Tag Archives: VPC

Running ActiveMQ in a Hybrid Cloud Environment with Amazon MQ

Post Syndicated from Tara Van Unen original https://aws.amazon.com/blogs/compute/running-activemq-in-a-hybrid-cloud-environment-with-amazon-mq/

This post courtesy of Greg Share, AWS Solutions Architect

Many organizations, particularly enterprises, rely on message brokers to connect and coordinate different systems. Message brokers enable distributed applications to communicate with one another, serving as the technological backbone for their IT environment, and ultimately their business services. Applications depend on messaging to work.

In many cases, those organizations have started to build new or “lift and shift” applications to AWS. In some cases, there are applications, such as mainframe systems, too costly to migrate. In these scenarios, those on-premises applications still need to interact with cloud-based components.

Amazon MQ is a managed message broker service for ActiveMQ that enables organizations to send messages between applications in the cloud and on-premises to enable hybrid environments and application modernization. For example, you can invoke AWS Lambda from queues and topics managed by Amazon MQ brokers to integrate legacy systems with serverless architectures. ActiveMQ is an open-source message broker written in Java that is packaged with clients in multiple languages, Java Message Server (JMS) client being one example.

This post shows you can use Amazon MQ to integrate on-premises and cloud environments using the network of brokers feature of ActiveMQ. It provides configuration parameters for a one-way duplex connection for the flow of messages from an on-premises ActiveMQ message broker to Amazon MQ.

ActiveMQ and the network of brokers

First, look at queues within ActiveMQ and then at the network of brokers as a mechanism to distribute messages.

The network of brokers behaves differently from models such as physical networks. The key consideration is that the production (sending) of a message is disconnected from the consumption of that message. Think of the delivery of a parcel: The parcel is sent by the supplier (producer) to the end customer (consumer). The path it took to get there is of little concern to the customer, as long as it receives the package.

The same logic can be applied to the network of brokers. Here’s how you build the flow from a simple message to a queue and build toward a network of brokers. Before you look at setting up a hybrid connection, I discuss how a broker processes messages in a simple scenario.

When a message is sent from a producer to a queue on a broker, the following steps occur:

  1. A message is sent to a queue from the producer.
  2. The broker persists this in its store or journal.
  3. At this point, an acknowledgement (ACK) is sent to the producer from the broker.

When a consumer looks to consume the message from that same queue, the following steps occur:

  1. The message listener (consumer) calls the broker, which creates a subscription to the queue.
  2. Messages are fetched from the message store and sent to the consumer.
  3. The consumer acknowledges that the message has been received before processing it.
  4. Upon receiving the ACK, the broker sets the message as having been consumed. By default, this deletes it from the queue.
    • You can set the consumer to ACK after processing by setting up transaction management or handle it manually using Session.CLIENT_ACKNOWLEDGE.

Static propagation

I now introduce the concept of static propagation with the network of brokers as the mechanism for message transfer from on-premises brokers to Amazon MQ.  Static propagation refers to message propagation that occurs in the absence of subscription information. In this case, the objective is to transfer messages arriving at your selected on-premises broker to the Amazon MQ broker for consumption within the cloud environment.

After you configure static propagation with a network of brokers, the following occurs:

  1. The on-premises broker receives a message from a producer for a specific queue.
  2. The on-premises broker sends (statically propagates) the message to the Amazon MQ broker.
  3. The Amazon MQ broker sends an acknowledgement to the on-premises broker, which marks the message as having been consumed.
  4. Amazon MQ holds the message in its queue ready for consumption.
  5. A consumer connects to Amazon MQ broker, subscribes to the queue in which the message resides, and receives the message.
  6. Amazon MQ broker marks the message as having been consumed.

Getting started

The first step is creating an Amazon MQ broker.

  1. Sign in to the Amazon MQ console and launch a new Amazon MQ broker.
  2. Name your broker and choose Next step.
  3. For Broker instance type, choose your instance size:
    mq.t2.micro
    mq.m4.large
  4. For Deployment mode, enter one of the following:
    Single-instance broker for development and test implementations (recommended)
    Active/standby broker for high availability in production environments
  5. Scroll down and enter your user name and password.
  6. Expand Advanced Settings.
  7. For VPC, Subnet, and Security Group, pick the values for the resources in which your broker will reside.
  8. For Public Accessibility, choose Yes, as connectivity is internet-based. Another option would be to use private connectivity between your on-premises network and the VPC, an example being an AWS Direct Connect or VPN connection. In that case, you could set Public Accessibility to No.
  9. For Maintenance, leave the default value, No preference.
  10. Choose Create Broker. Wait several minutes for the broker to be created.

After creation is complete, you see your broker listed.

For connectivity to work, you must configure the security group where Amazon MQ resides. For this post, I focus on the OpenWire protocol.

For Openwire connectivity, allow port 61617 access for Amazon MQ from your on-premises ActiveMQ broker source IP address. For alternate protocols, see the Amazon MQ broker configuration information for the ports required:

OpenWire – ssl://xxxxxxx.xxx.com:61617
AMQP – amqp+ssl:// xxxxxxx.xxx.com:5671
STOMP – stomp+ssl:// xxxxxxx.xxx.com:61614
MQTT – mqtt+ssl:// xxxxxxx.xxx.com:8883
WSS – wss:// xxxxxxx.xxx.com:61619

Configuring the network of brokers

Configuring the network of brokers with static propagation occurs on the on-premises broker by applying changes to the following file:
<activemq install directory>/conf activemq.xml

Network connector

This is the first configuration item required to enable a network of brokers. It is only required on the on-premises broker, which initiates and creates the connection with Amazon MQ. This connection, after it’s established, enables the flow of messages in either direction between the on-premises broker and Amazon MQ. The focus of this post is the uni-directional flow of messages from the on-premises broker to Amazon MQ.

The default activemq.xml file does not include the network connector configuration. Add this with the networkConnector element. In this scenario, edit the on-premises broker activemq.xml file to include the following information between <systemUsage> and <transportConnectors>:

<networkConnectors>
             <networkConnector 
                name="Q:source broker name->target broker name"
                duplex="false" 
                uri="static:(ssl:// aws mq endpoint:61617)" 
                userName="username"
                password="password" 
                networkTTL="2" 
                dynamicOnly="false">
                <staticallyIncludedDestinations>
                    <queue physicalName="queuename"/>
                </staticallyIncludedDestinations> 
                <excludedDestinations>
                      <queue physicalName=">" />
                </excludedDestinations>
             </networkConnector> 
     <networkConnectors>

The highlighted components are the most important elements when configuring your on-premises broker.

  • name – Name of the network bridge. In this case, it specifies two things:
    • That this connection relates to an ActiveMQ queue (Q) as opposed to a topic (T), for reference purposes.
    • The source broker and target broker.
  • duplex –Setting this to false ensures that messages traverse uni-directionally from the on-premises broker to Amazon MQ.
  • uri –Specifies the remote endpoint to which to connect for message transfer. In this case, it is an Openwire endpoint on your Amazon MQ broker. This information could be obtained from the Amazon MQ console or via the API.
  • username and password – The same username and password configured when creating the Amazon MQ broker, and used to access the Amazon MQ ActiveMQ console.
  • networkTTL – Number of brokers in the network through which messages and subscriptions can pass. Leave this setting at the current value, if it is already included in your broker connection.
  • staticallyIncludedDestinations > queue physicalName – The destination ActiveMQ queue for which messages are destined. This is the queue that is propagated from the on-premises broker to the Amazon MQ broker for message consumption.

After the network connector is configured, you must restart the ActiveMQ service on the on-premises broker for the changes to be applied.

Verify the configuration

There are a number of places within the ActiveMQ console of your on-premises and Amazon MQ brokers to browse to verify that the configuration is correct and the connection has been established.

On-premises broker

Launch the ActiveMQ console of your on-premises broker and navigate to Network. You should see an active network bridge similar to the following:

This identifies that the connection between your on-premises broker and your Amazon MQ broker is up and running.

Now navigate to Connections and scroll to the bottom of the page. Under the Network Connectors subsection, you should see a connector labeled with the name: value that you provided within the ActiveMQ.xml configuration file. You should see an entry similar to:

Amazon MQ broker

Launch the ActiveMQ console of your Amazon MQ broker and navigate to Connections. Scroll to the Connections openwire subsection and you should see a connection specified that references the name: value that you provided within the ActiveMQ.xml configuration file. You should see an entry similar to:

If you configured the uri: for AMQP, STOMP, MQTT, or WSS as opposed to Openwire, you would see this connection under the corresponding section of the Connections page.

Testing your message flow

The setup described outlines a way for messages produced on premises to be propagated to the cloud for consumption in the cloud. This section provides steps on verifying the message flow.

Verify that the queue has been created

After you specify this queue name as staticallyIncludedDestinations > queue physicalName: and your ActiveMQ service starts, you see the following on your on-premises ActiveMQ console Queues page.

As you can see, no messages have been sent but you have one consumer listed. If you then choose Active Consumers under the Views column, you see Active Consumers for TestingQ.

This is telling you that your Amazon MQ broker is a consumer of your on-premises broker for the testing queue.

Produce and send a message to the on-premises broker

Now, produce a message on an on-premises producer and send it to your on-premises broker to a queue named TestingQ. If you navigate back to the queues page of your on-premises ActiveMQ console, you see that the messages enqueued and messages dequeued column count for your TestingQ queue have changed:

What this means is that the message originating from the on-premises producer has traversed the on-premises broker and propagated immediately to the Amazon MQ broker. At this point, the message is no longer available for consumption from the on-premises broker.

If you access the ActiveMQ console of your Amazon MQ broker and navigate to the Queues page, you see the following for the TestingQ queue:

This means that the message originally sent to your on-premises broker has traversed the network of brokers unidirectional network bridge, and is ready to be consumed from your Amazon MQ broker. The indicator is the Number of Pending Messages column.

Consume the message from an Amazon MQ broker

Connect to the Amazon MQ TestingQ queue from a consumer within the AWS Cloud environment for message consumption. Log on to the ActiveMQ console of your Amazon MQ broker and navigate to the Queue page:

As you can see, the Number of Pending Messages column figure has changed to 0 as that message has been consumed.

This diagram outlines the message lifecycle from the on-premises producer to the on-premises broker, traversing the hybrid connection between the on-premises broker and Amazon MQ, and finally consumption within the AWS Cloud.

Conclusion

This post focused on an ActiveMQ-specific scenario for transferring messages within an ActiveMQ queue from an on-premises broker to Amazon MQ.

For other on-premises brokers, such as IBM MQ, another approach would be to run ActiveMQ on-premises broker and use JMS bridging to IBM MQ, while using the approach in this post to forward to Amazon MQ. Yet another approach would be to use Apache Camel for more sophisticated routing.

I hope that you have found this example of hybrid messaging between an on-premises environment in the AWS Cloud to be useful. Many customers are already using on-premises ActiveMQ brokers, and this is a great use case to enable hybrid cloud scenarios.

To learn more, see the Amazon MQ website and Developer Guide. You can try Amazon MQ for free with the AWS Free Tier, which includes up to 750 hours of a single-instance mq.t2.micro broker and up to 1 GB of storage per month for one year.

 

How to Patch Linux Workloads on AWS

Post Syndicated from Koen van Blijderveen original https://aws.amazon.com/blogs/security/how-to-patch-linux-workloads-on-aws/

Most malware tries to compromise your systems by using a known vulnerability that the operating system maker has already patched. As best practices to help prevent malware from affecting your systems, you should apply all operating system patches and actively monitor your systems for missing patches.

In this blog post, I show you how to patch Linux workloads using AWS Systems Manager. To accomplish this, I will show you how to use the AWS Command Line Interface (AWS CLI) to:

  1. Launch an Amazon EC2 instance for use with Systems Manager.
  2. Configure Systems Manager to patch your Amazon EC2 Linux instances.

In two previous blog posts (Part 1 and Part 2), I showed how to use the AWS Management Console to perform the necessary steps to patch, inspect, and protect Microsoft Windows workloads. You can implement those same processes for your Linux instances running in AWS by changing the instance tags and types shown in the previous blog posts.

