Tag Archives: Malware

iPhone Malware that Operates Even When the Phone Is Turned Off

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/05/iphone-malware-that-operates-even-when-the-phone-is-turned-off.html

Researchers have demonstrated iPhone malware that works even when the phone is fully shut down.

t turns out that the iPhone’s Bluetooth chip­ — which is key to making features like Find My work­ — has no mechanism for digitally signing or even encrypting the firmware it runs. Academics at Germany’s Technical University of Darmstadt figured out how to exploit this lack of hardening to run malicious firmware that allows the attacker to track the phone’s location or run new features when the device is turned off.

[…]

The research is the first — or at least among the first — to study the risk posed by chips running in low-power mode. Not to be confused with iOS’s low-power mode for conserving battery life, the low-power mode (LPM) in this research allows chips responsible for near-field communication, ultra wideband, and Bluetooth to run in a special mode that can remain on for 24 hours after a device is turned off.

The research is fascinating, but the attack isn’t really feasible. It requires a jailbroken phone, which is hard to pull off in an adversarial setting.

Slashdot thread.

New Sophisticated Malware

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/05/new-sophisticated-malware.html

Mandiant is reporting on a new botnet.

The group, which security firm Mandiant is calling UNC3524, has spent the past 18 months burrowing into victims’ networks with unusual stealth. In cases where the group is ejected, it wastes no time reinfecting the victim environment and picking up where things left off. There are many keys to its stealth, including:

  • The use of a unique backdoor Mandiant calls Quietexit, which runs on load balancers, wireless access point controllers, and other types of IoT devices that don’t support antivirus or endpoint detection. This makes detection through traditional means difficult.
  • Customized versions of the backdoor that use file names and creation dates that are similar to legitimate files used on a specific infected device.
  • A live-off-the-land approach that favors common Windows programming interfaces and tools over custom code with the goal of leaving as light a footprint as possible.
  • An unusual way a second-stage backdoor connects to attacker-controlled infrastructure by, in essence, acting as a TLS-encrypted server that proxies data through the SOCKS protocol.

[…]

Unpacking this threat group is difficult. From outward appearances, their focus on corporate transactions suggests a financial interest. But UNC3524’s high-caliber tradecraft, proficiency with sophisticated IoT botnets, and ability to remain undetected for so long suggests something more.

From Mandiant:

Throughout their operations, the threat actor demonstrated sophisticated operational security that we see only a small number of threat actors demonstrate. The threat actor evaded detection by operating from devices in the victim environment’s blind spots, including servers running uncommon versions of Linux and network appliances running opaque OSes. These devices and appliances were running versions of operating systems that were unsupported by agent-based security tools, and often had an expected level of network traffic that allowed the attackers to blend in. The threat actor’s use of the QUIETEXIT tunneler allowed them to largely live off the land, without the need to bring in additional tools, further reducing the opportunity for detection. This allowed UNC3524 to remain undetected in victim environments for, in some cases, upwards of 18 months.

Zero-Day Vulnerabilities Are on the Rise

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/04/zero-day-vulnerabilities-are-on-the-rise.html

Both Google and Mandiant are reporting a significant increase in the number of zero-day vulnerabilities reported in 2021.

Google:

2021 included the detection and disclosure of 58 in-the-wild 0-days, the most ever recorded since Project Zero began tracking in mid-2014. That’s more than double the previous maximum of 28 detected in 2015 and especially stark when you consider that there were only 25 detected in 2020. We’ve tracked publicly known in-the-wild 0-day exploits in this spreadsheet since mid-2014.

While we often talk about the number of 0-day exploits used in-the-wild, what we’re actually discussing is the number of 0-day exploits detected and disclosed as in-the-wild. And that leads into our first conclusion: we believe the large uptick in in-the-wild 0-days in 2021 is due to increased detection and disclosure of these 0-days, rather than simply increased usage of 0-day exploits.

Mandiant:

In 2021, Mandiant Threat Intelligence identified 80 zero-days exploited in the wild, which is more than double the previous record volume in 2019. State-sponsored groups continue to be the primary actors exploiting zero-day vulnerabilities, led by Chinese groups. The proportion of financially motivated actors­ — particularly ransomware groups — ­deploying zero-day exploits also grew significantly, and nearly 1 in 3 identified actors exploiting zero-days in 2021 was financially motivated. Threat actors exploited zero-days in Microsoft, Apple, and Google products most frequently, likely reflecting the popularity of these vendors. The vast increase in zero-day exploitation in 2021, as well as the diversification of actors using them, expands the risk portfolio for organizations in nearly every industry sector and geography, particularly those that rely on these popular systems.

News article.

Industrial Control System Malware Discovered

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/04/industrial-control-system-malware-discovered.html

The Department of Energy, CISA, the FBI, and the NSA jointly issued an advisory describing a sophisticated piece of malware called Pipedream that’s designed to attack a wide range of industrial control systems. This is clearly from a government, but no attribution is given. There’s also no indication of how the malware was discovered. It seems not to have been used yet.

More information. News article.

Russian Cyberattack against Ukrainian Power Grid Prevented

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/04/russian-cyberattack-against-ukrainian-power-grid-prevented.html

A Russian cyberweapon, similar to the one used in 2016, was detected and removed before it could be used.

Key points:

  • ESET researchers collaborated with CERT-UA to analyze the attack against the Ukrainian energy company
  • The destructive actions were scheduled for 2022-04-08 but artifacts suggest that the attack had been planned for at least two weeks
  • The attack used ICS-capable malware and regular disk wipers for Windows, Linux and Solaris operating systems
  • We assess with high confidence that the attackers used a new version of the Industroyer malware, which was used in 2016 to cut power in Ukraine
  • We assess with high confidence that the APT group Sandworm is responsible for this new attack

News article.

EDITED TO ADD: Better news coverage from Wired.

US Disrupts Russian Botnet

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/04/us-disrupts-russian-botnet.html

The Justice Department announced the disruption of a Russian GRU-controlled botnet:

The Justice Department today announced a court-authorized operation, conducted in March 2022, to disrupt a two-tiered global botnet of thousands of infected network hardware devices under the control of a threat actor known to security researchers as Sandworm, which the U.S. government has previously attributed to the Main Intelligence Directorate of the General Staff of the Armed Forces of the Russian Federation (the GRU). The operation copied and removed malware from vulnerable internet-connected firewall devices that Sandworm used for command and control (C2) of the underlying botnet. Although the operation did not involve access to the Sandworm malware on the thousands of underlying victim devices worldwide, referred to as “bots,” the disabling of the C2 mechanism severed those bots from the Sandworm C2 devices’ control.

