether you can meet your customer needs. They might have specific governance requirements, be bound to a certain industry regulation, or have compliance criteria that influences which model they can choose. For more information about modeling your SaaS solutions, see SaaS on AWS.

Solution overview

To demonstrate this solution, I consider a fictitious single-tenant ISV with two customers: Unicorn and Gnome. It uses one central account where the tools reside (Tooling account), and two other accounts, each representing a tenant (Unicorn and Gnome accounts). As depicted in the following architecture diagram, when a developer pushes code changes to CodeCommit, Amazon CloudWatch Events  triggers the CodePipeline CI/CD pipeline, which automatically deploys a new version on each tenant’s AWS account. It ensures that the fictitious ISV doesn’t have the operational burden to manually re-deploy the same version for each end-customers.

Architecture diagram of a CI/CD pipeline for single-tenant SaaS solutions

For illustration purposes, the sample application I use in this post is an AWS Lambda function that returns a simple JSON object when invoked.

Prerequisites

Before getting started, you must have the following prerequisites:

Setting up the Git repository

Your first step is to set up your Git repository.

  1. Create a CodeCommit repository to host the source code.

The CI/CD pipeline is automatically triggered every time new code is pushed to that repository.

  1. Make sure Git is configured to use IAM credentials to access AWS CodeCommit via HTTP by running the following command from the terminal:
git config --global credential.helper '!aws codecommit credential-helper [email protected]'
git config --global credential.UseHttpPath true
  1. Clone the newly created repository locally, and add two files in the root folder: index.js and application.yaml.

The first file is the JavaScript code for the Lambda function that represents the sample application. For our use case, the function returns a JSON response object with statusCode: 200 and the body Hello!\n. See the following code:

exports.handler = async (event) => {
    const response = {
        statusCode: 200,
        body: `Hello!\n`,
    };
    return response;
};

The second file is where the infrastructure is defined using AWS CloudFormation. The sample application consists of a Lambda function, and we use AWS Serverless Application Model (AWS SAM) to simplify the resources creation. See the following code:

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'
Description: Sample Application.

Parameters:
    S3Bucket:
        Type: String
    S3Key:
        Type: String
    ApplicationName:
        Type: String
        
Resources:
    SampleApplication:
        Type: 'AWS::Serverless::Function'
        Properties:
            FunctionName: !Ref ApplicationName
            Handler: index.handler
            Runtime: nodejs12.x
            CodeUri:
                Bucket: !Ref S3Bucket
                Key: !Ref S3Key
            Description: Hello Lambda.
            MemorySize: 128
            Timeout: 10
  1. Push both files to the remote Git repository.

Creating the artifact store encryption key

By default, CodePipeline uses server-side encryption with an AWS Key Management Service (AWS KMS) managed customer master key (CMK) to encrypt the release artifacts. Because the Unicorn and Gnome accounts need to decrypt those release artifacts, you need to create a customer managed CMK in the Tooling account.

From the terminal, run the following command to create the artifact encryption key:

aws kms create-key --region <YOUR_REGION>

This command returns a JSON object with the key ARN property if run successfully. Its format is similar to arn:aws:kms:<YOUR_REGION>:<TOOLING_ACCOUNT_ID>:key/<KEY_ID>. Record this value to use in the following steps.

The encryption key has been created manually for educational purposes only, but it’s considered a best practice to have it as part of the Infrastructure as Code (IaC) bundle.

Creating an Amazon S3 artifact store and configuring a bucket policy

Our use case uses Amazon Simple Storage Service (Amazon S3) as artifact store. Every release artifact is encrypted and stored as an object in an S3 bucket that lives in the Tooling account.

To create and configure the artifact store, follow these steps in the Tooling account:

  1. From the terminal, create an S3 bucket and give it a unique name:
aws s3api create-bucket \
    --bucket <BUCKET_UNIQUE_NAME> \
    --region <YOUR_REGION> \
    --create-bucket-configuration LocationConstraint=<YOUR_REGION>
  1. Configure the bucket to use the customer managed CMK created in the previous step. This makes sure the objects stored in this bucket are encrypted using that key, replacing <KEY_ARN> with the ARN property from the previous step:
aws s3api put-bucket-encryption \
    --bucket <BUCKET_UNIQUE_NAME> \
    --server-side-encryption-configuration \
        '{
            "Rules": [
                {
                    "ApplyServerSideEncryptionByDefault": {
                        "SSEAlgorithm": "aws:kms",
                        "KMSMasterKeyID": "<KEY_ARN>"
                    }
                }
            ]
        }'
  1. The artifacts stored in the bucket need to be accessed from the Unicorn and Gnome Configure the bucket policies to allow cross-account access:
aws s3api put-bucket-policy \
    --bucket <BUCKET_UNIQUE_NAME> \
    --policy \
        '{
            "Version": "2012-10-17",
            "Statement": [
                {
                    "Action": [
                        "s3:GetBucket*",
                        "s3:List*"
                    ],
                    "Effect": "Allow",
                    "Principal": {
                        "AWS": [
                            "arn:aws:iam::<UNICORN_ACCOUNT_ID>:root",
                            "arn:aws:iam::<GNOME_ACCOUNT_ID>:root"
                        ]
                    },
                    "Resource": [
                        "arn:aws:s3:::<BUCKET_UNIQUE_NAME>"
                    ]
                },
                {
                    "Action": [
                        "s3:GetObject*"
                    ],
                    "Effect": "Allow",
                    "Principal": {
                        "AWS": [
                            "arn:aws:iam::<UNICORN_ACCOUNT_ID>:root",
                            "arn:aws:iam::<GNOME_ACCOUNT_ID>:root"
                        ]
                    },
                    "Resource": [
                        "arn:aws:s3:::<BUCKET_UNIQUE_NAME>/CrossAccountPipeline/*"
                    ]
                }
            ]
        }' 

This S3 bucket has been created manually for educational purposes only, but it’s considered a best practice to have it as part of the IaC bundle.

Creating a cross-account IAM role in each tenant account

Following the security best practice of granting least privilege, each action declared on CodePipeline should have its own IAM role.  For this use case, the pipeline needs to perform changes in the Unicorn and Gnome accounts from the Tooling account, so you need to create a cross-account IAM role in each tenant account.

Repeat the following steps for each tenant account to allow CodePipeline to assume role in those accounts:

  1. Configure a named CLI profile for the tenant account to allow running commands using the correct access keys.
  2. Create an IAM role that can be assumed from another AWS account, replacing <TENANT_PROFILE_NAME> with the profile name you defined in the previous step:
aws iam create-role \
    --role-name CodePipelineCrossAccountRole \
    --profile <TENANT_PROFILE_NAME> \
    --assume-role-policy-document \
        '{
            "Version": "2012-10-17",
            "Statement": [
                {
                    "Effect": "Allow",
                    "Principal": {
                        "AWS": "arn:aws:iam::<TOOLING_ACCOUNT_ID>:root"
                    },
                    "Action": "sts:AssumeRole"
                }
            ]
        }'
  1. Create an IAM policy that grants access to the artifact store S3 bucket and to the artifact encryption key:
aws iam create-policy \
    --policy-name CodePipelineCrossAccountArtifactReadPolicy \
    --profile <TENANT_PROFILE_NAME> \
    --policy-document \
        '{
            "Version": "2012-10-17",
            "Statement": [
                {
                    "Action": [
                        "s3:GetBucket*",
                        "s3:ListBucket"
                    ],
                    "Resource": [
                        "arn:aws:s3:::<BUCKET_UNIQUE_NAME>"
                    ],
                    "Effect": "Allow"
                },
                {
                    "Action": [
                        "s3:GetObject*",
                        "s3:Put*"
                    ],
                    "Resource": [
                        "arn:aws:s3:::<BUCKET_UNIQUE_NAME>/CrossAccountPipeline/*"
                    ],
                    "Effect": "Allow"
                },
                {
                    "Action": [ 
                        "kms:DescribeKey", 
                        "kms:GenerateDataKey*", 
                        "kms:Encrypt", 
                        "kms:ReEncrypt*", 
                        "kms:Decrypt" 
                    ], 
                    "Resource": "<KEY_ARN>",
                    "Effect": "Allow"
                }
            ]
        }'
  1. Attach the CodePipelineCrossAccountArtifactReadPolicy IAM policy to the CodePipelineCrossAccountRole IAM role:
aws iam attach-role-policy \
    --profile <TENANT_PROFILE_NAME> \
    --role-name CodePipelineCrossAccountRole \
    --policy-arn arn:aws:iam::<TENANT_ACCOUNT_ID>:policy/CodePipelineCrossAccountArtifactReadPolicy
  1. Create an IAM policy that allows to pass the IAM role CloudFormationDeploymentRole to CloudFormation and to perform CloudFormation actions on the application Stack:
aws iam create-policy \
    --policy-name CodePipelineCrossAccountCfnPolicy \
    --profile <TENANT_PROFILE_NAME> \
    --policy-document \
        '{
            "Version": "2012-10-17",
            "Statement": [
                {
                    "Action": [
                        "iam:PassRole"
                    ],
                    "Resource": "arn:aws:iam::<TENANT_ACCOUNT_ID>:role/CloudFormationDeploymentRole",
                    "Effect": "Allow"
                },
                {
                    "Action": [
                        "cloudformation:*"
                    ],
                    "Resource": "arn:aws:cloudformation:<YOUR_REGION>:<TENANT_ACCOUNT_ID>:stack/SampleApplication*/*",
                    "Effect": "Allow"
                }
            ]
        }'
  1. Attach the CodePipelineCrossAccountCfnPolicy IAM policy to the CodePipelineCrossAccountRole IAM role:
aws iam attach-role-policy \
    --profile <TENANT_PROFILE_NAME> \
    --role-name CodePipelineCrossAccountRole \
    --policy-arn arn:aws:iam::<TENANT_ACCOUNT_ID>:policy/CodePipelineCrossAccountCfnPolicy

Additional configuration is needed in the Tooling account to allow access, which you complete later on.

Creating a deployment IAM role in each tenant account

After CodePipeline assumes the CodePipelineCrossAccountRole IAM role into the tenant account, it triggers AWS CloudFormation to provision the infrastructure based on the template defined in the application.yaml file. For that, AWS CloudFormation needs to assume an IAM role that grants privileges to create resources into the tenant AWS account.

Repeat the following steps for each tenant account to allow AWS CloudFormation to create resources in those accounts:

  1. Create an IAM role that can be assumed by AWS CloudFormation:
aws iam create-role \
    --role-name CloudFormationDeploymentRole \
    --profile <TENANT_PROFILE_NAME> \
    --assume-role-policy-document \
        '{
            "Version": "2012-10-17",
            "Statement": [
                {
                    "Effect": "Allow",
                    "Principal": {
                        "Service": "cloudformation.amazonaws.com"
                    },
                    "Action": "sts:AssumeRole"
                }
            ]
        }'
  1. Create an IAM policy that grants permissions to create AWS resources:
aws iam create-policy \
    --policy-name CloudFormationDeploymentPolicy \
    --profile <TENANT_PROFILE_NAME> \
    --policy-document \
        '{
            "Version": "2012-10-17",
            "Statement": [
                {
                    "Action": "iam:PassRole",
                    "Resource": "arn:aws:iam::<TENANT_ACCOUNT_ID>:role/*",
                    "Effect": "Allow"
                },
                {
                    "Action": [
                        "iam:GetRole",
                        "iam:CreateRole",
                        "iam:DeleteRole",
                        "iam:AttachRolePolicy",
                        "iam:DetachRolePolicy"
                    ],
                    "Resource": "arn:aws:iam::<TENANT_ACCOUNT_ID>:role/*",
                    "Effect": "Allow"
                },
                {
                    "Action": "lambda:*",
                    "Resource": "*",
                    "Effect": "Allow"
                },
                {
                    "Action": "codedeploy:*",
                    "Resource": "*",
                    "Effect": "Allow"
                },
                {
                    "Action": [
                        "s3:GetObject*",
                        "s3:GetBucket*",
                        "s3:List*"
                    ],
                    "Resource": [
                        "arn:aws:s3:::<BUCKET_UNIQUE_NAME>",
                        "arn:aws:s3:::<BUCKET_UNIQUE_NAME>/*"
                    ],
                    "Effect": "Allow"
                },
                {
                    "Action": [
                        "kms:Decrypt",
                        "kms:DescribeKey"
                    ],
                    "Resource": "<KEY_ARN>",
                    "Effect": "Allow"
                },
                {
                    "Action": [
                        "cloudformation:CreateStack",
                        "cloudformation:DescribeStack*",
                        "cloudformation:GetStackPolicy",
                        "cloudformation:GetTemplate*",
                        "cloudformation:SetStackPolicy",
                        "cloudformation:UpdateStack",
                        "cloudformation:ValidateTemplate"
                    ],
                    "Resource": "arn:aws:cloudformation:<YOUR_REGION>:<TENANT_ACCOUNT_ID>:stack/SampleApplication*/*",
                    "Effect": "Allow"
                },
                {
                    "Action": [
                        "cloudformation:CreateChangeSet"
                    ],
                    "Resource": "arn:aws:cloudformation:<YOUR_REGION>:aws:transform/Serverless-2016-10-31",
                    "Effect": "Allow"
                }
            ]
        }'

The granted permissions in this IAM policy depend on the resources your application needs to be provisioned. Because the application in our use case consists of a simple Lambda function, the IAM policy only needs permissions over Lambda. The other permissions declared are to access and decrypt the Lambda code from the artifact store, use AWS CodeDeploy to deploy the function, and create and attach the Lambda execution role.

  1. Attach the IAM policy to the IAM role:
aws iam attach-role-policy \
    --profile <TENANT_PROFILE_NAME> \
    --role-name CloudFormationDeploymentRole \
    --policy-arn arn:aws:iam::<TENANT_ACCOUNT_ID>:policy/CloudFormationDeploymentPolicy

Configuring an artifact store encryption key

Even though the IAM roles created in the tenant accounts declare permissions to use the CMK encryption key, that’s not enough to have access to the key. To access the key, you must update the CMK key policy.

From the terminal, run the following command to attach the new policy:

aws kms put-key-policy \
    --key-id <KEY_ARN> \
    --policy-name default \
    --region <YOUR_REGION> \
    --policy \
        '{
             "Id": "TenantAccountAccess",
             "Version": "2012-10-17",
             "Statement": [
                {
                    "Sid": "Enable IAM User Permissions",
                    "Effect": "Allow",
                    "Principal": {
                        "AWS": "arn:aws:iam::<TOOLING_ACCOUNT_ID>:root"
                    },
                    "Action": "kms:*",
                    "Resource": "*"
                },
                {
                    "Effect": "Allow",
                    "Principal": {
                        "AWS": [
                            "arn:aws:iam::<GNOME_ACCOUNT_ID>:role/CloudFormationDeploymentRole",
                            "arn:aws:iam::<GNOME_ACCOUNT_ID>:role/CodePipelineCrossAccountRole",
                            "arn:aws:iam::<UNICORN_ACCOUNT_ID>:role/CloudFormationDeploymentRole",
                            "arn:aws:iam::<UNICORN_ACCOUNT_ID>:role/CodePipelineCrossAccountRole"
                        ]
                    },
                    "Action": [
                        "kms:Decrypt",
                        "kms:DescribeKey"
                    ],
                    "Resource": "*"
                }
             ]
         }'

Provisioning the CI/CD pipeline

Each CodePipeline workflow consists of two or more stages, which are composed by a series of parallel or serial actions. For our use case, the pipeline is made up of four stages:

  • Source – Declares CodeCommit as the source control for the application code.
  • Build – Using CodeBuild, it installs the dependencies and builds deployable artifacts. In this use case, the sample application is too simple and this stage is used for illustration purposes.
  • Deploy_Dev – Deploys the sample application on a sandbox environment. At this point, the deployable artifacts generated at the Build stage are used to create a CloudFormation stack and deploy the Lambda function.
  • Deploy_Prod – Similar to Deploy_Dev, at this stage the sample application is deployed on the tenant production environments. For that, it contains two actions (one per tenant) that are run in parallel. CodePipeline uses CodePipelineCrossAccountRole to assume a role on the tenant account, and from there, CloudFormationDeploymentRole is used to effectively deploy the application.

To provision your resources, complete the following steps from the terminal:

  1. Download the CloudFormation pipeline template:
curl -LO https://cross-account-ci-cd-pipeline-single-tenant-saas.s3.amazonaws.com/pipeline.yaml
  1. Deploy the CloudFormation stack using the pipeline template:
aws cloudformation deploy \
    --template-file pipeline.yaml \
    --region <YOUR_REGION> \
    --stack-name <YOUR_PIPELINE_STACK_NAME> \
    --capabilities CAPABILITY_IAM \
    --parameter-overrides \
        ArtifactBucketName=<BUCKET_UNIQUE_NAME> \
        ArtifactEncryptionKeyArn=<KMS_KEY_ARN> \
        UnicornAccountId=<UNICORN_TENANT_ACCOUNT_ID> \
        GnomeAccountId=<GNOME_TENANT_ACCOUNT_ID> \
        SampleApplicationRepositoryName=<YOUR_CODECOMMIT_REPOSITORY_NAME> \
        RepositoryBranch=<YOUR_CODECOMMIT_MAIN_BRANCH>

This is the list of the required parameters to deploy the template:

    • ArtifactBucketName – The name of the S3 bucket where the deployment artifacts are to be stored.
    • ArtifactEncryptionKeyArn – The ARN of the customer managed CMK to be used as artifact encryption key.
    • UnicornAccountId – The AWS account ID for the first tenant (Unicorn) where the application is to be deployed.
    • GnomeAccountId – The AWS account ID for the second tenant (Gnome) where the application is to be deployed.
    • SampleApplicationRepositoryName – The name of the CodeCommit repository where source changes are detected.
    • RepositoryBranch – The name of the CodeCommit branch where source changes are detected. The default value is master in case no value is provided.
  1. Wait for AWS CloudFormation to create the resources.

When stack creation is complete, the pipeline starts automatically.

For each existing tenant, an action is declared within the Deploy_Prod stage. The following code is a snippet of how these actions are configured to deploy the application on a different account:

RoleArn: !Sub arn:aws:iam::${UnicornAccountId}:role/CodePipelineCrossAccountRole
Configuration:
    ActionMode: CREATE_UPDATE
    Capabilities: CAPABILITY_IAM,CAPABILITY_AUTO_EXPAND
    StackName: !Sub SampleApplication-unicorn-stack-${AWS::Region}
    RoleArn: !Sub arn:aws:iam::${UnicornAccountId}:role/CloudFormationDeploymentRole
    TemplatePath: CodeCommitSource::application.yaml
    ParameterOverrides: !Sub | 
        { 
            "ApplicationName": "SampleApplication-Unicorn",
            "S3Bucket": { "Fn::GetArtifactAtt" : [ "ApplicationBuildOutput", "BucketName" ] },
            "S3Key": { "Fn::GetArtifactAtt" : [ "ApplicationBuildOutput", "ObjectKey" ] }
        }

The code declares two IAM roles. The first one is the IAM role assumed by the CodePipeline action to access the tenant AWS account, whereas the second is the IAM role used by AWS CloudFormation to create AWS resources in the tenant AWS account. The ParameterOverrides configuration declares where the release artifact is located. The S3 bucket and key are in the Tooling account and encrypted using the customer managed CMK. That’s why it was necessary to grant access from external accounts using a bucket and KMS policies.

Besides the CI/CD pipeline itself, this CloudFormation template declares IAM roles that are used by the pipeline and its actions. The main IAM role is named CrossAccountPipelineRole, which is used by the CodePipeline service. It contains permissions to assume the action roles. See the following code:

{
    "Action": "sts:AssumeRole",
    "Effect": "Allow",
    "Resource": [
        "arn:aws:iam::<TOOLING_ACCOUNT_ID>:role/<PipelineSourceActionRole>",
        "arn:aws:iam::<TOOLING_ACCOUNT_ID>:role/<PipelineApplicationBuildActionRole>",
        "arn:aws:iam::<TOOLING_ACCOUNT_ID>:role/<PipelineDeployDevActionRole>",
        "arn:aws:iam::<UNICORN_ACCOUNT_ID>:role/CodePipelineCrossAccountRole",
        "arn:aws:iam::<GNOME_ACCOUNT_ID>:role/CodePipelineCrossAccountRole"
    ]
}

When you have more tenant accounts, you must add additional roles to the list.