Because most Linux system administrators are more familiar with using a command line, I show how to patch Linux workloads by using the AWS CLI in this blog post. The steps to use the Amazon EBS Snapshot Scheduler and Amazon Inspector are identical for both Microsoft Windows and Linux.

What you should know first

To follow along with the solution in this post, you need one or more Amazon EC2 instances. You may use existing instances or create new instances. For this post, I assume this is an Amazon EC2 for Amazon Linux instance installed from Amazon Machine Images (AMIs).

Systems Manager is a collection of capabilities that helps you automate management tasks for AWS-hosted instances on Amazon EC2 and your on-premises servers. In this post, I use Systems Manager for two purposes: to run remote commands and apply operating system patches. To learn about the full capabilities of Systems Manager, see What Is AWS Systems Manager?

As of Amazon Linux 2017.09, the AMI comes preinstalled with the Systems Manager agent. Systems Manager Patch Manager also supports Red Hat and Ubuntu. To install the agent on these Linux distributions or an older version of Amazon Linux, see Installing and Configuring SSM Agent on Linux Instances.

If you are not familiar with how to launch an Amazon EC2 instance, see Launching an Instance. I also assume you launched or will launch your instance in a private subnet. You must make sure that the Amazon EC2 instance can connect to the internet using a network address translation (NAT) instance or NAT gateway to communicate with Systems Manager. The following diagram shows how you should structure your VPC.

Diagram showing how to structure your VPC

Later in this post, you will assign tasks to a maintenance window to patch your instances with Systems Manager. To do this, the IAM user you are using for this post must have the iam:PassRole permission. This permission allows the IAM user assigning tasks to pass his own IAM permissions to the AWS service. In this example, when you assign a task to a maintenance window, IAM passes your credentials to Systems Manager. You also should authorize your IAM user to use Amazon EC2 and Systems Manager. As mentioned before, you will be using the AWS CLI for most of the steps in this blog post. Our documentation shows you how to get started with the AWS CLI. Make sure you have the AWS CLI installed and configured with an AWS access key and secret access key that belong to an IAM user that have the following AWS managed policies attached to the IAM user you are using for this example: AmazonEC2FullAccess and AmazonSSMFullAccess.

Step 1: Launch an Amazon EC2 Linux instance

In this section, I show you how to launch an Amazon EC2 instance so that you can use Systems Manager with the instance. This step requires you to do three things:

  1. Create an IAM role for Systems Manager before launching your Amazon EC2 instance.
  2. Launch your Amazon EC2 instance with Amazon EBS and the IAM role for Systems Manager.
  3. Add tags to the instances so that you can add your instances to a Systems Manager maintenance window based on tags.

A. Create an IAM role for Systems Manager

Before launching an Amazon EC2 instance, I recommend that you first create an IAM role for Systems Manager, which you will use to update the Amazon EC2 instance. AWS already provides a preconfigured policy that you can use for the new role and it is called AmazonEC2RoleforSSM.

  1. Create a JSON file named trustpolicy-ec2ssm.json that contains the following trust policy. This policy describes which principal (an entity that can take action on an AWS resource) is allowed to assume the role we are going to create. In this example, the principal is the Amazon EC2 service.
    {
      "Version": "2012-10-17",
      "Statement": {
        "Effect": "Allow",
        "Principal": {"Service": "ec2.amazonaws.com"},
        "Action": "sts:AssumeRole"
      }
    }

  1. Use the following command to create a role named EC2SSM that has the AWS managed policy AmazonEC2RoleforSSM attached to it. This generates JSON-based output that describes the role and its parameters, if the command is successful.
    $ aws iam create-role --role-name EC2SSM --assume-role-policy-document file://trustpolicy-ec2ssm.json

  1. Use the following command to attach the AWS managed IAM policy (AmazonEC2RoleforSSM) to your newly created role.
    $ aws iam attach-role-policy --role-name EC2SSM --policy-arn arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforSSM

  1. Use the following commands to create the IAM instance profile and add the role to the instance profile. The instance profile is needed to attach the role we created earlier to your Amazon EC2 instance.
    $ aws iam create-instance-profile --instance-profile-name EC2SSM-IP
    $ aws iam add-role-to-instance-profile --instance-profile-name EC2SSM-IP --role-name EC2SSM

B. Launch your Amazon EC2 instance

To follow along, you need an Amazon EC2 instance that is running Amazon Linux. You can use any existing instance you may have or create a new instance.

When launching a new Amazon EC2 instance, be sure that:

  1. Use the following command to launch a new Amazon EC2 instance using an Amazon Linux AMI available in the US East (N. Virginia) Region (also known as us-east-1). Replace YourKeyPair and YourSubnetId with your information. For more information about creating a key pair, see the create-key-pair documentation. Write down the InstanceId that is in the output because you will need it later in this post.
    $ aws ec2 run-instances --image-id ami-cb9ec1b1 --instance-type t2.micro --key-name YourKeyPair --subnet-id YourSubnetId --iam-instance-profile Name=EC2SSM-IP

  1. If you are using an existing Amazon EC2 instance, you can use the following command to attach the instance profile you created earlier to your instance.
    $ aws ec2 associate-iam-instance-profile --instance-id YourInstanceId --iam-instance-profile Name=EC2SSM-IP

C. Add tags

The final step of configuring your Amazon EC2 instances is to add tags. You will use these tags to configure Systems Manager in Step 2 of this post. For this example, I add a tag named Patch Group and set the value to Linux Servers. I could have other groups of Amazon EC2 instances that I treat differently by having the same tag name but a different tag value. For example, I might have a collection of other servers with the tag name Patch Group with a value of Web Servers.

  • Use the following command to add the Patch Group tag to your Amazon EC2 instance.
    $ aws ec2 create-tags --resources YourInstanceId --tags --tags Key="Patch Group",Value="Linux Servers"

Note: You must wait a few minutes until the Amazon EC2 instance is available before you can proceed to the next section. To make sure your Amazon EC2 instance is online and ready, you can use the following AWS CLI command:

$ aws ec2 describe-instance-status --instance-ids YourInstanceId

At this point, you now have at least one Amazon EC2 instance you can use to configure Systems Manager.

Step 2: Configure Systems Manager

In this section, I show you how to configure and use Systems Manager to apply operating system patches to your Amazon EC2 instances, and how to manage patch compliance.

To start, I provide some background information about Systems Manager. Then, I cover how to:

  1. Create the Systems Manager IAM role so that Systems Manager is able to perform patch operations.
  2. Create a Systems Manager patch baseline and associate it with your instance to define which patches Systems Manager should apply.
  3. Define a maintenance window to make sure Systems Manager patches your instance when you tell it to.
  4. Monitor patch compliance to verify the patch state of your instances.

You must meet two prerequisites to use Systems Manager to apply operating system patches. First, you must attach the IAM role you created in the previous section, EC2SSM, to your Amazon EC2 instance. Second, you must install the Systems Manager agent on your Amazon EC2 instance. If you have used a recent Amazon Linux AMI, Amazon has already installed the Systems Manager agent on your Amazon EC2 instance. You can confirm this by logging in to an Amazon EC2 instance and checking the Systems Manager agent log files that are located at /var/log/amazon/ssm/.

To install the Systems Manager agent on an instance that does not have the agent preinstalled or if you want to use the Systems Manager agent on your on-premises servers, see Installing and Configuring the Systems Manager Agent on Linux Instances. If you forgot to attach the newly created role when launching your Amazon EC2 instance or if you want to attach the role to already running Amazon EC2 instances, see Attach an AWS IAM Role to an Existing Amazon EC2 Instance by Using the AWS CLI or use the AWS Management Console.

A. Create the Systems Manager IAM role

For a maintenance window to be able to run any tasks, you must create a new role for Systems Manager. This role is a different kind of role than the one you created earlier: this role will be used by Systems Manager instead of Amazon EC2. Earlier, you created the role, EC2SSM, with the policy, AmazonEC2RoleforSSM, which allowed the Systems Manager agent on your instance to communicate with Systems Manager. In this section, you need a new role with the policy, AmazonSSMMaintenanceWindowRole, so that the Systems Manager service can execute commands on your instance.

To create the new IAM role for Systems Manager:

  1. Create a JSON file named trustpolicy-maintenancewindowrole.json that contains the following trust policy. This policy describes which principal is allowed to assume the role you are going to create. This trust policy allows not only Amazon EC2 to assume this role, but also Systems Manager.
    {
       "Version":"2012-10-17",
       "Statement":[
          {
             "Sid":"",
             "Effect":"Allow",
             "Principal":{
                "Service":[
                   "ec2.amazonaws.com",
                   "ssm.amazonaws.com"
               ]
             },
             "Action":"sts:AssumeRole"
          }
       ]
    }

  1. Use the following command to create a role named MaintenanceWindowRole that has the AWS managed policy, AmazonSSMMaintenanceWindowRole, attached to it. This command generates JSON-based output that describes the role and its parameters, if the command is successful.
    $ aws iam create-role --role-name MaintenanceWindowRole --assume-role-policy-document file://trustpolicy-maintenancewindowrole.json

  1. Use the following command to attach the AWS managed IAM policy (AmazonEC2RoleforSSM) to your newly created role.
    $ aws iam attach-role-policy --role-name MaintenanceWindowRole --policy-arn arn:aws:iam::aws:policy/service-role/AmazonSSMMaintenanceWindowRole

B. Create a Systems Manager patch baseline and associate it with your instance

Next, you will create a Systems Manager patch baseline and associate it with your Amazon EC2 instance. A patch baseline defines which patches Systems Manager should apply to your instance. Before you can associate the patch baseline with your instance, though, you must determine if Systems Manager recognizes your Amazon EC2 instance. Use the following command to list all instances managed by Systems Manager. The --filters option ensures you look only for your newly created Amazon EC2 instance.

$ aws ssm describe-instance-information --filters Key=InstanceIds,Values= YourInstanceId

{
    "InstanceInformationList": [
        {
            "IsLatestVersion": true,
            "ComputerName": "ip-10-50-2-245",
            "PingStatus": "Online",
            "InstanceId": "YourInstanceId",
            "IPAddress": "10.50.2.245",
            "ResourceType": "EC2Instance",
            "AgentVersion": "2.2.120.0",
            "PlatformVersion": "2017.09",
            "PlatformName": "Amazon Linux AMI",
            "PlatformType": "Linux",
            "LastPingDateTime": 1515759143.826
        }
    ]
}

If your instance is missing from the list, verify that:

  1. Your instance is running.
  2. You attached the Systems Manager IAM role, EC2SSM.
  3. You deployed a NAT gateway in your public subnet to ensure your VPC reflects the diagram shown earlier in this post so that the Systems Manager agent can connect to the Systems Manager internet endpoint.
  4. The Systems Manager agent logs don’t include any unaddressed errors.

Now that you have checked that Systems Manager can manage your Amazon EC2 instance, it is time to create a patch baseline. With a patch baseline, you define which patches are approved to be installed on all Amazon EC2 instances associated with the patch baseline. The Patch Group resource tag you defined earlier will determine to which patch group an instance belongs. If you do not specifically define a patch baseline, the default AWS-managed patch baseline is used.