The botnet “targets network devices manufactured by WatchGuard Technologies Inc. (WatchGuard) and ASUSTek Computer Inc. (ASUS).” And note that only the command-and-control mechanism was disrupted. Those devices are still vulnerable.

The Justice Department made a point that they did this before the botnet was used for anything offensive.

Four more news articles. Slashdot post.

EDITED TO ADD (4/13): WatchGuard knew and fixed it nearly a year ago, but tried to keep it hidden. The patches were reverse-engineered.

Developer Sabotages Open-Source Software Package

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/03/developer-sabotages-open-source-software-package.html

This is a big deal:

A developer has been caught adding malicious code to a popular open-source package that wiped files on computers located in Russia and Belarus as part of a protest that has enraged many users and raised concerns about the safety of free and open source software.

The application, node-ipc, adds remote interprocess communication and neural networking capabilities to other open source code libraries. As a dependency, node-ipc is automatically downloaded and incorporated into other libraries, including ones like Vue.js CLI, which has more than 1 million weekly downloads.

[…]

The node-ipc update is just one example of what some researchers are calling protestware. Experts have begun tracking other open source projects that are also releasing updates calling out the brutality of Russia’s war. This spreadsheet lists 21 separate packages that are affected.

One such package is es5-ext, which provides code for the ECMAScript 6 scripting language specification. A new dependency named postinstall.js, which the developer added on March 7, checks to see if the user’s computer has a Russian IP address, in which case the code broadcasts a “call for peace.”

It constantly surprises non-computer people how much critical software is dependent on the whims of random programmers who inconsistently maintain software libraries. Between log4j and this new protestware, it’s becoming a serious vulnerability. The White House tried to start addressing this problem last year, requiring a “software bill of materials” for government software:

…the term “Software Bill of Materials” or “SBOM” means a formal record containing the details and supply chain relationships of various components used in building software. Software developers and vendors often create products by assembling existing open source and commercial software components. The SBOM enumerates these components in a product. It is analogous to a list of ingredients on food packaging. An SBOM is useful to those who develop or manufacture software, those who select or purchase software, and those who operate software. Developers often use available open source and third-party software components to create a product; an SBOM allows the builder to make sure those components are up to date and to respond quickly to new vulnerabilities. Buyers can use an SBOM to perform vulnerability or license analysis, both of which can be used to evaluate risk in a product. Those who operate software can use SBOMs to quickly and easily determine whether they are at potential risk of a newly discovered vulnerability. A widely used, machine-readable SBOM format allows for greater benefits through automation and tool integration. The SBOMs gain greater value when collectively stored in a repository that can be easily queried by other applications and systems. Understanding the supply chain of software, obtaining an SBOM, and using it to analyze known vulnerabilities are crucial in managing risk.

It’s not a solution, but it’s a start.

EDITED TO ADD (3/22): Brian Krebs on protestware.

Democratizing email security: protecting individuals and businesses of all sizes from phishing and malware attacks

Post Syndicated from Patrick R. Donahue original https://blog.cloudflare.com/democratizing-email-security/

Democratizing email security: protecting individuals and businesses of all sizes from phishing and malware attacks

Democratizing email security: protecting individuals and businesses of all sizes from phishing and malware attacks

Since our founding, Cloudflare has been on a mission to take expensive, complex security solutions typically only available to the largest companies and make them easy to use and accessible to everyone. In 2011 and 2015 we did this for the web application firewall and SSL/TLS markets, simplifying the process of protecting websites from application vulnerabilities and encrypting HTTP requests down to single clicks; in 2020, during the start of the COVID-19 pandemic, we made our Zero Trust suite available to everyone; and today—in the face of heightened phishing attacks—we’re doing the same for the email security market.

Once the acquisition of Area 1 closes, as we expect early in the second quarter of 2022, we plan to give all paid self-serve plans access to their email security technology at no additional charge. Control, customization, and visibility via analytics will vary with plan level, and the highest flexibility and support levels will be available to Enterprise customers for purchase.

All self-serve users will also get access to a more feature-packed version of the Zero Trust solution we made available to everyone in 2020. Zero Trust services are incomplete without an email security solution, and CISA’s recent report makes that clearer than ever: over 90% of successful cyber attacks start with a phishing email, so we expect that over time analysts will have no choice but to include email in their definitions of secure access and zero edges.

If you’re interested in reserving your place in line, register your interest by logging into your Cloudflare account at dash.cloudflare.com, selecting your domain, clicking Email, and then “Join Waitlist” at the top of the page; we’ll reach out after the Area 1 acquisition is completed, and the integration is ready, in the order we received your request.

One-click deployment

If you’re already managing your authoritative DNS with Cloudflare, as nearly 100% of non-Enterprise plans are, there will just be a single click to get started. Once clicked, we’ll start returning different MX records to anyone trying to send email to your domain. This change will attract all emails destined for your domain, during which they’ll be run through Area 1’s models and potentially be quarantined or flagged. Customers of Microsoft Office 365 will also be able to take advantage of APIs for an even deeper integration and capabilities like post-delivery message redaction.

Democratizing email security: protecting individuals and businesses of all sizes from phishing and malware attacks

In addition to routing and filtering email, we’ll also automagically take care of your DNS email security records such as SPF, DKIM, DMARC, etc. We launched a tool to help with this last year, and soon we’ll be making it even more comprehensive and easier to use.

Integration with other Zero Trust products

As we wrote in the acquisition announcement post on this blog, we’re excited to integrate email security with other products in our Zero Trust suite. For customers of Gateway and Remote Browser Isolation (RBI), we’ll automatically route potentially suspicious domains and links through these protective layers. Our built-in data loss prevention (DLP) technology will also be wired into Area 1’s technology in deployments where visibility into outbound email is available.

Improving threat intelligence with new data sources

In addition to integrating directly with Zero Trust products, we’re excited about connecting threat data sources from Area 1 into existing Cloudflare products and vice versa. For example, phishing infrastructure identified during Area 1’s Internet-wide scans will be displayed within the recently launched Cloudflare Security Center, and 1.1.1.1’s trillions of queries per month will help Area 1 identify new domains that may be threats. Domains that are newly registered, or registered with slight variations of legitimate domains, are often warning signs of an upcoming phishing attack.

Getting started

Cloudflare has been a happy customer of Area 1’s technology for years, and we’re excited to open it up to all of our customers as soon as possible. If you’re excited as we are about being able to use this in your Pro or Business plan, reserve your place in line today within the Email tab for your domain. Or if you’re an Enterprise customer and want to get started immediately, fill out this form or contact your Customer Success Manager.

