Tag Archives: Solutions Architecture

Introducing AWS Solutions: Expert architectures on demand

Post Syndicated from AWS Admin original https://aws.amazon.com/blogs/architecture/introducing-aws-solutions-expert-architectures-on-demand/

AWS Solutions Architects are on the front line of helping customers succeed using our technologies. Our team members leverage their deep knowledge of AWS technologies to build custom solutions that solve specific problems for clients. But many customers want to solve common technical problems that don’t require custom solutions, or they want a general solution they can use as a reference to build their own custom solution. For these customers, we offer AWS Solutions: vetted, technical reference implementations built by AWS Solutions Architects and AWS Partner Network partners. AWS Solutions are designed to help customers solve common business and technical problems, or they can be customized for specific use cases.

AWS Solutions are built to be operationally effective, performant, reliable, secure, and cost-effective; and incorporate architectural frameworks such as the Well-Architected Framework. Every AWS Solution comes with a detailed architecture diagram, a deployment guide, and instructions for both manual and automated deployment.

Here are some Solutions we are particularly excited about.

Media2Cloud

We released the Media2Cloud solution in January 2019. This solution helps customers migrate their existing video archives to the cloud. Media2Cloud sets up a serverless end-to-end workflow to ingest your videos and establish metadata, proxy videos, and image thumbnails.

Because it can be a challenging and slow process to migrate your existing video archives to the cloud, the Media2Cloud solution builds the following architecture.

Media2Cloud architecture

The solution leverages the Media Analysis Solution to analyze and extract valuable metadata from your video archives using Amazon Rekognition, Amazon Transcribe, and Amazon Comprehend.

The solution also includes a simple web interface that helps make it easier to get started ingesting your videos to the AWS Cloud. This solution is set up to integrate with AWS Partner Network partners to help customers migrate their video archives to the cloud.

AWS Instance Scheduler

In October 2018, we updated the AWS Instance Scheduler, a solution that enables customers to easily configure custom start and stop schedules for their Amazon EC2 and Amazon RDS instances.

When you deploy the solution’s template, the solution builds the following architecture.

AWS Instance Scheduler

 

For customers who leave all of their instances running at full utilization, this solution can result in up to 70% cost savings for those instances that are only necessary during regular business.

The Instance Scheduler solution gives you the flexibility to automatically manage multiple schedules as necessary, configure multiple start and stop schedules by either deploying multiple Instance Schedulers or modifying individual resource tags, and review Instance Scheduler metrics to better assess your Instance capacity and usage, and to calculate your cost savings.

AWS Connected Vehicle Solution

In January 2018, we updated the AWS Connected Vehicle Solution, a solution that provides secure vehicle connectivity to the AWS Cloud. This solution includes capabilities for local computing within vehicles, sophisticated event rules, and data processing and storage. The solution also allows you to implement a core framework for connected vehicle services that allows you to focus on developing new functionality rather than managing infrastructure.

When you deploy the solution’s template, the solution builds the following architecture.

Connected Vehicle solution

You can build upon this framework to address a variety of use cases such as voice interaction, navigation and other location-based services, remote vehicle diagnostics and health monitoring, predictive analytics and required maintenance alerts, media streaming services, vehicle safety and security services, head unit applications, and mobile applications.

These are just some of our current offerings. Other notable Solutions include AWS WAF Security Automations, Machine Learning for Telecommunication, and AWS Landing Zone. In the coming months, we plan to continue expanding our portfolio of AWS Solutions to address common business and technical problems that our customers face. Visit our homepage to keep up to date with the latest AWS Solutions.

Well-Architected: “To thrive, to evolve, to delight”

Post Syndicated from Philip Fitzsimons original https://aws.amazon.com/blogs/architecture/well-architected-to-thrive-to-evolve-to-delight/

Today we published a subtle but significant update to the AWS Well-Architected Framework. We looked to see where AWS Solutions Architects and customers diverged in how they judged something to be Well-Architected, and we restructured our questions and answers to help close that gap.

There are many definitions of IT architecture, but, at its core, a good architecture is like a well-designed building: It creates a space that we love to be in. In technology, good architecture creates a space that allows our code to thrive, to evolve, to delight. Bad architecture inhibits the ability of our code to meet our expectations, and it exposes us to risk, wasted effort, extra costs, and bad outcomes. How do you know if your architectures are good?

In 2012, we created the AWS Well-Architected Framework as a way to answer that question. AWS Solutions Architects review thousands of workloads every year using the framework. We learn from these reviews: new ideas, bad ideas, and constant innovation. We curate those learnings, from our customers and our teams, to create a framework that remains current but also tested and pragmatic.

We use Kaizen 改善to help us continually improve the framework. We bring data—your anecdotes and challenges—and use it to understand where we can improve the framework. We experiment, ask five whys, draw pictures of fish, and whiteboard, whiteboard, whiteboard. We draft guidelines for writing best practices, we shape our best practices to fit, we iterate. We have it reviewed by our principal community, taken for a spin by AWS Solutions Architects, and then we publish an update to the framework. We joyfully spin round a Deming cycle.

With this update every question has been refined, and some have been split into two to ensure they focus on a single topic. The framework has also been updated to reflect new services and features, and is available as a whitepaper PDF and free as Kindle books. We believe that if you follow the well-architected way, your architectures will create a space where your code and functionality will delight your customers. You can find free training and all of the whitepapers on the AWS Well-Architected homepage.

Philip Fitzsimons is the leader of the AWS Well-Architected Team

Create Dynamic Contact Forms for S3 Static Websites Using AWS Lambda, Amazon API Gateway, and Amazon SES

Post Syndicated from Saurabh Shrivastava original https://aws.amazon.com/blogs/architecture/create-dynamic-contact-forms-for-s3-static-websites-using-aws-lambda-amazon-api-gateway-and-amazon-ses/

In the era of the cloud, hosting a static website is cheaper, faster and simpler than traditional on premise hosting, where you always have to maintain a running server.  Basically, no static website is truly static. I can promise you will find at least a “contact us” page in most static websites, which, by their very nature, are dynamically generated. And all businesses need a “contact us” page to help customers connect with business owners for services, inquiries or feedback. In its simplest form, a “contact us” page should collect a user’s basic information (name, e-mail id, phone number, short message and e-mail) and get shared with the business via email when submitted.

AWS provides a simplified way to host your static website in an Amazon S3 bucket using your own custom domain. You can either choose to register a new domain with AWS Route 53 or transfer your domain to Route 53 for hosting in five simple steps.

Obviously, you don’t want to spin-up a server to handle a simple “contact us” form, but it’s a critical element of your website. Luckily, in this post-cloud world, AWS delivers a serverless option. You can use AWS Lambda with Amazon API Gateway to create a serverless backend and use Amazon Simple Email Service to send an e-mail to the business owner whenever a customer submits any inquiry or feedback. Let’s learn how to do it.

Architecture Flow

Here, we are assuming a common website-to-cloud migration scenario, where you have registered your domain name with a 3rd party domain registrar and after migration of your website to Amazon S3. From there, you switched to Amazon Route 53 as your DNS provider. You contacted your DNS provider and updated the name server (NS) record to use the name servers in the delegation that you set in Amazon Route 53 (find step-by-step details in the AWS S3 development guide). Your email server still belongs to your DNS provider as you brought that in the package when you registered your domain with a multi-year contract.

Following is the architecture flow with detailed guidance.

lambdases

In the above diagram, the customer is submitting their inquiry through a “contact us” form, which is hosted in an Amazon S3 bucket as a static website. Information will flow in three simple steps:

  • Your “contact us” form will collect all user information and post to Amazon API Gateway restful service.
  • Amazon API Gateway will pass collected user information to an AWS lambda function.
  • AWS Lambda function will auto generate an e-mail and forward it to your mail server using Amazon SES.