To create a patch baseline:

  1. Use the following command to create a patch baseline named AmazonLinuxServers. With approval rules, you can determine the approved patches that will be included in your patch baseline. In this example, you add all Critical severity patches to the patch baseline as soon as they are released, by setting the Auto approval delay to 0 days. By setting the Auto approval delay to 2 days, you add to this patch baseline the Important, Medium, and Low severity patches two days after they are released.
    $ aws ssm create-patch-baseline --name "AmazonLinuxServers" --description "Baseline containing all updates for Amazon Linux" --operating-system AMAZON_LINUX --approval-rules "PatchRules=[{PatchFilterGroup={PatchFilters=[{Values=[Critical],Key=SEVERITY}]},ApproveAfterDays=0,ComplianceLevel=CRITICAL},{PatchFilterGroup={PatchFilters=[{Values=[Important,Medium,Low],Key=SEVERITY}]},ApproveAfterDays=2,ComplianceLevel=HIGH}]"
    
    {
        "BaselineId": "YourBaselineId"
    }

  1. Use the following command to register the patch baseline you created with your instance. To do so, you use the Patch Group tag that you added to your Amazon EC2 instance.
    $ aws ssm register-patch-baseline-for-patch-group --baseline-id YourPatchBaselineId --patch-group "Linux Servers"
    
    {
        "PatchGroup": "Linux Servers",
        "BaselineId": "YourBaselineId"
    }

C.  Define a maintenance window

Now that you have successfully set up a role, created a patch baseline, and registered your Amazon EC2 instance with your patch baseline, you will define a maintenance window so that you can control when your Amazon EC2 instances will receive patches. By creating multiple maintenance windows and assigning them to different patch groups, you can make sure your Amazon EC2 instances do not all reboot at the same time.

To define a maintenance window:

  1. Use the following command to define a maintenance window. In this example command, the maintenance window will start every Saturday at 10:00 P.M. UTC. It will have a duration of 4 hours and will not start any new tasks 1 hour before the end of the maintenance window.
    $ aws ssm create-maintenance-window --name SaturdayNight --schedule "cron(0 0 22 ? * SAT *)" --duration 4 --cutoff 1 --allow-unassociated-targets
    
    {
        "WindowId": "YourMaintenanceWindowId"
    }

For more information about defining a cron-based schedule for maintenance windows, see Cron and Rate Expressions for Maintenance Windows.

  1. After defining the maintenance window, you must register the Amazon EC2 instance with the maintenance window so that Systems Manager knows which Amazon EC2 instance it should patch in this maintenance window. You can register the instance by using the same Patch Group tag you used to associate the Amazon EC2 instance with the AWS-provided patch baseline, as shown in the following command.
    $ aws ssm register-target-with-maintenance-window --window-id YourMaintenanceWindowId --resource-type INSTANCE --targets "Key=tag:Patch Group,Values=Linux Servers"
    
    {
        "WindowTargetId": "YourWindowTargetId"
    }

  1. Assign a task to the maintenance window that will install the operating system patches on your Amazon EC2 instance. The following command includes the following options.
    1. name is the name of your task and is optional. I named mine Patching.
    2. task-arn is the name of the task document you want to run.
    3. max-concurrency allows you to specify how many of your Amazon EC2 instances Systems Manager should patch at the same time. max-errors determines when Systems Manager should abort the task. For patching, this number should not be too low, because you do not want your entire patch task to stop on all instances if one instance fails. You can set this, for example, to 20%.
    4. service-role-arn is the Amazon Resource Name (ARN) of the AmazonSSMMaintenanceWindowRole role you created earlier in this blog post.
    5. task-invocation-parameters defines the parameters that are specific to the AWS-RunPatchBaseline task document and tells Systems Manager that you want to install patches with a timeout of 600 seconds (10 minutes).
      $ aws ssm register-task-with-maintenance-window --name "Patching" --window-id "YourMaintenanceWindowId" --targets "Key=WindowTargetIds,Values=YourWindowTargetId" --task-arn AWS-RunPatchBaseline --service-role-arn "arn:aws:iam::123456789012:role/MaintenanceWindowRole" --task-type "RUN_COMMAND" --task-invocation-parameters "RunCommand={Comment=,TimeoutSeconds=600,Parameters={SnapshotId=[''],Operation=[Install]}}" --max-concurrency "500" --max-errors "20%"
      
      {
          "WindowTaskId": "YourWindowTaskId"
      }

Now, you must wait for the maintenance window to run at least once according to the schedule you defined earlier. If your maintenance window has expired, you can check the status of any maintenance tasks Systems Manager has performed by using the following command.

$ aws ssm describe-maintenance-window-executions --window-id "YourMaintenanceWindowId"

{
    "WindowExecutions": [
        {
            "Status": "SUCCESS",
            "WindowId": "YourMaintenanceWindowId",
            "WindowExecutionId": "b594984b-430e-4ffa-a44c-a2e171de9dd3",
            "EndTime": 1515766467.487,
            "StartTime": 1515766457.691
        }
    ]
}

D.  Monitor patch compliance

You also can see the overall patch compliance of all Amazon EC2 instances using the following command in the AWS CLI.

$ aws ssm list-compliance-summaries

This command shows you the number of instances that are compliant with each category and the number of instances that are not in JSON format.

You also can see overall patch compliance by choosing Compliance under Insights in the navigation pane of the Systems Manager console. You will see a visual representation of how many Amazon EC2 instances are up to date, how many Amazon EC2 instances are noncompliant, and how many Amazon EC2 instances are compliant in relation to the earlier defined patch baseline.

Screenshot of the Compliance page of the Systems Manager console

In this section, you have set everything up for patch management on your instance. Now you know how to patch your Amazon EC2 instance in a controlled manner and how to check if your Amazon EC2 instance is compliant with the patch baseline you have defined. Of course, I recommend that you apply these steps to all Amazon EC2 instances you manage.

Summary

In this blog post, I showed how to use Systems Manager to create a patch baseline and maintenance window to keep your Amazon EC2 Linux instances up to date with the latest security patches. Remember that by creating multiple maintenance windows and assigning them to different patch groups, you can make sure your Amazon EC2 instances do not all reboot at the same time.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about or issues implementing any part of this solution, start a new thread on the Amazon EC2 forum or contact AWS Support.

– Koen

Migrating Your Amazon ECS Containers to AWS Fargate

Post Syndicated from Tiffany Jernigan original https://aws.amazon.com/blogs/compute/migrating-your-amazon-ecs-containers-to-aws-fargate/

AWS Fargate is a new technology that works with Amazon Elastic Container Service (ECS) to run containers without having to manage servers or clusters. What does this mean? With Fargate, you no longer need to provision or manage a single virtual machine; you can just create tasks and run them directly!

Fargate uses the same API actions as ECS, so you can use the ECS console, the AWS CLI, or the ECS CLI. I recommend running through the first-run experience for Fargate even if you’re familiar with ECS. It creates all of the one-time setup requirements, such as the necessary IAM roles. If you’re using a CLI, make sure to upgrade to the latest version

In this blog, you will see how to migrate ECS containers from running on Amazon EC2 to Fargate.

Getting started

Note: Anything with code blocks is a change in the task definition file. Screen captures are from the console. Additionally, Fargate is currently available in the us-east-1 (N. Virginia) region.

Launch type

When you create tasks (grouping of containers) and clusters (grouping of tasks), you now have two launch type options: EC2 and Fargate. The default launch type, EC2, is ECS as you knew it before the announcement of Fargate. You need to specify Fargate as the launch type when running a Fargate task.

Even though Fargate abstracts away virtual machines, tasks still must be launched into a cluster. With Fargate, clusters are a logical infrastructure and permissions boundary that allow you to isolate and manage groups of tasks. ECS also supports heterogeneous clusters that are made up of tasks running on both EC2 and Fargate launch types.

The optional, new requiresCompatibilities parameter with FARGATE in the field ensures that your task definition only passes validation if you include Fargate-compatible parameters. Tasks can be flagged as compatible with EC2, Fargate, or both.

"requiresCompatibilities": [
    "FARGATE"
]

Networking

"networkMode": "awsvpc"

In November, we announced the addition of task networking with the network mode awsvpc. By default, ECS uses the bridge network mode. Fargate requires using the awsvpc network mode.

In bridge mode, all of your tasks running on the same instance share the instance’s elastic network interface, which is a virtual network interface, IP address, and security groups.

The awsvpc mode provides this networking support to your tasks natively. You now get the same VPC networking and security controls at the task level that were previously only available with EC2 instances. Each task gets its own elastic networking interface and IP address so that multiple applications or copies of a single application can run on the same port number without any conflicts.

The awsvpc mode also provides a separation of responsibility for tasks. You can get complete control of task placement within your own VPCs, subnets, and the security policies associated with them, even though the underlying infrastructure is managed by Fargate. Also, you can assign different security groups to each task, which gives you more fine-grained security. You can give an application only the permissions it needs.

"portMappings": [
    {
        "containerPort": "3000"
    }
 ]

What else has to change? First, you only specify a containerPort value, not a hostPort value, as there is no host to manage. Your container port is the port that you access on your elastic network interface IP address. Therefore, your container ports in a single task definition file need to be unique.

"environment": [
    {
        "name": "WORDPRESS_DB_HOST",
        "value": "127.0.0.1:3306"
    }
 ]

Additionally, links are not allowed as they are a property of the “bridge” network mode (and are now a legacy feature of Docker). Instead, containers share a network namespace and communicate with each other over the localhost interface. They can be referenced using the following:

localhost/127.0.0.1:<some_port_number>

CPU and memory

"memory": "1024",
 "cpu": "256"

"memory": "1gb",
 "cpu": ".25vcpu"

When launching a task with the EC2 launch type, task performance is influenced by the instance types that you select for your cluster combined with your task definition. If you pick larger instances, your applications make use of the extra resources if there is no contention.

In Fargate, you needed a way to get additional resource information so we created task-level resources. Task-level resources define the maximum amount of memory and cpu that your task can consume.

  • memory can be defined in MB with just the number, or in GB, for example, “1024” or “1gb”.
  • cpu can be defined as the number or in vCPUs, for example, “256” or “.25vcpu”.
    • vCPUs are virtual CPUs. You can look at the memory and vCPUs for instance types to get an idea of what you may have used before.

The memory and CPU options available with Fargate are:

CPU Memory
256 (.25 vCPU) 0.5GB, 1GB, 2GB
512 (.5 vCPU) 1GB, 2GB, 3GB, 4GB
1024 (1 vCPU) 2GB, 3GB, 4GB, 5GB, 6GB, 7GB, 8GB
2048 (2 vCPU) Between 4GB and 16GB in 1GB increments
4096 (4 vCPU) Between 8GB and 30GB in 1GB increments

IAM roles

Because Fargate uses awsvpc mode, you need an Amazon ECS service-linked IAM role named AWSServiceRoleForECS. It provides Fargate with the needed permissions, such as the permission to attach an elastic network interface to your task. After you create your service-linked IAM role, you can delete the remaining roles in your services.

"executionRoleArn": "arn:aws:iam::<your_account_id>:role/ecsTaskExecutionRole"

With the EC2 launch type, an instance role gives the agent the ability to pull, publish, talk to ECS, and so on. With Fargate, the task execution IAM role is only needed if you’re pulling from Amazon ECR or publishing data to Amazon CloudWatch Logs.

The Fargate first-run experience tutorial in the console automatically creates these roles for you.

Volumes

Fargate currently supports non-persistent, empty data volumes for containers. When you define your container, you no longer use the host field and only specify a name.

Load balancers

For awsvpc mode, and therefore for Fargate, use the IP target type instead of the instance target type. You define this in the Amazon EC2 service when creating a load balancer.

If you’re using a Classic Load Balancer, change it to an Application Load Balancer or a Network Load Balancer.

Tip: If you are using an Application Load Balancer, make sure that your tasks are launched in the same VPC and Availability Zones as your load balancer.

Let’s migrate a task definition!

Here is an example NGINX task definition. This type of task definition is what you’re used to if you created one before Fargate was announced. It’s what you would run now with the EC2 launch type.

{
    "containerDefinitions": [
        {
            "name": "nginx",
            "image": "nginx",
            "memory": "512",
            "cpu": "100",
            "essential": true,
            "portMappings": [
                {
                    "hostPort": "80",
                    "containerPort": "80",
                    "protocol": "tcp"
                }
            ],
            "logConfiguration": {
                "logDriver": "awslogs",
                "options": {
                    "awslogs-group": "/ecs/",
                    "awslogs-region": "us-east-1",
                    "awslogs-stream-prefix": "ecs"
                }
            }
        }
    ],
    "family": "nginx-ec2"
}

OK, so now what do you need to do to change it to run with the Fargate launch type?