How to deploy AWS Network Firewall to help protect your network from malware

Post Syndicated from Ajit Puthiyavettle original https://aws.amazon.com/blogs/security/how-to-deploy-aws-network-firewall-to-help-protect-your-network-from-malware/

Protecting your network and computers from security events requires multi-level strategies, and you can use network level traffic filtration as one level of defense. Users need access to the internet for business reasons, but they can inadvertently download malware, which can impact network and data security. This post describes how to use custom Suricata Rules with AWS Network Firewall to add protections that prevent users from downloading malware. You can use your own internal list, or a list from commercial or open-source threat intelligence feeds.

Network Firewall is a managed service that makes it easy to deploy essential network protection for all of your Amazon Virtual Private Cloud (Amazon VPC) Infrastructure. Network Firewall’s flexible rules engine lets you define firewall rules, giving you fine-grained control over network traffic, such as blocking outbound requests to prevent the spread of potential malware.

Features of Network Firewall

This section describes features of Network Firewall that help improve the overall security of your network.

Network Firewall:

  • Is a managed Amazon Web Services (AWS) service, so you don’t have to build and maintain the infrastructure to host the network firewall.
  • Integrates with AWS Firewall Manager, which allows you to centrally manage security policies and automatically enforce mandatory security policies across existing and newly created accounts and virtual private clouds (VPCs).
  • Protects application availability by filtering inbound internet traffic using tools such as access control list (ACL) rules, stateful inspection, protocol detection, and intrusion prevention.
  • Provides URL, IP address, and domain-based outbound traffic filtering to help you meet compliance requirements, stop potential data leaks, and block communication with known malware hosts.
  • Gives you control and visibility of VPC-to-VPC traffic to logically separate networks that host sensitive applications or line-of-business resources.
  • Complements existing network and application security services on AWS by providing control and visibility to layer 3 through 7 network traffic for your entire VPC.

Automating deployment of Network Firewall and management of Network Firewall rules support management at-scale and help in timely response, as Network Firewall is designed to block access to insecure sites before they impact your resources. For the solution in this blog post, you’ll use an AWS CloudFormation template to deploy the network architecture with Network Firewall.

Solution architecture

Figure 1 shows a sample architecture to demonstrate how users are able to download malware files, and how you can prevent this using network firewall rules.

Network Firewall is deployed in a single VPC architecture, where it is placed in line with the traffic to and from the internet.

Figure 1. Network architecture diagram

Figure 1. Network architecture diagram

The network architecture shown in Figure 1 includes three subnets:

  1. A network firewall subnet
    Hosts the Network Firewall endpoint interface. All outbound traffic from this network goes through the internet gateway.
  2. A public subnet
    Hosts a NAT gateway. The next hop from the public subnet is the Network Firewall endpoint, where all traffic can be inspected before being forwarded to the internet.
  3. A private network subnet
    Used to host the client instances. All outbound traffic from this network goes to the NAT gateway endpoint.

In the network architecture shown in Figure 1, only one AZ is shown for simplicity, but best practices recommend deploying infrastructure across multiple AZs

To run the CloudFormation deployment template

  1. To set up the architecture shown in Figure 1, launch the provided CloudFormation deployment template using the Launch stack button in step 2 below.
    This CloudFormation template:

    • Sets up VPCs and appropriate subnets as required by the network architecture.
    • Creates a route table with appropriate routes and attaches it to the appropriate subnet (i.e. private subnet, firewall subnet, public subnet).
    • Creates a test instance with appropriate security groups.
    • Deploys Network Firewall with firewall policy.
    • Creates a Rule Group SampleStatefulRulegroupName with Suricata rules, which is not attached to a firewall policy
  2. To launch the stack, click the Launch Stack button below.
  3. Select the Launch Stack button to launch the template

  4. Name the newly created stack (for example, nfw-stack).
  5. The template will also install two sample rules that will be used to protect against accessing two sample malware site URLs, but it will not automatically attach them to a firewall policy
  6. You can see that Network Firewall with firewall policy was deployed as part of the basic CloudFormation deployment. It also created Suricata rules in rule groups, but is not yet attached to the firewall policy.

    Note: Unless you attach the rule to the Network Firewall, it will not provide the required protection.

Example: confirming vulnerability

We have identified two sample URLs that contain malware to use for demonstration.

In the example screen shot below, we tested vulnerability by logging into test instance using AWS Session Manager. and at the shell prompt, used wget to access and download a malware file.

Figure 2 that follows is a screenshot of how a user could access and download two different malware files.

Note: Since these URLs contain malware files, we do not recommend users perform this test, but are providing a screenshot as a demonstration. If you wish to actually test ability to download files, use URLs you know are safe for testing.

Figure 2. Insecure URL access

Figure 2. Insecure URL access

Network Firewall policies

Before the template creates the Network Firewall rule group, it creates a Network Firewall policy and attaches it to the Network Firewall. An AWS Network Firewall firewall policy defines the monitoring and protection behavior for a firewall. The details of the behavior are defined in the rule groups that you add to your policy.

Network Firewall rules

A Network Firewall rule group is a reusable set of criteria for inspecting and handling network traffic. You can add one or more rule groups to a firewall policy as part of policy configuration. The included template does this for you.

Network Firewall rule groups are either stateless or stateful. Stateless rule groups evaluate packets in isolation, while stateful rule groups evaluate them in the context of their traffic flow. Network Firewall uses a Suricata rules engine to process all stateful rules.

Suricata rules can be used to create a Network Firewall stateful rule to prevent insecure URL access. Figure 3 shows the Suricata rules that the template adds and attaches to the Network Firewall policy in order to block access to the sample malware URLs used in the previous example.

Figure 3. Suricata rules in a Network Firewall rule group

Figure 3. Suricata rules in a Network Firewall rule group

Attach the rule group to the Network Firewall policy

When you launched the CloudFormation template, it automatically created these rules in the rule group. You will now be attaching this rule group to the firewall policy in order to enable the protection. You will need similar rules to block the test URLs that are used for your testing.

Figure 3 shows two Suricata rules that have been configured to block the insecure malware URLs.

To add Suricata rules to Network Firewall

To improve site security and protect against downloading malware, you can add Suricata rules to Network Firewall to secure your site. You’ll do this by:

  1. Creating and attaching a firewall policy to the Network Firewall.
  2. Creating rules as part of rule groups, which are attached to the firewall policy
  3. Testing to verify that access to malware URLs from the instance is blocked.

Let’s review Suricata Rules that are created, which can be attached to Network Firewall.