Your “Contact Us” Form

Let’s start with a simple “contact us” form html code snippet:

<form id="contact-form" method="post">
      <h4>Name:</h4>
      <input type="text" style="height:35px;" id="name-input" placeholder="Enter name here…" class="form-control" style="width:100%;" /><br/>
      <h4>Phone:</h4>
      <input type="phone" style="height:35px;" id="phone-input" placeholder="Enter phone number" class="form-control" style="width:100%;"/><br/>
      <h4>Email:</h4>
      <input type="email" style="height:35px;" id="email-input" placeholder="Enter email here…" class="form-control" style="width:100%;"/><br/>
      <h4>How can we help you?</h4>
      <textarea id="description-input" rows="3" placeholder="Enter your message…" class="form-control" style="width:100%;"></textarea><br/>
      <div class="g-recaptcha" data-sitekey="6Lc7cVMUAAAAAM1yxf64wrmO8gvi8A1oQ_ead1ys" class="form-control" style="width:100%;"></div>
      <button type="button" onClick="submitToAPI(event)" class="btn btn-lg" style="margin-top:20px;">Submit</button>
</form>

The above form will ask the user to enter their name, phone, e-mail, and provide a free-form text box to write inquiry/feedback details and includes a submit button.

Later in the post, I’ll share the JQuery code for field validation and the variables to collect values.

Defining AWS Lambda Function

The next step is to create a lambda function, which will get all user information through the API Gateway. The lambda function will look something like this:

The AWS  lambda function mailfwd is triggered from the API Gateway POST method, which we will create the next section and send information to Amazon SES for mail forwarding.

If you are new to AWS Lambda then follow these simple steps to Create a Simple Lambda Function and get yourself familiar.

  1. Go to the console and click on “Create Function” and select blueprints for hello-world nodejs6.10 version as shown in below screenshot and click on configure button at the bottom.
  2. To create your AWS Lambda function,  select the “edit code inline” setting, which will have an editor box with the code in it, and replace that code (making sure to change [email protected] to your real e-mail address and update your actual domain in the response variable):

    var AWS = require('aws-sdk');
    var ses = new AWS.SES();
     
    var RECEIVER = '[email protected]';
    var SENDER = '[email protected]';
    
    var response = {
     "isBase64Encoded": false,
     "headers": { 'Content-Type': 'application/json', 'Access-Control-Allow-Origin': 'example.com'},
     "statusCode": 200,
     "body": "{\"result\": \"Success.\"}"
     };
    
    exports.handler = function (event, context) {
        console.log('Received event:', event);
        sendEmail(event, function (err, data) {
            context.done(err, null);
        });
    };
     
    function sendEmail (event, done) {
        var params = {
            Destination: {
                ToAddresses: [
                    RECEIVER
                ]
            },
            Message: {
                Body: {
                    Text: {
                        Data: 'name: ' + event.name + '\nphone: ' + event.phone + '\nemail: ' + event.email + '\ndesc: ' + event.desc,
                        Charset: 'UTF-8'
                    }
                },
                Subject: {
                    Data: 'Website Referral Form: ' + event.name,
                    Charset: 'UTF-8'
                }
            },
            Source: SENDER
        };
        ses.sendEmail(params, done);
    }
    

Now you can execute and test your AWS lambda function as directed in the AWS developer guide. Make sure to update the Lambda execution role and follow the steps provided in the Lambda developer guide to create a basic execution role.

Add following code under policy to allow Amazon SES access to AWS lambda function:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": "ses:SendEmail",
            "Resource": "*"
        }
    ]
}

Creating the API Gateway

Now, let’s create the API Gateway that will provide a restful API endpoint for our AWS Lambda function, which we are going to create next. We will use this API endpoint to post user-submitted information in the “Contact Us” form — which will also get posted to the AWS Lambda function.

If you are new to API Gateway, follow these simple steps to create and test an API from the example in the API Gateway Console to familiarize yourself.

  1. Login to AWS console and select API Gateway.  Click on create new API and fill your API name.
  2. Now go to your API name — listed in the left-hand navigation — click on the “actions” drop down, and select “create resource.”
  3. Select your newly-created resource and choose “create method.”  Choose a POST.  Here, you will choose our AWS Lambda Function. To do this, select “mailfwd” from the drop down.
  4. After saving the form above, Click on the “action” menu and choose “deploy API.”  You will see final resources and methods something like below:
  5. Now get your Restful API URL from the “stages” tab as shown in the screenshot below. We will use this URL on our “contact us” HTML page to send the request with all user information.
  6. Make sure to Enable CORS in the API Gateway or you’ll get an error:”Cross-Origin Request Blocked: The Same Origin Policy disallows reading the remote resource at https://abc1234.execute-api.us-east-1.amazonaws.com/02/mailme. (Reason: CORS header ‘Access-Control-Allow-Origin’ missing).”

Setup Amazon SES

Amazon SES requires that you verify your identities (the domains or email addresses that you send email from) to confirm that you own them, and to prevent unauthorized use. Follow the steps outlined in the Amazon SES user guide to verify your sender e-mail.

Connecting it all Together

Since we created our AWS Lambda function and provided the API-endpoint access using API gateway, it’s time to connect all the pieces together and test them. Put following JQuery code in your ContactUs HTML page <head> section. Replace URL variable with your API Gateway URL. You can change field validation as per your need.

function submitToAPI(e) {
       e.preventDefault();
       var URL = "https://abc1234.execute-api.us-east-1.amazonaws.com/01/contact";

            var Namere = /[A-Za-z]{1}[A-Za-z]/;
            if (!Namere.test($("#name-input").val())) {
                         alert ("Name can not less than 2 char");
                return;
            }
            var mobilere = /[0-9]{10}/;
            if (!mobilere.test($("#phone-input").val())) {
                alert ("Please enter valid mobile number");
                return;
            }
            if ($("#email-input").val()=="") {
                alert ("Please enter your email id");
                return;
            }

            var reeamil = /^([\w-\.][email protected]([\w-]+\.)+[\w-]{2,6})?$/;
            if (!reeamil.test($("#email-input").val())) {
                alert ("Please enter valid email address");
                return;
            }

       var name = $("#name-input").val();
       var phone = $("#phone-input").val();
       var email = $("#email-input").val();
       var desc = $("#description-input").val();
       var data = {
          name : name,
          phone : phone,
          email : email,
          desc : desc
        };

       $.ajax({
         type: "POST",
         url : "https://abc1234.execute-api.us-east-1.amazonaws.com/01/contact",
         dataType: "json",
         crossDomain: "true",
         contentType: "application/json; charset=utf-8",
         data: JSON.stringify(data),

         
         success: function () {
           // clear form and show a success message
           alert("Successfull");
           document.getElementById("contact-form").reset();
       location.reload();
         },
         error: function () {
           // show an error message
           alert("UnSuccessfull");
         }});
     }

Now you should be able to submit your contact form and start receiving email notifications when a form is completed and submitted.

Conclusion

Here we are addressing a common use case — a simple contact form — which is important for any small business hosting their website on Amazon S3. This post should help make your static website more dynamic without spinning up any server.

Have you had challenges adding a “contact us” form to your small business website?

About the author

Saurabh Shrivastava is a Solutions Architect working with global systems integrators. He works with our partners and customers to provide them architectural guidance for building scalable architecture in hybrid and AWS environment. In his spare time, he enjoys spending time with his family, hiking, and biking.