  • Add FARGATE for requiredCompatibilities (not required, but a good safety check for your task definition).
  • Use awsvpc as the network mode.
  • Just specify the containerPort (the hostPortvalue is the same).
  • Add a task executionRoleARN value to allow logging to CloudWatch.
  • Provide cpu and memory limits for the task.
{
    "requiresCompatibilities": [
        "FARGATE"
    ],
    "containerDefinitions": [
        {
            "name": "nginx",
            "image": "nginx",
            "memory": "512",
            "cpu": "100",
            "essential": true,
            "portMappings": [
                {
                    "containerPort": "80",
                    "protocol": "tcp"
                }
            ],
            "logConfiguration": {
                "logDriver": "awslogs",
                "options": {
                    "awslogs-group": "/ecs/",
                    "awslogs-region": "us-east-1",
                    "awslogs-stream-prefix": "ecs"
                }
            }
        }
    ],
    "networkMode": "awsvpc",
    "executionRoleArn": "arn:aws:iam::<your_account_id>:role/ecsTaskExecutionRole",
    "family": "nginx-fargate",
    "memory": "512",
    "cpu": "256"
}

Are there more examples?

Yep! Head to the AWS Samples GitHub repo. We have several sample task definitions you can try for both the EC2 and Fargate launch types. Contributions are very welcome too :).

 

tiffany jernigan
@tiffanyfayj

Build a Multi-Tenant Amazon EMR Cluster with Kerberos, Microsoft Active Directory Integration and EMRFS Authorization

Post Syndicated from Songzhi Liu original https://aws.amazon.com/blogs/big-data/build-a-multi-tenant-amazon-emr-cluster-with-kerberos-microsoft-active-directory-integration-and-emrfs-authorization/

One of the challenges faced by our customers—especially those in highly regulated industries—is balancing the need for security with flexibility. In this post, we cover how to enable multi-tenancy and increase security by using EMRFS (EMR File System) authorization, the Amazon S3 storage-level authorization on Amazon EMR.

Amazon EMR is an easy, fast, and scalable analytics platform enabling large-scale data processing. EMRFS authorization provides Amazon S3 storage-level authorization by configuring EMRFS with multiple IAM roles. With this functionality enabled, different users and groups can share the same cluster and assume their own IAM roles respectively.

Simply put, on Amazon EMR, we can now have an Amazon EC2 role per user assumed at run time instead of one general EC2 role at the cluster level. When the user is trying to access Amazon S3 resources, Amazon EMR evaluates against a predefined mappings list in EMRFS configurations and picks up the right role for the user.

In this post, we will discuss what EMRFS authorization is (Amazon S3 storage-level access control) and show how to configure the role mappings with detailed examples. You will then have the desired permissions in a multi-tenant environment. We also demo Amazon S3 access from HDFS command line, Apache Hive on Hue, and Apache Spark.

EMRFS authorization for Amazon S3

There are two prerequisites for using this feature:

  1. Users must be authenticated, because EMRFS needs to map the current user/group/prefix to a predefined user/group/prefix. There are several authentication options. In this post, we launch a Kerberos-enabled cluster that manages the Key Distribution Center (KDC) on the master node, and enable a one-way trust from the KDC to a Microsoft Active Directory domain.
  2. The application must support accessing Amazon S3 via Applications that have their own S3FileSystem APIs (for example, Presto) are not supported at this time.

EMRFS supports three types of mapping entries: user, group, and Amazon S3 prefix. Let’s use an example to show how this works.

Assume that you have the following three identities in your organization, and they are defined in the Active Directory:

To enable all these groups and users to share the EMR cluster, you need to define the following IAM roles:

In this case, you create a separate Amazon EC2 role that doesn’t give any permission to Amazon S3. Let’s call the role the base role (the EC2 role attached to the EMR cluster), which in this example is named EMR_EC2_RestrictedRole. Then, you define all the Amazon S3 permissions for each specific user or group in their own roles. The restricted role serves as the fallback role when the user doesn’t belong to any user/group, nor does the user try to access any listed Amazon S3 prefixes defined on the list.

Important: For all other roles, like emrfs_auth_group_role_data_eng, you need to add the base role (EMR_EC2_RestrictedRole) as the trusted entity so that it can assume other roles. See the following example:

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "ec2.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "AWS": "arn:aws:iam::511586466501:role/EMR_EC2_RestrictedRole"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

The following is an example policy for the admin user role (emrfs_auth_user_role_admin_user):

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "s3:*",
            "Resource": "*"
        }
    ]
}

We are assuming the admin user has access to all buckets in this example.

The following is an example policy for the data science group role (emrfs_auth_group_role_data_sci):

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Resource": [
                "arn:aws:s3:::emrfs-auth-data-science-bucket-demo/*",
                "arn:aws:s3:::emrfs-auth-data-science-bucket-demo"
            ],
            "Action": [
                "s3:*"
            ]
        }
    ]
}

This role grants all Amazon S3 permissions to the emrfs-auth-data-science-bucket-demo bucket and all the objects in it. Similarly, the policy for the role emrfs_auth_group_role_data_eng is shown below:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Resource": [
                "arn:aws:s3:::emrfs-auth-data-engineering-bucket-demo/*",
                "arn:aws:s3:::emrfs-auth-data-engineering-bucket-demo"
            ],
            "Action": [
                "s3:*"
            ]
        }
    ]
}

Example role mappings configuration

To configure EMRFS authorization, you use EMR security configuration. Here is the configuration we use in this post

Consider the following scenario.

First, the admin user admin1 tries to log in and run a command to access Amazon S3 data through EMRFS. The first role emrfs_auth_user_role_admin_user on the mapping list, which is a user role, is mapped and picked up. Then admin1 has access to the Amazon S3 locations that are defined in this role.

Then a user from the data engineer group (grp_data_engineering) tries to access a data bucket to run some jobs. When EMRFS sees that the user is a member of the grp_data_engineering group, the group role emrfs_auth_group_role_data_eng is assumed, and the user has proper access to Amazon S3 that is defined in the emrfs_auth_group_role_data_eng role.

Next, the third user comes, who is not an admin and doesn’t belong to any of the groups. After failing evaluation of the top three entries, EMRFS evaluates whether the user is trying to access a certain Amazon S3 prefix defined in the last mapping entry. This type of mapping entry is called the prefix type. If the user is trying to access s3://emrfs-auth-default-bucket-demo/, then the prefix mapping is in effect, and the prefix role emrfs_auth_prefix_role_default_s3_prefix is assumed.

If the user is not trying to access any of the Amazon S3 paths that are defined on the list—which means it failed the evaluation of all the entries—it only has the permissions defined in the EMR_EC2RestrictedRole. This role is assumed by the EC2 instances in the cluster.

In this process, all the mappings defined are evaluated in the defined order, and the first role that is mapped is assumed, and the rest of the list is skipped.

Setting up an EMR cluster and mapping Active Directory users and groups

Now that we know how EMRFS authorization role mapping works, the next thing we need to think about is how we can use this feature in an easy and manageable way.

Active Directory setup

Many customers manage their users and groups using Microsoft Active Directory or other tools like OpenLDAP. In this post, we create the Active Directory on an Amazon EC2 instance running Windows Server and create the users and groups we will be using in the example below. After setting up Active Directory, we use the Amazon EMR Kerberos auto-join capability to establish a one-way trust from the KDC running on the EMR master node to the Active Directory domain on the EC2 instance. You can use your own directory services as long as it talks to the LDAP (Lightweight Directory Access Protocol).

To create and join Active Directory to Amazon EMR, follow the steps in the blog post Use Kerberos Authentication to Integrate Amazon EMR with Microsoft Active Directory.

After configuring Active Directory, you can create all the users and groups using the Active Directory tools and add users to appropriate groups. In this example, we created users like admin1, dataeng1, datascientist1, grp_data_engineering, and grp_data_science, and then add the users to the right groups.

Join the EMR cluster to an Active Directory domain

For clusters with Kerberos, Amazon EMR now supports automated Active Directory domain joins. You can use the security configuration to configure the one-way trust from the KDC to the Active Directory domain. You also configure the EMRFS role mappings in the same security configuration.

The following is an example of the EMR security configuration with a trusted Active Directory domain EMRKRB.TEST.COM and the EMRFS role mappings as we discussed earlier:

The EMRFS role mapping configuration is shown in this example:

We will also provide an example AWS CLI command that you can run.

Launching the EMR cluster and running the tests

Now you have configured Kerberos and EMRFS authorization for Amazon S3.

Additionally, you need to configure Hue with Active Directory using the Amazon EMR configuration API in order to log in using the AD users created before. The following is an example of Hue AD configuration.

[
  {
    "Classification":"hue-ini",
    "Properties":{

    },
    "Configurations":[
      {
        "Classification":"desktop",
        "Properties":{

        },
        "Configurations":[
          {
            "Classification":"ldap",
            "Properties":{

            },
            "Configurations":[
              {
                "Classification":"ldap_servers",
                "Properties":{

                },
                "Configurations":[
                  {
                    "Classification":"AWS",
                    "Properties":{
                      "base_dn":"DC=emrkrb,DC=test,DC=com",
                      "ldap_url":"ldap://emrkrb.test.com",
                      "search_bind_authentication":"false",
                      "bind_dn":"CN=adjoiner,CN=users,DC=emrkrb,DC=test,DC=com",
                      "bind_password":"Abc123456",
                      "create_users_on_login":"true",
                      "nt_domain":"emrkrb.test.com"
                    },
                    "Configurations":[

                    ]
                  }
                ]
              }
            ]
          },
          {
            "Classification":"auth",
            "Properties":{
              "backend":"desktop.auth.backend.LdapBackend"
            },
            "Configurations":[

            ]
          }
        ]
      }
    ]
  }

Note: In the preceding configuration JSON file, change the values as required before pasting it into the software setting section in the Amazon EMR console.

Now let’s use this configuration and the security configuration you created before to launch the cluster.

In the Amazon EMR console, choose Create cluster. Then choose Go to advanced options. On the Step1: Software and Steps page, under Edit software settings (optional), paste the configuration in the box.

The rest of the setup is the same as an ordinary cluster setup, except in the Security Options section. In Step 4: Security, under Permissions, choose Custom, and then choose the RestrictedRole that you created before.

Choose the appropriate subnets (these should meet the base requirement in order for a successful Active Directory join—see the Amazon EMR Management Guide for more details), and choose the appropriate security groups to make sure it talks to the Active Directory. Choose a key so that you can log in and configure the cluster.

Most importantly, choose the security configuration that you created earlier to enable Kerberos and EMRFS authorization for Amazon S3.

You can use the following AWS CLI command to create a cluster.

aws emr create-cluster --name "TestEMRFSAuthorization" \ 
--release-label emr-5.10.0 \ --instance-type m3.xlarge \ 
--instance-count 3 \ 
--ec2-attributes InstanceProfile=EMR_EC2_DefaultRole,KeyName=MyEC2KeyPair \ --service-role EMR_DefaultRole \ 
--security-configuration MyKerberosConfig \ 
--configurations file://hue-config.json \
--applications Name=Hadoop Name=Hive Name=Hue Name=Spark \ 
--kerberos-attributes Realm=EC2.INTERNAL, \ KdcAdminPassword=<YourClusterKDCAdminPassword>, \ ADDomainJoinUser=<YourADUserLogonName>,ADDomainJoinPassword=<YourADUserPassword>, \ 
CrossRealmTrustPrincipalPassword=<MatchADTrustPwd>

Note: If you create the cluster using CLI, you need to save the JSON configuration for Hue into a file named hue-config.json and place it on the server where you run the CLI command.

After the cluster gets into the Waiting state, try to connect by using SSH into the cluster using the Active Directory user name and password.

ssh -l [email protected] <EMR IP or DNS name>

Quickly run two commands to show that the Active Directory join is successful:

  1. id [user name] shows the mapped AD users and groups in Linux.
  2. hdfs groups [user name] shows the mapped group in Hadoop.

Both should return the current Active Directory user and group information if the setup is correct.