Suricata rule parts

Each Suricata rule has three parts:

  1. Action
  2. drop action that should be taken

  3. Header
  4. http this is the traffic protocol

    $HOME_NET anywhere $HOME_NET is a Suricata variable. By default it is set to the CIDR range of the VPC where Network Firewall is deployed and any refers to any source port

    $EXTERNAL_NET 80 where $EXTERNAL_NET 80 is a Suricata standard variable that refers to traffic destination, and 80 refers to the destination port

    -> is the direction that tells in which direction the signature has to match

  5. Options
  6. msg “MALWARE custom solution” – gives textual information about the signature and the possible alert

    flow to_server,established – it is used to match on the direction of the flow and established refers to match on established connections

    classtype trojan-activity – gives information about the classification of rules and alerts

    sid:xxxxx gives every signature its own id

    content “xxxx” – This keyword is very important and it identifies the pattern that your signature should match.

    http_uri is a content modifier that helps you match specifically and only on the request URI

    rev:xxx this goes along with sid keyword. It represents the version of the signature

The signatures in the Suricate rule shown in Figure 3 will block traffic that matches the http_uri contents /data/js_crypto_miner.html and /data/java_jre17_exec.html when the traffic is initiated from the VPC to the public network.

To attach a rule group to an existing Network Firewall

In Figure 4, the Network Firewall has a policy attached. but it does not have a rule group

Figure 4. A policy is attached, but not a rule group

Figure 4. A policy is attached, but not a rule group

  1. As shown in Figure 5, choose Add rule group to start adding your Suricata rule to the Network Firewall.
  2. Choose Add from existing stateful rule groups to attach an already created Suricata rule group.
  3. Figure 5. Choose Add rule group

    Figure 5. Choose Add rule group

  4. Figure 6 shows the Suriacata rule groups that are already created. SampleStatefulRulegroupName is the rule group created by the CloudFormation template.
  5. Select the rule group and choose Add stateful rule group to finish adding the rule group to Network Firewall.
  6. Figure 6. Review the rule groups that are already created

    Figure 6. Review the rule groups that are already created

  7. Figure 7 shows that the rule group SampleStatefulRulegroupName is now part of the Stateful rule group section of Network Firewall screen, which completes adding Suricata rules to Network Firewall.
  8. Figure 7. Shows the new rule group is now added

    Figure 7. Shows the new rule group is now added

Example: validating the solution

Your Network Firewall is now configured to block malware URLs that are defined in the rulegroup SampleStatefulRulegroupName.

As in the example above where we confirmed vulnerability, Figure 8 shows how to validate that the solution is now protecting your users from accessing malware sites.

Figure 8 shows a user trying to access the same insecure URLs we tested earlier and shows that the URLs are now blocked and the attempted connection times out.

Note: Since these URLs contain malware files, we do not recommend users perform this test, but are providing a screenshot as a demonstration. If you wish to actually test ability to download files, use URLs you know are safe for testing.

Figure 8. Insecure URL access blocked

Figure 8. Insecure URL access blocked

Validating blocking access helps your security team ensure that users or applications on your network cannot download malware. You can add similar rules for any URLs you identify as insecure. SOC operators are typically not familiar with updating CloudFormation templates, but you can use a deployment pipeline where the data required for the rule is stored in Amazon DynamoDB and use AWS Lambda functions to automate updating rules.

Now that you have an example running, you should implement a complete rule set that meets your requirement from a publicly available malware list such as CISSECURITY MALWARE LIST.

Cleanup

AWS resources created for testing can result in additional costs. Since this environment used a CloudFormation template, you can remove all AWS resources associated with the solution by deleting the CloudFormation stack you named previously (for example, nfw-stack).

Conclusion

This blog describes an approach for preventing users from downloading malware. The solution presented uses AWS Network Firewall to secure your environment by blocking access to the specified malware URLs. The supplied CloudFormation template can be used to automate this protection, and to easily set up a test environment to simulate the scenario.

For additional best practice information, see:

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

.

Want more AWS Security news? Follow us on Twitter.

Author

Ajit Puthiyavettle

Ajit is a Solution Architect working with enterprise clients, architecting solutions to achieve business outcomes. He is passionate about solving customer challenges with innovative solutions. His experience is with leading DevOps and security teams for enterprise and SaaS (Software as a Service) companies.

Linux-Targeted Malware Increased by 35%

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/01/linux-targeted-malware-increased-by-35.html

Crowdstrike is reporting that malware targeting Linux has increased considerably in 2021:

Malware targeting Linux systems increased by 35% in 2021 compared to 2020.

XorDDoS, Mirai and Mozi malware families accounted for over 22% of Linux-targeted threats observed by CrowdStrike in 2021.

Ten times more Mozi malware samples were observed in 2021 compared to 2020.

Lots of details in the report.

News article:

The Crowdstrike findings aren’t surprising as they confirm an ongoing trend that emerged in previous years.

For example, an Intezer report analyzing 2020 stats found that Linux malware families increased by 40% in 2020 compared to the previous year.

In the first six months of 2020, a steep rise of 500% in Golang malware was recorded, showing that malware authors were looking for ways to make their code run on multiple platforms.

This programming, and by extension, targeting trend, has already been confirmed in early 2022 cases and is likely to continue unabated.

Slashdot thread.

Using EM Waves to Detect Malware

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/01/using-em-waves-to-detect-malware.html

I don’t even know what I think about this. Researchers have developed a malware detection system that uses EM waves: “Obfuscation Revealed: Leveraging Electromagnetic Signals for Obfuscated Malware Classification.”

Abstract: The Internet of Things (IoT) is constituted of devices that are exponentially growing in number and in complexity. They use numerous customized firmware and hardware, without taking into consideration security issues, which make them a target for cybercriminals, especially malware authors.

We will present a novel approach of using side channel information to identify the kinds of threats that are targeting the device. Using our approach, a malware analyst is able to obtain precise knowledge about malware type and identity, even in the presence of obfuscation techniques which may prevent static or symbolic binary analysis. We recorded 100,000 measurement traces from an IoT device infected by various in-the-wild malware samples and realistic benign activity. Our method does not require any modification on the target device. Thus, it can be deployed independently from the resources available without any overhead. Moreover, our approach has the advantage that it can hardly be detected and evaded by the malware authors. In our experiments, we were able to predict three generic malware types (and one benign class) with an accuracy of 99.82%. Even more, our results show that we are able to classify altered malware samples with unseen obfuscation techniques during the training phase, and to determine what kind of obfuscations were applied to the binary, which makes our approach particularly useful for malware analysts.

This seems impossible. It’s research, not a commercial product. But it’s fascinating if true.