Announcing 7 New Exam Readiness Courses for AWS Certifications

Post Syndicated from Janna Pellegrino original https://aws.amazon.com/blogs/architecture/announcing-7-new-exam-readiness-courses-for-aws-certifications/

We’re excited to announce the launch of seven Exam Readiness courses to help you prepare for AWS Certification. Built by AWS, these courses are designed to help you prepare for the Solutions Architect, Developer, DevOps Engineer, Big Data, and Advanced Networking exams. Specifically, the Exam Readiness: AWS Certified Solutions Architect – Associate course has been updated to reflect the newest version of the exam released earlier this year.

What You’ll Learn
These new courses complement our technical training courses and focus on enabling you to validate your technical expertise with AWS Certification. We’ll teach you how to interpret exam questions, apply concepts being tested by the exam, and allocate your study time.

You’ll also have a chance to work through sample questions to understand the rationale behind correct and incorrect answer choices. Training is developed by AWS so our courses are current with the latest best practices. Plus, our classes are taught by AWS accredited instructors who have personal experience passing AWS Certification exams, and can help you identify areas for additional work and study.

Watch our video to hear more about these courses from our curriculum development manager.

Ready to Register?
Find and register for a class near you at aws.training. Looking to train several members of your team? You can also contact us for private, onsite training for your team.

Questions? Review our FAQ or contact us.

A serverless solution for invoking AWS Lambda at a sub-minute frequency

Post Syndicated from Emanuele Menga original https://aws.amazon.com/blogs/architecture/a-serverless-solution-for-invoking-aws-lambda-at-a-sub-minute-frequency/

If you’ve used Amazon CloudWatch Events to schedule the invocation of a Lambda function at regular intervals, you may have noticed that the highest frequency possible is one invocation per minute. However, in some cases, you may need to invoke Lambda more often than that. In this blog post, I’ll cover invoking a Lambda function every 10 seconds, but with some simple math you can change to whatever interval you like.

To achieve this, I’ll show you how to leverage Step Functions and Amazon Kinesis Data Streams.

The Solution

For this example, I’ve created a Step Functions State Machine that invokes our Lambda function 6 times, 10 seconds apart. Such State Machine is then executed once per minute by a CloudWatch Events Rule. This state machine is then executed once per minute by an Amazon CloudWatch Events rule. Finally, the Kinesis Data Stream triggers our Lambda function for each record inserted. The result is our Lambda function being invoked every 10 seconds, indefinitely.

Below is a diagram illustrating how the various services work together.

Step 1: My sampleLambda function doesn’t actually do anything, it just simulates an execution for a few seconds. This is the (Python) code of my dummy function:

import time

import random


def lambda_handler(event, context):

rand = random.randint(1, 3)

print('Running for {} seconds'.format(rand))

time.sleep(rand)

return True

Step 2:

The next step is to create a second Lambda function, that I called Iterator, which has two duties:

  • It keeps track of the current number of iterations, since Step Function doesn’t natively have a state we can use for this purpose.
  • It asynchronously invokes our Lambda function at every loops.

This is the code of the Iterator, adapted from here.

 

import boto3

client = boto3.client('kinesis')

def lambda_handler(event, context):

index = event['iterator']['index'] + 1

response = client.put_record(

StreamName='LambdaSubMinute',

PartitionKey='1',

Data='',

)

return {

'index': index,

'continue': index < event['iterator']['count'],

'count': event['iterator']['count']

}

This function does three things:

  • Increments the counter.
  • Verifies if we reached a count of (in this example) 6.
  • Sends an empty record to the Kinesis Stream.

Now we can create the Step Functions State Machine; the definition is, again, adapted from here.

 

{

"Comment": "Invoke Lambda every 10 seconds",

"StartAt": "ConfigureCount",

"States": {

"ConfigureCount": {

"Type": "Pass",

"Result": {

"index": 0,

"count": 6

},

"ResultPath": "$.iterator",

"Next": "Iterator"

},

"Iterator": {

"Type": "Task",

"Resource": “arn:aws:lambda:REGION:ACCOUNT_ID:function:Iterator",

"ResultPath": "$.iterator",

"Next": "IsCountReached"

},

"IsCountReached": {

"Type": "Choice",

"Choices": [

{

"Variable": "$.iterator.continue",

"BooleanEquals": true,

"Next": "Wait"

}

],

"Default": "Done"

},

"Wait": {

"Type": "Wait",

"Seconds": 10,

"Next": "Iterator"

},

"Done": {

"Type": "Pass",

"End": true

}

}

}

This is how it works:

  1. The state machine starts and sets the index at 0 and the count at 6.
  2. Iterator function is invoked.
  3. If the iterator function reached the end of the loop, the IsCountReached state terminates the execution, otherwise the machine waits for 10 seconds.
  4. The machine loops back to the iterator.

Step 3: Create an Amazon CloudWatch Events rule scheduled to trigger every minute and add the state machine as its target. I’ve actually prepared an Amazon CloudFormation template that creates the whole stack and starts the Lambda invocations, you can find it here.

Performance

Let’s have a look at a sample series of invocations and analyse how precise the timing is. In the following chart I reported the delay (in excess of the expected 10-second-wait) of 30 consecutive invocations of my dummy function, when the Iterator is configured with a memory size of 1024MB.

Invocations Delay

Notice the delay increases by a few hundred milliseconds at every invocation. The good news is it accrues only within the same loop, 6 times; after that, a new CloudWatch Events kicks in and it resets.

This delay  is due to the work that AWS Step Function does outside of the Wait state, the main component of which is the Iterator function itself, that runs synchronously in the state machine and therefore adds up its duration to the 10-second-wait.

As we can easily imagine, the memory size of the Iterator Lambda function does make a difference. Here are the Average and Maximum duration of the function with 256MB, 512MB, 1GB and 2GB of memory.

Average Duration

Maximum Duration


Given those results, I’d say that a memory of 1024MB is a good compromise between costs and performance.

Caveats

As mentioned, in our Amazon CloudWatch Events documentation, in rare cases a rule can be triggered twice, causing two parallel executions of the state machine. If that is a concern, we can add a task state at the beginning of the state machine that checks if any other executions are currently running. If the outcome is positive, then a choice state can immediately terminate the flow. Since the state machine is invoked every 60 seconds and runs for about 50, it is safe to assume that executions should all be sequential and any parallel executions should be treated as duplicates. The task state that checks for current running executions can be a Lambda function similar to the following:

 

import boto3

client = boto3.client('stepfunctions')

def lambda_handler(event, context):

response = client.list_executions(

stateMachineArn='arn:aws:states:REGION:ACCOUNTID:stateMachine:LambdaSubMinute',

statusFilter='RUNNING'

)

return {

'alreadyRunning': len(response['executions']) > 0

}

About the Author

Emanuele Menga, Cloud Support Engineer

 

Serverless Architectures with AWS Lambda: Overview and Best Practices

Post Syndicated from Andrew Baird original https://aws.amazon.com/blogs/architecture/serverless-architectures-with-aws-lambda-overview-and-best-practices/

For some organizations, the idea of “going serverless” can be daunting. But with an understanding of best practices – and the right tools — many serverless applications can be fully functional with only a few lines of code and little else.