Now, you can test the user mapping first. Log in with the admin1 user, and run a Hadoop list directory command:

hadoop fs -ls s3://emrfs-auth-data-science-bucket-demo/

Now switch to a user from the data engineer group.

Retry the previous command to access the admin’s bucket. It should throw an Amazon S3 Access Denied exception.

When you try listing the Amazon S3 bucket that a data engineer group member has accessed, it triggers the group mapping.

hadoop fs -ls s3://emrfs-auth-data-engineering-bucket-demo/

It successfully returns the listing results. Next we will test Apache Hive and then Apache Spark.

 

To run jobs successfully, you need to create a home directory for every user in HDFS for staging data under /user/<username>. Users can configure a step to create a home directory at cluster launch time for every user who has access to the cluster. In this example, you use Hue since Hue will create the home directory in HDFS for the user at the first login. Here Hue also needs to be integrated with the same Active Directory as explained in the example configuration described earlier.

First, log in to Hue as a data engineer user, and open a Hive Notebook in Hue. Then run a query to create a new table pointing to the data engineer bucket, s3://emrfs-auth-data-engineering-bucket-demo/table1_data_eng/.

You can see that the table was created successfully. Now try to create another table pointing to the data science group’s bucket, where the data engineer group doesn’t have access.

It failed and threw an Amazon S3 Access Denied error.

Now insert one line of data into the successfully create table.

Next, log out, switch to a data science group user, and create another table, test2_datasci_tb.

The creation is successful.

The last task is to test Spark (it requires the user directory, but Hue created one in the previous step).

Now let’s come back to the command line and run some Spark commands.

Login to the master node using the datascientist1 user:

Start the SparkSQL interactive shell by typing spark-sql, and run the show tables command. It should list the tables that you created using Hive.

As a data science group user, try select on both tables. You will find that you can only select the table defined in the location that your group has access to.

Conclusion

EMRFS authorization for Amazon S3 enables you to have multiple roles on the same cluster, providing flexibility to configure a shared cluster for different teams to achieve better efficiency. The Active Directory integration and group mapping make it much easier for you to manage your users and groups, and provides better auditability in a multi-tenant environment.


Additional Reading

If you found this post useful, be sure to check out Use Kerberos Authentication to Integrate Amazon EMR with Microsoft Active Directory and Launching and Running an Amazon EMR Cluster inside a VPC.


About the Authors

Songzhi Liu is a Big Data Consultant with AWS Professional Services. He works closely with AWS customers to provide them Big Data & Machine Learning solutions and best practices on the Amazon cloud.

 

 

 

 

Reactive Microservices Architecture on AWS

Post Syndicated from Sascha Moellering original https://aws.amazon.com/blogs/architecture/reactive-microservices-architecture-on-aws/

Microservice-application requirements have changed dramatically in recent years. These days, applications operate with petabytes of data, need almost 100% uptime, and end users expect sub-second response times. Typical N-tier applications can’t deliver on these requirements.

Reactive Manifesto, published in 2014, describes the essential characteristics of reactive systems including: responsiveness, resiliency, elasticity, and being message driven.

Being message driven is perhaps the most important characteristic of reactive systems. Asynchronous messaging helps in the design of loosely coupled systems, which is a key factor for scalability. In order to build a highly decoupled system, it is important to isolate services from each other. As already described, isolation is an important aspect of the microservices pattern. Indeed, reactive systems and microservices are a natural fit.

Implemented Use Case
This reference architecture illustrates a typical ad-tracking implementation.

Many ad-tracking companies collect massive amounts of data in near-real-time. In many cases, these workloads are very spiky and heavily depend on the success of the ad-tech companies’ customers. Typically, an ad-tracking-data use case can be separated into a real-time part and a non-real-time part. In the real-time part, it is important to collect data as fast as possible and ask several questions including:,  “Is this a valid combination of parameters?,””Does this program exist?,” “Is this program still valid?”

Because response time has a huge impact on conversion rate in advertising, it is important for advertisers to respond as fast as possible. This information should be kept in memory to reduce communication overhead with the caching infrastructure. The tracking application itself should be as lightweight and scalable as possible. For example, the application shouldn’t have any shared mutable state and it should use reactive paradigms. In our implementation, one main application is responsible for this real-time part. It collects and validates data, responds to the client as fast as possible, and asynchronously sends events to backend systems.

The non-real-time part of the application consumes the generated events and persists them in a NoSQL database. In a typical tracking implementation, clicks, cookie information, and transactions are matched asynchronously and persisted in a data store. The matching part is not implemented in this reference architecture. Many ad-tech architectures use frameworks like Hadoop for the matching implementation.

The system can be logically divided into the data collection partand the core data updatepart. The data collection part is responsible for collecting, validating, and persisting the data. In the core data update part, the data that is used for validation gets updated and all subscribers are notified of new data.

Components and Services

Main Application
The main application is implemented using Java 8 and uses Vert.x as the main framework. Vert.x is an event-driven, reactive, non-blocking, polyglot framework to implement microservices. It runs on the Java virtual machine (JVM) by using the low-level IO library Netty. You can write applications in Java, JavaScript, Groovy, Ruby, Kotlin, Scala, and Ceylon. The framework offers a simple and scalable actor-like concurrency model. Vert.x calls handlers by using a thread known as an event loop. To use this model, you have to write code known as “verticles.” Verticles share certain similarities with actors in the actor model. To use them, you have to implement the verticle interface. Verticles communicate with each other by generating messages in  a single event bus. Those messages are sent on the event bus to a specific address, and verticles can register to this address by using handlers.

With only a few exceptions, none of the APIs in Vert.x block the calling thread. Similar to Node.js, Vert.x uses the reactor pattern. However, in contrast to Node.js, Vert.x uses several event loops. Unfortunately, not all APIs in the Java ecosystem are written asynchronously, for example, the JDBC API. Vert.x offers a possibility to run this, blocking APIs without blocking the event loop. These special verticles are called worker verticles. You don’t execute worker verticles by using the standard Vert.x event loops, but by using a dedicated thread from a worker pool. This way, the worker verticles don’t block the event loop.

Our application consists of five different verticles covering different aspects of the business logic. The main entry point for our application is the HttpVerticle, which exposes an HTTP-endpoint to consume HTTP-requests and for proper health checking. Data from HTTP requests such as parameters and user-agent information are collected and transformed into a JSON message. In order to validate the input data (to ensure that the program exists and is still valid), the message is sent to the CacheVerticle.

This verticle implements an LRU-cache with a TTL of 10 minutes and a capacity of 100,000 entries. Instead of adding additional functionality to a standard JDK map implementation, we use Google Guava, which has all the features we need. If the data is not in the L1 cache, the message is sent to the RedisVerticle. This verticle is responsible for data residing in Amazon ElastiCache and uses the Vert.x-redis-client to read data from Redis. In our example, Redis is the central data store. However, in a typical production implementation, Redis would just be the L2 cache with a central data store like Amazon DynamoDB. One of the most important paradigms of a reactive system is to switch from a pull- to a push-based model. To achieve this and reduce network overhead, we’ll use Redis pub/sub to push core data changes to our main application.

Vert.x also supports direct Redis pub/sub-integration, the following code shows our subscriber-implementation:

vertx.eventBus().<JsonObject>consumer(REDIS_PUBSUB_CHANNEL_VERTX, received -> {

JsonObject value = received.body().getJsonObject("value");

String message = value.getString("message");

JsonObject jsonObject = new JsonObject(message);

eb.send(CACHE_REDIS_EVENTBUS_ADDRESS, jsonObject);

});

redis.subscribe(Constants.REDIS_PUBSUB_CHANNEL, res -> {

if (res.succeeded()) {

LOGGER.info("Subscribed to " + Constants.REDIS_PUBSUB_CHANNEL);

} else {

LOGGER.info(res.cause());

}

});

The verticle subscribes to the appropriate Redis pub/sub-channel. If a message is sent over this channel, the payload is extracted and forwarded to the cache-verticle that stores the data in the L1-cache. After storing and enriching data, a response is sent back to the HttpVerticle, which responds to the HTTP request that initially hit this verticle. In addition, the message is converted to ByteBuffer, wrapped in protocol buffers, and send to an Amazon Kinesis Data Stream.

The following example shows a stripped-down version of the KinesisVerticle:

public class KinesisVerticle extends AbstractVerticle {

private static final Logger LOGGER = LoggerFactory.getLogger(KinesisVerticle.class);

private AmazonKinesisAsync kinesisAsyncClient;

private String eventStream = "EventStream";

@Override

public void start() throws Exception {

EventBus eb = vertx.eventBus();

kinesisAsyncClient = createClient();

eventStream = System.getenv(STREAM_NAME) == null ? "EventStream" : System.getenv(STREAM_NAME);

eb.consumer(Constants.KINESIS_EVENTBUS_ADDRESS, message -> {

try {

TrackingMessage trackingMessage = Json.decodeValue((String)message.body(), TrackingMessage.class);

String partitionKey = trackingMessage.getMessageId();

byte [] byteMessage = createMessage(trackingMessage);

ByteBuffer buf = ByteBuffer.wrap(byteMessage);

sendMessageToKinesis(buf, partitionKey);

message.reply("OK");

}

catch (KinesisException exc) {

LOGGER.error(exc);

}

});

}

Kinesis Consumer
This AWS Lambda function consumes data from an Amazon Kinesis Data Stream and persists the data in an Amazon DynamoDB table. In order to improve testability, the invocation code is separated from the business logic. The invocation code is implemented in the class KinesisConsumerHandler and iterates over the Kinesis events pulled from the Kinesis stream by AWS Lambda. Each Kinesis event is unwrapped and transformed from ByteBuffer to protocol buffers and converted into a Java object. Those Java objects are passed to the business logic, which persists the data in a DynamoDB table. In order to improve duration of successive Lambda calls, the DynamoDB-client is instantiated lazily and reused if possible.

Redis Updater
From time to time, it is necessary to update core data in Redis. A very efficient implementation for this requirement is using AWS Lambda and Amazon Kinesis. New core data is sent over the AWS Kinesis stream using JSON as data format and consumed by a Lambda function. This function iterates over the Kinesis events pulled from the Kinesis stream by AWS Lambda. Each Kinesis event is unwrapped and transformed from ByteBuffer to String and converted into a Java object. The Java object is passed to the business logic and stored in Redis. In addition, the new core data is also sent to the main application using Redis pub/sub in order to reduce network overhead and converting from a pull- to a push-based model.

The following example shows the source code to store data in Redis and notify all subscribers:

public void updateRedisData(final TrackingMessage trackingMessage, final Jedis jedis, final LambdaLogger logger) {

try {

ObjectMapper mapper = new ObjectMapper();

String jsonString = mapper.writeValueAsString(trackingMessage);

Map<String, String> map = marshal(jsonString);

String statusCode = jedis.hmset(trackingMessage.getProgramId(), map);

}

catch (Exception exc) {

if (null == logger)

exc.printStackTrace();

else

logger.log(exc.getMessage());

}

}

public void notifySubscribers(final TrackingMessage trackingMessage, final Jedis jedis, final LambdaLogger logger) {

try {

ObjectMapper mapper = new ObjectMapper();

String jsonString = mapper.writeValueAsString(trackingMessage);

jedis.publish(Constants.REDIS_PUBSUB_CHANNEL, jsonString);

}

catch (final IOException e) {

log(e.getMessage(), logger);

}

}

Similarly to our Kinesis Consumer, the Redis-client is instantiated somewhat lazily.

Infrastructure as Code
As already outlined, latency and response time are a very critical part of any ad-tracking solution because response time has a huge impact on conversion rate. In order to reduce latency for customers world-wide, it is common practice to roll out the infrastructure in different AWS Regions in the world to be as close to the end customer as possible. AWS CloudFormation can help you model and set up your AWS resources so that you can spend less time managing those resources and more time focusing on your applications that run in AWS.