Faking an iPhone Reboot

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/01/faking-an-iphone-reboot.html

Researchers have figured how how to intercept and fake an iPhone reboot:

We’ll dissect the iOS system and show how it’s possible to alter a shutdown event, tricking a user that got infected into thinking that the phone has been powered off, but in fact, it’s still running. The “NoReboot” approach simulates a real shutdown. The user cannot feel a difference between a real shutdown and a “fake shutdown.” There is no user-interface or any button feedback until the user turns the phone back “on.”

It’s a complicated hack, but it works.

Uses are obvious:

Historically, when malware infects an iOS device, it can be removed simply by restarting the device, which clears the malware from memory.

However, this technique hooks the shutdown and reboot routines to prevent them from ever happening, allowing malware to achieve persistence as the device is never actually turned off.

I see this as another manifestation of the security problems that stem from all controls becoming software controls. Back when the physical buttons actually did things — like turn the power, the Wi-Fi, or the camera on and off — you could actually know that something was on or off. Now that software controls those functions, you can never be sure.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application

Post Syndicated from Andrew Iwamaye original https://blog.rapid7.com/2021/10/28/sneaking-through-windows-infostealer-malware-masquerades-as-windows-application/

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application

This post also includes contributions from Reese Lewis, Andrew Christian, and Seth Lazarus.

Rapid7’s Managed Detection and Response (MDR) team leverages specialized toolsets, malware analysis, tradecraft, and collaboration with our colleagues on the Threat Intelligence and Detection Engineering (TIDE) team to detect and remediate threats.

Recently, we identified a malware campaign whose payload installs itself as a Windows application after delivery via a browser ad service and bypasses User Account Control (UAC) by abusing a Windows environment variable and a native scheduled task to ensure it persistently executes with elevated privileges. The malware is classified as a stealer, which intends to steal sensitive data from an infected asset (such as browser credentials and cryptocurrency), prevent browser updates, and allow for arbitrary command execution.

Detection

The MDR SOC first became aware of this malware campaign upon analysis of “UAC Bypass – Disk Cleanup Utility” and “Suspicious Process – TaskKill Multiple Times” alerts (authored by Rapid7’s TIDE team) within Rapid7’s InsightIDR platform.

As the “UAC Bypass – Disk Cleanup Utility” name implies, the alert identified a possible UAC bypass using the Disk Cleanup utility due to a vulnerability in some versions of Windows 10 that allows a native scheduled task to execute arbitrary code by modifying the content of an environment variable. Specifically, the alert detected a PowerShell command spawned by a suspicious executable named HoxLuSfo.exe. We determined that HoxLuSfo.exe was spawned by sihost.exe, a background process that launches and maintains the Windows action and notification centers.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 1: PowerShell command identified by Rapid7’s MDR on infected assets

We determined the purpose of the PowerShell command was, after sleeping, to attempt to perform a Disk Cleanup Utility UAC bypass. The command works because, on some Windows systems, it is possible for the Disk Cleanup Utility to run via the native scheduled task “SilentCleanup” that, when triggered, executes the following command with elevated privileges:

%windir%\system32\cleanmgr.exe /autoclean /d %systemdrive%

The PowerShell command exploited the use of the environment variable %windir% in the path specified in the “SilentCleanup” scheduled task by altering the value set for the environment variable %windir%. Specifically, the PowerShell command deleted the existing %windir% environment variable and replaced it with a new %windir% environment variable set to:

%LOCALAPPDATA%\Microsoft\OneDrive\setup\st.exe REM

The environment variable replacement therefore configured the scheduled task “SilentCleanup” to execute the following command whenever the task “SilentCleanup” was triggered:

%LOCALAPPDATA%\Microsoft\OneDrive\setup\st.exe REM\system32\cleanmgr.exe /autoclean /d %systemdrive%

The binary st.exe was a copied version of HoxLuSfo.exe from the file path C:\Program Files\WindowsApps\3b76099d-e6e0-4e86-bed1-100cc5fa699f_113.0.2.0_neutral__7afzw0tp1da5e\HoxLuSfo\.

The trailing “REM” at the end of the Registry entry commented out the rest of the native command for the “SilentCleanup” scheduled task, effectively configuring the task to execute:

%LOCALAPPDATA%\Microsoft\OneDrive\setup\st.exe

After making the changes to the %windir% environment variable, the PowerShell command ran the “SilentCleanup” scheduled task, thereby hijacking the “SilentCleanup” scheduled task to run st.exe with elevated privileges.

The alert for “Suspicious Process – TaskKill Multiple Times” later detected st.exe spawning multiple commands attempting to kill any process named Google*, MicrosoftEdge*, or setu*.

Analysis of HoxLuSfo.exe

Rapid7’s MDR could not remotely acquire the files HoxLuSfo.exe and st.exe from the infected assets because they were no longer present at the time of the investigation. However, we obtained a copy of the executable from VirusTotal based on its MD5 hash, 1cc0536ae396eba7fbde9f35dc2fc8e3.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 2: Overview of HoxLuSfo.exe (originally named TorE.exe) within dnSpy and its partially obfuscated contents.

Rapid7’s MDR concluded that HoxLuSfo.exe had the following characteristics and behaviors:

  • 32-bit Microsoft Visual Studio .NET executable containing obfuscated code
  • Originally named TorE.exe
  • At the time of writing, only 10 antivirus solutions detected HoxLuSfo.exe as malicious

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 3: Low detection rate for HoxLuSfo.exe on VirusTotal

  • Fingerprints the infected asset
  • Drops and leverages a 32-bit Microsoft Visual Studio .NET DLL, JiLuT64.dll (MD5: 14ff402962ad21b78ae0b4c43cd1f194), which is an Agile .NET obfuscator signed by SecureTeam Software Ltd, likely to (de)obfuscate contents
  • Modifies the hosts file on the infected asset to prevent correct resolution of common browser update URLs to prevent browser updates

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 4: Modifications made to the hosts file on infected assets
  • Enumerates installed browsers and steals credentials from installed browsers
  • Kills processes named Google*, MicrosoftEdge*, setu*
  • Contains functionality to steal cryptocurrency
  • Contains functionality for the execution of arbitrary commands on the infected asset
Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 5: Sample of the functionality within HoxLuSfo.exe to execute arbitrary commands

  • Communicates with s1.cleancrack[.]tech and s4.cleancrack[.]tech (both of which resolve to 172.67.187[.]162 and 104.21.92[.]68 at the time of analysis) via AES-encrypted messages with a key of e84ad660c4721ae0e84ad660c4721ae0. The encryption scheme employed appears to be reused code from here.
  • Has a PDB path of E:\msix\ChromeRceADMIN4CB\TorE\obj\Release\TorE.pdb.