After CodePipeline runs successfully, test the sample application by invoking the Lambda function on each tenant account:

aws lambda invoke --function-name SampleApplication --profile <TENANT_PROFILE_NAME> --region <YOUR_REGION> out

The output should be:

{
    "StatusCode": 200,
    "ExecutedVersion": "$LATEST"
}

Cleaning up

Follow these steps to delete the components and avoid future incurring charges:

  1. Delete the production application stack from each tenant account:
aws cloudformation delete-stack --profile <TENANT_PROFILE_NAME> --region <YOUR_REGION> --stack-name SampleApplication-<TENANT_NAME>-stack-<YOUR_REGION>
  1. Delete the dev application stack from the Tooling account:
aws cloudformation delete-stack --region <YOUR_REGION> --stack-name SampleApplication-dev-stack-<YOUR_REGION>
  1. Delete the pipeline stack from the Tooling account:
aws cloudformation delete-stack --region <YOUR_REGION> --stack-name <YOUR_PIPELINE_STACK_NAME>
  1. Delete the customer managed CMK from the Tooling account:
aws kms schedule-key-deletion --region <YOUR_REGION> --key-id <KEY_ARN>
  1. Delete the S3 bucket from the Tooling account:
aws s3 rb s3://<BUCKET_UNIQUE_NAME> --force
  1. Optionally, delete the IAM roles and policies you created in the tenant accounts

Conclusion

This post demonstrated what it takes to build a CI/CD pipeline for single-tenant SaaS solutions isolated on the AWS account level. It covered how to grant cross-account access to artifact stores on Amazon S3 and artifact encryption keys on AWS KMS using policies and IAM roles. This approach is less error-prone because it avoids human errors when manually deploying the exact same application for multiple tenants.

For this use case, we performed most of the steps manually to better illustrate all the steps and components involved. For even more automation, consider using the AWS Cloud Development Kit (AWS CDK) and its pipeline construct to create your CI/CD pipeline and have everything as code. Moreover, for production scenarios, consider having integration tests as part of the pipeline.

Rafael Ramos

Rafael Ramos

Rafael is a Solutions Architect at AWS, where he helps ISVs on their journey to the cloud. He spent over 13 years working as a software developer, and is passionate about DevOps and serverless. Outside of work, he enjoys playing tabletop RPG, cooking and running marathons.

Integrating AWS CloudFormation Guard into CI/CD pipelines

Post Syndicated from Sergey Voinich original https://aws.amazon.com/blogs/devops/integrating-aws-cloudformation-guard/

In this post, we discuss and build a managed continuous integration and continuous deployment (CI/CD) pipeline that uses AWS CloudFormation Guard to automate and simplify pre-deployment compliance checks of your AWS CloudFormation templates. This enables your teams to define a single source of truth for what constitutes valid infrastructure definitions, to be compliant with your company guidelines and streamline AWS resources’ deployment lifecycle.

We use the following AWS services and open-source tools to set up the pipeline:

Solution overview

The CI/CD workflow includes the following steps:

  1. A code change is committed and pushed to the CodeCommit repository.
  2. CodePipeline automatically triggers a CodeBuild job.
  3. CodeBuild spins up a compute environment and runs the phases specified in the buildspec.yml file:
  4. Clone the code from the CodeCommit repository (CloudFormation template, rule set for CloudFormation Guard, buildspec.yml file).
  5. Clone the code from the CloudFormation Guard repository on GitHub.
  6. Provision the build environment with necessary components (rust, cargo, git, build-essential).
  7. Download CloudFormation Guard release from GitHub.
  8. Run a validation check of the CloudFormation template.
  9. If the validation is successful, pass the control over to CloudFormation and deploy the stack. If the validation fails, stop the build job and print a summary to the build job log.

The following diagram illustrates this workflow.

Architecture Diagram

Architecture Diagram of CI/CD Pipeline with CloudFormation Guard

Prerequisites

For this walkthrough, complete the following prerequisites:

Creating your CodeCommit repository

Create your CodeCommit repository by running a create-repository command in the AWS CLI:

aws codecommit create-repository --repository-name cfn-guard-demo --repository-description "CloudFormation Guard Demo"

The following screenshot indicates that the repository has been created.

CodeCommit Repository

CodeCommit Repository has been created

Populating the CodeCommit repository

Populate your repository with the following artifacts:

  1. A buildspec.yml file. Modify the following code as per your requirements:
version: 0.2
env:
  variables:
    # Definining CloudFormation Teamplate and Ruleset as variables - part of the code repo
    CF_TEMPLATE: "cfn_template_file_example.yaml"
    CF_ORG_RULESET:  "cfn_guard_ruleset_example"
phases:
  install:
    commands:
      - apt-get update
      - apt-get install build-essential -y
      - apt-get install cargo -y
      - apt-get install git -y
  pre_build:
    commands:
      - echo "Setting up the environment for AWS CloudFormation Guard"
      - echo "More info https://github.com/aws-cloudformation/cloudformation-guard"
      - echo "Install Rust"
      - curl https://sh.rustup.rs -sSf | sh -s -- -y
  build:
    commands:
       - echo "Pull GA release from github"
       - echo "More info https://github.com/aws-cloudformation/cloudformation-guard/releases"
       - wget https://github.com/aws-cloudformation/cloudformation-guard/releases/download/1.0.0/cfn-guard-linux-1.0.0.tar.gz
       - echo "Extract cfn-guard"
       - tar xvf cfn-guard-linux-1.0.0.tar.gz .
  post_build:
    commands:
       - echo "Validate CloudFormation template with cfn-guard tool"
       - echo "More information https://github.com/aws-cloudformation/cloudformation-guard/blob/master/cfn-guard/README.md"
       - cfn-guard-linux/cfn-guard check --rule_set $CF_ORG_RULESET --template $CF_TEMPLATE --strict-checks
artifacts:
  files:
    - cfn_template_file_example.yaml
  name: guard_templates
  1. An example of a rule set file (cfn_guard_ruleset_example) for CloudFormation Guard. Modify the following code as per your requirements:
#CFN Guard rules set example

#List of multiple references
let allowed_azs = [us-east-1a,us-east-1b]
let allowed_ec2_instance_types = [t2.micro,t3.nano,t3.micro]
let allowed_security_groups = [sg-08bbcxxc21e9ba8e6,sg-07b8bx98795dcab2]

#EC2 Policies
AWS::EC2::Instance AvailabilityZone IN %allowed_azs
AWS::EC2::Instance ImageId == ami-0323c3dd2da7fb37d
AWS::EC2::Instance InstanceType IN %allowed_ec2_instance_types
AWS::EC2::Instance SecurityGroupIds == ["sg-07b8xxxsscab2"]
AWS::EC2::Instance SubnetId == subnet-0407a7casssse558

#EBS Policies
AWS::EC2::Volume AvailabilityZone == us-east-1a
AWS::EC2::Volume Encrypted == true
AWS::EC2::Volume Size == 50 |OR| AWS::EC2::Volume Size == 100
AWS::EC2::Volume VolumeType == gp2
  1. An example of a CloudFormation template file (.yaml). Modify the following code as per your requirements:
AWSTemplateFormatVersion: "2010-09-09"
Description: "EC2 instance with encrypted EBS volume for AWS CloudFormation Guard Testing"

Resources:

 EC2Instance:
    Type: AWS::EC2::Instance
    Properties:
      ImageId: 'ami-0323c3dd2da7fb37d'
      AvailabilityZone: 'us-east-1a'
      KeyName: "your-ssh-key"
      InstanceType: 't3.micro'
      SubnetId: 'subnet-0407a7xx68410e558'
      SecurityGroupIds:
        - 'sg-07b8b339xx95dcab2'
      Volumes:
         - 
          Device: '/dev/sdf'
          VolumeId: !Ref EBSVolume
      Tags:
       - Key: Name
         Value: cfn-guard-ec2

 EBSVolume:
   Type: AWS::EC2::Volume
   Properties:
     Size: 100
     AvailabilityZone: 'us-east-1a'
     Encrypted: true
     VolumeType: gp2
     Tags:
       - Key: Name
         Value: cfn-guard-ebs
   DeletionPolicy: Snapshot

Outputs:
  InstanceID:
    Description: The Instance ID
    Value: !Ref EC2Instance
  Volume:
    Description: The Volume ID
    Value: !Ref  EBSVolume
AWS CodeCommit

Optional CodeCommit Repository Structure

The following screenshot shows a potential CodeCommit repository structure.

Creating a CodeBuild project

Our CodeBuild project orchestrates around CloudFormation Guard and runs validation checks of our CloudFormation templates as a phase of the CI process.

  1. On the CodeBuild console, choose Build projects.
  2. Choose Create build projects.
  3. For Project name, enter your project name.
  4. For Description, enter a description.
AWS CodeBuild

Create CodeBuild Project

  1. For Source provider, choose AWS CodeCommit.
  2. For Repository, choose the CodeCommit repository you created in the previous step.
AWS CodeBuild

Define the source for your CodeBuild Project

To setup CodeBuild environment we will use managed image based on Ubuntu 18.04

  1. For Environment Image, select Managed image.
  2. For Operating system, choose Ubuntu.
  3. For Service role¸ select New service role.
  4. For Role name, enter your service role name.
CodeBuild Environment

Setup the environment, the OS image and other settings for the CodeBuild

  1. Leave the default settings for additional configuration, buildspec, batch configuration, artifacts, and logs.

You can also use CodeBuild with custom build environments to help you optimize billing and improve the build time.

Creating IAM roles and policies

Our CI/CD pipeline needs two AWS Identity and Access Management (IAM) roles to run properly: one role for CodePipeline to work with other resources and services, and one role for AWS CloudFormation to run the deployments that passed the validation check in the CodeBuild phase.

Creating permission policies

Create your permission policies first. The following code is the policy in JSON format for CodePipeline:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": [
                "codecommit:UploadArchive",
                "codecommit:CancelUploadArchive",
                "codecommit:GetCommit",
                "codecommit:GetUploadArchiveStatus",
                "codecommit:GetBranch",
                "codestar-connections:UseConnection",
                "codebuild:BatchGetBuilds",
                "codedeploy:CreateDeployment",
                "codedeploy:GetApplicationRevision",
                "codedeploy:RegisterApplicationRevision",
                "codedeploy:GetDeploymentConfig",
                "codedeploy:GetDeployment",
                "codebuild:StartBuild",
                "codedeploy:GetApplication",
                "s3:*",
                "cloudformation:*",
                "ec2:*"
            ],
            "Resource": "*"
        },
        {
            "Sid": "VisualEditor1",
            "Effect": "Allow",
            "Action": "iam:PassRole",
            "Resource": "*",
            "Condition": {
                "StringEqualsIfExists": {
                    "iam:PassedToService": [
                        "cloudformation.amazonaws.com",
                        "ec2.amazonaws.com"
                    ]
                }
            }
        }
    ]
}

To create your policy for CodePipeline, run the following CLI command:

aws iam create-policy --policy-name CodePipeline-Cfn-Guard-Demo --policy-document file://CodePipelineServiceRolePolicy_example.json

Capture the policy ARN that you get in the output to use in the next steps.

The following code is the policy in JSON format for AWS CloudFormation:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": "iam:CreateServiceLinkedRole",
            "Resource": "*",
            "Condition": {
                "StringEquals": {
                    "iam:AWSServiceName": [
                        "autoscaling.amazonaws.com",
                        "ec2scheduled.amazonaws.com",
                        "elasticloadbalancing.amazonaws.com"
                    ]
                }
            }
        },
        {
            "Sid": "VisualEditor1",
            "Effect": "Allow",
            "Action": [
                "s3:GetObjectAcl",
                "s3:GetObject",
                "cloudwatch:*",
                "ec2:*",
                "autoscaling:*",
                "s3:List*",
                "s3:HeadBucket"
            ],
            "Resource": "*"
        }
    ]
}

Create the policy for AWS CloudFormation by running the following CLI command:

aws iam create-policy --policy-name CloudFormation-Cfn-Guard-Demo --policy-document file://CloudFormationRolePolicy_example.json

Capture the policy ARN that you get in the output to use in the next steps.

Creating roles and trust policies

The following code is the trust policy for CodePipeline in JSON format:

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "codepipeline.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

Create your role for CodePipeline with the following CLI command:

aws iam create-role --role-name CodePipeline-Cfn-Guard-Demo-Role --assume-role-policy-document file://RoleTrustPolicy_CodePipeline.json

Capture the role name for the next step.

The following code is the trust policy for AWS CloudFormation in JSON format:

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "",
      "Effect": "Allow",
      "Principal": {
        "Service": "cloudformation.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

Create your role for AWS CloudFormation with the following CLI command:

aws iam create-role --role-name CF-Cfn-Guard-Demo-Role --assume-role-policy-document file://RoleTrustPolicy_CloudFormation.json

Capture the role name for the next step.

 

Finally, attach the permissions policies created in the previous step to the IAM roles you created:

aws iam attach-role-policy --role-name CodePipeline-Cfn-Guard-Demo-Role  --policy-arn "arn:aws:iam::<AWS Account Id >:policy/CodePipeline-Cfn-Guard-Demo"

aws iam attach-role-policy --role-name CF-Cfn-Guard-Demo-Role  --policy-arn "arn:aws:iam::<AWS Account Id>:policy/CloudFormation-Cfn-Guard-Demo"

Creating a pipeline

We can now create our pipeline to assemble all the components into one managed, continuous mechanism.

  1. On the CodePipeline console, choose Pipelines.
  2. Choose Create new pipeline.
  3. For Pipeline name, enter a name.
  4. For Service role, select Existing service role.
  5. For Role ARN, choose the service role you created in the previous step.
  6. Choose Next.
CodePipeline Setup

Setting Up CodePipeline environment

  1. In the Source section, for Source provider, choose AWS CodeCommit.
  2. For Repository name¸ enter your repository name.
  3. For Branch name, choose master.
  4. For Change detection options, select Amazon CloudWatch Events.
  5. Choose Next.
AWS CodePipeline Source

Adding CodeCommit to CodePipeline

  1. In the Build section, for Build provider, choose AWS CodeBuild.
  2. For Project name, choose the CodeBuild project you created.
  3. For Build type, select Single build.
  4. Choose Next.
CodePipeline Build Stage

Adding Build Project to Pipeline Stage

Now we will create a deploy stage in our CodePipeline to deploy CloudFormation templates that passed the CloudFormation Guard inspection in the CI stage.

  1. In the Deploy section, for Deploy provider, choose AWS CloudFormation.
  2. For Action mode¸ choose Create or update stack.
  3. For Stack name, choose any stack name.
  4. For Artifact name, choose BuildArtifact.
  5. For File name, enter the CloudFormation template name in your CodeCommit repository (In case of our demo it is cfn_template_file_example.yaml).
  6. For Role name, choose the role you created earlier for CloudFormation.
CodePipeline - Deploy Stage

Adding deploy stage to CodePipeline

22. In the next step review your selections for the pipeline to be created. The stages and action providers in each stage are shown in the order that they will be created. Click Create pipeline. Our CodePipeline is ready.

Validating the CI/CD pipeline operation

Our CodePipeline has two basic flows and outcomes. If the CloudFormation template complies with our CloudFormation Guard rule set file, the resources in the template deploy successfully (in our use case, we deploy an EC2 instance with an encrypted EBS volume).

CloudFormation Deployed

CloudFormation Console

If our CloudFormation template doesn’t comply with the policies specified in our CloudFormation Guard rule set file, our CodePipeline stops at the CodeBuild step and you see an error in the build job log indicating the resources that are non-compliant:

[EBSVolume] failed because [Encrypted] is [false] and the permitted value is [true]
[EC2Instance] failed because [t3.2xlarge] is not in [t2.micro,t3.nano,t3.micro] for [InstanceType]
Number of failures: 2

Note: To demonstrate the above functionality I changed my CloudFormation template to use unencrypted EBS volume and switched the EC2 instance type to t3.2xlarge which do not adhere to the rules that we specified in the Guard rule set file

Cleaning up

To avoid incurring future charges, delete the resources that we have created during the walkthrough:

  • CloudFormation stack resources that were deployed by the CodePipeline
  • CodePipeline that we have created
  • CodeBuild project
  • CodeCommit repository

Conclusion

In this post, we covered how to integrate CloudFormation Guard into CodePipeline and fully automate pre-deployment compliance checks of your CloudFormation templates. This allows your teams to have an end-to-end automated CI/CD pipeline with minimal operational overhead and stay compliant with your organizational infrastructure policies.

Cross-account and cross-region deployment using GitHub actions and AWS CDK

Post Syndicated from DAMODAR SHENVI WAGLE original https://aws.amazon.com/blogs/devops/cross-account-and-cross-region-deployment-using-github-actions-and-aws-cdk/

GitHub Actions is a feature on GitHub’s popular development platform that helps you automate your software development workflows in the same place you store code and collaborate on pull requests and issues. You can write individual tasks called actions, and combine them to create a custom workflow. Workflows are custom automated processes that you can set up in your repository to build, test, package, release, or deploy any code project on GitHub.

A cross-account deployment strategy is a CI/CD pattern or model in AWS. In this pattern, you have a designated AWS account called tools, where all CI/CD pipelines reside. Deployment is carried out by these pipelines across other AWS accounts, which may correspond to dev, staging, or prod. For more information about a cross-account strategy in reference to CI/CD pipelines on AWS, see Building a Secure Cross-Account Continuous Delivery Pipeline.

In this post, we show you how to use GitHub Actions to deploy an AWS Lambda-based API to an AWS account and Region using the cross-account deployment strategy.

Using GitHub Actions may have associated costs in addition to the cost associated with the AWS resources you create. For more information, see About billing for GitHub Actions.

Prerequisites

Before proceeding any further, you need to identify and designate two AWS accounts required for the solution to work:

  • Tools – Where you create an AWS Identity and Access Management (IAM) user for GitHub Actions to use to carry out deployment.
  • Target – Where deployment occurs. You can call this as your dev/stage/prod environment.

You also need to create two AWS account profiles in ~/.aws/credentials for the tools and target accounts, if you don’t already have them. These profiles need to have sufficient permissions to run an AWS Cloud Development Kit (AWS CDK) stack. They should be your private profiles and only be used during the course of this use case. So, it should be fine if you want to use admin privileges. Don’t share the profile details, especially if it has admin privileges. I recommend removing the profile when you’re finished with this walkthrough. For more information about creating an AWS account profile, see Configuring the AWS CLI.

Solution overview

You start by building the necessary resources in the tools account (an IAM user with permissions to assume a specific IAM role from the target account to carry out deployment). For simplicity, we refer to this IAM role as the cross-account role, as specified in the architecture diagram.

You also create the cross-account role in the target account that trusts the IAM user in the tools account and provides the required permissions for AWS CDK to bootstrap and initiate creating an AWS CloudFormation deployment stack in the target account. GitHub Actions uses the tools account IAM user credentials to the assume the cross-account role to carry out deployment.

In addition, you create an AWS CloudFormation execution role in the target account, which AWS CloudFormation service assumes in the target account. This role has permissions to create your API resources, such as a Lambda function and Amazon API Gateway, in the target account. This role is passed to AWS CloudFormation service via AWS CDK.

You then configure your tools account IAM user credentials in your Git secrets and define the GitHub Actions workflow, which triggers upon pushing code to a specific branch of the repo. The workflow then assumes the cross-account role and initiates deployment.

The following diagram illustrates the solution architecture and shows AWS resources across the tools and target accounts.

Architecture diagram

Creating an IAM user

You start by creating an IAM user called git-action-deployment-user in the tools account. The user needs to have only programmatic access.

  1. Clone the GitHub repo aws-cross-account-cicd-git-actions-prereq and navigate to folder tools-account. Here you find the JSON parameter file src/cdk-stack-param.json, which contains the parameter CROSS_ACCOUNT_ROLE_ARN, which represents the ARN for the cross-account role we create in the next step in the target account. In the ARN, replace <target-account-id> with the actual account ID for your designated AWS target account.                                             Replace <target-account-id> with designated AWS account id
  2. Run deploy.sh by passing the name of the tools AWS account profile you created earlier. The script compiles the code, builds a package, and uses the AWS CDK CLI to bootstrap and deploy the stack. See the following code:
cd aws-cross-account-cicd-git-actions-prereq/tools-account/
./deploy.sh "<AWS-TOOLS-ACCOUNT-PROFILE-NAME>"

You should now see two stacks in the tools account: CDKToolkit and cf-GitActionDeploymentUserStack. AWS CDK creates the CDKToolkit stack when we bootstrap the AWS CDK app. This creates an Amazon Simple Storage Service (Amazon S3) bucket needed to hold deployment assets such as a CloudFormation template and Lambda code package. cf-GitActionDeploymentUserStack creates the IAM user with permission to assume git-action-cross-account-role (which you create in the next step). On the Outputs tab of the stack, you can find the user access key and the AWS Secrets Manager ARN that holds the user secret. To retrieve the secret, you need to go to Secrets Manager. Record the secret to use later.

Stack that creates IAM user with its secret stored in secrets manager

Creating a cross-account IAM role

In this step, you create two IAM roles in the target account: git-action-cross-account-role and git-action-cf-execution-role.

git-action-cross-account-role provides required deployment-specific permissions to the IAM user you created in the last step. The IAM user in the tools account can assume this role and perform the following tasks:

  • Upload deployment assets such as the CloudFormation template and Lambda code package to a designated S3 bucket via AWS CDK
  • Create a CloudFormation stack that deploys API Gateway and Lambda using AWS CDK

AWS CDK passes git-action-cf-execution-role to AWS CloudFormation to create, update, and delete the CloudFormation stack. It has permissions to create API Gateway and Lambda resources in the target account.