You create a template that describes all the AWS resources that you want (for example, Amazon EC2 instances or Amazon RDS DB instances), and AWS CloudFormation takes care of provisioning and configuring those resources for you. Our reference architecture can be rolled out in different Regions using an AWS CloudFormation template, which sets up the complete infrastructure (for example, Amazon Virtual Private Cloud (Amazon VPC), Amazon Elastic Container Service (Amazon ECS) cluster, Lambda functions, DynamoDB table, Amazon ElastiCache cluster, etc.).

Conclusion
In this blog post we described reactive principles and an example architecture with a common use case. We leveraged the capabilities of different frameworks in combination with several AWS services in order to implement reactive principles—not only at the application-level but also at the system-level. I hope I’ve given you ideas for creating your own reactive applications and systems on AWS.

About the Author

Sascha Moellering is a Senior Solution Architect. Sascha is primarily interested in automation, infrastructure as code, distributed computing, containers and JVM. He can be reached at [email protected]

 

 

Invoking AWS Lambda from Amazon MQ

Post Syndicated from Tara Van Unen original https://aws.amazon.com/blogs/compute/invoking-aws-lambda-from-amazon-mq/

Contributed by Josh Kahn, AWS Solutions Architect

Message brokers can be used to solve a number of needs in enterprise architectures, including managing workload queues and broadcasting messages to a number of subscribers. Amazon MQ is a managed message broker service for Apache ActiveMQ that makes it easy to set up and operate message brokers in the cloud.

In this post, I discuss one approach to invoking AWS Lambda from queues and topics managed by Amazon MQ brokers. This and other similar patterns can be useful in integrating legacy systems with serverless architectures. You could also integrate systems already migrated to the cloud that use common APIs such as JMS.

For example, imagine that you work for a company that produces training videos and which recently migrated its video management system to AWS. The on-premises system used to publish a message to an ActiveMQ broker when a video was ready for processing by an on-premises transcoder. However, on AWS, your company uses Amazon Elastic Transcoder. Instead of modifying the management system, Lambda polls the broker for new messages and starts a new Elastic Transcoder job. This approach avoids changes to the existing application while refactoring the workload to leverage cloud-native components.

This solution uses Amazon CloudWatch Events to trigger a Lambda function that polls the Amazon MQ broker for messages. Instead of starting an Elastic Transcoder job, the sample writes the received message to an Amazon DynamoDB table with a time stamp indicating the time received.

Getting started

To start, navigate to the Amazon MQ console. Next, launch a new Amazon MQ instance, selecting Single-instance Broker and supplying a broker name, user name, and password. Be sure to document the user name and password for later.

For the purposes of this sample, choose the default options in the Advanced settings section. Your new broker is deployed to the default VPC in the selected AWS Region with the default security group. For this post, you update the security group to allow access for your sample Lambda function. In a production scenario, I recommend deploying both the Lambda function and your Amazon MQ broker in your own VPC.

After several minutes, your instance changes status from “Creation Pending” to “Available.” You can then visit the Details page of your broker to retrieve connection information, including a link to the ActiveMQ web console where you can monitor the status of your broker, publish test messages, and so on. In this example, use the Stomp protocol to connect to your broker. Be sure to capture the broker host name, for example:

<BROKER_ID>.mq.us-east-1.amazonaws.com

You should also modify the Security Group for the broker by clicking on its Security Group ID. Click the Edit button and then click Add Rule to allow inbound traffic on port 8162 for your IP address.

Deploying and scheduling the Lambda function

To simplify the deployment of this example, I’ve provided an AWS Serverless Application Model (SAM) template that deploys the sample function and DynamoDB table, and schedules the function to be invoked every five minutes. Detailed instructions can be found with sample code on GitHub in the amazonmq-invoke-aws-lambda repository, with sample code. I discuss a few key aspects in this post.

First, SAM makes it easy to deploy and schedule invocation of our function:

SubscriberFunction:
	Type: AWS::Serverless::Function
	Properties:
		CodeUri: subscriber/
		Handler: index.handler
		Runtime: nodejs6.10
		Role: !GetAtt SubscriberFunctionRole.Arn
		Timeout: 15
		Environment:
			Variables:
				HOST: !Ref AmazonMQHost
				LOGIN: !Ref AmazonMQLogin
				PASSWORD: !Ref AmazonMQPassword
				QUEUE_NAME: !Ref AmazonMQQueueName
				WORKER_FUNCTIOn: !Ref WorkerFunction
		Events:
			Timer:
				Type: Schedule
				Properties:
					Schedule: rate(5 minutes)

WorkerFunction:
Type: AWS::Serverless::Function
	Properties:
		CodeUri: worker/
		Handler: index.handler
		Runtime: nodejs6.10
Role: !GetAtt WorkerFunctionRole.Arn
		Environment:
			Variables:
				TABLE_NAME: !Ref MessagesTable

In the code, you include the URI, user name, and password for your newly created Amazon MQ broker. These allow the function to poll the broker for new messages on the sample queue.

The sample Lambda function is written in Node.js, but clients exist for a number of programming languages.

stomp.connect(options, (error, client) => {
	if (error) { /* do something */ }

	let headers = {
		destination: ‘/queue/SAMPLE_QUEUE’,
		ack: ‘auto’
	}

	client.subscribe(headers, (error, message) => {
		if (error) { /* do something */ }

		message.readString(‘utf-8’, (error, body) => {
			if (error) { /* do something */ }

			let params = {
				FunctionName: MyWorkerFunction,
				Payload: JSON.stringify({
					message: body,
					timestamp: Date.now()
				})
			}

			let lambda = new AWS.Lambda()
			lambda.invoke(params, (error, data) => {
				if (error) { /* do something */ }
			})
		}
})
})

Sending a sample message

For the purpose of this example, use the Amazon MQ console to send a test message. Navigate to the details page for your broker.

About midway down the page, choose ActiveMQ Web Console. Next, choose Manage ActiveMQ Broker to launch the admin console. When you are prompted for a user name and password, use the credentials created earlier.

At the top of the page, choose Send. From here, you can send a sample message from the broker to subscribers. For this example, this is how you generate traffic to test the end-to-end system. Be sure to set the Destination value to “SAMPLE_QUEUE.” The message body can contain any text. Choose Send.

You now have a Lambda function polling for messages on the broker. To verify that your function is working, you can confirm in the DynamoDB console that the message was successfully received and processed by the sample Lambda function.

First, choose Tables on the left and select the table name “amazonmq-messages” in the middle section. With the table detail in view, choose Items. If the function was successful, you’ll find a new entry similar to the following:

If there is no message in DynamoDB, check again in a few minutes or review the CloudWatch Logs group for Lambda functions that contain debug messages.

Alternative approaches

Beyond the approach described here, you may consider other approaches as well. For example, you could use an intermediary system such as Apache Flume to pass messages from the broker to Lambda or deploy Apache Camel to trigger Lambda via a POST to API Gateway. There are trade-offs to each of these approaches. My goal in using CloudWatch Events was to introduce an easily repeatable pattern familiar to many Lambda developers.

Summary

I hope that you have found this example of how to integrate AWS Lambda with Amazon MQ useful. If you have expertise or legacy systems that leverage APIs such as JMS, you may find this useful as you incorporate serverless concepts in your enterprise architectures.

To learn more, see the Amazon MQ website and Developer Guide. You can try Amazon MQ for free with the AWS Free Tier, which includes up to 750 hours of a single-instance mq.t2.micro broker and up to 1 GB of storage per month for one year.

Task Networking in AWS Fargate

Post Syndicated from Nathan Peck original https://aws.amazon.com/blogs/compute/task-networking-in-aws-fargate/

AWS Fargate is a technology that allows you to focus on running your application without needing to provision, monitor, or manage the underlying compute infrastructure. You package your application into a Docker container that you can then launch using your container orchestration tool of choice.

Fargate allows you to use containers without being responsible for Amazon EC2 instances, similar to how EC2 allows you to run VMs without managing physical infrastructure. Currently, Fargate provides support for Amazon Elastic Container Service (Amazon ECS). Support for Amazon Elastic Container Service for Kubernetes (Amazon EKS) will be made available in the near future.

Despite offloading the responsibility for the underlying instances, Fargate still gives you deep control over configuration of network placement and policies. This includes the ability to use many networking fundamentals such as Amazon VPC and security groups.

This post covers how to take advantage of the different ways of networking your containers in Fargate when using ECS as your orchestration platform, with a focus on how to do networking securely.

The first step to running any application in Fargate is defining an ECS task for Fargate to launch. A task is a logical group of one or more Docker containers that are deployed with specified settings. When running a task in Fargate, there are two different forms of networking to consider:

  • Container (local) networking
  • External networking

Container Networking

Container networking is often used for tightly coupled application components. Perhaps your application has a web tier that is responsible for serving static content as well as generating some dynamic HTML pages. To generate these dynamic pages, it has to fetch information from another application component that has an HTTP API.

One potential architecture for such an application is to deploy the web tier and the API tier together as a pair and use local networking so the web tier can fetch information from the API tier.

If you are running these two components as two processes on a single EC2 instance, the web tier application process could communicate with the API process on the same machine by using the local loopback interface. The local loopback interface has a special IP address of 127.0.0.1 and hostname of localhost.

By making a networking request to this local interface, it bypasses the network interface hardware and instead the operating system just routes network calls from one process to the other directly. This gives the web tier a fast and efficient way to fetch information from the API tier with almost no networking latency.

In Fargate, when you launch multiple containers as part of a single task, they can also communicate with each other over the local loopback interface. Fargate uses a special container networking mode called awsvpc, which gives all the containers in a task a shared elastic network interface to use for communication.

If you specify a port mapping for each container in the task, then the containers can communicate with each other on that port. For example the following task definition could be used to deploy the web tier and the API tier:

{
  "family": "myapp"
  "containerDefinitions": [
    {
      "name": "web",
      "image": "my web image url",
      "portMappings": [
        {
          "containerPort": 80
        }
      ],
      "memory": 500,
      "cpu": 10,
      "esssential": true
    },
    {
      "name": "api",
      "image": "my api image url",
      "portMappings": [
        {
          "containerPort": 8080
        }
      ],
      "cpu": 10,
      "memory": 500,
      "essential": true
    }
  ]
}

ECS, with Fargate, is able to take this definition and launch two containers, each of which is bound to a specific static port on the elastic network interface for the task.

Because each Fargate task has its own isolated networking stack, there is no need for dynamic ports to avoid port conflicts between different tasks as in other networking modes. The static ports make it easy for containers to communicate with each other. For example, the web container makes a request to the API container using its well-known static port:

curl 127.0.0.1:8080/my-endpoint

This sends a local network request, which goes directly from one container to the other over the local loopback interface without traversing the network. This deployment strategy allows for fast and efficient communication between two tightly coupled containers. But most application architectures require more than just internal local networking.

External Networking

External networking is used for network communications that go outside the task to other servers that are not part of the task, or network communications that originate from other hosts on the internet and are directed to the task.

Configuring external networking for a task is done by modifying the settings of the VPC in which you launch your tasks. A VPC is a fundamental tool in AWS for controlling the networking capabilities of resources that you launch on your account.

When setting up a VPC, you create one or more subnets, which are logical groups that your resources can be placed into. Each subnet has an Availability Zone and its own route table, which defines rules about how network traffic operates for that subnet. There are two main types of subnets: public and private.

Public subnets

A public subnet is a subnet that has an associated internet gateway. Fargate tasks in that subnet are assigned both private and public IP addresses:


A browser or other client on the internet can send network traffic to the task via the internet gateway using its public IP address. The tasks can also send network traffic to other servers on the internet because the route table can route traffic out via the internet gateway.

If tasks want to communicate directly with each other, they can use each other’s private IP address to send traffic directly from one to the other so that it stays inside the subnet without going out to the internet gateway and back in.

Private subnets

A private subnet does not have direct internet access. The Fargate tasks inside the subnet don’t have public IP addresses, only private IP addresses. Instead of an internet gateway, a network address translation (NAT) gateway is attached to the subnet:

 

There is no way for another server or client on the internet to reach your tasks directly, because they don’t even have an address or a direct route to reach them. This is a great way to add another layer of protection for internal tasks that handle sensitive data. Those tasks are protected and can’t receive any inbound traffic at all.