Rapid7’s MDR interacted with s4.cleancrack[.]tech and discovered what appears to be a login portal for the attacker to access stolen data.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 6: Login page hosted at hXXps://s4.cleancrack[.]tech/login

Source of infection

Rapid7’s MDR observed the execution of chrome.exe just prior to HoxLuSfo.exe spawning the PowerShell command we detected with our alert.

In one of our investigations, our analysis of the user’s Chrome browser history file showed redirects to suspicious domains before initial infection:
hXXps://getredd[.]biz/ →
hXXps://eu.postsupport[.]net →
hXXp://updateslives[.]com/

In another investigation, DNS logs showed a redirect chain that followed a similar pattern:
hXXps://getblackk[.]biz/ →
hXXps://eu.postsupport[.]net →
hXXp://updateslives[.]com/ →
hXXps://chromesupdate[.]com

In the first investigation, the user’s Chrome profile revealed that the site permission settings for a suspicious domain, birchlerarroyo[.]com, were altered just prior to the redirects. Specifically, the user granted permission to the site hosted at birchlerarroyo[.]com to send notifications to the user.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 7: Notifications enabled for birchlerarroyo[.]com within the user’s site settings of Chrome

Rapid7’s MDR visited the website hosted at birchlerarroyo[.]com and found that the website presented a browser notification requesting permission to show notifications to the user.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 8: Website hosted at birchlerarroyo[.]com requesting permission to show notifications to the user

We suspect that the website hosted at birchlerarroyo[.]com was compromised, as its source code contained a reference to a suspicious JavaScript file hosted at fastred[.]biz:

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 9: Suspicious JavaScript file found within the source code of the website hosted at birchlerarroyo[.]com

We determined that the JavaScript file hosted at fastred[.]biz was responsible for the notification observed at birchlerarroyo[.]com via the code in Figure 10.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 10: Partial contents of the JavaScript file hosted at fastred[.]biz

Pivoting off of the string “Код RedPush” within the source code of birchlerarroyo[.]com (see highlighted lines in Figure 9), as well as the workerName and applicationServerKey settings within the JavaScript file in Figure 10, Rapid7’s MDR discovered additional websites containing similar source code: ostoday[.]com and magnetline[.]ru.

Rapid7’s MDR analyzed the websites hosted at each of birchlerarroyo[.]com, ostoday[.]com, and magnetline[.]ru and found that each:

  • Displayed the same type of browser notification shown in Figure 8
  • Was built using WordPress and employed the same WordPress plugin, “WP Rocket”
  • Had source code that referred to similar Javascript files hosted at either fastred[.]biz or clickmatters[.]biz and the JavaScript files had the same applicationServerKey: BIbjCoVklTIiXYjv3Z5WS9oemREJPCOFVHwpAxQphYoA5FOTzG-xOq6GiK31R-NF--qzgT3_C2jurmRX_N6nY4g

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 11: Partial contents of the JavaScript file hosted at clickmatters[.]biz. The unicode in the “text” key decodes to “Нажмите \”Разрешить\”, чтобы получать уведомления”, which translates to “Click \ “Allow \” to receive notifications”.

  • Had source code that contained a similar rbConfig parameter referencing takiparkrb[.]site and a varying rotator value

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 12: Example rbConfig parameter found in website source code

  • Had source code that contained references to either “Код RedPush” (translates to “Redpush code”), “Код РБ” (translates to “CodeRB”), or “Код нативного ПУШа RB” (translates to “Native PUSH code RB”)

Pivoting off of the similar strings of “CodeRB” and “Redpush” within source code led to other findings.

First, Rapid7’s MDR discovered an advertising business, RedPush (see redpush[.]biz). RedPush provides its customers with advertisement code to host on customers’ websites. The code produces pop-up notifications to allow for advertisements to be pushed to users browsing the customers’ websites. RedPush’s customers make a profit based on the number of advertisement clicks generated from their websites that contain RedPush’s code.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 13: Summary of RedPush’s ad delivery model via push notifications

Second, Rapid7’s MDR discovered a publication by Malwaretips describing a browser pop-up malware family known as Redpush. Upon visiting a website compromised with Redpush code, the code presents a browser notification requesting permission to send notifications to the user. After the user grants permission, the compromised site appears to gain the ability to push toast notifications, which could range from spam advertisements to notifications for malicious fake software updates. Similar publications by McAfee here and here describe that threat actors have recently been employing toast notifications that advertise fake software updates to trick users into installing malicious Windows applications.

Rapid7’s MDR could not reproduce a push of a malicious software after visiting the compromised website at birchlerarroyo[.]com, possibly for several reasons:

  • Notification-enabled sites may send notifications at varying frequencies, as explained here, and varying times of day.
  • Malicious packages are known to be selectively pushed to users based on geolocation, as explained here. (Note: Rapid7’s MDR interacted with the website using IP addresses having varying geolocations in North America and Europe.)
  • The malware was no longer being served at the time of investigation.

However, the malware delivery techniques described by Malwaretips and McAfee were likely employed to trick the users in our investigations into installing the malware while they were browsing the Internet. As explained in the “Forensic analysis” section, in one of our investigations, there was evidence of an initial toast notification, a fake update masquerade, and installation of a malicious Windows application. Additionally, the grandparent process of the PowerShell command we detected, sihost.exe, indicated to us that the malware may have leveraged the Windows Notification Center during the infection chain.

Forensic analysis

Analysis of the User’s Chrome profile and Microsoft-Windows-PushNotifications-Platform Windows Event Logs suggests that upon the user enabling notifications to be sent from the compromised site at birchlerarroyo[.]com, the user was presented with and cleared a toast notification. We could not determine what the contents of the toast notification were based on available evidence.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 14: Windows Event Log for the user clearing a toast notification to proceed with the malware’s infection chain

Based on our analysis of timestamp evidence, the user was likely directed to each of getredd[.]biz, postsupport[.]net, and updateslives[.]com after clicking the toast notification, and presented a fake update webpage.

Similar to the infection mechanism described by McAfee, the installation path of the malware on disk within C:\Program Files\WindowsApps\ suggests that the users were tricked into installing a malicious Windows application. The Microsoft-Windows-AppXDeploymentServerOperational and Microsoft-Windows-AppxPackagingOperational Windows Event logs contained suspicious entries confirming installation of the malware as a Windows application, as shown in Figures 15-19.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 15: Windows Event Log displaying the reading of the contents of a suspicious application package “3b76099d-e6e0-4e86-bed1-100cc5fa699f_113.0.2.0_neutral__7afzw0tp1da5e”
Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 16: Windows Event Log displaying the deployment of the application package and the passing of suspicious installation parameters to the application via App Installer, as explained here. (Note: Rapid7’s MDR noticed the value of the ran parameter changed across separate and distinct interactions with the threat actor’s infrastructure, suggesting the ran parameter may be employed for tracking purposes.)
Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 17: Windows Event Log that appears to show the URI installation parameter being processed by the application via App Installer
Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 18: Windows Event Log showing validation of the application package’s digital signature. See here for more information about signatures for Windows application packages
Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 19: Windows Event Log showing successful deployment of the application package

The events in Figures 15-19 illustrate that the malicious Windows application was distributed through the web with App Installer as a MSIX file, oelgfertgokejrgre.msix.