To deploy these two roles using AWS CDK, complete the following steps:

  1. In the already cloned repo from the previous step, navigate to the folder target-account. This folder contains the JSON parameter file cdk-stack-param.json, which contains the parameter TOOLS_ACCOUNT_USER_ARN, which represents the ARN for the IAM user you previously created in the tools account. In the ARN, replace <tools-account-id> with the actual account ID for your designated AWS tools account.                                             Replace <tools-account-id> with designated AWS account id
  2. Run deploy.sh by passing the name of the target AWS account profile you created earlier. The script compiles the code, builds the package, and uses the AWS CDK CLI to bootstrap and deploy the stack. See the following code:
cd ../target-account/
./deploy.sh "<AWS-TARGET-ACCOUNT-PROFILE-NAME>"

You should now see two stacks in your target account: CDKToolkit and cf-CrossAccountRolesStack. AWS CDK creates the CDKToolkit stack when we bootstrap the AWS CDK app. This creates an S3 bucket to hold deployment assets such as the CloudFormation template and Lambda code package. The cf-CrossAccountRolesStack creates the two IAM roles we discussed at the beginning of this step. The IAM role git-action-cross-account-role now has the IAM user added to its trust policy. On the Outputs tab of the stack, you can find these roles’ ARNs. Record these ARNs as you conclude this step.

Stack that creates IAM roles to carry out cross account deployment

Configuring secrets

One of the GitHub actions we use is aws-actions/[email protected]. This action configures AWS credentials and Region environment variables for use in the GitHub Actions workflow. The AWS CDK CLI detects the environment variables to determine the credentials and Region to use for deployment.

For our cross-account deployment use case, aws-actions/[email protected] takes three pieces of sensitive information besides the Region: AWS_ACCESS_KEY_ID, AWS_ACCESS_KEY_SECRET, and CROSS_ACCOUNT_ROLE_TO_ASSUME. Secrets are recommended for storing sensitive pieces of information in the GitHub repo. It keeps the information in an encrypted format. For more information about referencing secrets in the workflow, see Creating and storing encrypted secrets.

Before we continue, you need your own empty GitHub repo to complete this step. Use an existing repo if you have one, or create a new repo. You configure secrets in this repo. In the next section, you check in the code provided by the post to deploy a Lambda-based API CDK stack into this repo.

  1. On the GitHub console, navigate to your repo settings and choose the Secrets tab.
  2. Add a new secret with name as TOOLS_ACCOUNT_ACCESS_KEY_ID.
  3. Copy the access key ID from the output OutGitActionDeploymentUserAccessKey of the stack GitActionDeploymentUserStack in tools account.
  4. Enter the ID in the Value field.                                                                                                                                                                Create secret
  5. Repeat this step to add two more secrets:
    • TOOLS_ACCOUNT_SECRET_ACCESS_KEY (value retrieved from the AWS Secrets Manager in tools account)
    • CROSS_ACCOUNT_ROLE (value copied from the output OutCrossAccountRoleArn of the stack cf-CrossAccountRolesStack in target account)

You should now have three secrets as shown below.

All required git secrets

Deploying with GitHub Actions

As the final step, first clone your empty repo where you set up your secrets. Download and copy the code from the GitHub repo into your empty repo. The folder structure of your repo should mimic the folder structure of source repo. See the following screenshot.

Folder structure of the Lambda API code

We can take a detailed look at the code base. First and foremost, we use Typescript to deploy our Lambda API, so we need an AWS CDK app and AWS CDK stack. The app is defined in app.ts under the repo root folder location. The stack definition is located under the stack-specific folder src/git-action-demo-api-stack. The Lambda code is located under the Lambda-specific folder src/git-action-demo-api-stack/lambda/ git-action-demo-lambda.

We also have a deployment script deploy.sh, which compiles the app and Lambda code, packages the Lambda code into a .zip file, bootstraps the app by copying the assets to an S3 bucket, and deploys the stack. To deploy the stack, AWS CDK has to pass CFN_EXECUTION_ROLE to AWS CloudFormation; this role is configured in src/params/cdk-stack-param.json. Replace <target-account-id> with your own designated AWS target account ID.

Update cdk-stack-param.json in git-actions-cross-account-cicd repo with TARGET account id

Finally, we define the Git Actions workflow under the .github/workflows/ folder per the specifications defined by GitHub Actions. GitHub Actions automatically identifies the workflow in this location and triggers it if conditions match. Our workflow .yml file is named in the format cicd-workflow-<region>.yml, where <region> in the file name identifies the deployment Region in the target account. In our use case, we use us-east-1 and us-west-2, which is also defined as an environment variable in the workflow.

The GitHub Actions workflow has a standard hierarchy. The workflow is a collection of jobs, which are collections of one or more steps. Each job runs on a virtual machine called a runner, which can either be GitHub-hosted or self-hosted. We use the GitHub-hosted runner ubuntu-latest because it works well for our use case. For more information about GitHub-hosted runners, see Virtual environments for GitHub-hosted runners. For more information about the software preinstalled on GitHub-hosted runners, see Software installed on GitHub-hosted runners.

The workflow also has a trigger condition specified at the top. You can schedule the trigger based on the cron settings or trigger it upon code pushed to a specific branch in the repo. See the following code:

name: Lambda API CICD Workflow
# This workflow is triggered on pushes to the repository branch master.
on:
  push:
    branches:
      - master

# Initializes environment variables for the workflow
env:
  REGION: us-east-1 # Deployment Region

jobs:
  deploy:
    name: Build And Deploy
    # This job runs on Linux
    runs-on: ubuntu-latest
    steps:
      # Checkout code from git repo branch configured above, under folder $GITHUB_WORKSPACE.
      - name: Checkout
        uses: actions/[email protected]
      # Sets up AWS profile.
      - name: Configure AWS credentials
        uses: aws-actions/[email protected]
        with:
          aws-access-key-id: ${{ secrets.TOOLS_ACCOUNT_ACCESS_KEY_ID }}
          aws-secret-access-key: ${{ secrets.TOOLS_ACCOUNT_SECRET_ACCESS_KEY }}
          aws-region: ${{ env.REGION }}
          role-to-assume: ${{ secrets.CROSS_ACCOUNT_ROLE }}
          role-duration-seconds: 1200
          role-session-name: GitActionDeploymentSession
      # Installs CDK and other prerequisites
      - name: Prerequisite Installation
        run: |
          sudo npm install -g [email protected]
          cdk --version
          aws s3 ls
      # Build and Deploy CDK application
      - name: Build & Deploy
        run: |
          cd $GITHUB_WORKSPACE
          ls -a
          chmod 700 deploy.sh
          ./deploy.sh

For more information about triggering workflows, see Triggering a workflow with events.

We have configured a single job workflow for our use case that runs on ubuntu-latest and is triggered upon a code push to the master branch. When you create an empty repo, master branch becomes the default branch. The workflow has four steps:

  1. Check out the code from the repo, for which we use a standard Git action actions/[email protected]. The code is checked out into a folder defined by the variable $GITHUB_WORKSPACE, so it becomes the root location of our code.
  2. Configure AWS credentials using aws-actions/[email protected]. This action is configured as explained in the previous section.
  3. Install your prerequisites. In our use case, the only prerequisite we need is AWS CDK. Upon installing AWS CDK, we can do a quick test using the AWS Command Line Interface (AWS CLI) command aws s3 ls. If cross-account access was successfully established in the previous step of the workflow, this command should return a list of buckets in the target account.
  4. Navigate to root location of the code $GITHUB_WORKSPACE and run the deploy.sh script.

You can check in the code into the master branch of your repo. This should trigger the workflow, which you can monitor on the Actions tab of your repo. The commit message you provide is displayed for the respective run of the workflow.

Workflow for region us-east-1 Workflow for region us-west-2

You can choose the workflow link and monitor the log for each individual step of the workflow.

Git action workflow steps

In the target account, you should now see the CloudFormation stack cf-GitActionDemoApiStack in us-east-1 and us-west-2.

Lambda API stack in us-east-1 Lambda API stack in us-west-2

The API resource URL DocUploadRestApiResourceUrl is located on the Outputs tab of the stack. You can invoke your API by choosing this URL on the browser.

API Invocation Output

Clean up

To remove all the resources from the target and tools accounts, complete the following steps in their given order:

  1. Delete the CloudFormation stack cf-GitActionDemoApiStack from the target account. This step removes the Lambda and API Gateway resources and their associated IAM roles.
  2. Delete the CloudFormation stack cf-CrossAccountRolesStack from the target account. This removes the cross-account role and CloudFormation execution role you created.
  3. Go to the CDKToolkit stack in the target account and note the BucketName on the Output tab. Empty that bucket and then delete the stack.
  4. Delete the CloudFormation stack cf-GitActionDeploymentUserStack from tools account. This removes cross-account-deploy-user IAM user.
  5. Go to the CDKToolkit stack in the tools account and note the BucketName on the Output tab. Empty that bucket and then delete the stack.

Security considerations

Cross-account IAM roles are very powerful and need to be handled carefully. For this post, we strictly limited the cross-account IAM role to specific Amazon S3 and CloudFormation permissions. This makes sure that the cross-account role can only do those things. The actual creation of Lambda, API Gateway, and Amazon DynamoDB resources happens via the AWS CloudFormation IAM role, which AWS  CloudFormation assumes in the target AWS account.

Make sure that you use secrets to store your sensitive workflow configurations, as specified in the section Configuring secrets.

Conclusion

In this post we showed how you can leverage GitHub’s popular software development platform to securely deploy to AWS accounts and Regions using GitHub actions and AWS CDK.

Build your own GitHub Actions CI/CD workflow as shown in this post.

About the author

 

Damodar Shenvi Wagle is a Cloud Application Architect at AWS Professional Services. His areas of expertise include architecting serverless solutions, ci/cd and automation.

Integrating AWS CloudFormation security tests with AWS Security Hub and AWS CodeBuild reports

Post Syndicated from Vesselin Tzvetkov original https://aws.amazon.com/blogs/security/integrating-aws-cloudformation-security-tests-with-aws-security-hub-and-aws-codebuild-reports/

The concept of infrastructure as code, by using pipelines for continuous integration and delivery, is fundamental for the development of cloud infrastructure. Including code quality and vulnerability scans in the pipeline is essential for the security of this infrastructure as code. In one of our previous posts, How to build a CI/CD pipeline for container vulnerability scanning with Trivy and AWS Security Hub, you learned how to scan containers to efficiently identify Common Vulnerabilities and Exposures (CVEs) and work with your developers to address them.

In this post, we’ll continue this topic, and also introduce a method for integrating open source tools that find potentially insecure patterns in your AWS CloudFormation templates with both AWS Security Hub and AWS CodeBuild reports. We’ll be using Stelligent’s open source tool CFN-Nag. We also show you how you can extend the solution to use AWS CloudFormation Guard (currently in preview).

One reason to use this integration is that it gives both security and development teams visibility into potential security risks, and resources that are insecure or non-compliant to your company policy, before they’re deployed.

Solution benefit and deliverables

In this solution, we provide you with a ready-to-use template for performing scanning of your AWS CloudFormation templates by using CFN-Nag. This tool has more than 140 predefined patterns, such as AWS Identity and Access Management (IAM) rules that are too permissive (wildcards), security group rules that are too permissive (wildcards), access logs that aren’t enabled, or encryption that isn’t enabled. You can additionally define your own rules to match your company policy as described in the section later in this post, by using custom profiles and exceptions, and suppressing false positives.

Our solution enables you to do the following:

  • Integrate CFN-Nag in a CodeBuild project, scanning the infrastructure code for more than 140 possible insecure patterns, and classifying them as warnings or a failing test.
  • Learn how to integrate AWS CloudFormation Guard (CFN-Guard). You need to define your scanning rules in this case.
  • Generate CodeBuild reports, so that developers can easily identify failed security tests. In our sample, the build process fails if any critical findings are identified.
  • Import to Security Hub the aggregated finding per code branch, so that security professionals can easily spot vulnerable code in repositories and branches. For every branch, we import one aggregated finding.
  • Store the original scan report in an Amazon Simple Storage Service (Amazon S3) bucket for auditing purposes.

Note: in this solution, the AWS CloudFormation scanning tools won’t scan your application code that is running at AWS Lambda functions, Amazon Elastic Container Service (Amazon ECS), or Amazon Elastic Compute Cloud (Amazon EC2) instances.

Architecture

Figure 1 shows the architecture of the solution. The main steps are as follows:

  1. Your pipeline is triggered when new code is pushed to CodeCommit (which isn’t part of the template) to start a new build.
  2. The build process scans the AWS CloudFormation templates by using the cfn_nag_scan or cfn-guard command as defined by the build job.
  3. A Lambda function is invoked, and the scan report is sent to it.
  4. The scan report is published in an S3 bucket via the Lambda function.
  5. The Lambda function aggregates the findings report per repository and git branch and imports the report to Security Hub. The Lambda function also suppresses any previous findings related to this current repo and branch. The severity of the finding is calculated by the number of findings and a weight coefficient that depends on whether the finding is designated as warning or critical.
  6. Finally, the Lambda function generates the CodeBuild test report in JUnit format and returns it to CodeBuild. This report only includes information about any failed tests.
  7. CodeBuild creates a new test report from the new findings under the SecurityReports test group.
Figure 1: Solution architecture

Figure 1: Solution architecture

Walkthrough

To get started, you need to set up the sample solution that scans one of your repositories by using CFN-Nag or CFN-Guard.

To set up the sample solution

  1. Log in to your AWS account if you haven’t done so already. Choose Launch Stack to launch the AWS CloudFormation console with the prepopulated AWS CloudFormation demo template. Choose Next.

    Select the Launch Stack button to launch the templateAdditionally, you can find the latest code on GitHub.

  2. Fill in the stack parameters as shown in Figure 2:
    • CodeCommitBranch: The name of the branch to be monitored, for example refs/heads/master.
    • CodeCommitUrl: The clone URL of the CodeCommit repo that you want to monitor. It must be in the same Region as the stack being launched.
    • TemplateFolder: The folder in your repo that contains the AWS CloudFormation templates.
    • Weight coefficient for failing: The weight coefficient for a failing violation in the template.
    • Weight coefficient for warning: The weight coefficient for a warning in the template.
    • Security tool: The static analysis tool that is used to analyze the templates (CFN-Nag or CFN-Guard).
    • Fail build: Whether to fail the build when security findings are detected.
    • S3 bucket with sources: This bucket contains all sources, such as the Lambda function and templates. You can keep the default text if you’re not customizing the sources.
    • Prefix for S3 bucket with sources: The prefix for all objects. You can keep the default if you’re not customizing the sources.
Figure 2: AWS CloudFormation stack

Figure 2: AWS CloudFormation stack

View the scan results

After you execute the CodeBuild project, you can view the results in three different ways depending on your preferences: CodeBuild report, Security Hub, or the original CFN-Nag or CFN-Guard report.

CodeBuild report

In the AWS Management Console, go to CodeBuild and choose Report Groups. You can find the report you are interested in under SecurityReports. Both failures and warnings are represented as failed tests and are prefixed with W(Warning) or F(Failure), respectively, as shown in Figure 3. Successful tests aren’t part of the report because they aren’t provided by CFN-Nag reports.

Figure 3: AWS CodeBuild report

Figure 3: AWS CodeBuild report

In the CodeBuild navigation menu, under Report groups, you can see an aggregated view of all scans. There you can see a historical view of the pass rate of your tests, as shown in Figure 4.

Figure 4: AWS CodeBuild Group

Figure 4: AWS CodeBuild Group

Security Hub findings

In the AWS Management Console, go to Security Hub and select the Findings view. The aggregated finding per branch has the title CFN scan repo:name:branch with Company Personal and Product Default. The name and branch are placeholders for the repo and branch name. There is one active finding per repo and branch. All previous reports for this repo and branch are suppressed, so that by default you see only the last ones. If necessary, you can see the previous reports by removing the selection filter in the Security Hub finding console. Figure 5 shows an example of the Security Hub findings.

Figure 5: Security Hub findings

Figure 5: Security Hub findings

Original scan report

Lastly, you can find the original scan report in the S3 bucket aws-sec-build-reports-hash. You can also find a reference to this object in the associated Security Hub finding source URL. The S3 object key is constructed as follows.


cfn-nag-report/repo:source_repository/branch:branch_short/cfn-nag-createdAt.json

where source_repository is the name of the repository, branch_short is the name of the branch, and createdAt is the report date.

The following screen capture shows a sample view of the content.

Figure 6: CFN_NAG report sample

Figure 6: CFN_NAG report sample

Security Hub severity and weight coefficients

The Lambda function aggregates CFN-Nag findings to one Security Hub finding per branch and repo. We consider that in this way you get the best visibility without losing orientation in too many findings if you have a large code base.

The Security Hub finding severity is calculated as follows:

  • CFN-Nag critical findings are weighted (multiplied) by 20 and the warnings by 1.
  • The sum of all CFN-Nag findings multiplied by their weighted coefficient results in the severity of the Security Hub finding.

The severity label or normalized severity (from 0 to 100) (see AWS Security Finding Format (ASFF) for more information) is calculated from the summed severity. We implemented the following convention:

  • If the severity is more than 100 points, the label is set as CRITICAL (100).
  • If the severity is lower than 100, the normalized severity and label are mapped as described in AWS Security Finding Format (ASFF).

Your company might have a different way to calculate the severity. If you want to adjust the weight coefficients, change the stack parameter. If you want to adjust the mapping of the CFN-Nag findings to Security hub severity, then you’ll need to adapt the Lambda’s calculateSeverity Python function.

Using custom profiles and exceptions, and suppressing false positives

You can customize CFN-Nag to use a certain rule set by including the specific list of rules to apply (called a profile) within the repository. Customizing rule sets is useful because developers or applications might have different security considerations or risk profiles in specific applications. Additionally the operator might prefer to exclude rules that are prone to introducing false positives.

To add a custom profile, you can modify the cfn_nag_scan command specified in the CodeBuild buildspec.yml file. Use the –profile-path command argument to point to the file that contains the list of rules to use, as shown in the following code sample.


cfn_nag_scan --fail-on-warnings –profile-path .cfn_nag.profile  --input-path  ${TemplateFolder} -o json > ./report/cfn_nag.out.json

Where .cfn_nag.profile file contains one rule identifier per line:


F2
F3
F5
W11

You can find the full list of available rules using cfn_nag_rules command.

You can also choose instead to use a global deny list of rules, or directly suppress findings per resource by using Metadata tags in each AWS CloudFormation resource. For more information, see the CFN-Nag GitHub repository.

Integrating with AWS CloudFormation Guard

The integration with AWS CloudFormation Guard (CFN-Guard) follows the same architecture pattern as CFN-Nag. The ImportToSecurityHub Lambda function can process both CFN-Nag and CFN-Guard results to import to Security Hub and generate a CodeBuild report.

To deploy the CFN-Guard tool

  1. In the AWS Management Console, go to CloudFormation, and then choose Update the previous stack deployed.
  2. Choose Next, and then change the SecurityTool parameter to cfn-guard.
  3. Continue to navigate through the console and deploy the stack.

This creates a new buildspec.yml file that uses the cfn-guard command line interface (CLI) to scan all AWS CloudFormation templates in the source repository. The scans use an example rule set found in the CFN-Guard repository.

You can choose to generate the rule set for the AWS CloudFormation templates that are required by the scanning engine and add the rule set to your repository as described on the GitHub page for AWS CloudFormation Guard. The rule set must reflect your company security policy. This can be one set for all templates, or dependent on the security profile of the application.

You can use your own rule set by modifying the cfn-guard –rule_path parameter to point to a file from within your repository, as follows.


cfn-guard --rule_set .cfn_guard.ruleset --template  "$template" > ./report/template_report

Troubleshooting

If the build report fails, you can find the CloudBuild run logs in the CodeBuild Build history. The build will fail if critical security findings are detected in the templates.

Additionally, the Lambda function execution logs can be found in the CloudWatch Log group aws/lambda/ImportToSecurityHub.

Summary

In this post, you learned how to scan the AWS CloudFormation templates for resources that are potentially insecure or not compliant to your company policy in a CodeBuild project, import the findings to Security Hub, and generate CodeBuild test reports. Integrating this solution to your pipelines can help multiple teams within your organization detect potential security risks in your infrastructure code before its deployed to your AWS environments. If you would like to extend the solution further and need support, contact AWS professional services or an Amazon Partner Network (APN) Partner. If you have technical questions, please use the AWS Security Hub or AWS CodeBuild forums.

If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Vesselin Tzvetkov

Vesselin is senior security consultant at AWS Professional Services and is passionate about security architecture and engineering innovative solutions. Outside of technology, he likes classical music, philosophy, and sports. He holds a Ph.D. in security from TU-Darmstadt and a M.S. in electrical engineering from Bochum University in Germany.

Author

Joaquin Manuel Rinaudo

Joaquin is a Senior Security Consultant with AWS Professional Services. He is passionate about building solutions that help developers improve their software quality. Prior to AWS, he worked across multiple domains in the security industry, from mobile security to cloud and compliance related topics. In his free time, Joaquin enjoys spending time with family and reading science-fiction novels.