Examples of fully-serverless-application use cases include:

  • Web or mobile backends – Create fully-serverless, mobile applications or websites by creating user-facing content in a native mobile application or static web content in an S3 bucket. Then have your front-end content integrate with Amazon API Gateway as a backend service API. Lambda functions will then execute the business logic you’ve written for each of the API Gateway methods in your backend API.
  • Chatbots and virtual assistants – Build new serverless ways to interact with your customers, like customer support assistants and bots ready to engage customers on your company-run social media pages. The Amazon Alexa Skills Kit (ASK) and Amazon Lex have the ability to apply natural-language understanding to user-voice and freeform-text input so that a Lambda function you write can intelligently respond and engage with them.
  • Internet of Things (IoT) backends – AWS IoT has direct-integration for device messages to be routed to and processed by Lambda functions. That means you can implement serverless backends for highly secure, scalable IoT applications for uses like connected consumer appliances and intelligent manufacturing facilities.

Using AWS Lambda as the logic layer of a serverless application can enable faster development speed and greater experimentation – and innovation — than in a traditional, server-based environment.

We recently published the “Serverless Architectures with AWS Lambda: Overview and Best Practices” whitepaper to provide the guidance and best practices you need to write better Lambda functions and build better serverless architectures.

Once you’ve finished reading the whitepaper, below are a couple additional resources I recommend as your next step:

  1. If you would like to better understand some of the architecture pattern possibilities for serverless applications: Thirty Serverless Architectures in 30 Minutes (re:Invent 2017 video)
  2. If you’re ready to get hands-on and build a sample serverless application: AWS Serverless Workshops (GitHub Repository)
  3. If you’ve already built a serverless application and you’d like to ensure your application has been Well Architected: The Serverless Application Lens: AWS Well Architected Framework (Whitepaper)

About the Author

 

Andrew Baird is a Sr. Solutions Architect for AWS. Prior to becoming a Solutions Architect, Andrew was a developer, including time as an SDE with Amazon.com. He has worked on large-scale distributed systems, public-facing APIs, and operations automation.

Security of Cloud HSMBackups

Post Syndicated from Balaji Iyer original https://aws.amazon.com/blogs/architecture/security-of-cloud-hsmbackups/

Today, our customers use AWS CloudHSM to meet corporate, contractual and regulatory compliance requirements for data security by using dedicated Hardware Security Module (HSM) instances within the AWS cloud. CloudHSM delivers all the benefits of traditional HSMs including secure generation, storage, and management of cryptographic keys used for data encryption that are controlled and accessible only by you.

As a managed service, it automates time-consuming administrative tasks such as hardware provisioning, software patching, high availability, backups and scaling for your sensitive and regulated workloads in a cost-effective manner. Backup and restore functionality is the core building block enabling scalability, reliability and high availability in CloudHSM.

You should consider using AWS CloudHSM if you require:

  • Keys stored in dedicated, third-party validated hardware security modules under your exclusive control
  • FIPS 140-2 compliance
  • Integration with applications using PKCS#11, Java JCE, or Microsoft CNG interfaces
  • High-performance in-VPC cryptographic acceleration (bulk crypto)
  • Financial applications subject to PCI regulations
  • Healthcare applications subject to HIPAA regulations
  • Streaming video solutions subject to contractual DRM requirements

We recently released a whitepaper, “Security of CloudHSM Backups” that provides in-depth information on how backups are protected in all three phases of the CloudHSM backup lifecycle process: Creation, Archive, and Restore.

About the Author

Balaji Iyer is a senior consultant in the Professional Services team at Amazon Web Services. In this role, he has helped several customers successfully navigate their journey to AWS. His specialties include architecting and implementing highly-scalable distributed systems, operational security, large scale migrations, and leading strategic AWS initiatives.

Leveraging AWS Marketplace Partner Storage Solutions for Microsoft

Post Syndicated from islawson original https://aws.amazon.com/blogs/architecture/leveraging-aws-marketplace-partner-storage-solutions-for-microsoft/

Designing a cloud storage solution to accommodate traditional enterprise software such as Microsoft SharePoint can be challenging. Microsoft SharePoint is complex and demands a lot of the underlying storage that’s used for its many databases and content repositories. To ensure that the selected storage platform can accommodate the availability, connectivity, and performance requirements recommended by Microsoft you need to use third-party storage solutions that build on and extend the functionality and performance of AWS storage services.

An appropriate storage solution for Microsoft SharePoint needs to provide data redundancy, high availability, fault tolerance, strong encryption, standard connectivity protocols, point-in-time data recovery, compression, ease of management, directory integration, and support.

AWS Marketplace is uniquely positioned as a procurement channel to find a third-party storage product that provides the additional technology layered on top of AWS storage services. The third-party storage products are provided and maintained by industry newcomers with born-in-the-cloud solutions as well as existing industry leaders. They include many mainstream storage products that are already familiar and commonly deployed in enterprises.

We recently released the “Leveraging AWS Marketplace Storage Solutions for Microsoft SharePoint” whitepaper to walk through the deployment and configuration of SoftNAS Cloud NAS, an AWS Marketplace third-party storage product that provides secure, highly available, redundant, and fault-tolerant storage to the Microsoft SharePoint collaboration suite.

About the Author

Israel Lawson is a senior solutions architect on the AWS Marketplace team.

WordPress: Best Practices on AWS

Post Syndicated from Paul Lewis original https://aws.amazon.com/blogs/architecture/wordpress-best-practices-on-aws/

As most of you already know, WordPress is a popular open-source blogging platform and content management system (CMS) based on PHP and MySQL. AWS customers deploy everything from simple blogs to high-traffic, complex websites.

We have recently updated the “WordPress: Best Practices on AWS” whitepaper to incorporate new AWS services and the latest best practices and thinking. In the updated whitepaper we cover creating a simple deployment with a single server, which is a great starting point for those new to WordPress, or those looking for a cost-efficient solution for development and test environments.

We also look at to separate out the various components of a typical WordPress website in order to improve performance, resiliency, and cost efficiency, culminating in a highly available, multi-server, scalable architecture like the one illustrated below.

The elastic deployment outlined in the whitepaper is very closely related to the reference architecture for deploying WordPress on AWS, which is available on GitHub.

About the Author

Paul is a Solutions Architect in the New Economies and Startup practice in the UK. He’s been tinkering with WordPress websites for almost 10 years, and has a special interest in container technologies.

Serverless Dynamic Web Pages in AWS: Provisioned with CloudFormation

Post Syndicated from AWS Admin original https://aws.amazon.com/blogs/architecture/serverless-dynamic-web-pages-in-aws-provisioned-with-cloudformation/

***This blog is authored by Mike Okner of Monsanto, an AWS customer. It originally appeared on the Monsanto company blog. Minor edits were made to the original post.***

Recently, I was looking to create a status page app to monitor a few important internal services. I wanted this app to be as lightweight, reliable, and hassle-free as possible, so using a “serverless” architecture that doesn’t require any patching or other maintenance was quite appealing.

I also don’t deploy anything in a production AWS environment outside of some sort of template (usually CloudFormation) as a rule. I don’t want to have to come back to something I created ad hoc in the console after 6 months and try to recall exactly how I architected all of the resources. I’ll inevitably forget something and create more problems before solving the original one. So building the status page in a template was a requirement.

The Design
I settled on a design using two Lambda functions, both written in Python 3.6.

The first Lambda function makes requests out to a list of important services and writes their current status to a DynamoDB table. This function is executed once per minute via CloudWatch Event Rule.

The second Lambda function reads each service’s status & uptime information from DynamoDB and renders a Jinja template. This function is behind an API Gateway that has been configured to return text/html instead of its default application/json Content-Type.

The CloudFormation Template
AWS provides a Serverless Application Model template transformer to streamline the templating of Lambda + API Gateway designs, but it assumes (like everything else about the API Gateway) that you’re actually serving an API that returns JSON content. So, unfortunately, it won’t work for this use-case because we want to return HTML content. Instead, we’ll have to enumerate every resource like usual.