Analysis of oelgfertgokejrgre.msix

Rapid7’s MDR visited chromesupdate[.]com in a controlled environment and discovered that it was hosting a convincing Chrome-update-themed webpage.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 20: Lure hosted at chromesupdate[.]com

The website title, “Google Chrome – Download the Fast, Secure Browser from Google,” was consistent with those we observed of the redirect URLs getredd[.]biz, postsupport[.]net, and updateslives[.]com. The users in our investigations likely arrived at the website in Figure 20 after clicking a malicious toast notification, and proceeded to click the “Install” link presented on the website to initiate the Windows application installation.

The “Install” link presented at the website led to a Windows application installer URL (similar to that seen in Figure 17), which is consistent with MSIX distribution via the web.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 21: Portion of the source code of the webpage hosted at chromesupdate[.]com showing a Windows application installer URL for a malicious MSIX package

Rapid7’s MDR obtained the MSIX file, oelgfertgokejrgre.msix, hosted at chromesupdate[.]com, and confirmed that it was a Windows application package.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 22: Extracted contents of oelgfertgokejrgre.msix

Analysis of the contents extracted from oelgfertgokejrgre.msix revealed the following notable characteristics and features:

  • Two files, HoxLuSfo.exe and JiLutime.dll, were contained within the HoxLuSfo subdirectory. JiLutime.dll (MD5: 60bb67ebcffed2f406ac741b1083dc80) was a 32-bit Agile .NET obfuscator DLL signed by SecureTeam Software Ltd, likely to (de)obfuscate contents.
  • The AppxManifest.xml file contained more references to the Windows application’s masquerade as a Google Chrome update, as well as details related to its package identity and signature.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 24: Partial contents of AppxManifest.xml

  • The DeroKuilSza.build.appxrecipe file contained strings that referenced a project “DeroKuilSza,” which is likely associated with the malware author.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 25: References to a “DeroKuilSza” project found within DeroKuilSza.build.appxrecipe

Our dynamic analysis of oelgfertgokejrgre.msix provided clarity around the malware’s installation process. Detonation of oelgfertgokejrgre.msix caused a Windows App Installer window to appear, which displayed information about a fake Google Chrome update.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 26: Windows App Installer window showing a fake Google Chrome update installation prompt

The information displayed to the user in Figure 26 is spoofed to masquerade as a legitimate Google Chrome update. The information correlates to the AppxManifest.xml configuration shown in Figure 24.

Once we proceeded with the installation, the MSIX package registered a notification sender via App Installer and immediately presented a notification to launch the fake Google Chrome update.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 27: Registration of App Installer as a notification sender and notification to launch the fake Google Chrome update

Since the malicious Windows application package installed by the MSIX file was not hosted on the Microsoft Store, a prompt is presented to enable installation of sideload applications, if not already enabled, to allow for installation of applications from unofficial sources.

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 28: Requirement for sideload apps mode to be enabled to proceed with installation

Sneaking Through Windows: Infostealer Malware Masquerades as Windows Application
Figure 29: Menu presented to the user to enable sideload apps mode to complete the installation of the malware

The malware needs the enablement of “Sideload apps” to complete its installation.

Pulling off the mask

The malware we summarized in this blog post has several tricks up its sleeve. Its delivery mechanism via an ad service as a Windows application (which does not leave typical web-based download forensic artifacts behind), Windows application installation path, and UAC bypass technique by manipulation of an environment variable and native scheduled task can go undetected by various security solutions or even by a seasoned SOC analyst. Rapid7’s MDR customers can rest assured that, by leveraging our attacker behavior analytics detection methodology, our analysts will detect and respond to this infection chain before the malware can steal valuable data.

IOCs

Type Indicator
Domain Name updateslives[.]com
Domain Name getredd[.]biz
Domain Name postsupport[.]net
Domain Name eu.postsupport[.]net
Domain Name cleancrack[.]tech
Domain Name s1.cleancrack[.]tech
Domain Name s4.cleancrack[.]tech
Domain Name getblackk[.]biz
Domain Name chromesupdate[.]com
Domain Name fastred[.]biz
Domain Name clickmatters[.]biz
Domain Name takiparkrb[.]site
IP Address 172.67.187[.]162
IP Address 104.21.92[.]68
IP Address 104.21.4[.]200
IP Address 172.67.132[.]99
Directory C:\Program Files\WindowsApps\3b76099d-e6e0-4e86-bed1-100cc5fa699f_113.0.2.0_neutral__7afzw0tp1da5e\HoxLuSfo
Filepath C:\Program Files\WindowsApps\3b76099d-e6e0-4e86-bed1-100cc5fa699f_113.0.2.0_neutral__7afzw0tp1da5e\HoxLuSfo\HoxLuSfo.exe
Filename HoxLuSfo.exe
MD5 1cc0536ae396eba7fbde9f35dc2fc8e3
SHA1 b7ac2fd5108f69e90ad02a1c31f8b50ab4612aa6
SHA256 5dc8aa3c906a469e734540d1fea1549220c63505b5508e539e4a16b841902ed1
Filepath %USERPROFILE%\AppData\Local\Microsoft\OneDrive\setup\st.exe
Filename st.exe
Registry Value + Registry Data HKCU\Environment.%windir% –> %LOCALAPPDATA%\Microsoft\OneDrive\setup\st.exe
Filename oelgfertgokejrgre.msix
MD5 6860c43374ad280c3927b16af66e3593
SHA1 94658e04988b02c395402992f46f1e975f9440e1
SHA256 0a127dfa75ecdc85e88810809c94231949606d93d232f40dad9823d3ac09b767

NEVER MISS A BLOG

Get the latest stories, expertise, and news about security today.

Zero-Click iPhone Exploits

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/09/zero-click-iphone-exploits.html

Citizen Lab is reporting on two zero-click iMessage exploits, in spyware sold by the cyberweapons arms manufacturer NSO Group to the Bahraini government.

These are particularly scary exploits, since they don’t require to victim to do anything, like click on a link or open a file. The victim receives a text message, and then they are hacked.