Automated CloudFormation Testing Pipeline with TaskCat and CodePipeline

Post Syndicated from Raleigh Hansen original https://aws.amazon.com/blogs/devops/automated-cloudformation-testing-pipeline-with-taskcat-and-codepipeline/

Researchers at Academic Medical Centers (AMCs) use programs such as Observational Health Data Sciences and Informatics (OHDSI) and Research Electronic Data Capture (REDCap) to interact with healthcare data. Our internal team at AWS has provided solutions such as OHDSI-on-AWS and REDCap environments on AWS to help clinicians analyze healthcare data in the AWS Cloud. Occasionally, these solutions break due to a change in some portion of the solution (e.g. updated services). The Automated Solutions Testing Pipeline enables our team to take a proactive approach to discovering these breaks and their cause in order to expedite the repair process.

OHDSI-on-AWS provides these AMCs with the ability to store and analyze observational health data in the AWS cloud. REDCap is a web application for managing surveys and databases with HIPAA-compliant environments. Using our solutions, these programs can be spun up easily on the AWS infrastructure using AWS CloudFormation templates.

Updates to AWS services and other program libraries can cause the CloudFormation template to fail during deployment. Other times, the outputs may not be operating correctly, or the template may not work on every AWS region. This can create a negative customer experience. Some customers may discover this kind of break and decide to not move forward with using the solution. Other customers may not even realize the solution is broken, so they might be unknowingly working with an uncooperative environment. Furthermore, we cannot always provide fast support to the customers who contact us about broken solutions. To meet our team’s needs and the needs of our customers, we decided to focus our efforts on taking a CI/CD approach to maintain these solutions. We developed the Automated Testing Pipeline which regularly tests solution deployment and changes to source files.

This post shows the features of the Automated Testing Pipeline and provides resources to help you get started using it with your AWS account.

Overview of Automated Testing Pipeline Solution

The Automated Testing Pipeline solution as a whole is designed to automatically deploy CloudFormation templates, run tests against the deployed environments, send notifications if an issue is discovered, and allow for insightful testing data to be easily explored.

CloudFormation templates to be tested are stored in an Amazon S3 bucket. Custom test scripts and TaskCat deployment configuration are stored in an AWS CodeCommit repository.

The pipeline is triggered in one of three ways: an update to the CloudFormation Template in S3, an Amazon CloudWatch events rule, and an update to the testing source code repository. Once the pipeline has been triggered, AWS CodeBuild pulls the source code to deploy the CloudFormation template, test the deployed environment, and store the results in an S3 bucket. If any failures are discovered, subscribers to the failure topic are notified. The following diagram shows its overall architecture.

Diagram of Automated Testing Pipeline architecture

Diagram of Automated Testing Pipeline architecture

In order to create the Automated Testing Pipeline, two interns collaborated over the course of 5 weeks to produce the architecture and custom test scripts. We divided the work of constructing a serverless architecture and writing out test scripts for the output urls for OHDSI-on-AWS and REDCap environments on AWS.

The following tasks were completed to build out the Automated Testing Pipeline solution:

  • Setup AWS IAM roles for accessing AWS resources securely
  • Create CloudWatch events to trigger AWS CodePipeline
  • Setup CodePipeline and CodeBuild to run TaskCat and testing scripts
  • Configure TaskCat to deploy CloudFormation solutions in various AWS Regions
  • Write test scripts to interact with CloudFormation solutions’ deployed environments
  • Subscribe to receive emails detailing test results
  • Create a CloudFormation template for the Automated Testing Pipeline

The architecture can be extended to test any CloudFormation stack. For this particular use case, we wrote the test scripts specifically to test the urls output by the CloudFormation solutions. The Automated Testing Pipeline has the following features:

  • Deployed in a single AWS Region, with the exception of the tested CloudFormation solution
  • Has a serverless architecture operating at the AWS Region level
  • Deploys a pipeline which can deploy and test the CloudFormation solution
  • Creates CloudWatch events to activate the pipeline on a schedule or when the solution is updated
  • Creates an Amazon SNS topic for notifying subscribers when there are errors
  • Includes code for running TaskCat and scripts to test solution functionality
  • Built automatically in minutes
  • Low in cost with free tier benefits

The pipeline is triggered automatically when an event occurs. These events include a change to the CloudFormation solution template, a change to the code in the testing repository, and an alarm set off by a regular schedule. Additional events can be added in the CloudWatch console.

When the pipeline is triggered, the testing environment is set up by CodeBuild. CodeBuild uses a build specification file kept within our source repository to set up the environment and run the test scripts. We created a CodeCommit repository to host the test scripts alongside the build specification. The build specification includes commands run TaskCat — an open-source tool for testing the deployment of CloudFormation templates. TaskCat provides the ability to test the deployment of the CloudFormation solution, but we needed custom test scripts to ensure that we can interact with the deployed environment as expected. If the template is successfully deployed, CodeBuild handles running the test scripts against the CloudFormation solution environment. In our case, the environment is accessed via urls output by the CloudFormation solution.

We used a Selenium WebDriver for interacting with the web pages given by the output urls. This allowed us to programmatically navigate a headless web browser in the serverless environment and gave us the ability to use text output by JavaScript functions to understand the state of the test. You can see this interaction occurring in the code snippet below.

def log_in(driver, user, passw, link, btn_path, title):
    """Enter username and password then submit to log in

        :param driver: webdriver for Chrome page
        :param user: username as String
        :param passw: password as String
        :param link: url for page being tested as String
        :param btn_path: xpath to submit button
        :param title: expected page title upon successful sign in
        :return: success String tuple if log in completed, failure description tuple String otherwise
    """
    try:
        # post username and password data
        driver.find_element_by_xpath("//input[ @name='username' ]").send_keys(user)
        driver.find_element_by_xpath("//input[ @name='password' ]").send_keys(passw)

        # click sign in button and wait for page update
        driver.find_element_by_xpath(btn_path).click()
    except NoSuchElementException:
        return 'FAILURE', 'Unable to access page elements'

    try:
        WebDriverWait(driver, 20).until(ec.url_changes(link))
        WebDriverWait(driver, 20).until(ec.title_is(title))
    except TimeoutException as e:
        print("Timeout occurred (" + e + ") while attempting to sign in to " + driver.current_url)
        if "Sign In" in driver.title or "invalid user" in driver.page_source.lower():
            return 'FAILURE', 'Incorrect username or password'
        else:
            return 'FAILURE', 'Sign in attempt timed out'

    return 'SUCCESS', 'Sign in complete'

We store the test results in JSON format for ease of parsing. TaskCat generates a dashboard which we customize to display these test results. We are able to insert our JSON results into the dashboard in order to make it easy to find errors and access log files. This dashboard is a static html file that can be hosted on an S3 bucket. In addition, messages are published to topics in SNS whenever an error occurs which provide a link to this dashboard.

Dashboard containing descriptions of tests and their results

Customized TaskCat dashboard

In true CI/CD fashion, this end-to-end design automatically performs tasks that would otherwise be performed manually. We have shown how deploying solutions, testing solutions, notifying maintainers, and providing a results dashboard are all actions handled entirely by the Automated Testing Pipeline.

Getting Started with the Automated Testing Pipeline

Prerequisite tasks to complete before deploying the pipeline:

Once the prerequisite tasks are completed, the pipeline is ready to be deployed. Detailed information about deployment, altering the source code to fit your use case, and troubleshooting issues can be found at the GitHub page for the Automated Testing Pipeline.

For those looking to jump right into deployment, click the Launch Stack button below.

Button to click to deploy the Automated Testing Pipeline via CloudFormation

Tasks to complete after deployment:

  • Subscribe to SNS topic for error messages
  • Update the code to match the parameters and CloudFormation template that were chosen
  • Skip this step if you are testing OHDSI-on-AWS. Upload the desired CloudFormation template to the created source S3 Bucket
  • Push the source code to the created CodeCommit Repository

After the code is pushed to the CodeCommit repository and the CloudFormation template has been uploaded to S3, the pipeline will run automatically. You can visit the CodePipeline console to confirm that the pipeline is running with an “in progress” status.

You may desire to alter various aspects of the Automated Testing Pipeline to better fit your use case. Listed below are some actions you can take to modify the solution to fit your needs:

  • Go to CloudWatch Events and update rules for automatically started the pipeline.
  • Scale out testing by providing custom testing scripts or altering the existing ones.
  • Test a different CloudFormation template by uploading it to the source S3 bucket created and configuring the pipeline accordingly. Custom test scripts will likely be required for this use case.

Challenges Addressed by the Automated Testing Pipeline

The Automated Testing Pipeline directly addresses the challenges we faced with maintaining our OHDSI and REDCap solutions. Additionally, the pipeline can be used whenever there is a need to test CloudFormation templates that are being used on a regular basis or are distributed to other users. Listed below is the set of specific challenges we faced maintaining CloudFormation solutions and how the pipeline addresses them.

Table describing challenges faced with their direct solution offered by Testing Pipeline

The desire to better serve our customers guided our decision to create the Automated Testing Pipeline. For example, we know that source code used to build the OHDSI-on-AWS environment changes on occasion. Some of these changes have caused the environment to stop functioning correctly. This left us with cases where our customers had to either open an issue on GitHub or reach out to AWS directly for support. Our customers depend on OHDSI-on-AWS functioning properly, so fixing issues is of high priority to our team. The ability to run tests regularly allows us to take action without depending on notice from our customers. Now, we can be the first ones to know if something goes wrong and get to fixing it sooner.

“This automation will help us better monitor the CloudFormation-based projects our customers depend on to ensure they’re always in working order.” — James Wiggins, EDU HCLS SA Manager

Cleaning Up

If you decide to quit using the Automated Testing Pipeline, follow the steps below to get rid of the resources associated with it in your AWS account.

  • Delete CloudFormation solution root Stack
  • Delete pipeline CloudFormation Stack
  • Delete ATLAS S3 Bucket if OHDSI-on-AWS was chosen

Deleting the pipeline CloudFormation stack handles removing the resources associated with its architecture. Depending on the CloudFormation template chosen for testing, additional resources associated with it may need to be removed. Visit our GitHub page for more information on removing resources.

Conclusion

The ability to continuously test preexisting solutions on AWS has great benefits for our team and our customers. The automated nature of this testing frees up time for us and our customers, and the dashboard makes issues more visible and easier to resolve. We believe that sharing this story can benefit anyone facing challenges maintaining CloudFormation solutions in AWS. Check out the Getting Started with the Automated Testing Pipeline section of this post to deploy the solution.

Additional Resources

More information about the key services and open-source software used in our pipeline can be found at the following documentation pages:

About the Authors

Raleigh Hansen is a former Solutions Architect Intern on the Academic Medical Centers team at AWS. She is passionate about solving problems and improving upon existing systems. She also adores spending time with her two cats.

Dan Le is a former Solutions Architect Intern on the Academic Medical Centers team at AWS. He is passionate about technology and enjoys doing art and music.

Jump-starting your serverless development environment

Post Syndicated from Benjamin Smith original https://aws.amazon.com/blogs/compute/jump-starting-your-serverless-development-environment/

Developers building serverless applications often wonder how they can jump-start their local development environment. This blog post provides a broad guide for those developers wanting to set up a development environment for building serverless applications.

serverless development environment

AWS and open source tools for a serverless development environment .

To use AWS Lambda and other AWS services, create and activate an AWS account.

Command line tooling

Command line tools are scripts, programs, and libraries that enable rapid application development and interactions from within a command line shell.

The AWS CLI

The AWS Command Line Interface (AWS CLI) is an open source tool that enables developers to interact with AWS services using a command line shell. In many cases, the AWS CLI increases developer velocity for building cloud resources and enables automating repetitive tasks. It is an important piece of any serverless developer’s toolkit. Follow these instructions to install and configure the AWS CLI on your operating system.

AWS enables you to build infrastructure with code. This provides a single source of truth for AWS resources. It enables development teams to use version control and create deployment pipelines for their cloud infrastructure. AWS CloudFormation provides a common language to model and provision these application resources in your cloud environment.

AWS Serverless Application Model (AWS SAM CLI)

AWS Serverless Application Model (AWS SAM) is an extension for CloudFormation that further simplifies the process of building serverless application resources.

It provides shorthand syntax to define Lambda functions, APIs, databases, and event source mappings. During deployment, the AWS SAM syntax is transformed into AWS CloudFormation syntax, enabling you to build serverless applications faster.

The AWS SAM CLI is an open source command line tool used to locally build, test, debug, and deploy serverless applications defined with AWS SAM templates.

Install AWS SAM CLI on your operating system.

Test the installation by initializing a new quick start project with the following command:

$ sam init
  1. Choose 1 for the “Quick Start Templates
  2. Choose 1 for the “Node.js runtime
  3. Use the default name.

The generated /sam-app/template.yaml contains all the resource definitions for your serverless application. This includes a Lambda function with a REST API endpoint, along with the necessary IAM permissions.

Resources:
  HelloWorldFunction:
    Type: AWS::Serverless::Function # More info about Function Resource: https://github.com/awslabs/serverless-application-model/blob/master/versions/2016-10-31.md#awsserverlessfunction
    Properties:
      CodeUri: hello-world/
      Handler: app.lambdaHandler
      Runtime: nodejs12.x
      Events:
        HelloWorld:
          Type: Api # More info about API Event Source: https://github.com/awslabs/serverless-application-model/blob/master/versions/2016-10-31.md#api
          Properties:
            Path: /hello
            Method: get

Deploy this application using the AWS SAM CLI guided deploy:

$ sam deploy -g

Local testing with AWS SAM CLI

The AWS SAM CLI requires Docker containers to simulate the AWS Lambda runtime environment on your local development environment. To test locally, install Docker Engine and run the Lambda function with following command:

$ sam local invoke "HelloWorldFunction" -e events/event.json

The first time this function is invoked, Docker downloads the lambci/lambda:nodejs12.x container image. It then invokes the Lambda function with a pre-defined event JSON file.

Helper tools

There are a number of open source tools and packages available to help you monitor, author, and optimize your Lambda-based applications. Some of the most popular tools are shown in the following list.

Template validation tooling

CloudFormation Linter is a validation tool that helps with your CloudFormation development cycle. It analyses CloudFormation YAML and JSON templates to resolve and validate intrinsic functions and resource properties. By analyzing your templates before deploying them, you can save valuable development time and build automated validation into your deployment release cycle.

Follow these instructions to install the tool.

Once, installed, run the cfn-lint command with the path to your AWS SAM template provided as the first argument:

cfn-lint template.yaml
AWS SAM template validation with cfn-lint

AWS SAM template validation with cfn-lint

The following example shows that the template is not valid because the !GettAtt function does not evaluate correctly.

IDE tooling

Use AWS IDE plugins to author and invoke Lambda functions from within your existing integrated development environment (IDE). AWS IDE toolkits are available for PyCharm, IntelliJ. Visual Studio.

The AWS Toolkit for Visual Studio Code provides an integrated experience for developing serverless applications. It enables you to invoke Lambda functions, specify function configurations, locally debug, and deploy—all conveniently from within the editor. The toolkit supports Node.js, Python, and .NET.

The AWS Toolkit for Visual Studio Code

From Visual Studio Code, choose the Extensions icon on the Activity Bar. In the Search Extensions in Marketplace box, enter AWS Toolkit and then choose AWS Toolkit for Visual Studio Code as shown in the following example. This opens a new tab in the editor showing the toolkit’s installation page. Choose the Install button in the header to add the extension.

AWS Toolkit extension for Visual Studio Code

AWS Toolkit extension for Visual Studio Code

AWS Cloud9

Another option to build a development environment without having to install anything locally is to use AWS Cloud9. AWS Cloud9 is a cloud-based integrated development environment (IDE) for writing, running, and debugging code from within the browser.

It provides a seamless experience for developing serverless applications. It has a preconfigured development environment that includes AWS CLI, AWS SAM CLI, SDKs, code libraries, and many useful plugins. AWS Cloud9 also provides an environment for locally testing and debugging AWS Lambda functions. This eliminates the need to upload your code to the Lambda console. It allows developers to iterate on code directly, saving time, and improving code quality.

Follow this guide to set up AWS Cloud9 in your AWS environment.

Advanced tooling

Efficient configuration of Lambda functions is critical when expecting optimal cost and performance of your serverless applications. Lambda allows you to control the memory (RAM) allocation for each function.

Lambda charges based on the number of function requests and the duration, the time it takes for your code to run. The price for duration depends on the amount of RAM you allocate to your function. A smaller RAM allocation may reduce the performance of your application if your function is running compute-heavy workloads. If performance needs outweigh cost, you can increase the memory allocation.

Cost and performance optimization tooling

AWS Lambda power tuner is an open source tool that uses an AWS Step Functions state machine to suggest cost and performance optimizations for your Lambda functions. It invokes a given function with multiple memory configurations. It analyzes the execution log results to determine and suggest power configurations that minimize cost and maximize performance.

To deploy the tool:

  1. Clone the repository as follows:
    $ git clone https://github.com/alexcasalboni/aws-lambda-power-tuning.git
  2. Create an Amazon S3 bucket and enter the deployment configurations in /scripts/deploy.sh:
    # config
    BUCKET_NAME=your-sam-templates-bucket
    STACK_NAME=lambda-power-tuning
    PowerValues='128,512,1024,1536,3008'
  3. Run the deploy.sh script from your terminal, this uses the AWS SAM CLI to deploy the application:
    $ bash scripts/deploy.sh
  4. Run the power tuning tool from the terminal using the AWS CLI:
    aws stepfunctions start-execution \
    --state-machine-arn arn:aws:states:us-east-1:0123456789:stateMachine:powerTuningStateMachine-Vywm3ozPB6Am \
    --input "{\"lambdaARN\": \"arn:aws:lambda:us-east-1:1234567890:function:testytest\", \"powerValues\":[128,256,512,1024,2048],\"num\":50,\"payload\":{},\"parallelInvocation\":true,\"strategy\":\"cost\"}" \
    --output json
  5. The Step Functions execution output produces a link to a visual summary of the suggested results:

    AWS Lambda power tuning results

    AWS Lambda power tuning results

Monitoring and debugging tooling

Sls-dev-tools is an open source serverless tool that delivers serverless metrics directly to the terminal. It provides developers with feedback on their serverless application’s metrics and key bindings that deploy, open, and manipulate stack resources. Bringing this data directly to your terminal or IDE, reduces context switching between the developer environment and the web interfaces. This can increase application development speed and improve user experience.

Follow these instructions to install the tool onto your development environment.

To open the tool, run the following command:

$ Sls-dev-tools

Follow the in-terminal interface to choose which stack to monitor or edit.

The following example shows how the tool can be used to invoke a Lambda function with a custom payload from within the IDE.

Invoke an AWS Lambda function with a custom payload using sls-dev-tools

Invoke an AWS Lambda function with a custom payload using sls-dev-tools

Serverless database tooling

NoSQL Workbench for Amazon DynamoDB is a GUI application for modern database development and operations. It provides a visual IDE tool for data modeling and visualization with query development features to help build serverless applications with Amazon DynamoDB tables. Define data models using one or more tables and visualize the data model to see how it works in different scenarios. Run or simulate operations and generate the code for Python, JavaScript (Node.js), or Java.

Choose the correct operating system link to download and install NoSQL Workbench on your development machine.

The following example illustrates a connection to a DynamoDB table. A data scan is built using the GUI, with Node.js code generated for inclusion in a Lambda function:

Connecting to an Amazon DynamoBD table with NoSQL Workbench for AmazonDynamoDB

Connecting to an Amazon DynamoDB table with NoSQL Workbench for Amazon DynamoDB

Generating query code with NoSQL Workbench for Amazon DynamoDB

Generating query code with NoSQL Workbench for Amazon DynamoDB

Conclusion

Building serverless applications allows developers to focus on business logic instead of managing and operating infrastructure. This is achieved by using managed services. Developers often struggle with knowing which tools, libraries, and frameworks are available to help with this new approach to building applications. This post shows tools that builders can use to create a serverless developer environment to help accelerate software development.

This list represents AWS and open source tools but does not include our APN Partners. For partner offers, check here.

Read more to start building serverless applications.

[email protected] infectious disease research with Spot Instances

Post Syndicated from Ben Peven original https://aws.amazon.com/blogs/compute/foldinghome-infectious-disease-research-with-spot-instances/

This post was contributed by Jarman Hauser, Jessie Xie, and Kinnar Kumar Sen.

[email protected] (FAH) is a distributed computing project that uses computational modeling to simulate protein structure, stability, and shape (how it folds). These simulations help to advance drug discoveries and cures for diseases linked to protein dynamics within human cells. The FAH software crowdsources its distributed compute platform allowing anyone to contribute by donating unused computational resources from personal computers, laptops, and cloud servers.

Overview

In this post, I walk through deploying EC2 Spot Instances, optimized for the latest [email protected] client software. I describe how to be flexible across a combination of GPU-optimized Amazon EC2 Spot Instances configured in an EC2 Auto Scaling group. The Auto Scaling group handles launching and maintaining a desired capacity, and automatically request resources to replace any that are interrupted or manually shut down.

Spot Instances are spare EC2 capacity available at up to a 90% discount compared to On-Demand Instance prices. The only difference between On-Demand Instance and Spot Instances is that Spot Instances can be interrupted by EC2 with two minutes of notification when EC2 needs the capacity back. This makes Spot Instances a great fit for stateless, fault-tolerant workloads like big data, containers, batch processing, AI/ML training, CI/CD and test/dev. For more information, see Amazon EC2 Spot Instances.