The Skeleton
We’ll be using YAML for the template in this example. I find it easier to read than JSON, but you can easily convert between the two with a converter if you disagree.

---
AWSTemplateFormatVersion: '2010-09-09'
Description: Serverless status page app
Resources:
  # [...Resources]

The Status-Checker Lambda Resource
This one is triggered on a schedule by CloudWatch, and looks like:

# Status Checker Lambda
CheckerLambda:
  Type: AWS::Lambda::Function
  Properties:
    Code: ./lambda.zip
    Environment:
      Variables:
        TABLE_NAME: !Ref DynamoTable
    Handler: checker.handler
    Role:
      Fn::GetAtt:
      - CheckerLambdaRole
      - Arn
    Runtime: python3.6
    Timeout: 45
CheckerLambdaRole:
  Type: AWS::IAM::Role
  Properties:
    ManagedPolicyArns:
    - arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess
    - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
    AssumeRolePolicyDocument:
      Version: '2012-10-17'
      Statement:
      - Action:
        - sts:AssumeRole
        Effect: Allow
        Principal:
          Service:
          - lambda.amazonaws.com
CheckerLambdaTimer:
  Type: AWS::Events::Rule
  Properties:
    ScheduleExpression: rate(1 minute)
    Targets:
    - Id: CheckerLambdaTimerLambdaTarget
      Arn:
        Fn::GetAtt:
        - CheckerLambda
        - Arn
CheckerLambdaTimerPermission:
  Type: AWS::Lambda::Permission
  Properties:
    Action: lambda:invokeFunction
    FunctionName: !Ref CheckerLambda
    SourceArn:
      Fn::GetAtt:
      - CheckerLambdaTimer
      - Arn
    Principal: events.amazonaws.com

Let’s break that down a bit.

The CheckerLambda is the actual Lambda function. The Code section is a local path to a ZIP file containing the code and its dependencies. I’m using CloudFormation’s packaging feature to automatically push the deployable to S3.

The CheckerLambdaRole is the IAM role the Lambda will assume which grants it access to DynamoDB in addition to the usual Lambda logging permissions.

The CheckerLambdaTimer is the CloudWatch Events Rule that triggers the checker to run once per minute.

The CheckerLambdaTimerPermission grants CloudWatch the ability to invoke the checker Lambda function on its interval.

The Web Page Gateway
The API Gateway handles incoming requests for the web page, invokes the Lambda, and then returns the Lambda’s results as HTML content. Its template looks like:

# API Gateway for Web Page Lambda
PageGateway:
  Type: AWS::ApiGateway::RestApi
  Properties:
    Name: Service Checker Gateway
PageResource:
  Type: AWS::ApiGateway::Resource
  Properties:
    RestApiId: !Ref PageGateway
    ParentId:
      Fn::GetAtt:
      - PageGateway
      - RootResourceId
    PathPart: page
PageGatewayMethod:
  Type: AWS::ApiGateway::Method
  Properties:
    AuthorizationType: NONE
    HttpMethod: GET
    Integration:
      Type: AWS
      IntegrationHttpMethod: POST
      Uri:
        Fn::Sub: arn:aws:apigateway:${AWS::Region}:lambda:path/2015-03-31/functions/${WebRenderLambda.Arn}/invocations
      RequestTemplates:
        application/json: |
          {
              "method": "$context.httpMethod",
              "body" : $input.json('$'),
              "headers": {
                  #foreach($param in $input.params().header.keySet())
                  "$param": "$util.escapeJavaScript($input.params().header.get($param))"
                  #if($foreach.hasNext),#end
                  #end
              }
          }
      IntegrationResponses:
      - StatusCode: 200
        ResponseParameters:
          method.response.header.Content-Type: "'text/html'"
        ResponseTemplates:
          text/html: "$input.path('$')"
    ResourceId: !Ref PageResource
    RestApiId: !Ref PageGateway
    MethodResponses:
    - StatusCode: 200
      ResponseParameters:
        method.response.header.Content-Type: true
PageGatewayProdStage:
  Type: AWS::ApiGateway::Stage
  Properties:
    DeploymentId: !Ref PageGatewayDeployment
    RestApiId: !Ref PageGateway
    StageName: Prod
PageGatewayDeployment:
  Type: AWS::ApiGateway::Deployment
  DependsOn: PageGatewayMethod
  Properties:
    RestApiId: !Ref PageGateway
    Description: PageGateway deployment
    StageName: Stage

There’s a lot going on here, but the real meat is in the PageGatewayMethod section. There are a couple properties that deviate from the default which is why we couldn’t use the SAM transformer.

First, we’re passing request headers through to the Lambda in theRequestTemplates section. I’m doing this so I can validate incoming auth headers. The API Gateway can do some types of auth, but I found it easier to check auth myself in the Lambda function since the Gateway is designed to handle API calls and not browser requests.

Next, note that in the IntegrationResponses section we’re defining the Content-Type header to be ‘text/html’ (with single-quotes) and defining the ResponseTemplate to be $input.path(‘$’). This is what makes the request render as a HTML page in your browser instead of just raw text.

Due to the StageName and PathPart values in the other sections, your actual page will be accessible at https://someId.execute-api.region.amazonaws.com/Prod/page. I have the page behind an existing reverse-proxy and give it a saner URL for end-users. The reverse proxy also attaches the auth header I mentioned above. If that header isn’t present, the Lambda will render an error page instead so the proxy can’t be bypassed.

The Web Page Rendering Lambda
This Lambda is invoked by calls to the API Gateway and looks like:

# Web Page Lambda
WebRenderLambda:
  Type: AWS::Lambda::Function
  Properties:
    Code: ./lambda.zip
    Environment:
      Variables:
        TABLE_NAME: !Ref DynamoTable
    Handler: web.handler
    Role:
      Fn::GetAtt:
      - WebRenderLambdaRole
      - Arn
    Runtime: python3.6
    Timeout: 30
WebRenderLambdaRole:
  Type: AWS::IAM::Role
  Properties:
    ManagedPolicyArns:
    - arn:aws:iam::aws:policy/AmazonDynamoDBReadOnlyAccess
    - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
    AssumeRolePolicyDocument:
      Version: '2012-10-17'
      Statement:
      - Action:
        - sts:AssumeRole
        Effect: Allow
        Principal:
          Service:
          - lambda.amazonaws.com
WebRenderLambdaGatewayPermission:
  Type: AWS::Lambda::Permission
  Properties:
    FunctionName: !Ref WebRenderLambda
    Action: lambda:invokeFunction
    Principal: apigateway.amazonaws.com
    SourceArn:
      Fn::Sub:
      - arn:aws:execute-api:${AWS::Region}:${AWS::AccountId}:${__ApiId__}/*/*/*
      - __ApiId__: !Ref PageGateway

The WebRenderLambda and WebRenderLambdaRole should look familiar.

The WebRenderLambdaGatewayPermission is similar to the Status Checker’s CloudWatch permission, only this time it allows the API Gateway to invoke this Lambda.

The DynamoDB Table
This one is straightforward.

# DynamoDB table
DynamoTable:
  Type: AWS::DynamoDB::Table
  Properties:
    AttributeDefinitions:
    - AttributeName: name
      AttributeType: S
    ProvisionedThroughput:
      WriteCapacityUnits: 1
      ReadCapacityUnits: 1
    TableName: status-page-checker-results
    KeySchema:
    - KeyType: HASH
      AttributeName: name

The Deployment
We’ve made it this far defining every resource in a template that we can check in to version control, so we might as well script the deployment as well rather than manually manage the CloudFormation Stack via the AWS web console.