More on this here.

Hiding Malware in ML Models

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/07/hiding-malware-in-ml-models.html

Interesting research: “EvilModel: Hiding Malware Inside of Neural Network Models”.

Abstract: Delivering malware covertly and detection-evadingly is critical to advanced malware campaigns. In this paper, we present a method that delivers malware covertly and detection-evadingly through neural network models. Neural network models are poorly explainable and have a good generalization ability. By embedding malware into the neurons, malware can be delivered covertly with minor or even no impact on the performance of neural networks. Meanwhile, since the structure of the neural network models remains unchanged, they can pass the security scan of antivirus engines. Experiments show that 36.9MB of malware can be embedded into a 178MB-AlexNet model within 1% accuracy loss, and no suspicious are raised by antivirus engines in VirusTotal, which verifies the feasibility of this method. With the widespread application of artificial intelligence, utilizing neural networks becomes a forwarding trend of malware. We hope this work could provide a referenceable scenario for the defense on neural network-assisted attacks.

News article.

Details of the REvil Ransomware Attack

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/07/details-of-the-revil-ransomware-attack.html

ArsTechnica has a good story on the REvil ransomware attack of last weekend, with technical details:

This weekend’s attack was carried out with almost surgical precision. According to Cybereason, the REvil affiliates first gained access to targeted environments and then used the zero-day in the Kaseya Agent Monitor to gain administrative control over the target’s network. After writing a base-64-encoded payload to a file named agent.crt the dropper executed it.

[…]

The ransomware dropper Agent.exe is signed with a Windows-trusted certificate that uses the registrant name “PB03 TRANSPORT LTD.” By digitally signing their malware, attackers are able to suppress many security warnings that would otherwise appear when it’s being installed. Cybereason said that the certificate appears to have been used exclusively by REvil malware that was deployed during this attack.

To add stealth, the attackers used a technique called DLL Side-Loading, which places a spoofed malicious DLL file in a Windows’ WinSxS directory so that the operating system loads the spoof instead of the legitimate file. In the case here, Agent.exe drops an outdated version that is vulnerable to DLL Side-Loading of “msmpeng.exe,” which is the file for the Windows Defender executable.

Once executed, the malware changes the firewall settings to allow local windows systems to be discovered. Then, it starts to encrypt the files on the system….

REvil is demanding $70 million for a universal decryptor that will recover the data from the 1,500 affected Kaseya customers.

More news.

Note that this is yet another supply-chain attack. Instead of infecting those 1,500 networks directly, REvil infected a single managed service provider. And it leveraged a zero-day vulnerability in that provider.

EDITED TO ADD (7/13): Employees warned Kaseya’s management for years about critical security flaws, but they were ignored.

More Russian Hacking

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/07/more-russian-hacking.html

Two reports this week. The first is from Microsoft, which wrote:

As part of our investigation into this ongoing activity, we also detected information-stealing malware on a machine belonging to one of our customer support agents with access to basic account information for a small number of our customers. The actor used this information in some cases to launch highly-targeted attacks as part of their broader campaign.

The second is from the NSA, CISA, FBI, and the UK’s NCSC, which wrote that the GRU is continuing to conduct brute-force password guessing attacks around the world, and is in some cases successful. From the NSA press release:

Once valid credentials were discovered, the GTsSS combined them with various publicly known vulnerabilities to gain further access into victim networks. This, along with various techniques also detailed in the advisory, allowed the actors to evade defenses and collect and exfiltrate various information in the networks, including mailboxes.

News article.

Mollitiam Industries is the Newest Cyberweapons Arms Manufacturer

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/06/mollitiam-industries-is-the-newest-cyberweapons-arms-manufacturer.html

Wired is reporting on a company called Mollitiam Industries:

Marketing materials left exposed online by a third-party claim Mollitiam’s interception products, dubbed “Invisible Man” and “Night Crawler,” are capable of remotely accessing a target’s files, location, and covertly turning on a device’s camera and microphone. Its spyware is also said to be equipped with a keylogger, which means every keystroke made on an infected device — including passwords, search queries and messages sent via encrypted messaging apps — can be tracked and monitored.

To evade detection, the malware makes use of the company’s so-called “invisible low stealth technology” and its Android product is advertised as having “low data and battery consumption” to prevent people from suspecting their phone or tablet has been infected. Mollitiam is also currently marketing a tool that it claims enables “mass surveillance of digital profiles and identities” across social media and the dark web.

Mysterious Macintosh Malware

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/03/mysterious-macintosh-malware.html

This is weird:

Once an hour, infected Macs check a control server to see if there are any new commands the malware should run or binaries to execute. So far, however, researchers have yet to observe delivery of any payload on any of the infected 30,000 machines, leaving the malware’s ultimate goal unknown. The lack of a final payload suggests that the malware may spring into action once an unknown condition is met.

Also curious, the malware comes with a mechanism to completely remove itself, a capability that’s typically reserved for high-stealth operations. So far, though, there are no signs the self-destruct feature has been used, raising the question of why the mechanism exists.

Besides those questions, the malware is notable for a version that runs natively on the M1 chip that Apple introduced in November, making it only the second known piece of macOS malware to do so. The malicious binary is more mysterious still because it uses the macOS Installer JavaScript API to execute commands. That makes it hard to analyze installation package contents or the way that package uses the JavaScript commands.

The malware has been found in 153 countries with detections concentrated in the US, UK, Canada, France, and Germany. Its use of Amazon Web Services and the Akamai content delivery network ensures the command infrastructure works reliably and also makes blocking the servers harder. Researchers from Red Canary, the security firm that discovered the malware, are calling the malware Silver Sparrow.

Feels government-designed, rather than criminal or hacker.

Another article. And the Red Canary analysis.

Twelve-Year-Old Vulnerability Found in Windows Defender

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/02/twelve-year-old-vulnerability-found-in-windows-defender.html

Researchers found, and Microsoft has patched, a vulnerability in Windows Defender that has been around for twelve years. There is no evidence that anyone has used the vulnerability during that time.

The flaw, discovered by researchers at the security firm SentinelOne, showed up in a driver that Windows Defender — renamed Microsoft Defender last year — uses to delete the invasive files and infrastructure that malware can create. When the driver removes a malicious file, it replaces it with a new, benign one as a sort of placeholder during remediation. But the researchers discovered that the system doesn’t specifically verify that new file. As a result, an attacker could insert strategic system links that direct the driver to overwrite the wrong file or even run malicious code.

It isn’t unusual that vulnerabilities lie around for this long. They can’t be fixed until someone finds them, and people aren’t always looking.