In addition to being flexible across instance types, another best practice for using Spot Instances effectively is to select the appropriate allocation strategy. Allocation strategies in EC2 Auto Scaling help you automatically provision capacity according to your workload requirements. We recommend that using the capacity optimized strategy to automatically provision instances from the most-available Spot Instance pools by looking at real-time capacity data. Because your Spot Instance capacity is sourced from pools with optimal capacity, this decreases the possibility that your Spot Instances are reclaimed. For more information about allocation strategies, see Spot Instances in the EC2 Auto Scaling user guide and configuring Spot capacity optimization in this user guide.

What you’ll build

Amazon CloudWatch instance metrics and logs for real-time monitoring of the protein folding progress.

Folding@home and CFn template architecture

Image 1.1 – Architectural diagram of deploying the AWS Cloud Formation template

To complete the setup, you must have an AWS account with permissions to the listed resources above. When you sign up for AWS, your AWS account is automatically signed up for all services in AWS, including Amazon EC2. If you don’t have an AWS account, find more info about creating an account here.

Costs and licensing

The AWS CloudFormation (CFn) template includes customizable configuration parameters. Some of these settings, such as instance type, affect the cost of deployment. For cost estimates, see the pricing pages for each AWS service you are using. Prices are subject to change. You are responsible for the cost of the AWS services used. There is no additional cost for using the CFn template.

Note: There is no additional charge to use Deep Learning AMIs — you pay only for the AWS resources while they’re running. [email protected] client software is a free, open-source software that is distributed under the [email protected] EULA.

Tip: After you deploy the AWS CloudFormation template, we recommend that you enable AWS Cost Explorer. Cost Explorer is an easy-to-use interface that lets you visualize, understand, and manage your AWS costs and usage e.g. you can break down costs to show hourly costs for your protein folding project.

How to deploy

Part one: Download and configure the CFn template

First thing you must do is download, then make a few edits to the template.

Once downloaded, open the template file in your favorite text editor to make a few edits to the configuration before deploying.

In the User Information section, you have the option to create a unique user name, join or create a new team, or contribute anonymously. For this example, I leave the values set to default and contribute as an anonymous user, the default team. More details about teams and leaderboards can be found here and details about PASSKEYs here.

<!-- User Information -->
<team v="Default"/>
<user v="0"/> 
<passkey v="PASSKEY_HERE"/>

Once edited and saved to a location you can easily find later, in the next section you’ll learn how to upload the template in the AWS CloudFormation console.

Part two: Launching the stack

Next, log into the AWS Management Console, choose the Region you want to run the solution in, then navigate to AWS CloudFormation to launch the template.

In the AWS CloudFormation console, click on Create stack. Upload the template we just configured and click on Next to specify stack details.

Create stack

Enter a stack name and adjust the capacity parameters as needed. In this example I set the desiredCapacity and minSize at 2 to handle protein folding jobs assigned to the client, and then the maxSize set at 12. Setting your maxSize to 12 ensures you have capacity for larger jobs that get assigned. These parameters can be adjusted based on your desired capacity.

specify Stack details

If breaking out usage and cost data is required,, you can optionally add additional configurations like tags, permissions, stack policies, rollback options, and more advanced options in the next stack configuration step. Click Next to Review and then create the stack.

Under the Events tab, you can see the status of the AWS resources being created. When the status is CREATE_COMPLETE (approx. 3–5 minutes), the environment with [email protected] is installed and ready. Once the stack is created, the GPU instances will begin protein simulation.

Check status of deployed AWS resources

Results

The AWS CloudFormation template creates a log group “fahlog” that each of the instances send log data to. This allows you to visualize the protein folding progress in near real time via the Amazon CloudWatch console. To see the log data, navigate over to the Resources tab and click on the cloudWatchLogGroup link for ‘fahlog’. Alternatively, you can navigate to the Amazon CloudWatch console and choose ‘fahlog’ under log groups. Note: Sometimes it takes a bit of time for [email protected] Work Units (WU) to be downloaded in the instances and allocate all the available GPUs.

fahlog log group

In the CloudWatch console, check out the Insights feature in the left navigation menu to see analytics for your protein folding logs. Select ‘fahlog’ in the search box and run the default query that is provided for you in the query editor window to see your protein folding results.

fahlog insights

Another thing you can do is create a dashboard in the CloudWatch console to automatically refresh based on the time intervals you set. Under Dashboards in the left navigation bar, I was able to quickly create a few widgets to visualize CPU utilization, network in/out, and protein folding completed steps. This is a nifty tool that, with a little more time, you could configure more detailed metrics like cost per fold, and GPU monitoring.

CloudWatch metrics

Part three: Clean up

You can let this run as long as you want to contribute to this project. When you’re ready to stop, AWS CloudFormation gives us the option to delete the stack and resources created. On the AWS CloudFormation console, select the stack, and select delete. When you delete a stack, you delete the stack and all of its resources.

Conclusion

In this post, I shared how to launch a cluster of EC2 GPU-optimized Spot Instances to aid in [email protected]’s protein dynamics research that could lead to therapeutics for infectious diseases. I leveraged Spot best practices by being flexible with instance selections across multiple families, sizes, and Availability Zones, and by choosing the capacity-optimized allocation strategy to ensure our cluster scales optimally and securely. Now you are ready to donate compute capacity with Spot Instances to aid disease research efforts on [email protected]

About [email protected]

[email protected] is currently based at the Washington University School of Medicine in St. Louis, under the directorship of Dr. Greg Bowman. The project was started by the Pande Laboratory at Stanford University, under the direction of Dr. Vijay Pande, who led the project until 2019.[4] Since 2019, [email protected] has been led by Dr. Greg Bowman of Washington University in St. Louis, a former student of Dr. Pande, in close collaboration with Dr. John Chodera of MSKCC and Vince Voelz of Temple University.[5]

With heightened interest in the project, [email protected] has grown to a community of 2M+ users, bringing together the compute power of over 600K GPUs and 1.6M CPUs.

This outpouring of support has made [email protected] one of the world’s fastest computing systems – achieving speeds of approximately 1.2 exaFLOPS, or 2.3 x86 exaFLOPS, by April 9, 2020 – making it the world’s first exaFLOP computing system[email protected]‘s COVID-19 effort specifically focuses on better understanding how the viral protein’s moving parts enable to infect a human host, evade an immune response, and create new copies of the virus. The project is leveraging this insight to help design new therapeutic antibodies and small molecules that might prevent infection. They are engaged with a number of experimental collaborators to quickly iterate between computational design and experimental testing.

Building well-architected serverless applications: Controlling serverless API access – part 3

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-controlling-serverless-api-access-part-3/

This series of blog posts uses the AWS Well-Architected Tool with the Serverless Lens to help customers build and operate applications using best practices. In each post, I address the nine serverless-specific questions identified by the Serverless Lens along with the recommended best practices. See the Introduction post for a table of contents and explanation of the example application.

Security question SEC1: How do you control access to your serverless API?

This post continues part 2 of this security question. Previously, I cover Amazon Cognito user and identity pools, JSON web tokens (JWT), API keys and usage plans.

Best practice: Scope access based on identity’s metadata

Authenticated users should be separated into logical groups, roles, or tiers. Separation can also be based on custom authentication token attributes included within Security Assertion Markup Language (SAML) or JSON Web Tokens (JWT). Consider using the user’s identity metadata to enable fine-grain control access to resources and actions.

Scoping access based on authentication metadata allows you to provide limited and fine-grained capabilities and access to consumers based on their roles and intent.

Review levels of access, identity metadata, and separate consumers into logical groups/tiers

With JWT or SAML, ensure you have the right level of information available within the token claims to help you develop authorization logic. Use custom private claims along with a unique namespace for non-public information. Private claims are to share custom information specifically with your application client. Unique namespaces are to avoid name collision for custom claims. For more information, see the AWS Partner Network blog post “Understanding JWT Public, Private and Reserved Claims”.

With Amazon Cognito, you can use custom attributes or the Pre Token Generation Lambda Trigger feature. This AWS Lambda trigger allows you to customize a JWT token claim before the token is generated.

To illustrate using Amazon Cognito groups, I use the example from this blog post. The example uses Amplify CLI to create a web application for managing group membership. API Gateway handles authentication using an Amazon Cognito user pool as part of an administrator API. Two Amazon Cognito user pool groups are created using amplify auth update, one for admin, and one for editors.

  1. I navigate to the deployed web application and create two users, an administrator called someadminuser and an editor user called awesomeeditor.
  2. Show Amazon Cognito user creation

    Show Amazon Cognito user creation

  3. I navigate to the Amazon Cognito user pool console, choose Users and groups under General settings, and can see that both users are created.
  4. View Amazon Cognito users created

    View Amazon Cognito users created

  5. I choose the Groups tab and see that there are two user pool groups set up as part of amplify auth update.
  6. I add the someadminuser to the admin group.
  7. View Amazon Cognito user added to group and IAM role

    View Amazon Cognito user added to group and IAM role

  8. There is an AWS Identity and Access Management (IAM) role associated with the administrator group. This IAM role has an associated identity policy that grants permission to access an S3 bucket for some future application functionality.
  9. {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Action": [
                    "s3:PutObject",
                    "s3:GetObject",
                    "s3:ListBucket",
                    "s3:DeleteObject"
                ],
                "Resource": [
                    "arn:aws:s3:::mystoragebucket194021-dev/*"
                ],
                "Effect": "Allow"
            }
        ]
    }
    
  10. I log on to the web application using both the someadminuser and awesomeeditor accounts and compare the two JWT accessToken Amazon Cognito has generated.

The someadminuser has a cognito:groups claim within the token showing membership of the user pool group admin.

View JWT with group membership

View JWT with group membership

This token with its group claim can be used in a number of ways to authorize access.

Within this example frontend application, the token is used against an API Gateway resource using an Amazon Cognito authorizer.

An Amazon Cognito authorizer is an alternative to using IAM or Lambda authorizers to control access to your API Gateway method. The client first signs in to the user pool, and receives a token. The client then calls the API method with the token which is typically in the request’s Authorization header. The API call only succeeds if a valid is supplied. Without the correct token, the client isn’t authorized to make the call.

In this example, the Amazon Cognito authorizer authorizes access at the API method. Next, the event payload passed to the Lambda function contains the token. The function reads the token information. If the group membership claim includes admin, it adds the awesomeeditor user to the Amazon Cognito user pool group editors.

  1. To see how this is configured, I navigate to the API Gateway console and select the AdminQueries API.
  2. I view the /{proxy+}/ANY resource.
  3. I see that the Integration Request is set to LAMBDA_PROXY. which calls the AdminQueries Lambda function.
  4. View API Gateway Lambda proxy path

    View API Gateway Lambda proxy path

  5. I view the Method Request.
  6. View API Gateway Method Request using Amazon Cognito authorization

    View API Gateway Method Request using Amazon Cognito authorization

  7. Authorization is set to an Amazon Cognito user pool authorizer with an OAuth scope of aws.cognito.signin.user.admin. This scope grants access to Amazon Cognito user pool API operations that require access tokens, such as AdminAddUserToGroup.
  8. I navigate to the Authorizers menu item, and can see the configured Amazon Cognito authorizer.
  9. In the Amazon Cognito user pool details, the Token Source is set to Authorization. This is the name of the header sent to the Amazon Cognito user pool for authorization.
  10. View Amazon Cognito authorizer settings

    View Amazon Cognito authorizer settings

  11. I navigate to the AWS Lambda console, select the AdminQueries function which amplify add auth added, and choose the Permissions tab. I select the Execution role and view its Permissions policies.
  12. I see that the function execution role allows write permission to the Amazon Cognito user pool resource. This allows the function to amend the user pool group membership.
  13. View Lambda execution role permissions including Amazon Cognito write

    View Lambda execution role permissions including Amazon Cognito write

  14. I navigate back to the AWS Lambda console, and view the configuration for the AdminQueries function. There is an environment variable set for GROUP=admin.
Lambda function environment variables

Lambda function environment variables

The Lambda function code checks if the authorizer.claims token includes the GROUP environment variable value of admin. If not, the function returns err.statusCode = 403 and an error message. Here is the relevant section of code within the function.

// Only perform tasks if the user is in a specific group
const allowedGroup = process.env.GROUP;
…..
  // Fail if group enforcement is being used
  if (req.apiGateway.event.requestContext.authorizer.claims['cognito:groups']) {
    const groups = req.apiGateway.event.requestContext.authorizer.claims['cognito:groups'].split(',');
    if (!(allowedGroup && groups.indexOf(allowedGroup) > -1)) {
      const err = new Error(`User does not have permissions to perform administrative tasks`);
      err.statusCode = 403;
      next(err);
    }
  } else {
    const err = new Error(`User does not have permissions to perform administrative tasks`);
    err.statusCode = 403;
    next(err);
  }

This example shows using a JWT to perform authorization within a Lambda function.

If the authorization is successful, the function continues and adds the awesomeeditor user to the editors group.

To show this flow in action:

  1. I log on to the web application using the awesomeeditor account, which is not a member of the admin group. I choose the Add to Group button.
  2. Sign in as editor

    Sign in as editor

  3. Using the browser developer tools I see that the API request has failed, returning the 403 error code from the Lambda function.
  4. Shows 403 access denied

    Shows 403 access denied

  5. I log on to the web application using the someadminuser account and choose the Add to Group button.
  6. Sign in as admin

    Sign in as admin

  7. Using the browser developer tools I see that the API request is now successful as the user is a member of the admin group.
  8. API successful call as admin

    API successful call as admin

  9. I navigate back to the Amazon Cognito user pool console, and view Users and groups. The awesomeeditor user is now a member of the editors group.
User now member of editors group

User now member of editors group

The Lambda function has added the awesomeeditor account to the editors group.

Implement authorization logic based on authentication metadata

Another way to separate users for authorization is using Amazon Cognito to define a resource server with custom scopes.

A resource server is a server for access-protected resources. It handles authenticated requests from an app that has an access token. This API can be hosted in Amazon API Gateway or outside of AWS. A scope is a level of access that an app can request to a resource. For example, if you have a resource server for airline flight details, it might define two scopes. One scope for all customers with read access to view the flight details, and one for airline employees with write access to add new flights. When the app makes an API call to request access and passes an access token, the token has one or more embedded scopes.

JWT with scope

JWT with scope

This allows you to provide different access levels to API resources for different application clients based on the custom scopes. It is another mechanism for separating users during authentication.

For authorizing based on token claims, use an API Gateway Lambda authorizer.

For more information, see “Using Amazon Cognito User Pool Scopes with Amazon API Gateway”.

With AWS AppSync, use GraphQL resolvers. AWS Amplify can also generate fine-grained authorization logic via GraphQL transformers (directives). You can annotate your GraphQL schema to a specific data type, data field, and specific GraphQL operation you want to allow access. These can include JWT groups or custom claims. For more information, see “GraphQL API Security with AWS AppSync and Amplify”, and the AWS AppSync documentation for Authorization Use Cases, and fine-grained access control.

Improvement plan summary:

  1. Review levels of access, identity metadata and separate consumers into logical groups/tiers.
  2. Implement authorization logic based on authentication metadata

Conclusion

Controlling serverless application API access using authentication and authorization mechanisms can help protect against unauthorized access and prevent unnecessary use of resources. In part 1, I cover the different mechanisms for authorization available for API Gateway and AWS AppSync. I explain the different approaches for public or private endpoints and show how to use IAM to control access to internal or private API consumers.

In part 2, I cover using Amplify CLI to add a GraphQL API with an Amazon Cognito user pool handling authentication. I explain how to view JSON Web Token (JWT) claims, and how to use Amazon Cognito identity pools to grant temporary access to AWS services. I also show how to use API keys and API Gateway usage plans for rate limiting and throttling requests.

In this post, I cover separating authenticated users into logical groups. I first show how to use Amazon Cognito user pool groups to separate users with an Amazon Cognito authorizer to control access to an API Gateway method. I also show how JWTs can be passed to a Lambda function to perform authorization within a function. I then explain how to also separate users using custom scopes by defining an Amazon Cognito resource server.

In an upcoming post, I will cover the second security question from the Well-Architected Serverless Lens about managing serverless security boundaries.

Building well-architected serverless applications: Controlling serverless API access – part 2

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-controlling-serverless-api-access-part-2/

This series of blog posts uses the AWS Well-Architected Tool with the Serverless Lens to help customers build and operate applications using best practices. In each post, I address the nine serverless-specific questions identified by the Serverless Lens along with the recommended best practices. See the Introduction post for a table of contents and explanation of the example application.

Security question SEC1: How do you control access to your serverless API?

This post continues part 1 of this security question. Previously, I cover the different mechanisms for authentication and authorization available for Amazon API Gateway and AWS AppSync. I explain the different approaches for public or private endpoints and show how to use AWS Identity and Access Management (IAM) to control access to internal or private API consumers.

Required practice: Use appropriate endpoint type and mechanisms to secure access to your API

I continue to show how to implement security mechanisms appropriate for your API endpoint.

Using AWS Amplify CLI to add a GraphQL API

After adding authentication in part 1, I use the AWS Amplify CLI to add a GraphQL AWS AppSync API with the following command:

amplify add api

When prompted, I specify an Amazon Cognito user pool for authorization.

Amplify add Amazon Cognito user pool for authorization

Amplify add Amazon Cognito user pool for authorization

To deploy the AWS AppSync API configuration to the AWS Cloud, I enter:

amplify push

Once the deployment is complete, I view the GraphQL API from within the AWS AppSync console and navigate to Settings. I see the AWS AppSync API uses the authorization configuration added during the part 1 amplify add auth. This uses the Amazon Cognito user pool to store the user sign-up information.

View AWS AppSync authorization settings with Amazon Cognito

View AWS AppSync authorization settings with Amazon Cognito

For a more detailed walkthrough using Amplify CLI to add an AWS AppSync API for the serverless airline, see the build video.

Viewing JWT tokens

When I create a new account from the serverless airline web frontend, Amazon Cognito creates a user within the user pool. It handles the 3-stage sign-up process for new users. This includes account creation, confirmation, and user sign-in.

Serverless airline Amazon Cognito based sign-in process

Serverless airline Amazon Cognito based sign-in process

Once the account is created, I browse to the Amazon Cognito console and choose Manage User Pools. I navigate to Users and groups under General settings and view my user account.

View User Account

View User Account

When I sign in to the serverless airline web app, I authenticate with Amazon Cognito, and the client receives user pool tokens. The client then calls the AWS AppSync API, which authorizes access using the tokens, connects to data sources, and resolves the queries.

Amazon Cognito tokens used by AWS AppSync

Amazon Cognito tokens used by AWS AppSync

During the sign-in process, I can use the browser developer tools to view the three JWT tokens Amazon Cognito generates and returns to the client. These are the accesstoken, idToken, and refreshToken.

View tokens with browser developer tools

View tokens with browser developer tools

I copy the .idToken value and use the decoder at https://jwt.io/ to view the contents.

JSON web token decoded

JSON web token decoded

The decoded token contains claims about my identity. Claims are pieces of information asserted about my identity. In this example, these include my Amazon Cognito username, email address, and other sign-up fields specified in the user pool. The client can use this identity information inside the application.

The ID token expires one hour after I authenticate. The client uses the Amazon Cognito issued refreshToken to retrieve new ID and access tokens. By default, the refresh token expires after 30 days, but can be set to any value between 1 and 3650 days. When using the mobile SDKs for iOS and Android, retrieving new ID and access tokens is done automatically with a valid refresh token.

For more information, see “Using Tokens with User Pools”.

Accessing AWS services

An Amazon Cognito user pool is a managed user directory to provide access for a user to an application. Amazon Cognito has a feature called identity pools (federated identities), which allow you to create unique identities for your users. These can be from user pools, or other external identity providers.

These unique identities are used to get temporary AWS credentials to directly access other AWS services, or external services via API Gateway. The Amplify client libraries automatically expire, rotate, and refresh the temporary credentials.

Identity pools have identities that are either authenticated or unauthenticated. Unauthenticated identities typically belong to guest users. Authenticated identities belong to authenticated users who have received a token by a login provider, such as a user pool. The Amazon Cognito issued user pool tokens are exchanged for AWS access credentials from an identity pool.

JWT-tokens-from-Amazon-Cognito-user-pool-exchanged-for-AWS-credentials-from-Amazon-Cognito-identity-pool

JWT-tokens-from-Amazon-Cognito-user-pool-exchanged-for-AWS-credentials-from-Amazon-Cognito-identity-pool

API keys

For public content and unauthenticated access, both Amazon API Gateway and AWS AppSync provide API keys that can be used to track usage. API keys should not be used as a primary authorization method for production applications. Instead, use these for rate limiting and throttling. Unauthenticated APIs require stricter throttling than authenticated APIs.

API Gateway usage plans specify who can access API stages and methods, and also how much and how fast they can access them. API keys are then associated with the usage plans to identify API clients and meter access for each key. Throttling and quota limits are enforced on individual keys.