Since I’m using the packaging feature, I first run:

$ aws cloudformation package \
    --template-file template.yaml \
    --s3-bucket <some-bucket-name> \
    --output-template-file template-packaged.yaml
Uploading to 34cd6e82c5e8205f9b35e71afd9e1548 1922559 / 1922559.0 (100.00%) Successfully packaged artifacts and wrote output template to file template-packaged.yaml.

Then to deploy the template (whether new or modified), I run:

$ aws cloudformation deploy \
    --region '<aws-region>' \
    --template-file template-packaged.yaml \
    --stack-name '<some-name>' \
    --capabilities CAPABILITY_IAM
Waiting for changeset to be created.. Waiting for stack create/update to complete Successfully created/updated stack - <some-name>

And that’s it! You’ve just created a dynamic web page that will never require you to SSH anywhere, patch a server, recover from a disaster after Amazon terminates your unhealthy EC2, or any other number of pitfalls that are now the problem of some ops person at AWS. And you can reproduce deployments and make changes with confidence because everything is defined in the template and can be tracked in version control.

Central Logging in Multi-Account Environments

Post Syndicated from matouk original https://aws.amazon.com/blogs/architecture/central-logging-in-multi-account-environments/

Centralized logging is often required in large enterprise environments for a number of reasons, ranging from compliance and security to analytics and application-specific needs.

I’ve seen that in a multi-account environment, whether the accounts belong to the same line of business or multiple business units, collecting logs in a central, dedicated logging account is an established best practice. It helps security teams detect malicious activities both in real-time and during incident response. It provides protection to log data in case it is accidentally or intentionally deleted. It also helps application teams correlate and analyze log data across multiple application tiers.

This blog post provides a solution and building blocks to stream Amazon CloudWatch log data across accounts. In a multi-account environment this repeatable solution could be deployed multiple times to stream all relevant Amazon CloudWatch log data from all accounts to a centralized logging account.

Solution Summary 

The solution uses Amazon Kinesis Data Streams and a log destination to set up an endpoint in the logging account to receive streamed logs and uses Amazon Kinesis Data Firehose to deliver log data to the Amazon Simple Storage Solution (S3) bucket. Application accounts will subscribe to stream all (or part) of their Amazon CloudWatch logs to a defined destination in the logging account via subscription filters.

Below is a diagram illustrating how the various services work together.


In logging an account, a Kinesis Data Stream is created to receive streamed log data and a log destination is created to facilitate remote streaming, configured to use the Kinesis Data Stream as its target.

The Amazon Kinesis Data Firehose stream is created to deliver log data from the data stream to S3. The delivery stream uses a generic AWS Lambda function for data validation and transformation.

In each application account, a subscription filter is created between each Amazon CloudWatch log group and the destination created for this log group in the logging account.

The following steps are involved in setting up the central-logging solution:

  1. Create an Amazon S3 bucket for your central logging in the logging account
  2. Create an AWS Lambda function for log data transformation and decoding in logging account
  3. Create a central logging stack as a logging-account destination ready to receive streamed logs and deliver them to S3
  4. Create a subscription in application accounts to deliver logs from a specific CloudWatch log group to the logging account destination
  5. Create Amazon Athena tables to query and analyze log data in your logging account

Creating a log destination in your logging account

In this section, we will setup the logging account side of the solution, providing detail on the list above. The example I use is for the us-east-1 region, however any region where required services are available could be used.

It’s important to note that your logging-account destination and application-account subscription must be in the same region. You can deploy the solution multiple times to create destinations in all required regions if application accounts use multiple regions.

Step 1: Create an S3 bucket

Use the CloudFormation template below to create S3 bucket in logging account. This template also configures the bucket to archive log data to Glacier after 60 days.


{
  "AWSTemplateFormatVersion":"2010-09-09",
  "Description": "CF Template to create S3 bucket for central logging",
  "Parameters":{

    "BucketName":{
      "Type":"String",
      "Default":"",
      "Description":"Central logging bucket name"
    }
  },
  "Resources":{
                        
   "CentralLoggingBucket" : {
      "Type" : "AWS::S3::Bucket",
      "Properties" : {
        "BucketName" : {"Ref": "BucketName"},
        "LifecycleConfiguration": {
            "Rules": [
                {
                  "Id": "ArchiveToGlacier",
                  "Prefix": "",
                  "Status": "Enabled",
                  "Transitions":[{
                      "TransitionInDays": "60",
                      "StorageClass": "GLACIER"
                  }]
                }
            ]
        }
      }
    }

  },
  "Outputs":{
    "CentralLogBucket":{
    	"Description" : "Central log bucket",
    	"Value" : {"Ref": "BucketName"} ,
    	"Export" : { "Name" : "CentralLogBucketName"}
    }
  }
} 

To create your central-logging bucket do the following:

  1. Save the template file to your local developer machine as “central-log-bucket.json”
  2. From the CloudFormation console, select “create new stack” and import the file “central-log-bucket.json”
  3. Fill in the parameters and complete stack creation steps (as indicated in the screenshot below)
  4. Verify the bucket has been created successfully and take a note of the bucket name

Step 2: Create data processing Lambda function

Use the template below to create a Lambda function in your logging account that will be used by Amazon Firehose for data transformation during the delivery process to S3. This function is based on the AWS Lambda kinesis-firehose-cloudwatch-logs-processor blueprint.

The function could be created manually from the blueprint or using the cloudformation template below. To find the blueprint navigate to Lambda -> Create -> Function -> Blueprints

This function will unzip the event message, parse it and verify that it is a valid CloudWatch log event. Additional processing can be added if needed. As this function is generic, it could be reused by all log-delivery streams.

{
  "AWSTemplateFormatVersion":"2010-09-09",
  "Description": "Create cloudwatch data processing lambda function",
  "Resources":{
      
    "LambdaRole": {
        "Type": "AWS::IAM::Role",
        "Properties": {
            "AssumeRolePolicyDocument": {
                "Version": "2012-10-17",
                "Statement": [
                    {
                        "Effect": "Allow",
                        "Principal": {
                            "Service": "lambda.amazonaws.com"
                        },
                        "Action": "sts:AssumeRole"
                    }
                ]
            },
            "Path": "/",
            "Policies": [
                {
                    "PolicyName": "firehoseCloudWatchDataProcessing",
                    "PolicyDocument": {
                        "Version": "2012-10-17",
                        "Statement": [
                            {
                                "Effect": "Allow",
                                "Action": [
                                    "logs:CreateLogGroup",
                                    "logs:CreateLogStream",
                                    "logs:PutLogEvents"
                                ],
                                "Resource": "arn:aws:logs:*:*:*"
                            }
                        ]
                    }
                }
            ]
        }
    },
      
    "FirehoseDataProcessingFunction": {
        "Type": "AWS::Lambda::Function",
        "Properties": {
            "Handler": "index.handler",
            "Role": {"Fn::GetAtt": ["LambdaRole","Arn"]},
            "Description": "Firehose cloudwatch data processing",
            "Code": {
                "ZipFile" : { "Fn::Join" : ["\n", [
                  "'use strict';",
                  "const zlib = require('zlib');",
                  "function transformLogEvent(logEvent) {",
                  "       return Promise.resolve(`${logEvent.message}\n`);",
                  "}",
                  "exports.handler = (event, context, callback) => {",
                  "    Promise.all(event.records.map(r => {",
                  "        const buffer = new Buffer(r.data, 'base64');",
                  "        const decompressed = zlib.gunzipSync(buffer);",
                  "        const data = JSON.parse(decompressed);",
                  "        if (data.messageType !== 'DATA_MESSAGE') {",
                  "            return Promise.resolve({",
                  "                recordId: r.recordId,",
                  "                result: 'ProcessingFailed',",
                  "            });",
                  "         } else {",
                  "            const promises = data.logEvents.map(transformLogEvent);",
                  "            return Promise.all(promises).then(transformed => {",
                  "                const payload = transformed.reduce((a, v) => a + v, '');",
                  "                const encoded = new Buffer(payload).toString('base64');",
                  "                console.log('---------------payloadv2:'+JSON.stringify(payload, null, 2));",
                  "                return {",
                  "                    recordId: r.recordId,",
                  "                    result: 'Ok',",
                  "                    data: encoded,",
                  "                };",
                  "           });",
                  "        }",
                  "    })).then(recs => callback(null, { records: recs }));",
                    "};"