In this configuration, the tasks can still communicate to other servers on the internet via the NAT gateway. They would appear to have the IP address of the NAT gateway to the recipient of the communication. If you run a Fargate task in a private subnet, you must add this NAT gateway. Otherwise, Fargate can’t make a network request to Amazon ECR to download the container image, or communicate with Amazon CloudWatch to store container metrics.

Load balancers

If you are running a container that is hosting internet content in a private subnet, you need a way for traffic from the public to reach the container. This is generally accomplished by using a load balancer such as an Application Load Balancer or a Network Load Balancer.

ECS integrates tightly with AWS load balancers by automatically configuring a service-linked load balancer to send network traffic to containers that are part of the service. When each task starts, the IP address of its elastic network interface is added to the load balancer’s configuration. When the task is being shut down, network traffic is safely drained from the task before removal from the load balancer.

To get internet traffic to containers using a load balancer, the load balancer is placed into a public subnet. ECS configures the load balancer to forward traffic to the container tasks in the private subnet:

This configuration allows your tasks in Fargate to be safely isolated from the rest of the internet. They can still initiate network communication with external resources via the NAT gateway, and still receive traffic from the public via the Application Load Balancer that is in the public subnet.

Another potential use case for a load balancer is for internal communication from one service to another service within the private subnet. This is typically used for a microservice deployment, in which one service such as an internet user account service needs to communicate with an internal service such as a password service. Obviously, it is undesirable for the password service to be directly accessible on the internet, so using an internet load balancer would be a major security vulnerability. Instead, this can be accomplished by hosting an internal load balancer within the private subnet:

With this approach, one container can distribute requests across an Auto Scaling group of other private containers via the internal load balancer, ensuring that the network traffic stays safely protected within the private subnet.

Best Practices for Fargate Networking

Determine whether you should use local task networking

Local task networking is ideal for communicating between containers that are tightly coupled and require maximum networking performance between them. However, when you deploy one or more containers as part of the same task they are always deployed together so it removes the ability to independently scale different types of workload up and down.

In the example of the application with a web tier and an API tier, it may be the case that powering the application requires only two web tier containers but 10 API tier containers. If local container networking is used between these two container types, then an extra eight unnecessary web tier containers would end up being run instead of allowing the two different services to scale independently.

A better approach would be to deploy the two containers as two different services, each with its own load balancer. This allows clients to communicate with the two web containers via the web service’s load balancer. The web service could distribute requests across the eight backend API containers via the API service’s load balancer.

Run internet tasks that require internet access in a public subnet

If you have tasks that require internet access and a lot of bandwidth for communication with other services, it is best to run them in a public subnet. Give them public IP addresses so that each task can communicate with other services directly.

If you run these tasks in a private subnet, then all their outbound traffic has to go through an NAT gateway. AWS NAT gateways support up to 10 Gbps of burst bandwidth. If your bandwidth requirements go over this, then all task networking starts to get throttled. To avoid this, you could distribute the tasks across multiple private subnets, each with their own NAT gateway. It can be easier to just place the tasks into a public subnet, if possible.

Avoid using a public subnet or public IP addresses for private, internal tasks

If you are running a service that handles private, internal information, you should not put it into a public subnet or use a public IP address. For example, imagine that you have one task, which is an API gateway for authentication and access control. You have another background worker task that handles sensitive information.

The intended access pattern is that requests from the public go to the API gateway, which then proxies request to the background task only if the request is from an authenticated user. If the background task is in a public subnet and has a public IP address, then it could be possible for an attacker to bypass the API gateway entirely. They could communicate directly to the background task using its public IP address, without being authenticated.

Conclusion

Fargate gives you a way to run containerized tasks directly without managing any EC2 instances, but you still have full control over how you want networking to work. You can set up containers to talk to each other over the local network interface for maximum speed and efficiency. For running workloads that require privacy and security, use a private subnet with public internet access locked down. Or, for simplicity with an internet workload, you can just use a public subnet and give your containers a public IP address.

To deploy one of these Fargate task networking approaches, check out some sample CloudFormation templates showing how to configure the VPC, subnets, and load balancers.

If you have questions or suggestions, please comment below.

AWS Direct Connect Update – Ten New Locations Added in Late 2017

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-direct-connect-update-ten-new-locations-added-in-late-2017/

Happy 2018! I am looking forward to getting back to my usual routine, working with our teams to learn about their upcoming launches and then writing blog posts to bring the news to you. Right now I am still catching up on a few launches and announcements from late 2017.

First on the list for today is our most recent round of new cities for AWS Direct Connect. AWS customers all over the world use Direct Connect to create dedicated network connections from their premises to AWS in order to reduce their network costs, increase throughput, and to pursue a more consistent network experience.

We added ten new locations to our Direct Connect roster in December, all of which offer both 1 Gbps and 10 Gbps connectivity, along with partner-supplied options for speeds below 1 Gbps. Here are the newest locations, along withe the data centers and associated AWS Regions:

  • Bangalore, India – NetMagic DC2Asia Pacific (Mumbai).
  • Cape Town, South Africa – Teraco Ct1EU (Ireland).
  • Johannesburg, South Africa – Teraco JB1EU (Ireland).
  • London, UK – Telehouse North TwoEU (London).
  • Miami, Florida, US – Equinix MI1US East (Northern Virginia).
  • Minneapolis, Minnesota, US – Cologix MIN3US East (Ohio)
  • Ningxia, China – Shapotou IDC – China (Ningxia).
  • Ningxia, China – Industrial Park IDC – China (Ningxia).
  • Rio de Janeiro, Brazil – Equinix RJ2South America (São Paulo).
  • Tokyo, Japan – AT Tokyo ChuoAsia Pacific (Tokyo).

You can use these new locations in conjunction with the AWS Direct Connect Gateway to set up connectivity that spans Virtual Private Clouds (VPCs) spread across multiple AWS Regions (this does not apply to the AWS Regions in China).

If you are interested in putting Direct Connect to use, be sure to check out our ever-growing list of Direct Connect Partners.

Jeff;

Serverless @ re:Invent 2017

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/serverless-reinvent-2017/

At re:Invent 2014, we announced AWS Lambda, what is now the center of the serverless platform at AWS, and helped ignite the trend of companies building serverless applications.

This year, at re:Invent 2017, the topic of serverless was everywhere. We were incredibly excited to see the energy from everyone attending 7 workshops, 15 chalk talks, 20 skills sessions and 27 breakout sessions. Many of these sessions were repeated due to high demand, so we are happy to summarize and provide links to the recordings and slides of these sessions.

Over the course of the week leading up to and then the week of re:Invent, we also had over 15 new features and capabilities across a number of serverless services, including AWS Lambda, Amazon API Gateway, AWS [email protected], AWS SAM, and the newly announced AWS Serverless Application Repository!

AWS Lambda

Amazon API Gateway

  • Amazon API Gateway Supports Endpoint Integrations with Private VPCs – You can now provide access to HTTP(S) resources within your VPC without exposing them directly to the public internet. This includes resources available over a VPN or Direct Connect connection!
  • Amazon API Gateway Supports Canary Release Deployments – You can now use canary release deployments to gradually roll out new APIs. This helps you more safely roll out API changes and limit the blast radius of new deployments.
  • Amazon API Gateway Supports Access Logging – The access logging feature lets you generate access logs in different formats such as CLF (Common Log Format), JSON, XML, and CSV. The access logs can be fed into your existing analytics or log processing tools so you can perform more in-depth analysis or take action in response to the log data.
  • Amazon API Gateway Customize Integration Timeouts – You can now set a custom timeout for your API calls as low as 50ms and as high as 29 seconds (the default is 30 seconds).
  • Amazon API Gateway Supports Generating SDK in Ruby – This is in addition to support for SDKs in Java, JavaScript, Android and iOS (Swift and Objective-C). The SDKs that Amazon API Gateway generates save you development time and come with a number of prebuilt capabilities, such as working with API keys, exponential back, and exception handling.

AWS Serverless Application Repository

Serverless Application Repository is a new service (currently in preview) that aids in the publication, discovery, and deployment of serverless applications. With it you’ll be able to find shared serverless applications that you can launch in your account, while also sharing ones that you’ve created for others to do the same.

AWS [email protected]

[email protected] now supports content-based dynamic origin selection, network calls from viewer events, and advanced response generation. This combination of capabilities greatly increases the use cases for [email protected], such as allowing you to send requests to different origins based on request information, showing selective content based on authentication, and dynamically watermarking images for each viewer.

AWS SAM

Twitch Launchpad live announcements

Other service announcements

Here are some of the other highlights that you might have missed. We think these could help you make great applications:

AWS re:Invent 2017 sessions

Coming up with the right mix of talks for an event like this can be quite a challenge. The Product, Marketing, and Developer Advocacy teams for Serverless at AWS spent weeks reading through dozens of talk ideas to boil it down to the final list.

From feedback at other AWS events and webinars, we knew that customers were looking for talks that focused on concrete examples of solving problems with serverless, how to perform common tasks such as deployment, CI/CD, monitoring, and troubleshooting, and to see customer and partner examples solving real world problems. To that extent we tried to settle on a good mix based on attendee experience and provide a track full of rich content.

Below are the recordings and slides of breakout sessions from re:Invent 2017. We’ve organized them for those getting started, those who are already beginning to build serverless applications, and the experts out there already running them at scale. Some of the videos and slides haven’t been posted yet, and so we will update this list as they become available.

Find the entire Serverless Track playlist on YouTube.

Talks for people new to Serverless

Advanced topics

Expert mode

Talks for specific use cases

Talks from AWS customers & partners

Looking to get hands-on with Serverless?

At re:Invent, we delivered instructor-led skills sessions to help attendees new to serverless applications get started quickly. The content from these sessions is already online and you can do the hands-on labs yourself!
Build a Serverless web application

Still looking for more?

We also recently completely overhauled the main Serverless landing page for AWS. This includes a new Resources page containing case studies, webinars, whitepapers, customer stories, reference architectures, and even more Getting Started tutorials. Check it out!

Power data ingestion into Splunk using Amazon Kinesis Data Firehose

Post Syndicated from Tarik Makota original https://aws.amazon.com/blogs/big-data/power-data-ingestion-into-splunk-using-amazon-kinesis-data-firehose/

In late September, during the annual Splunk .conf, Splunk and Amazon Web Services (AWS) jointly announced that Amazon Kinesis Data Firehose now supports Splunk Enterprise and Splunk Cloud as a delivery destination. This native integration between Splunk Enterprise, Splunk Cloud, and Amazon Kinesis Data Firehose is designed to make AWS data ingestion setup seamless, while offering a secure and fault-tolerant delivery mechanism. We want to enable customers to monitor and analyze machine data from any source and use it to deliver operational intelligence and optimize IT, security, and business performance.

With Kinesis Data Firehose, customers can use a fully managed, reliable, and scalable data streaming solution to Splunk. In this post, we tell you a bit more about the Kinesis Data Firehose and Splunk integration. We also show you how to ingest large amounts of data into Splunk using Kinesis Data Firehose.

Push vs. Pull data ingestion

Presently, customers use a combination of two ingestion patterns, primarily based on data source and volume, in addition to existing company infrastructure and expertise:

  1. Pull-based approach: Using dedicated pollers running the popular Splunk Add-on for AWS to pull data from various AWS services such as Amazon CloudWatch or Amazon S3.
  2. Push-based approach: Streaming data directly from AWS to Splunk HTTP Event Collector (HEC) by using AWS Lambda. Examples of applicable data sources include CloudWatch Logs and Amazon Kinesis Data Streams.

The pull-based approach offers data delivery guarantees such as retries and checkpointing out of the box. However, it requires more ops to manage and orchestrate the dedicated pollers, which are commonly running on Amazon EC2 instances. With this setup, you pay for the infrastructure even when it’s idle.