Throttling limits determine how many requests per second are allowed for a usage plan. This is useful to prevent a client from overwhelming a downstream resource. There are two API Gateway values to control this, the throttle rate and throttle burst, which use the token bucket algorithm. The algorithm is based on an analogy of filling and emptying a bucket of tokens representing the number of available requests that can be processed. The bucket in the algorithm has a fixed size based on the throttle burst and is filled at the token rate. Each API request removes a token from the bucket. The throttle rate then determines how many requests are allowed per second. The throttle burst determines how many concurrent requests are allowed and is shared across all APIs per Region in an account.

Token bucket algorithm

Token bucket algorithm

Quota limits allow you to set a maximum number of requests for an API key within a fixed time period. When billing for usage, this also allows you to enforce a limit when a client pays by monthly volume.

API keys are passed using the x-api-key header. API Gateway rejects requests without them.

For example, within the serverless airline, the loyalty service uses an AWS Lambda function to fetch loyalty points and next tier progress via an API Gateway REST API /loyalty/{customerId}/get resource.

I can use this API to simulate the effect of usage plans with API keys.

  1. I navigate to the airline-loyalty API /loyalty/{customerId}/get resource in API Gateway console.
  2. I change the API Key Required value to be true.
  3. Setting API Key Required on API Gateway method

    Setting API Key Required on API Gateway method

  4. I choose Deploy API from the Actions menu.
  5. I create a usage plan in the Usage Plans section of the API Gateway Console.
  6. I choose Create and enter a name for the usage plan.
  7. I select Enable throttling and set the rate to one request per second and the burst to two requests. These are artificially low numbers to simulate the effect.
  8. I select Enable quota and set the limit to 10 requests per day.
  9. Create API Gateway usage plan

    Create API Gateway usage plan

  10. I click Next.
  11. I associate an API Stage by choosing Add API Stage, and selecting the airline Loyalty API and Prod Stage.
  12. Associate usage plan to API Gateway stage

    Associate usage plan to API Gateway stage

  13. I click Next, and choose Create API Key and add to Usage Plan
  14. Create API key and add to usage plan.

    Create API key and add to usage plan.

  15. I name the API Key and ensure it is set to Auto Generate.
  16. Name API Key

  17. I choose Save then Done to associate the API key with the usage plan.
API key associated with usage plan

API key associated with usage plan

I test the API authentication, in addition to the throttles and limits using Postman.

I issue a GET request against the API Gateway URL using a customerId from the airline Airline-LoyaltyData Amazon DynamoDB table. I don’t specify any authorization or API key.

Postman unauthenticated GET request

Postman unauthenticated GET request

I receive a Missing Authentication Token reply, which I expect as the API uses IAM authentication and I haven’t authenticated.

I then configure authentication details within the Authorization tab, using an AWS Signature. I enter my AWS user account’s AccessKey and SecretKey, which has an associated IAM identity policy to access the API.

Postman authenticated GET request without access key

Postman authenticated GET request without access key

I receive a Forbidden reply. I have successfully authenticated, but the API Gateway method rejects the request as it requires an API key, which I have not provided.

I retrieve and copy my previously created API key from the API Gateway console API Keys section, and display it by choosing Show.

Retrieve API key.

Retrieve API key.

I then configure an x-api-key header in the Postman Headers section and paste the API key value.

Having authenticated and specifying the required API key, I receive a response from the API with the loyalty points value.

Postman successful authenticated GET request with access key

Postman successful authenticated GET request with access key

I then call the API with a number of quick successive requests.

When I exceed the throttle rate limit of one request per second, and the throttle burst limit of two requests, I receive:

{"message": "Too Many Requests"}

When I then exceed the quota of 10 requests per day, I receive:

{"message": "Limit Exceeded"}

I view the API key usage within the API Gateway console Usage Plan section.

I select the usage plan, choose the API Keys section, then choose Usage. I see how many requests I have made.

View API key usage

View API key usage

If necessary, I can also grant a temporary rate extension for this key.

For more information on using API Keys for unauthenticated access for AWS AppSync, see the documentation.

API Gateway also has support for AWS Web Application Firewall (AWS WAF) which helps protect web applications and APIs from attacks. It is another mechanism to apply rate-based rules to prevent public API consumers exceeding a configurable request threshold. AWS WAF rules are evaluated before other access control features, such as resource policies, IAM policies, Lambda authorizers, and Amazon Cognito authorizers. For more information, see “Using AWS WAF with Amazon API Gateway”.

AWS AppSync APIs have built-in DDoS protection to protect all GraphQL API endpoints from attacks.

Improvement plan summary:

  1. Determine your API consumer and choose an API endpoint type.
  2. Implement security mechanisms appropriate to your API endpoint

Conclusion

Controlling serverless application API access using authentication and authorization mechanisms can help protect against unauthorized access and prevent unnecessary use of resources.

In this post, I cover using Amplify CLI to add a GraphQL API with an Amazon Cognito user pool handling authentication. I explain how to view JSON Web Token (JWT) claims, and how to use identity pools to grant temporary access to AWS services. I also show how to use API keys and API Gateway usage plans for rate limiting and throttling requests.

This well-architected question will be continued where I look at segregating authenticated users into logical groups. I will first show how to use Amazon Cognito user pool groups to separate users with an Amazon Cognito authorizer to control access to an API Gateway method. I will also show how to pass JWTs to a Lambda function to perform authorization within a function. I will then explain how to also segregate users using custom scopes by defining an Amazon Cognito resource server.

Building well-architected serverless applications: Controlling serverless API access – part 1

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-controlling-serverless-api-access-part-1/

This series of blog posts uses the AWS Well-Architected Tool with the Serverless Lens to help customers build and operate applications using best practices. In each post, I address the nine serverless-specific questions identified by the Serverless Lens along with the recommended best practices. See the Introduction post for a table of contents and explanation of the example application.

Security question SEC1: How do you control access to your serverless API?

Use authentication and authorization mechanisms to prevent unauthorized access, and enforce quota for public resources. By controlling access to your API, you can help protect against unauthorized access and prevent unnecessary use of resources.

AWS has a number of services to provide API endpoints including Amazon API Gateway and AWS AppSync.

Use Amazon API Gateway for RESTful and WebSocket APIs. Here is an example serverless web application architecture using API Gateway.

Example serverless application architecture using API Gateway

Example serverless application architecture using API Gateway

Use AWS AppSync for managed GraphQL APIs.

AWS AppSync overview diagram

AWS AppSync overview diagram

The serverless airline example in this series uses AWS AppSync to provide the frontend, user-facing public API. The application also uses API Gateway to provide backend, internal, private REST APIs for the loyalty and payment services.

Good practice: Use an authentication and an authorization mechanism

Authentication and authorization are mechanisms for controlling and managing access to a resource. In this well-architected question, that is a serverless API. Authentication is verifying who a client or user is. Authorization is deciding whether they have the permission to access a resource. By enforcing authorization, you can prevent unauthorized access to your workload from non-authenticated users.

Integrate with an identity provider that can validate your API consumer’s identity. An identity provider is a system that provides user authentication as a service. The identity provider may use the XML-based Security Assertion Markup Language (SAML), or JSON Web Tokens (JWT) for authentication. It may also federate with other identity management systems. JWT is an open standard that defines a way for securely transmitting information between parties as a JSON object. JWT uses frameworks such as OAuth 2.0 for authorization and OpenID Connect (OIDC), which builds on OAuth2, and adds authentication.

Only authorize access to consumers that have successfully authenticated. Use an identity provider rather than API keys as a primary authorization method. API keys are more suited to rate limiting and throttling.

Evaluate authorization mechanisms

Use AWS Identity and Access Management (IAM) for authorizing access to internal or private API consumers, or other AWS Managed Services like AWS Lambda.

For public, user facing web applications, API Gateway accepts JWT authorizers for authenticating consumers. You can use either Amazon Cognito or OpenID Connect (OIDC).

App client authenticates and gets tokens

App client authenticates and gets tokens

For custom authorization needs, you can use Lambda authorizers.

A Lambda authorizer (previously called a custom authorizer) is an AWS Lambda function which API Gateway calls for an authorization check when a client makes a request to an API method. This means you do not have to write custom authorization logic in a function behind an API. The Lambda authorizer function can validate a bearer token such as JWT, OAuth, or SAML, or request parameters and grant access. Lambda authorizers can be used when using an identity provider other than Amazon Cognito or AWS IAM, or when you require additional authorization customization.

Lambda authorizers

Lambda authorizers

For more information, see the AWS Hero blog post, “The Complete Guide to Custom Authorizers with AWS Lambda and API Gateway”.

The AWS documentation also has a useful section on “Understanding Lambda Authorizers Auth Workflow with Amazon API Gateway”.

Enforce authorization for non-public resources within your API

Within API Gateway, you can enable native authorization for users authenticated using Amazon Cognito or AWS IAM. For authorizing users authenticated by other identity providers, use Lambda authorizers.

For example, within the serverless airline, the loyalty service uses a Lambda function to fetch loyalty points and next tier progress. AWS AppSync acts as the client using an HTTP resolver, via an API Gateway REST API /loyalty/{customerId}/get resource, to invoke the function.

To ensure only AWS AppSync is authorized to invoke the API, IAM authorization is set within the API Gateway method request.

Viewing API Gateway IAM authorization

Viewing API Gateway IAM authorization

The serverless airline uses the AWS Serverless Application Model (AWS SAM) to deploy the backend infrastructure as code. This makes it easier to know which IAM role has access to the API. One of the benefits of using infrastructure as code is visibility into all deployed application resources, including IAM roles.

The loyalty service AWS SAM template contains the AppsyncLoyaltyRestApiIamRole.

AppsyncLoyaltyRestApiIamRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
- Effect: Allow
  AppsyncLoyaltyRestApiIamRole:
    Type: AWS::IAM::Role
    Properties:
      AssumeRolePolicyDocument:
        Version: 2012-10-17
        Statement:
          - Effect: Allow
            Principal:
              Service: appsync.amazonaws.com
            Action: sts:AssumeRole
      Path: /
      Policies:
        - PolicyName: LoyaltyApiInvoke
          PolicyDocument:
            Version: 2012-10-17
            Statement:
              - Effect: Allow
                Action:
                  - execute-api:Invoke
                # arn:aws:execute-api:region:account-id:api-id/stage/METHOD_HTTP_VERB/Resource-path
                Resource: !Sub arn:aws:execute-api:${AWS::Region}:${AWS::AccountId}:${LoyaltyApi}/*/*/*

The IAM role specifies that appsync.amazonaws.com can perform an execute-api:Invoke on the specific API Gateway resource arn:aws:execute-api:${AWS::Region}:${AWS::AccountId}:${LoyaltyApi}/*/*/*

Within AWS AppSync, you can enable native authorization for users authenticating using Amazon Cognito or AWS IAM. You can also use any external identity provider compliant with OpenID Connect (OIDC).

Improvement plan summary:

  1. Evaluate authorization mechanisms.
  2. Enforce authorization for non-public resources within your API

Required practice: Use appropriate endpoint type and mechanisms to secure access to your API

APIs may have public or private endpoints. Consider public endpoints to serve consumers where they may not be part of your network perimeter. Consider private endpoints to serve consumers within your network perimeter where you may not want to expose the API publicly. Public and private endpoints may have different levels of security.

Determine your API consumer and choose an API endpoint type

For providing public content, use Amazon API Gateway or AWS AppSync public endpoints.

For providing content with restricted access, use Amazon API Gateway with authorization to specific resources, methods, and actions you want to restrict. For example, the serverless airline application uses AWS IAM to restrict access to the private loyalty API so only AWS AppSync can call it.

With AWS AppSync providing a GraphQL API, restrict access to specific data types, data fields, queries, mutations, or subscriptions.

You can create API Gateway private REST APIs that you can only access from your AWS Virtual Private Cloud(VPC) by using an interface VPC endpoint.

API Gateway private endpoints

API Gateway private endpoints

For more information, see “Choose an endpoint type to set up for an API Gateway API”.

Implement security mechanisms appropriate to your API endpoint

With Amazon API Gateway and AWS AppSync, for both public and private endpoints, there are a number of mechanisms for access control.

For providing content with restricted access, API Gateway REST APIs support native authorization using AWS IAM, Amazon Cognito user pools, and Lambda authorizers. Amazon Cognito user pools is a feature that provides a managed user directory for authentication. For more detailed information, see the AWS Hero blog post, “Picking the correct authorization mechanism in Amazon API Gateway“.

You can also use resource policies to restrict content to a specific VPC, VPC endpoint, a data center, or a specific AWS Account.

API Gateway resource policies are different from IAM identity policies. IAM identity policies are attached to IAM users, groups, or roles. These policies define what that identity can do on which resources. For example, in the serverless airline, the IAM role AppsyncLoyaltyRestApiIamRole specifies that appsync.amazonaws.com can perform an execute-api:Invoke on the specific API Gateway resource arn:aws:execute-api:${AWS::Region}:${AWS::AccountId}:${LoyaltyApi}/*/*/*

Resource policies are attached to resources such as an Amazon S3 bucket, or an API Gateway resource or method. The policies define what identities can access the resource.

IAM access is determined by a combination of identity policies and resource policies.

For more information on the differences, see “Identity-Based Policies and Resource-Based Policies”. To see which services support resource-based policies, see “AWS Services That Work with IAM”.

API Gateway HTTP APIs support JWT authorizers as a part of OpenID Connect (OIDC) and OAuth 2.0 frameworks.

API Gateway WebSocket APIs support AWS IAM and Lambda authorizers.

With AWS AppSync public endpoints, you can enable authorization with the following:

  • AWS IAM
  • Amazon Cognito User pools for email and password functionality
  • Social providers (Facebook, Google+, and Login with Amazon)
  • Enterprise federation with SAML

Within the serverless airline, AWS Amplify Console hosts the public user facing site. Amplify Console provides a git-based workflow for building, deploying, and hosting serverless web applications. Amplify Console manages the hosting of the frontend assets for single page app (SPA) frameworks in addition to static websites, along with an optional serverless backend. Frontend assets are stored in S3 and the Amazon CloudFront global edge network distributes the web app globally.

The AWS Amplify CLI toolchain allows you to add backend resources using AWS CloudFormation.

Using Amplify CLI to add authentication

For the serverless airline, I use the Amplify CLI to add authentication using Amazon Cognito with the following command:

amplify add auth

When prompted, I specify the authentication parameters I require.

Amplify add auth

Amplify add auth

Amplify CLI creates a local CloudFormation template. Use the following command to deploy the updated authentication configuration to the cloud:

amplify push

Once the deployment is complete, I view the deployed authentication nested stack resources from within the CloudFormation Console. I see the Amazon Cognito user pool.

View Amplify authentication CloudFormation nested stack resources

View Amplify authentication CloudFormation nested stack resources

For a more detailed walkthrough using Amplify CLI to add authentication for the serverless airline, see the build video.

For more information on Amplify CLI and authentication, see “Authentication with Amplify”.

Conclusion

To help protect against unauthorized access and prevent unnecessary use of serverless API resources, control access using authentication and authorization mechanisms.

In this post, I cover the different mechanisms for authorization available for API Gateway and AWS AppSync. I explain the different approaches for public or private endpoints and show how to use IAM to control access to internal or private API consumers. I walk through how to use the Amplify CLI to create an Amazon Cognito user pool.

This well-architected question will be continued in a future post where I continue using the Amplify CLI to add a GraphQL API. I will explain how to view JSON Web Tokens (JWT) claims, and how to use Cognito identity pools to grant temporary access to AWS services. I will also show how to use API keys and API Gateway usage plans for rate limiting and throttling requests.

How to use AWS Certificate Manager with AWS CloudFormation

Post Syndicated from Louay Shaat original https://aws.amazon.com/blogs/security/how-to-use-aws-certificate-manager-with-aws-cloudformation/

Last month, Amazon Web Services (AWS) introduced the ability to automate issuing and validating public and private certificates using AWS CloudFormation.

To make this easier, AWS has introduced three new features that let you:

  • Automate the steps to validate your domain with DNS validation and issue your public certificate.
  • Use AWS CloudFormation templates to issue private certificates using AWS Certificate Manager (ACM).
  • Disable certificate transparency logging if you don’t want your certificates automatically logged in a public certificate transparency log.

In this post, I explain how you can use the new features in AWS CloudFormation. I also provide sample scripts to help you build on the new features.

Automate issuing a public DNS validated certificate

Before the ACM can issue a certificate for your site, it must verify that you own or control all of the domain names that you specified in your request. You can choose either email validation or DNS validation when you request a certificate.

Previously, when you requested DNS validation, you had to manually add the requested CNAME validation record to the hosted zone in Amazon Route53.

Note: ACM uses canonical name (CNAME) records to validate that you own or control a domain.

The new release enables AWS CloudFormation to validate your public certificate using DNS when the AWS CloudFormation stack is run from the same account the route 53 domain was created in. To enable this feature, you need to reference your HostedZoneId to create the required CNAME record for validation.

Below is a snippet of an AWS CloudFormation template for ACM that references the HostedZoneId.


ACMCertificate: 
    Type: "AWS::CertificateManager::Certificate"
    Properties: 
      DomainName: example.com
      DomainValidationOptions:
            - DomainName: www.example.com
              HostedZoneId: ZZZHHHHWWWWAAA
      ValidationMethod: DNS 

When you deploy this resource in AWS CloudFormation, you’ll see the required CNAME record issued by ACM. AWS CloudFormation will use this information to update the hosted zone based on the HostedZoneId you provided. The following figure shows the CNAME listed in the Status reason of the Events list.

Figure 1: ACM automation events list

Figure 1: ACM automation events list

Now you can automate using ACM to issue public certificates and include that as part of your overall stack.

Automate private certificate creation

You can now use ACM CloudFormation templates to automate the issuance of your private certificate.

Please note that you need an ACM private certificate authority to be able to issue a private certificate. Create a Private Certificate Authority has the information you need to create one.

Disable certificate transparency

Certificate transparency is an open framework that monitors and audits SSL/TLS certificates. The standard creates a system of public logs that will eventually record all certificates issued by publicly trusted certificate authorities, allowing efficient identification of mistakenly or maliciously issued certificates.

Every certificate transparency log is a record of all publicly trusted digital certificates unless you specifically disable certificate transparency at creation. Those certificates contain information about the public key, the subject, and the issuer.

Certificate transparency logs keep append-only cryptographically-secured records of certificates, meaning that certificates can only be added to the log. It’s impossible to delete, modify, or in any way retroactively change or insert certificates into the log.

You can include disabling the certificate transparency logs as part of your AWS CloudFormation template. You need to add the CertificateTransparencyLoggingPreference parameter and set it to DISABLED.

Note: There are two allowed values: ENABLED and DISABLED.

Below is a snippet of an AWS CloudFormation template that includes the CertificateTransparencyLoggingPreference parameter.


Resources: 
  ACMCertificate: 
    Type: "AWS::CertificateManager::Certificate"
    Properties: 
      DomainName: example.com
      CertificateTransparencyLoggingPreference: DISABLED
      DomainValidationOptions:
            - DomainName: www.example.com
              HostedZoneId: ZZZHHHHWWWWAAA
      ValidationMethod: DNS 

Summary

By using the new features to automate the issuance of your public and private certificates and setting the certificate transparency to disabled, you can now include ACM Private Certificate Authority (CA) as part of your end-to-end automated infrastructure-as-code.

Happy building.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on the AWS Certificate Manager forum or contact AWS Support.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Louay Shaat

Louay Shaat

Louay is a Senior Security Solutions Architect with AWS. He helps customers, from startups to the largest of enterprises, build cool new capabilities and accelerate their cloud journey. He has a strong focus on Security and Automation helping customers improve their security, risk, and compliance in the cloud. When he’s not at work, you’ll find him either in the Squash Court or diving.

Adding voice to a CircuitPython project using Amazon Polly

Post Syndicated from Moheeb Zara original https://aws.amazon.com/blogs/compute/adding-voice-to-a-circuitpython-project-using-amazon-polly/

An Adafruit PyPortal displaying a quote while synthesizing and playing speech using Amazon Polly.

An Adafruit PyPortal displaying a quote while synthesizing and playing speech using Amazon Polly.

As a natural means of communication, voice is a powerful way to humanize an experience. What if you could make anything talk? This guide walks through how to leverage the cloud to add voice to an off-the-shelf microcontroller. Use it to develop more advanced ideas, like a talking toaster that encourages healthy breakfast habits or a house plant that can express its needs.

This project uses an Adafruit PyPortal, an open-source IoT touch display programmed using CircuitPython, a lightweight version of Python that works on embedded hardware. You copy your code to the PyPortal like you would to a thumb drive and it runs. Random quotes from the PaperQuotes API are periodically displayed on the PyPortal LCD.

A microcontroller can’t do speech synthesis on its own so I use Amazon Polly, a natural text to speech synthesis service, to generate audio. Adding speech also extends accessibility to the visually impaired. This project includes an example for requesting arbitrary speech in addition to random quotes. Use this example to add a voice to any CircuitPython project.

An Adafruit PyPortal, an external speaker, and a microSD card.

An Adafruit PyPortal, an external speaker, and a microSD card.