                ]]}
            },
            "Runtime": "nodejs6.10",
            "Timeout": "60"
        }
    }

  },
  "Outputs":{
   "Function" : {
      "Description": "Function ARN",
      "Value": {"Fn::GetAtt": ["FirehoseDataProcessingFunction","Arn"]},
      "Export" : { "Name" : {"Fn::Sub": "${AWS::StackName}-Function" }}
    }
  }
}

To create the function follow the steps below:

  1. Save the template file as “central-logging-lambda.json”
  2. Login to logging account and, from the CloudFormation console, select “create new stack”
  3. Import the file “central-logging-lambda.json” and click next
  4. Follow the steps to create the stack and verify successful creation
  5. Take a note of Lambda function arn from the output section

Step 3: Create log destination in logging account

Log destination is used as the target of a subscription from application accounts, log destination can be shared between multiple subscriptions however according to the architecture suggested in this solution all logs streamed to the same destination will be stored in the same S3 location, if you would like to store log data in different hierarchy or in a completely different bucket you need to create separate destinations.

As noted previously, your destination and subscription have to be in the same region

Use the template below to create destination stack in logging account.

{
  "AWSTemplateFormatVersion":"2010-09-09",
  "Description": "Create log destination and required resources",
  "Parameters":{

    "LogBucketName":{
      "Type":"String",
      "Default":"central-log-do-not-delete",
      "Description":"Destination logging bucket"
    },
    "LogS3Location":{
      "Type":"String",
      "Default":"<BU>/<ENV>/<SOURCE_ACCOUNT>/<LOG_TYPE>/",
      "Description":"S3 location for the logs streamed to this destination; example marketing/prod/999999999999/flow-logs/"
    },
    "ProcessingLambdaARN":{
      "Type":"String",
      "Default":"",
      "Description":"CloudWatch logs data processing function"
    },
    "SourceAccount":{
      "Type":"String",
      "Default":"",
      "Description":"Source application account number"
    }
  },
    
  "Resources":{
    "MyStream": {
      "Type": "AWS::Kinesis::Stream",
      "Properties": {
        "Name": {"Fn::Join" : [ "", [{ "Ref" : "AWS::StackName" },"-Stream"] ]},
        "RetentionPeriodHours" : 48,
        "ShardCount": 1,
        "Tags": [
          {
            "Key": "Solution",
            "Value": "CentralLogging"
          }
       ]
      }
    },
    "LogRole" : {
      "Type"  : "AWS::IAM::Role",
      "Properties" : {
          "AssumeRolePolicyDocument" : {
              "Statement" : [ {
                  "Effect" : "Allow",
                  "Principal" : {
                      "Service" : [ {"Fn::Join": [ "", [ "logs.", { "Ref": "AWS::Region" }, ".amazonaws.com" ] ]} ]
                  },
                  "Action" : [ "sts:AssumeRole" ]
              } ]
          },         
          "Path" : "/service-role/"
      }
    },
      
    "LogRolePolicy" : {
        "Type" : "AWS::IAM::Policy",
        "Properties" : {
            "PolicyName" : {"Fn::Join" : [ "", [{ "Ref" : "AWS::StackName" },"-LogPolicy"] ]},
            "PolicyDocument" : {
              "Version": "2012-10-17",
              "Statement": [
                {
                  "Effect": "Allow",
                  "Action": ["kinesis:PutRecord"],
                  "Resource": [{ "Fn::GetAtt" : ["MyStream", "Arn"] }]
                },
                {
                  "Effect": "Allow",
                  "Action": ["iam:PassRole"],
                  "Resource": [{ "Fn::GetAtt" : ["LogRole", "Arn"] }]
                }
              ]
            },
            "Roles" : [ { "Ref" : "LogRole" } ]
        }
    },
      
    "LogDestination" : {
      "Type" : "AWS::Logs::Destination",
      "DependsOn" : ["MyStream","LogRole","LogRolePolicy"],
      "Properties" : {
        "DestinationName": {"Fn::Join" : [ "", [{ "Ref" : "AWS::StackName" },"-Destination"] ]},
        "RoleArn": { "Fn::GetAtt" : ["LogRole", "Arn"] },
        "TargetArn": { "Fn::GetAtt" : ["MyStream", "Arn"] },
        "DestinationPolicy": { "Fn::Join" : ["",[
		
				"{\"Version\" : \"2012-10-17\",\"Statement\" : [{\"Effect\" : \"Allow\",",
                " \"Principal\" : {\"AWS\" : \"", {"Ref":"SourceAccount"} ,"\"},",
                "\"Action\" : \"logs:PutSubscriptionFilter\",",
                " \"Resource\" : \"", 
                {"Fn::Join": [ "", [ "arn:aws:logs:", { "Ref": "AWS::Region" }, ":" ,{ "Ref": "AWS::AccountId" }, ":destination:",{ "Ref" : "AWS::StackName" },"-Destination" ] ]}  ,"\"}]}"

			]]}
          
          
      }
    },
      
    "S3deliveryStream": {
      "DependsOn": ["S3deliveryRole", "S3deliveryPolicy"],
      "Type": "AWS::KinesisFirehose::DeliveryStream",
      "Properties": {
        "DeliveryStreamName": {"Fn::Join" : [ "", [{ "Ref" : "AWS::StackName" },"-DeliveryStream"] ]},
        "DeliveryStreamType": "KinesisStreamAsSource",
        "KinesisStreamSourceConfiguration": {
            "KinesisStreamARN": { "Fn::GetAtt" : ["MyStream", "Arn"] },
            "RoleARN": {"Fn::GetAtt" : ["S3deliveryRole", "Arn"] }
        },
        "ExtendedS3DestinationConfiguration": {
          "BucketARN": {"Fn::Join" : [ "", ["arn:aws:s3:::",{"Ref":"LogBucketName"}] ]},
          "BufferingHints": {
            "IntervalInSeconds": "60",
            "SizeInMBs": "50"
          },
          "CompressionFormat": "UNCOMPRESSED",
          "Prefix": {"Ref": "LogS3Location"},
          "RoleARN": {"Fn::GetAtt" : ["S3deliveryRole", "Arn"] },
          "ProcessingConfiguration" : {
              "Enabled": "true",
              "Processors": [
              {
                "Parameters": [ 
                { 
                    "ParameterName": "LambdaArn",
                    "ParameterValue": {"Ref":"ProcessingLambdaARN"}
                }],
                "Type": "Lambda"
              }]
          }
        }

      }
    },
      
    "S3deliveryRole": {
      "Type": "AWS::IAM::Role",
      "Properties": {
        "AssumeRolePolicyDocument": {
          "Version": "2012-10-17",
          "Statement": [
            {
              "Sid": "",
              "Effect": "Allow",
              "Principal": {
                "Service": "firehose.amazonaws.com"
              },
              "Action": "sts:AssumeRole",
              "Condition": {
                "StringEquals": {
                  "sts:ExternalId": {"Ref":"AWS::AccountId"}
                }
              }
            }
          ]
        }
      }
    },
      