On the other hand, the push-based approach offers a low-latency scalable data pipeline made up of serverless resources like AWS Lambda sending directly to Splunk indexers (by using Splunk HEC). This approach translates into lower operational complexity and cost. However, if you need guaranteed data delivery then you have to design your solution to handle issues such as a Splunk connection failure or Lambda execution failure. To do so, you might use, for example, AWS Lambda Dead Letter Queues.

How about getting the best of both worlds?

Let’s go over the new integration’s end-to-end solution and examine how Kinesis Data Firehose and Splunk together expand the push-based approach into a native AWS solution for applicable data sources.

By using a managed service like Kinesis Data Firehose for data ingestion into Splunk, we provide out-of-the-box reliability and scalability. One of the pain points of the old approach was the overhead of managing the data collection nodes (Splunk heavy forwarders). With the new Kinesis Data Firehose to Splunk integration, there are no forwarders to manage or set up. Data producers (1) are configured through the AWS Management Console to drop data into Kinesis Data Firehose.

You can also create your own data producers. For example, you can drop data into a Firehose delivery stream by using Amazon Kinesis Agent, or by using the Firehose API (PutRecord(), PutRecordBatch()), or by writing to a Kinesis Data Stream configured to be the data source of a Firehose delivery stream. For more details, refer to Sending Data to an Amazon Kinesis Data Firehose Delivery Stream.

You might need to transform the data before it goes into Splunk for analysis. For example, you might want to enrich it or filter or anonymize sensitive data. You can do so using AWS Lambda. In this scenario, Kinesis Data Firehose buffers data from the incoming source data, sends it to the specified Lambda function (2), and then rebuffers the transformed data to the Splunk Cluster. Kinesis Data Firehose provides the Lambda blueprints that you can use to create a Lambda function for data transformation.

Systems fail all the time. Let’s see how this integration handles outside failures to guarantee data durability. In cases when Kinesis Data Firehose can’t deliver data to the Splunk Cluster, data is automatically backed up to an S3 bucket. You can configure this feature while creating the Firehose delivery stream (3). You can choose to back up all data or only the data that’s failed during delivery to Splunk.

In addition to using S3 for data backup, this Firehose integration with Splunk supports Splunk Indexer Acknowledgments to guarantee event delivery. This feature is configured on Splunk’s HTTP Event Collector (HEC) (4). It ensures that HEC returns an acknowledgment to Kinesis Data Firehose only after data has been indexed and is available in the Splunk cluster (5).

Now let’s look at a hands-on exercise that shows how to forward VPC flow logs to Splunk.

How-to guide

To process VPC flow logs, we implement the following architecture.

Amazon Virtual Private Cloud (Amazon VPC) delivers flow log files into an Amazon CloudWatch Logs group. Using a CloudWatch Logs subscription filter, we set up real-time delivery of CloudWatch Logs to an Kinesis Data Firehose stream.

Data coming from CloudWatch Logs is compressed with gzip compression. To work with this compression, we need to configure a Lambda-based data transformation in Kinesis Data Firehose to decompress the data and deposit it back into the stream. Firehose then delivers the raw logs to the Splunk Http Event Collector (HEC).

If delivery to the Splunk HEC fails, Firehose deposits the logs into an Amazon S3 bucket. You can then ingest the events from S3 using an alternate mechanism such as a Lambda function.

When data reaches Splunk (Enterprise or Cloud), Splunk parsing configurations (packaged in the Splunk Add-on for Kinesis Data Firehose) extract and parse all fields. They make data ready for querying and visualization using Splunk Enterprise and Splunk Cloud.

Walkthrough

Install the Splunk Add-on for Amazon Kinesis Data Firehose

The Splunk Add-on for Amazon Kinesis Data Firehose enables Splunk (be it Splunk Enterprise, Splunk App for AWS, or Splunk Enterprise Security) to use data ingested from Amazon Kinesis Data Firehose. Install the Add-on on all the indexers with an HTTP Event Collector (HEC). The Add-on is available for download from Splunkbase.

HTTP Event Collector (HEC)

Before you can use Kinesis Data Firehose to deliver data to Splunk, set up the Splunk HEC to receive the data. From Splunk web, go to the Setting menu, choose Data Inputs, and choose HTTP Event Collector. Choose Global Settings, ensure All tokens is enabled, and then choose Save. Then choose New Token to create a new HEC endpoint and token. When you create a new token, make sure that Enable indexer acknowledgment is checked.

When prompted to select a source type, select aws:cloudwatch:vpcflow.

Create an S3 backsplash bucket

To provide for situations in which Kinesis Data Firehose can’t deliver data to the Splunk Cluster, we use an S3 bucket to back up the data. You can configure this feature to back up all data or only the data that’s failed during delivery to Splunk.

Note: Bucket names are unique. Thus, you can’t use tmak-backsplash-bucket.

aws s3 create-bucket --bucket tmak-backsplash-bucket --create-bucket-configuration LocationConstraint=ap-northeast-1

Create an IAM role for the Lambda transform function

Firehose triggers an AWS Lambda function that transforms the data in the delivery stream. Let’s first create a role for the Lambda function called LambdaBasicRole.

Note: You can also set this role up when creating your Lambda function.

$ aws iam create-role --role-name LambdaBasicRole --assume-role-policy-document file://TrustPolicyForLambda.json

Here is TrustPolicyForLambda.json.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "lambda.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

 

After the role is created, attach the managed Lambda basic execution policy to it.

$ aws iam attach-role-policy 
  --policy-arn arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole 
  --role-name LambdaBasicRole

 

Create a Firehose Stream

On the AWS console, open the Amazon Kinesis service, go to the Firehose console, and choose Create Delivery Stream.

In the next section, you can specify whether you want to use an inline Lambda function for transformation. Because incoming CloudWatch Logs are gzip compressed, choose Enabled for Record transformation, and then choose Create new.

From the list of the available blueprint functions, choose Kinesis Data Firehose CloudWatch Logs Processor. This function unzips data and place it back into the Firehose stream in compliance with the record transformation output model.

Enter a name for the Lambda function, choose Choose an existing role, and then choose the role you created earlier. Then choose Create Function.

Go back to the Firehose Stream wizard, choose the Lambda function you just created, and then choose Next.

Select Splunk as the destination, and enter your Splunk Http Event Collector information.

Note: Amazon Kinesis Data Firehose requires the Splunk HTTP Event Collector (HEC) endpoint to be terminated with a valid CA-signed certificate matching the DNS hostname used to connect to your HEC endpoint. You receive delivery errors if you are using a self-signed certificate.

In this example, we only back up logs that fail during delivery.

To monitor your Firehose delivery stream, enable error logging. Doing this means that you can monitor record delivery errors.

Create an IAM role for the Firehose stream by choosing Create new, or Choose. Doing this brings you to a new screen. Choose Create a new IAM role, give the role a name, and then choose Allow.

If you look at the policy document, you can see that the role gives Kinesis Data Firehose permission to publish error logs to CloudWatch, execute your Lambda function, and put records into your S3 backup bucket.

You now get a chance to review and adjust the Firehose stream settings. When you are satisfied, choose Create Stream. You get a confirmation once the stream is created and active.

Create a VPC Flow Log

To send events from Amazon VPC, you need to set up a VPC flow log. If you already have a VPC flow log you want to use, you can skip to the “Publish CloudWatch to Kinesis Data Firehose” section.

On the AWS console, open the Amazon VPC service. Then choose VPC, Your VPC, and choose the VPC you want to send flow logs from. Choose Flow Logs, and then choose Create Flow Log. If you don’t have an IAM role that allows your VPC to publish logs to CloudWatch, choose Set Up Permissions and Create new role. Use the defaults when presented with the screen to create the new IAM role.

Once active, your VPC flow log should look like the following.

Publish CloudWatch to Kinesis Data Firehose

When you generate traffic to or from your VPC, the log group is created in Amazon CloudWatch. The new log group has no subscription filter, so set up a subscription filter. Setting this up establishes a real-time data feed from the log group to your Firehose delivery stream.

At present, you have to use the AWS Command Line Interface (AWS CLI) to create a CloudWatch Logs subscription to a Kinesis Data Firehose stream. However, you can use the AWS console to create subscriptions to Lambda and Amazon Elasticsearch Service.

To allow CloudWatch to publish to your Firehose stream, you need to give it permissions.

$ aws iam create-role --role-name CWLtoKinesisFirehoseRole --assume-role-policy-document file://TrustPolicyForCWLToFireHose.json


Here is the content for TrustPolicyForCWLToFireHose.json.

{
  "Statement": {
    "Effect": "Allow",
    "Principal": { "Service": "logs.us-east-1.amazonaws.com" },
    "Action": "sts:AssumeRole"
  }
}

 

Attach the policy to the newly created role.

$ aws iam put-role-policy 
    --role-name CWLtoKinesisFirehoseRole 
    --policy-name Permissions-Policy-For-CWL 
    --policy-document file://PermissionPolicyForCWLToFireHose.json

Here is the content for PermissionPolicyForCWLToFireHose.json.

{
    "Statement":[
      {
        "Effect":"Allow",
        "Action":["firehose:*"],
        "Resource":["arn:aws:firehose:us-east-1:YOUR-AWS-ACCT-NUM:deliverystream/ FirehoseSplunkDeliveryStream"]
      },
      {
        "Effect":"Allow",
        "Action":["iam:PassRole"],
        "Resource":["arn:aws:iam::YOUR-AWS-ACCT-NUM:role/CWLtoKinesisFirehoseRole"]
      }
    ]
}

Finally, create a subscription filter.

$ aws logs put-subscription-filter 
   --log-group-name " /vpc/flowlog/FirehoseSplunkDemo" 
   --filter-name "Destination" 
   --filter-pattern "" 
   --destination-arn "arn:aws:firehose:us-east-1:YOUR-AWS-ACCT-NUM:deliverystream/FirehoseSplunkDeliveryStream" 
   --role-arn "arn:aws:iam::YOUR-AWS-ACCT-NUM:role/CWLtoKinesisFirehoseRole"

When you run the AWS CLI command preceding, you don’t get any acknowledgment. To validate that your CloudWatch Log Group is subscribed to your Firehose stream, check the CloudWatch console.

As soon as the subscription filter is created, the real-time log data from the log group goes into your Firehose delivery stream. Your stream then delivers it to your Splunk Enterprise or Splunk Cloud environment for querying and visualization. The screenshot following is from Splunk Enterprise.

In addition, you can monitor and view metrics associated with your delivery stream using the AWS console.

Conclusion

Although our walkthrough uses VPC Flow Logs, the pattern can be used in many other scenarios. These include ingesting data from AWS IoT, other CloudWatch logs and events, Kinesis Streams or other data sources using the Kinesis Agent or Kinesis Producer Library. We also used Lambda blueprint Kinesis Data Firehose CloudWatch Logs Processor to transform streaming records from Kinesis Data Firehose. However, you might need to use a different Lambda blueprint or disable record transformation entirely depending on your use case. For an additional use case using Kinesis Data Firehose, check out This is My Architecture Video, which discusses how to securely centralize cross-account data analytics using Kinesis and Splunk.

 


Additional Reading

If you found this post useful, be sure to check out Integrating Splunk with Amazon Kinesis Streams and Using Amazon EMR and Hunk for Rapid Response Log Analysis and Review.


About the Authors

Tarik Makota is a solutions architect with the Amazon Web Services Partner Network. He provides technical guidance, design advice and thought leadership to AWS’ most strategic software partners. His career includes work in an extremely broad software development and architecture roles across ERP, financial printing, benefit delivery and administration and financial services. He holds an M.S. in Software Development and Management from Rochester Institute of Technology.

 

 

 

Roy Arsan is a solutions architect in the Splunk Partner Integrations team. He has a background in product development, cloud architecture, and building consumer and enterprise cloud applications. More recently, he has architected Splunk solutions on major cloud providers, including an AWS Quick Start for Splunk that enables AWS users to easily deploy distributed Splunk Enterprise straight from their AWS console. He’s also the co-author of the AWS Lambda blueprints for Splunk. He holds an M.S. in Computer Science Engineering from the University of Michigan.