I deploy the backend to the AWS Cloud using the AWS Serverless Application Repository. The code on the PyPortal makes a REST call to the backend to fetch a quote and synthesize speech audio for playback on the device.

Prerequisites

You need the following to complete the project:

Deploy the backend application

An architecture diagram of the serverless backend when requesting speech synthesis of a text string.

An architecture diagram of the serverless backend when requesting speech synthesis of a text string.

The serverless backend consists of an Amazon API Gateway endpoint that invokes an AWS Lambda function. If called with a JSON object containing text and voiceId attributes, it uses Amazon Polly to synthesize speech and uploads an MP3 file as a public object to Amazon S3. Upon completion, it returns the URL for downloading the audio file. It also processes the submitted text and adds return lines so that it can appear text-wrapped when displayed on the PyPortal. For a full list of voices, see the Amazon Polly documentation. An example response:

To fetch quotes instead of a text field, call the endpoint with a comma-separated list of tags as shown in the following diagram. The Lambda function then calls the PaperQuotes API. It fetches up to 50 quotes per tag and selects a random one to synthesize as speech. As with arbitrary text, it returns a URL and a text-wrapped representation of the quote.

An architecture diagram of the serverless backend when requesting a random quote from the PaperQuotes API to synthesize as speech.

An architecture diagram of the serverless backend when requesting a random quote from the PaperQuotes API to synthesize as speech.

I use the AWS Serverless Application Model (AWS SAM) to create the backend template. While it can be deployed using the AWS SAM CLI, you can also deploy from the AWS Management Console:

  1. Generate a free PaperQuotes API key at paperquotes.com. The serverless backend requires this to fetch quotes.
  2. Navigate to the aws-serverless-pyportal-polly application in the AWS Serverless Application Repository.
  3. Under Application settings, enter the parameter, PaperQuotesAPIKey.
  4. Choose Deploy.
  5. Once complete, choose View CloudFormation Stack.
  6. Select the Outputs tab and make a note of the SpeechApiUrl. This is required for configuring the PyPortal.
  7. Click the link listed for SpeechApiKey in the Outputs tab.
  8. Click Show to reveal the API key. Make a note of this. This is required for authenticating requests from the PyPortal to the SpeechApiUrl.

PyPortal setup

The following instructions walk through installing the latest version of the Adafruit CircuityPython libraries and firmware. It also shows how to enable an external speaker module.

  1. Follow these instructions from Adafruit to install the latest version of the CircuitPython bootloader. At the time of writing, the latest version is 5.3.0.
  2. Follow these instructions to install the latest Adafruit CircuitPython library bundle. I use bundle version 5.x.
  3. Insert the microSD card in the slot located on the back of the device.
  4. Cut the jumper pad on the back of the device labeled A0. This enables you to use an external speaker instead of the built-in speaker.
  5. Plug the external speaker connector into the port labeled SPEAKER on the back of the device.
  6. Optionally install the Mu Editor, a multi-platform code editor and serial debugger compatible with Adafruit CircuitPython boards. This can help with troubleshooting issues.
  7. Optionally if you have a 3D printer at home, you can print a case for your PyPortal. This can protect and showcase your project.

Code PyPortal

As with regular Python, CircuitPython does not need to be compiled to execute. You can flash new firmware on the PyPortal by copying a Python file and necessary assets to a mounted volume. The bootloader runs code.py anytime the device starts or any files are updated.

  1. Use a USB cable to plug the PyPortal into your computer and wait until a new mounted volume CIRCUITPY is available.
  2. Download the project from GitHub. Inside the project, copy the contents of /circuit-python on to the CIRCUITPY volume.
  3. Inside the volume, open and edit the secrets.py file. Include your Wi-Fi credentials along with the SpeechApiKey and SpeechApiUrl API Gateway endpoint. These can be found under Outputs in the AWS CloudFormation stack created by the AWS Serverless Application Repository.
  4. Save the file, and the device restarts. It takes a moment to connect to Wi-Fi and make the first request.
    Optionally, if you installed the Mu Editor, you can click on “Serial” to follow along the device log.

The PyPortal takes a few moments to connect to the Wi-Fi network and make its first request. On success, you hear it greet you and describe itself. The default interval is set to then display and read a quote every five minutes.

Understanding the CircuitPython code

See the bottom of circuit-python/code.py from the GitHub project. When the PyPortal connects to Wi-Fi, the first thing it does is synthesize an arbitrary “hello world” text for display. It then begins periodically displaying and “speaking” quotes.

# Connect to WiFi
print("Connecting to WiFi...")
wifi.connect()
print("Connected!")

displayQuote("Ready!")

speakText('Hello world! I am an Adafruit PyPortal running Circuit Python speaking to you using AWS Serverless', 'Joanna')

while True:
    speakQuote('equality, humanity', 'Joanna')
    time.sleep(60*secrets['interval'])

Both the speakText and speakQuote function call the synthesizeSpeech function. The difference is whether text or tags are passed to the API.

def speakText(text, voice):
    data = { "text": text, "voiceId": voice }
    synthesizeSpeech(data)

def speakQuote(tags, voice):
    data = { "tags": tags, "voiceId": voice }
    synthesizeSpeech(data)

The synthesizeSpeech function posts the data to the API Gateway endpoint. It then invokes the Lambda function and returns the MP3 URL and the formatted text. The downloadfile function is called to fetch the MP3 file and store it on the SD card. displayQuote is called to display the quote on the LCD. Finally, the playMP3 opens the file and plays the speech audio using the built-in or external speaker.

def synthesizeSpeech(data):
    response = postToAPI(secrets['endpoint'], data)
    downloadfile(response['url'], '/sd/cache.mp3')
    displayQuote(response['text'])
    playMP3("/sd/cache.mp3")

Modifying the Lambda function

The serverless application includes a Lambda function, SynthesizeSpeechFunction, which can be modified directly in the Lambda console. The AWS SAM template used to deploy the AWS Serverless Application Repository application adds policies for accessing the S3 bucket where audio is stored. It also grants access to Amazon Polly for synthesizing speech. It also adds the PaperQuote API token as an environment variable and sets API Gateway as an event source.

SynthesizeSpeechFunction:
    Type: AWS::Serverless::Function
    Properties:
      CodeUri: lambda_functions/SynthesizeSpeech/
      Handler: app.lambda_handler
      Runtime: python3.8
      Policies:
        - S3FullAccessPolicy:
            BucketName: !Sub "${AWS::StackName}-audio"
        - Version: '2012-10-17'
          Statement:
            - Effect: Allow
              Action:
                - polly:*
              Resource: '*'
      Environment:
        Variables:
          BUCKET_NAME: !Sub "${AWS::StackName}-audio"
          PAPER_QUOTES_TOKEN: !Ref PaperQuotesAPIKey
      Events:
        Speech:
          Type: Api
          Properties:
            RestApiId: !Ref SpeechApi
            Path: /speech
            Method: post

To edit the Lambda function, navigate back to the CloudFormation stack and click on the SpeechSynthesizeFunction under the Resources tab.

From here, you can edit the Lambda function code directly. Clicking Save deploys the new code.

The getQuotes function is called to fetch quotes from the PaperQuotes API. You can change this to call from a different source, such as a custom selection of quotes. Try modifying it to fetch social media posts or study questions.

Conclusion

I show how to add natural sounding text to speech on a microcontroller using a serverless backend. This is accomplished by deploying an application through the AWS Serverless Application Repository. The deployed API uses API Gateway to securely invoke a Lambda function that fetches quotes from the PaperQuotes API and generates speech using Amazon Polly. The speech audio is uploaded to S3.

I then show how to program a microcontroller, the Adafruit PyPortal, using CircuitPython. The code periodically calls the serverless API to fetch a quote and to download speech audio for playback. The sample code also demonstrates synthesizing arbitrary text to speech, meaning it can be used for any project you can conceive. Check out my previous guide on using the PyPortal to create a Martian weather display for inspiration.

AWS Solutions Constructs – A Library of Architecture Patterns for the AWS CDK

Post Syndicated from Danilo Poccia original https://aws.amazon.com/blogs/aws/aws-solutions-constructs-a-library-of-architecture-patterns-for-the-aws-cdk/

Cloud applications are built using multiple components, such as virtual servers, containers, serverless functions, storage buckets, and databases. Being able to provision and configure these resources in a safe, repeatable way is incredibly important to automate your processes and let you focus on the unique parts of your implementation.

With the AWS Cloud Development Kit, you can leverage the expressive power of your favorite programming languages to model your applications. You can use high-level components called constructs, preconfigured with “sensible defaults” that you can customize, to quickly build a new application. The CDK provisions your resources using AWS CloudFormation to get all the benefits of managing your infrastructure as code. One of the reasons I like the CDK, is that you can compose and share your own custom components as higher-level constructs.

As you can imagine, there are recurring patterns that can be useful to more than one customer. For this reason, today we are launching the AWS Solutions Constructs, an open source extension library for the CDK that provides well-architected patterns to help you build your unique solutions. CDK constructs mostly cover single services. AWS Solutions Constructs provide multi-service patterns that combine two or more CDK resources, and implement best practices such as logging and encryption.

Using AWS Solutions Constructs
To see the power of a pattern-based approach, let’s take a look at how that works when building a new application. As an example, I want to build an HTTP API to store data in a Amazon DynamoDB table. To keep the content of the table small, I can use DynamoDB Time to Live (TTL) to expire items after a few days. After the TTL expires, data is deleted from the table and sent, via DynamoDB Streams, to a AWS Lambda function to archive the expired data on Amazon Simple Storage Service (S3).

To build this application, I can use a few components:

  • An Amazon API Gateway endpoint for the API.
  • A DynamoDB table to store data.
  • A Lambda function to process the API requests, and store data in the DynamoDB table.
  • DynamoDB Streams to capture data changes.
  • A Lambda function processing data changes to archive the expired data.

Can I make it simpler? Looking at the available patterns in the AWS Solutions Constructs, I find two that can help me build my app:

  • aws-apigateway-lambda, a Construct that implements an API Gateway REST API connected to a Lambda function. As an example of the “sensible defaults” used by AWS Solutions Constructs, this pattern enables CloudWatch logging for the API Gateway.
  • aws-dynamodb-stream-lambda, a Construct implementing a DynamoDB table streaming data changes to a Lambda function with the least privileged permissions.

To build the final architecture, I simply connect those two Constructs together:

I am using TypeScript to define the CDK stack, and Node.js for the Lambda functions. Let’s start with the CDK stack:

 

import * as cdk from '@aws-cdk/core';
import * as lambda from '@aws-cdk/aws-lambda';
import * as apigw from '@aws-cdk/aws-apigateway';
import * as dynamodb from '@aws-cdk/aws-dynamodb';
import { ApiGatewayToLambda } from '@aws-solutions-constructs/aws-apigateway-lambda';
import { DynamoDBStreamToLambda } from '@aws-solutions-constructs/aws-dynamodb-stream-lambda';

export class DemoConstructsStack extends cdk.Stack {
  constructor(scope: cdk.Construct, id: string, props?: cdk.StackProps) {
    super(scope, id, props);

    const apiGatewayToLambda = new ApiGatewayToLambda(this, 'ApiGatewayToLambda', {
      deployLambda: true,
      lambdaFunctionProps: {
        code: lambda.Code.fromAsset('lambda'),
        runtime: lambda.Runtime.NODEJS_12_X,
        handler: 'restApi.handler'
      },
      apiGatewayProps: {
        defaultMethodOptions: {
          authorizationType: apigw.AuthorizationType.NONE
        }
      }
    });

    const dynamoDBStreamToLambda = new DynamoDBStreamToLambda(this, 'DynamoDBStreamToLambda', {
      deployLambda: true,
      lambdaFunctionProps: {
        code: lambda.Code.fromAsset('lambda'),
        runtime: lambda.Runtime.NODEJS_12_X,
        handler: 'processStream.handler'
      },
      dynamoTableProps: {
        tableName: 'my-table',
        partitionKey: { name: 'id', type: dynamodb.AttributeType.STRING },
        timeToLiveAttribute: 'ttl'
      }
    });

    const apiFunction = apiGatewayToLambda.lambdaFunction;
    const dynamoTable = dynamoDBStreamToLambda.dynamoTable;

    dynamoTable.grantReadWriteData(apiFunction);
    apiFunction.addEnvironment('TABLE_NAME', dynamoTable.tableName);
  }
}

At the beginning of the stack, I import the standard CDK constructs for the Lambda function, the API Gateway endpoint, and the DynamoDB table. Then, I add the two patterns from the AWS Solutions Constructs, ApiGatewayToLambda and DynamoDBStreamToLambda.

After declaring the two ApiGatewayToLambda and DynamoDBStreamToLambda constructs, I store the Lambda function, created by the ApiGatewayToLambda constructs, and the DynamoDB table, created by DynamoDBStreamToLambda, in two variables.

At the end of the stack, I “connect” the two patterns together by granting permissions to the Lambda function to read/write in the DynamoDB table, and add the name of the DynamoDB table to the environment of the Lambda function, so that it can be used in the function code to store data in the table.

The code of the two Lambda functions is in the lambda folder of the CDK application. I am using the Node.js 12 runtime.

The restApi.js function implements the API and writes data to the DynamoDB table. The URL path is used as partition key, all the query string parameters in the URL are stored as attributes. The TTL for the item is computed adding a time window of 7 days to the current time.

const { DynamoDB } = require("aws-sdk");

const docClient = new DynamoDB.DocumentClient();

const TABLE_NAME = process.env.TABLE_NAME;
const TTL_WINDOW = 7 * 24 * 60 * 60; // 7 days expressed in seconds

exports.handler = async function (event) {

  const item = event.queryStringParameters;
  item.id = event.pathParameters.proxy;

  const now = new Date(); 
  item.ttl = Math.round(now.getTime() / 1000) + TTL_WINDOW;

  const response = await docClient.put({
    TableName: TABLE_NAME,
    Item: item
  }).promise();

  let statusCode = 204;
  
  if (response.err != null) {
    console.error('request: ', JSON.stringify(event, undefined, 2));
    console.error('error: ', response.err);
    statusCode = 500
  }

  return {
    statusCode: statusCode
  };
};

The processStream.js function is processing data capture records from the DynamoDB Stream, looking for the items deleted by TTL. The archive functionality is not implemented in this sample code.

exports.handler = async function (event) {
  event.Records.forEach((record) => {
    console.log('Stream record: ', JSON.stringify(record, null, 2));
    if (record.userIdentity.type == "Service" &&
      record.userIdentity.principalId == "dynamodb.amazonaws.com") {

      // Record deleted by DynamoDB Time to Live (TTL)
      
      // I can archive the record to S3, for example using Kinesis Data Firehose.
    }
  }
};

Let’s see if this works! First, I need to install all dependencies. To simplify dependencies, each release of AWS Solutions Constructs is linked to the corresponding version of the CDK. I this case, I am using version 1.46.0 for both the CDK and the AWS Solutions Constructs patterns. The first three commands are installing plain CDK constructs. The last two commands are installing the AWS Solutions Constructs patterns I am using for this application.

npm install @aws-cdk/[email protected]
npm install @aws-cdk/[email protected]
npm install @aws-cdk/[email protected]
npm install @aws-solutions-constructs/[email protected]
npm install @aws-solutions-constructs/[email protected]

Now, I build the application and use the CDK to deploy the application.

npm run build
cdk deploy

Towards the end of the output of the cdk deploy command, a green light is telling me that the deployment of the stack is completed. Just next, in the Outputs, I find the endpoint of the API Gateway.

 ✅  DemoConstructsStack

Outputs:
DemoConstructsStack.ApiGatewayToLambdaLambdaRestApiEndpoint9800D4B5 = https://1a2c3c4d.execute-api.eu-west-1.amazonaws.com/prod/

I can now use curl to test the API:

curl "https://1a2c3c4d.execute-api.eu-west-1.amazonaws.com/prod/danilop?name=Danilo&amp;company=AWS"

Let’s have a look at the DynamoDB table:

The item is stored, and the TTL is set. After a week, the item will be deleted and sent via DynamoDB Streams to the processStream.js function.

After I complete my testing, I use the CDK again to quickly delete all resources created for this application:

cdk destroy

Available Now
The AWS Solutions Constructs are available now for TypeScript and Python. The AWS Solutions Builders team is working to make these constructs also available when using Java and C# with the CDK, stay tuned. There is no cost in using the AWS Solutions Constructs, or the CDK, you only pay for the resources created when deploying the stack.

In this first release, 25 patterns are included, covering lots of different use cases. Which new patterns and features should we focus now? Give use your feedback in the open source project repository!

Danilo

Building well-architected serverless applications: Approaching application lifecycle management – part 3

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-approaching-application-lifecycle-management-part-3/

This series of blog posts uses the AWS Well-Architected Tool with the Serverless Lens to help customers build and operate applications using best practices. In each post, I address the nine serverless-specific questions identified by the Serverless Lens along with the recommended best practices. See the Introduction post for a table of contents and explanation of the example application.

Question OPS2: How do you approach application lifecycle management?

This post continues part 2 of this Operational Excellence question where I look at deploying to multiple stages using temporary environments, and rollout deployments. In part 1, I cover using infrastructure as code with version control to deploy applications in a repeatable manner.

Good practice: Use configuration management

Use environment variables and configuration management systems to make and track configuration changes. These systems reduce errors caused by manual processes, reduce the level of effort to deploy changes, and help isolate configuration from business logic.

Environment variables are suited for infrequently changing configuration options such as logging levels, and database connection strings. Configuration management systems are for dynamic configuration that might change frequently or contain sensitive data such as secrets.

Environment variables

The serverless airline example used in this series uses AWS Amplify Console environment variables to store application-wide settings.

For example, the Stripe payment keys for all branches, and names for individual branches, are visible within the Amplify Console in the Environment variables section.

AWS Amplify environment variables

AWS Amplify environment variables

AWS Lambda environment variables are set up as part of the function configuration stored using the AWS Serverless Application Model (AWS SAM).

For example, the airline booking ReserveBooking AWS SAM template sets global environment variables including the LOG_LEVEL with the following code.

Globals:
    Function:
        Environment:
            Variables:
                LOG_LEVEL: INFO

This is visible in the AWS Lambda console within the function configuration.

AWS Lambda environment variables in console

AWS Lambda environment variables in console

See the AWS Documentation for more information on using AWS Lambda environment variables and also how to store sensitive data. Amazon API Gateway can also pass stage-specific metadata to Lambda functions.

Dynamic configuration

Dynamic configuration is also stored in configuration management systems to specify external values and is unique to each environment. This configuration may include values such as an Amazon Simple Notification Service (Amazon SNS) topic, Lambda function name, or external API credentials. AWS System Manager Parameter Store, AWS Secrets Manager, and AWS AppConfig have native integrations with AWS CloudFormation to store dynamic configuration. For more information, see the examples for referencing dynamic configuration from within AWS CloudFormation.

For the serverless airline application, dynamic configuration is stored in AWS Systems Manager Parameter Store. During CloudFormation stack deployment, a number of parameters are stored in Systems Manager. For example, in the booking service AWS SAM template, the booking SNS topic ARN is stored.

BookingTopicParameter:
    Type: "AWS::SSM::Parameter"
    Properties:
        Name: !Sub /${Stage}/service/booking/messaging/bookingTopic
        Description: Booking SNS Topic ARN
        Type: String
        Value: !Ref BookingTopic

View the stored SNS topic value by navigating to the Parameter Store console, and search for BookingTopic.

Finding Systems Manager Parameter Store values

Finding Systems Manager Parameter Store values

Select the Parameter name and see the Amazon SNS ARN.

Viewing SNS topic value

Viewing SNS topic value

The loyalty service then references this value within another stack.

When the Amplify Console Makefile deploys the loyalty service, it retrieves this value for the booking service from Parameter Store, and references it as a parameter-override. The deployment is also parametrized with the $${AWS_BRANCH} environment variable if there are multiple environments within the same AWS account and Region.

sam deploy \
	--parameter-overrides \
	BookingSNSTopic=/$${AWS_BRANCH}/service/booking/messaging/bookingTopic

Environment variables and configuration management systems help with managing application configuration.

Improvement plan summary

  1. Use environment variables for configuration options that change infrequently such as logging levels, and database connection strings.
  2. Use a configuration management system for dynamic configuration that might change frequently or contain sensitive data such as secrets.

Best practice: Use CI/CD including automated testing across separate accounts

Continuous integration/delivery/deployment is one of the cornerstones of cloud application development and a vital part of a DevOps initiative.

Explanation of CI/CD stages

Explanation of CI/CD stages

Building CI/CD pipelines increases software delivery quality and feedback time for detecting and resolving errors. I cover how to deploy multiple stages in isolated environments and accounts, which helps with creating separate testing CI/CD pipelines in part 2. As the serverless airline example is using AWS Amplify Console, this comes with a built-in CI/CD pipeline.

Automate the build, deployment, testing, and rollback of the workload using KPI and operational alerts. This eases troubleshooting, enables faster remediation and feedback time, and enables automatic and manual rollback/roll-forward should an alert trigger.

I cover metrics, KPIs, and operational alerts in this series in the Application Health part 1, and part 2 posts. I cover rollout deployments with traffic shifting based on metrics in this question’s part 2.

CI/CD pipelines should include integration, and end-to-end tests. I cover local unit testing for Lambda and API Gateway in part 2.

Add an optional testing stage to Amplify Console to catch regressions before pushing code to production. Use the test step to run any test commands at build time using any testing framework of your choice. Amplify Console has deeper integration with the Cypress test suite that allows you to generate a UI report for your tests. Here is an example to set up end-to-end tests with Cypress.

Cypress testing example

Cypress testing example

There are a number of AWS and third-party solutions to host code and create CI/CD pipelines for serverless applications.

AWS Code Suite

AWS Code Suite

For more information on how to use the AWS Code* services together, see the detailed Quick Start deployment guide Serverless CI/CD for the Enterprise on AWS.

All these AWS services have a number of integrations with third-party products so you can integrate your serverless applications with your existing tools. For example, CodeBuild can build from GitHub and Atlassian Bitbucket repositories. CodeDeploy integrates with a number of developer tools and configuration management systems. CodePipeline has a number of pre-built integrations to use existing tools for your serverless applications. For more information specifically on using CircleCI for serverless applications, see Simplifying Serverless CI/CD with CircleCI and the AWS Serverless Application Model.

Improvement plan summary

  1. Use a continuous integration/continuous deployment (CI/CD) pipeline solution that deploys multiple stages in isolated environments/accounts.
  2. Automate testing including but not limited to unit, integration, and end-to-end tests.
  3. Favor rollout deployments over all-at-once deployments for more resilience, and gradually learn what metrics best determine your workload’s health to appropriately alert on.
  4. Use a deployment system that supports traffic shifting as part of your pipeline, and rollback/roll-forward traffic to previous versions if an alert is triggered.

Good practice: Review function runtime deprecation policy

Lambda functions created using AWS provided runtimes follow official long-term support deprecation policies. Third-party provided runtime deprecation policy may differ from official long-term support. Review your runtime deprecation policy and have a mechanism to report on runtimes that, if deprecated, may affect your workload to operate as intended.

Review the AWS Lambda runtime policy support page to understand the deprecation schedule for your runtime.

AWS Health provides ongoing visibility into the state of your AWS resources, services, and accounts. Use the AWS Personal Health Dashboard for a personalized view and automate custom notifications to communication channels other than your AWS Account email.

Use AWS Config to report on AWS Lambda function runtimes that might be near their deprecation. Run compliance and operational checks with AWS Config for Lambda functions.

If you are unable to migrate to newer runtimes within the deprecation schedule, use AWS Lambda custom runtimes as an interim solution.

Improvement plan summary

  1. Identify and report runtimes that might deprecate and their support policy.

Conclusion

Introducing application lifecycle management improves the development, deployment, and management of serverless applications. In part 1, I cover using infrastructure as code with version control to deploy applications in a repeatable manner. This reduces errors caused by manual processes and gives you more confidence your application works as expected. In part 2, I cover prototyping new features using temporary environments, and rollout deployments to gradually shift traffic to new application code.

In this post I cover configuration management, CI/CD for serverless applications, and managing function runtime deprecation.

In an upcoming post, I will cover the first Security question from the Well-Architected Serverless Lens – Controlling access to serverless APIs.

Building well-architected serverless applications: Approaching application lifecycle management – part 2

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-approaching-application-lifecycle-management-part-2/

This series of blog posts uses the AWS Well-Architected Tool with the Serverless Lens to help customers build and operate applications using best practices. In each post, I address the nine serverless-specific questions identified by the Serverless Lens along with the recommended best practices. See the Introduction post for a table of contents and explanation of the example application.

Question OPS2: How do you approach application lifecycle management?

This post continues part 1 of this Operational Excellence question. Previously, I covered using infrastructure as code with version control to deploy applications in a repeatable manner.

Good practice: Prototype new features using temporary environments

Storing application configuration as infrastructure as code allows deployment of multiple, repeatable, isolated versions of an application.

Create multiple temporary environments for new features you may need to prototype, and tear them down as you complete them. Temporary environments enable fine grained feature isolation and higher fidelity development when interacting with managed services. This allows you to gain confidence your workload integrates and operates as intended.

These environments can also be in separate accounts which help isolate limits, access to data, and resiliency. For best practices on multi-account deployments, see the AWS Partner Network blog post: Best Practices Guide for Multi-Account AWS Deployments.

There are a number of ways to deploy separate environments for an application. To make the deployment simpler, it is good practice to separate dynamic configuration from your infrastructure logic.

For an application managed via the AWS Serverless Application Model (AWS SAM), use an AWS SAM CLI parameter to specify a new stack-name which deploys a new copy of the application as a separate stack.

For example, there is an existing AWS SAM application with a stack-name of app-test. To deploy a new copy, specify a new stack-name of app-newtest with the following command line:

sam deploy --stack-name app-newtest

This deploys a whole new copy of the application in the same account as a separate stack.

For the serverless airline example used in this series, deploy a whole new copy of the application following the deployment instructions, either into the same AWS account, or a completely different account. This is useful when each developer in a team has a sandbox environment. In this example, you only need to configure payment provider credentials as environment variables and seed the database with possible flights as these are currently manual post installation tasks.

However, maintaining an entirely separate codebase copy of an application becomes difficult to manage and reconcile over time.

As the airline application code is stored in a fork in a GitHub account, use git branches for separate environments. In typical development teams, developers may deploy a main branch to production, have a dev branch as staging, and create feature branches when working on new functionality. This allows safe prototyping in sandbox environments without affecting the main codebase, and use git as a mechanism to merge code and resolve conflicts. Changes are automatically pushed to production once they are merged into the main (or production) branch.

Git branching flow

Git branching flow

As the airline example is using AWS Amplify Console, there are a few different options to create a new environment linked to a feature branch.

You can create a whole new Amplify Console app deployment, either in a separate Region, or in a separate AWS account, which then connects to a feature branch by following the deployment instructions. Create a new branch called new-feature in GitHub and in the Amplify Console, select Connect App, and navigate to the repository and the new-feature branch. Configure the payment provider credentials as environment variables.

Deploy new application pointing to feature branch

You can also connect the existing Amplify Console deployment to a git branch, deploying the new-feature branch into the same AWS account and Region.

Amplify Environments

Amplify Environments

In the Amplify Console, navigate to the existing app, select Connect Branch, and choose the new-feature branch. Create a new Backend environment to deploy the full stack. If the feature branch is only frontend code changes, you can choose to use the same backend components.

Connect Amplify Console to feature branch

Connect Amplify Console to feature branch

Amplify Console then deploys a new stack in addition to the develop branch based on the code in the feature-branch.

New feature branch deploying within existing deployment.

New feature branch deploying within existing deployment.

You do not need to add the payment provider environment variables as these are stored per application, per Region, for all branches.

Amplify environment variables for All Branches.

Amplify environment variables for All Branches.

Using git and branching with Amplify Console, you have automatic deployments when any changes are pushed to the GitHub repository. If there are any issues with a particular deployment, you can revert the changes in git which will kick off a redeploy to a known good version. Once you are happy with the feature, you can merge the changes into the production branch which will again kick off another deployment.

As it is simple to set up multiple test environments, make sure to practice good application hygiene, as well as cost management, by identifying and deleting any temporary environments that are no longer required. It may be helpful to include the stack owner’s contact details via CloudFormation tags. Use Amazon CloudWatch scheduled tasks to notify and tag temporary environments for deletion, and provide a mechanism to delay its deletion if needed.

Prototyping locally

With AWS SAM or a third-party framework, you can run API Gateway, and invoke Lambda function code locally for faster development iteration. Local debugging and testing can help for quick confirmation that function code is working, and is also useful for some unit tests. Local testing cannot duplicate the full functionality of the cloud. It is suited to testing services with custom logic, such as Lambda, rather than trying to duplicate all cloud managed services such as Amazon SNS, or Amazon S3 locally. Don’t try to bring the cloud to the test, rather bring the testing to the cloud.

Here is an example of executing a function locally.

I use AWS SAM CLI to invoke the Airline-GetLoyalty Lambda function locally to test some functionality. AWS SAM CLI uses Docker to simulate the Lambda runtime. As the function only reads from DynamoDB, I use stubbed data, or can set up DynamoDB Local.

1. I pass a JSON event to the function to simulate the event from API Gateway, as well as passing in environment variables as JSON. Create sample events using sam local generate-event.

2. I run sam build GetFunc to build the function dependencies, in this case NodeJS.

$ sam build GetFunc
Building resource 'GetFunc'
Running NodejsNpmBuilder:NpmPack
Running NodejsNpmBuilder:CopyNpmrc
Running NodejsNpmBuilder:CopySource
Running NodejsNpmBuilder:NpmInstall
Running NodejsNpmBuilder:CleanUpNpmrc

Build Succeeded

3. I run sam local invoke passing in the event payload and environment variables. This spins up a Docker container, executes the function, and returns the result.

$ sam local invoke --event src/get/event.json --env-vars local-env-vars.json GetFunc
Invoking index.handler (nodejs10.x)

Fetching lambci/lambda:nodejs10.x Docker container image......
Mounting /home/ec2-user/environment/samples/aws-serverless-airline-booking/src/backend/loyalty/.aws-sam/build/GetFunc as /var/task:ro,delegated inside runtime container
START RequestId: 7be7e9a5-9f2f-1520-fbd1-a013485105d3 Version: $LATEST
END RequestId: 7be7e9a5-9f2f-1520-fbd1-a013485105d3
REPORT RequestId: 7be7e9a5-9f2f-1520-fbd1-a013485105d3 Init Duration: 249.89 ms Duration: 76.40 ms Billed Duration: 100 ms Memory Size: 512 MB Max Memory Used: 54 MB

{"statusCode": 200,"body": "{\"points\":0,\"level\":\"bronze\",\"remainingPoints\":50000}"}

For more information on using AWS SAM to run API Gateway, and invoke Lambda functions locally, see the AWS Documentation. For third-part framework solutions, see Invoking AWS Lambda functions locally with Serverless framework and Develop locally against cloud services with Stackery.

Improvement plan summary:

  1. Use a serverless framework to deploy temporary environments named after a feature.
  2. Implement a process to identify temporary environments that may not have been deleted over an extended period of time
  3. Prototype application code locally and test integrations directly with managed services

Good practice: Use a rollout deployment mechanism

Use a rollout deployment for production workloads as opposed to all-at-once mechanisms. Rollout deployments reduce the risk of a failed deployment by gradually deploying application changes to a limited set of customers. Use all-at-once deployments to deploy the entire application. This is best suited for non-production systems.

AWS Lambda versions and aliases

For production Lambda functions, it is best to deploy a new function version for every deployment. Versions can represent the stable version or reflect particular features. Create Lambda aliases which are pointers to particular function versions. Invoke Lambda functions using the aliases, with a specific alias for the stable production version. If an alias is not specified, the latest application code deployment is invoked which may not reflect a stable version or a desired feature. Use the new feature alias version for testing without affecting users of the stable production version.

AWS Lambda function versions and aliases

AWS Lambda function versions and aliases

See AWS Documentation to manage Lambda function versions and aliases using the AWS Management Console, or Lambda API.

Alias routing

Use Lambda alias’ routing configuration to introduce traffic shifting to send a small percentage of traffic to a second function alias or version for a rolling deployment. This is commonly called a canary release.

For example, configure Lambda alias named stable to point to function version 2. A new function version 3 is deployed with alias new-feature. Use the new-feature alias to test the new deployment without impacting production traffic to the stable version.

During production rollout, use alias routing. For example, 90% of invocations route to the stable version while 10% route to alias new-feature pointing to version 3. If the 10% is successful, deployment can continue until all traffic is migrated to version 3, and the stable alias is then pointed to version 3.

AWS Lambda alias routing

AWS Lambda alias routing

AWS SAM supports gradual Lambda deployments with a feature called Safe Lambda deployments using AWS CodeDeploy. This creates new versions of a Lambda function, and automatically creates aliases pointing to the new version. Customer traffic gradually shifts to the new version or rolls back automatically if any specified CloudWatch alarms trigger. AWS SAM supports canary, linear, and all-at-once deployments preference types.

Pre-traffic and post-traffic Lambda functions can also verify if the newly deployed code is working as expected.

In the airline example, create a safe deployment for the ReserveBooking Lambda function by adding the example AWS SAM template code specified in the instructions. This migrates 10 percent of traffic every 10 minutes with CloudWatch alarms to check for any function errors. You could also alarm on latency, or any custom metric.

During the Amplify Console build phase, the safe deployment is initiated. Navigate to the CodeDeploy console and see the deployment in progress.

AWS CodeDeploy deployment in progress

AWS CodeDeploy deployment in progress

Selecting the deployment, you can see the Traffic shifting progress and the Deployment details.

AWS CodeDeploy traffic shifting in progress.

AWS CodeDeploy traffic shifting in progress.

Within Deployment details, select the DeploymentGroup, and view the CloudWatch Alarms CodeDeploy is using to test the rollout.

Amazon CloudWatch Alarms AWS CodeDeploy is using to test the rollout

Amazon CloudWatch Alarms AWS CodeDeploy is using to test the rollout

Within Deployment details, select the Application, select the Revisions tab, and select the latest Revision location and view the CurrentVersion and TargetVersion for this deployment.

View deployment versions

View deployment versions

View Deployment status and see the traffic has now shifted to the new version. The Amplify Console build also continues.

Traffic shifting complete

Traffic shifting complete

View the Lambda function versions and aliases in the Lambda console, selecting Qualifiers.

Viewing Lambda function version and aliases

Viewing Lambda function version and aliases

Amazon API Gateway also supports canary release deployments at the API layer.

A rollout deployment provides traffic shifting, A/B testing, and the ability to roll back to any version at any point in time. AWS SAM makes it simple to add safe deployments to serverless applications.

Improvement plan summary

  1. For production systems, use a linear deployment strategy to gradually rollout changes to customers.
  2. For high volume production systems, use a canary deployment strategy when you want to limit changes to a fixed percentage of customers for an extended period of time.

Conclusion

Introducing application lifecycle management improves the development, deployment, and management of serverless applications. In this post I cover a number of methods to prototype new features using temporary environments. I show how to use rollout deployments to gradually shift traffic to new application code.

This well-architected question will continue in an upcoming post where I look at configuration management, CI/CD for serverless applications, and managing function runtime deprecation.

Building well-architected serverless applications: Approaching application lifecycle management – part 1

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-approaching-application-lifecycle-management-part-1/

This series of blog posts uses the AWS Well-Architected Tool with the Serverless Lens to help customers build and operate applications using best practices. In each post, I address the nine serverless-specific questions identified by the Serverless Lens along with the recommended best practices. See the Introduction post for a table of contents and explanation of the example application.

Question OPS2: How do you approach application lifecycle management?

Adopt lifecycle management approaches that improve the flow of changes to production with higher fidelity, fast feedback on quality, and quick bug fixing. These practices help you rapidly identify, remediate, and limit changes that impact customer experience. By having an approach to application lifecycle management, you can reduce errors caused by manual process and increase the levels of control to gain confidence your workload operates as intended.

Required practice: Use infrastructure as code and stages isolated in separate environments

Infrastructure as code is a process of provisioning and managing cloud resources by storing application configuration in a template file. Using infrastructure as code helps to deploy applications in a repeatable manner, reducing errors caused by manual processes such as creating resources in the AWS Management Console.

Storing code in a version control system enables tracking and auditing of changes and releases over time. This is used to roll back changes safely to a known working state if there is an issue with an application deployment.

Infrastructure as code

For AWS Cloud development the built-in choice for infrastructure as code is AWS CloudFormation. The template file, written in JSON or YAML, contains a description of the resources an application needs. CloudFormation automates the deployment and ongoing updates of the resources by creating CloudFormation stacks.

CloudFormation code example creating infrastructure

CloudFormation code example creating infrastructure

There are a number of higher-level tools and frameworks that abstract and then generate CloudFormation. A serverless specific framework helps model the infrastructure necessary for serverless workloads, providing either declarative or imperative mechanisms to define event sources for functions. It wires permissions between resources automatically, adds resource configuration, code packaging, and any infrastructure necessary for a serverless application to run.

The AWS Serverless Application Model (AWS SAM) is an AWS open-source framework optimized for serverless applications. The AWS Cloud Development Kit allows you to provision cloud resources using familiar programming languages such as TypeScript, JavaScript, Python, Java, and C#/.Net. There are also third-party solutions for creating serverless cloud resources such as the Serverless Framework.

The AWS Amplify Console provides a git-based workflow for building, deploying, and hosting serverless applications including both the frontend and backend. The AWS Amplify CLI toolchain enables you to add backend resources using CloudFormation.

For a large number of resources, consider breaking common functionality such as monitoring, alarms, or dashboards into separate infrastructure as code templates. With CloudFormation, use nested stacks to help deploy them as part of your serverless application stack. When using AWS SAM, import these nested stacks as nested applications from the AWS Serverless Application Repository.

AWS CloudFormation nested stacks

AWS CloudFormation nested stacks

Here is an example AWS SAM template using nested stacks. There are two AWS::Serverless::Application nested resources, api.template.yaml and database.template.yaml. For more information on nested stacks, see the AWS Partner Network blog post: CloudFormation Nested Stacks Primer.

Version control

The serverless airline example application used in this series uses Amplify Console to provide part of the backend resources, including authentication using Amazon Cognito, and a GraphQL API using AWS AppSync.

The airline application code is stored in GitHub as a version control system. Fork, or copy, the application to your GitHub account. Configure Amplify Console to connect to the GitHub fork.

When pushing code changes to a fork, Amplify Console automatically deploys these backend resources along with the rest of the application. It hosts the application at the Production branch URL, and you can also configure a custom domain name if needed.

AWS Amplify Console App details

AWS Amplify Console App details

The Amplify Console configuration to create the API and Authentication backend resources is found in the backend-config.json file. The resources are provisioned during the Amplify Console build phase.

To view the deployed resources, within the Amplify Console, navigate to the awsserverlessairline application. Select Backend environments and then select an environment, in this example sampledev.

Select the API and Authentication tabs to view the created backend resources.

AWS Amplify Console deployed backend resources

AWS Amplify Console deployed backend resources

Using multiple tools

Applications can use multiple tools and frameworks even within a single project to manage the infrastructure as code. Within the airline application, AWS SAM is also used to provision the rest of the serverless infrastructure using nested stacks. During the Amplify Console build process, the Makefile contains the AWS SAM build instructions for each application service.

For example, the AWS SAM build instructions to deploy the booking service are as follows:

deploy.booking: ##=> Deploy booking service using SAM
	$(info [*] Packaging and deploying Booking service...)
	cd src/backend/booking && \
		sam build && \
		sam package \
			--s3-bucket $${DEPLOYMENT_BUCKET_NAME} \
			--output-template-file packaged.yaml && \
		sam deploy \
			--template-file packaged.yaml \
			--stack-name $${STACK_NAME}-booking-$${AWS_BRANCH} \
			--capabilities CAPABILITY_IAM \
			--parameter-overrides \
	BookingTable=/$${AWS_BRANCH}/service/amplify/storage/table/booking \
	FlightTable=/$${AWS_BRANCH}/service/amplify/storage/table/flight \
	CollectPaymentFunction=/$${AWS_BRANCH}/service/payment/function/collect \
	RefundPaymentFunction=/$${AWS_BRANCH}/service/payment/function/refund \
	AppsyncApiId=/$${AWS_BRANCH}/service/amplify/api/id \
	Stage=$${AWS_BRANCH}

Each service has its own AWS SAM template.yml file. The files contain the resources for each of the booking, catalog, log-processing, loyalty, and payment services. This means that the services can be managed independently within the application as separate stacks. In larger applications, these services may be managed by separate teams, or be in separate repositories, environments or AWS accounts. It may make sense to split out some common functionality such as alarms, or dashboards into separate infrastructure as code templates.

AWS SAM can also use IAM roles to assume temporary credentials and deploy a serverless application to separate AWS accounts.

For more information on managing serverless code, see Best practices for organizing larger serverless applications.

View the deployed resources in the AWS CloudFormation Console. Select Stacks from the left-side navigation bar, and select the View nested toggle.

Viewing CloudFormation nested stacks

Viewing CloudFormation nested stacks

The serverless airline application is a more complex example application comprising multiple services composed of multiple CloudFormation stacks. Some stacks are managed via Amplify Console and others via AWS SAM. Using infrastructure as code is not only for large and complex applications. As a best practice, we suggest using SAM or another framework for even simple, small serverless applications with a single stack. For a getting started tutorial, see the example Deploying a Hello World Application.

Improvement plan summary:

  1. Use a serverless framework to help you execute functions locally, build and package application code. Separate packaging from deployment, deploy to isolated stages in separate environments, and support secrets via configuration management systems.
  2. For a large number of resources, consider breaking common functionalities such as alarms into separate infrastructure as code templates.

Conclusion

Introducing application lifecycle management improves the development, deployment, and management of serverless applications. In this post I cover using infrastructure as code with version control to deploy applications in a repeatable manner. This reduces errors caused by manual processes and gives you more confidence your application works as expected.

This well-architected question will continue in an upcoming post where I look further at deploying to multiple stages using temporary environments, and rollout deployments.