    "S3deliveryPolicy": {
      "Type": "AWS::IAM::Policy",
      "Properties": {
        "PolicyName": {"Fn::Join" : [ "", [{ "Ref" : "AWS::StackName" },"-FirehosePolicy"] ]},
        "PolicyDocument": {
          "Version": "2012-10-17",
          "Statement": [
            {
              "Effect": "Allow",
              "Action": [
                "s3:AbortMultipartUpload",
                "s3:GetBucketLocation",
                "s3:GetObject",
                "s3:ListBucket",
                "s3:ListBucketMultipartUploads",
                "s3:PutObject"
              ],
              "Resource": [
                {"Fn::Join": ["", [ {"Fn::Join" : [ "", ["arn:aws:s3:::",{"Ref":"LogBucketName"}] ]}]]},
                {"Fn::Join": ["", [ {"Fn::Join" : [ "", ["arn:aws:s3:::",{"Ref":"LogBucketName"}] ]}, "*"]]}
              ]
            },
            {
              "Effect": "Allow",
              "Action": [
                "lambda:InvokeFunction",
                "lambda:GetFunctionConfiguration",
                "logs:PutLogEvents",
                "kinesis:DescribeStream",
                "kinesis:GetShardIterator",
                "kinesis:GetRecords",
                "kms:Decrypt"
              ],
              "Resource": "*"
            }
          ]
        },
        "Roles": [{"Ref": "S3deliveryRole"}]
      }
    }

  },
  "Outputs":{
      
   "Destination" : {
      "Description": "Destination",
      "Value": {"Fn::Join": [ "", [ "arn:aws:logs:", { "Ref": "AWS::Region" }, ":" ,{ "Ref": "AWS::AccountId" }, ":destination:",{ "Ref" : "AWS::StackName" },"-Destination" ] ]},
      "Export" : { "Name" : {"Fn::Sub": "${AWS::StackName}-Destination" }}
    }

  }
} 

To create log your destination and all required resources, follow these steps:

  1. Save your template as “central-logging-destination.json”
  2. Login to your logging account and, from the CloudFormation console, select “create new stack”
  3. Import the file “central-logging-destination.json” and click next
  4. Fill in the parameters to configure the log destination and click Next
  5. Follow the default steps to create the stack and verify successful creation
    1. Bucket name is the same as in the “create central logging bucket” step
    2. LogS3Location is the directory hierarchy for saving log data that will be delivered to this destination
    3. ProcessingLambdaARN is as created in “create data processing Lambda function” step
    4. SourceAccount is the application account number where the subscription will be created
  6. Take a note of destination ARN as it appears in outputs section as you did above.

Step 4: Create the log subscription in your application account

In this section, we will create the subscription filter in one of the application accounts to stream logs from the CloudWatch log group to the log destination that was created in your logging account.

Create log subscription filter

The subscription filter is created between the CloudWatch log group and a destination endpoint. Asubscription could be filtered to send part (or all) of the logs in the log group. For example,you can create a subscription filter to stream only flow logs with status REJECT.

Use the CloudFormation template below to create subscription filter. Subscription filter and log destination must be in the same region.

{
  "AWSTemplateFormatVersion":"2010-09-09",
  "Description": "Create log subscription filter for a specific Log Group",
  "Parameters":{

    "DestinationARN":{
      "Type":"String",
      "Default":"",
      "Description":"ARN of logs destination"
    },
    "LogGroupName":{
      "Type":"String",
      "Default":"",
      "Description":"Name of LogGroup to forward logs from"
    },
    "FilterPattern":{
      "Type":"String",
      "Default":"",
      "Description":"Filter pattern to filter events to be sent to log destination; Leave empty to send all logs"
    }
  },
    
  "Resources":{
    "SubscriptionFilter" : {
      "Type" : "AWS::Logs::SubscriptionFilter",
      "Properties" : {
        "LogGroupName" : { "Ref" : "LogGroupName" },
        "FilterPattern" : { "Ref" : "FilterPattern" },
        "DestinationArn" : { "Ref" : "DestinationARN" }
      }
    }
  }
}

To create a subscription filter for one of CloudWatch log groups in your application account, follow the steps below:

  1. Save the template as “central-logging-subscription.json”
  2. Login to your application account and, from the CloudFormation console, select “create new stack”
  3. Select the file “central-logging-subscription.json” and click next
  4. Fill in the parameters as appropriate to your environment as you did above
    a.  DestinationARN is the value of obtained in “create log destination in logging account” step
    b.  FilterPatterns is the filter value for log data to be streamed to your logging account (leave empty to stream all logs in the selected log group)
    c.  LogGroupName is the log group as it appears under CloudWatch Logs
  5. Verify successful creation of the subscription

This completes the deployment process in both the logging- and application-account side. After a few minutes, log data will be streamed to the central-logging destination defined in your logging account.

Step 5: Analyzing log data

Once log data is centralized, it opens the door to run analytics on the consolidated data for business or security reasons. One of the powerful services that AWS offers is Amazon Athena.

Amazon Athena allows you to query data in S3 using standard SQL.

Follow the steps below to create a simple table and run queries on the flow logs data that has been collected from your application accounts

  1. Login to your logging account and from the Amazon Athena console, use the DDL below in your query  editor to create a new table

CREATE EXTERNAL TABLE IF NOT EXISTS prod_vpc_flow_logs (

Version INT,

Account STRING,

InterfaceId STRING,

SourceAddress STRING,

DestinationAddress STRING,

SourcePort INT,

DestinationPort INT,

Protocol INT,

Packets INT,

Bytes INT,

StartTime INT,

EndTime INT,

Action STRING,

LogStatus STRING

)

ROW FORMAT SERDE ‘org.apache.hadoop.hive.serde2.RegexSerDe’

WITH SERDEPROPERTIES (

“input.regex” = “^([^ ]+)\\s+([0-9]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([0-9]+)\\s+([0-9]+)\\s+([^ ]+)\\s+([^ ]+)$”)

LOCATION ‘s3://central-logging-company-do-not-delete/’;

2. Click ”run query” and verify a successful run/ This creates the table “prod_vpc_flow_logs”

3. You can then run queries against the table data as below:

Conclusion

By following the steps I’ve outlined, you will build a central logging solution to stream CloudWatch logs from one application account to a central logging account. This solution is repeatable and could be deployed multiple times for multiple accounts and logging requirements.

 

About the Author

Mahmoud Matouk is a Senior Cloud Infrastructure Architect. He works with our customers to help accelerate migration and cloud adoption at the enterprise level.

 

New AWS Certified Solutions Architect – Associate Exam: Now in General Availability

Post Syndicated from Janna Pellegrino original https://aws.amazon.com/blogs/architecture/new-aws-certified-solutions-architect-associate-exam-now-in-general-availability/

We’ve updated our AWS Certified Solutions Architect – Associate exam to include new services and architectural best practices, including the pillars of the Well-Architected Framework.

About The Exam

The new AWS Certified Solutions Architect – Associate (Released February 2018) exam validates knowledge of how to architect and deploy secure and robust applications on AWS technologies. We recommend candidates have at least one year of hands-on experience designing available, cost-efficient, fault-tolerant, and scalable and distributed systems on AWS before taking the exam. This exam covers:

  • Designing resilient architectures
  • Defining performant architectures
  • Specifying secure applications and architectures
  • Designing cost-optimized architectures
  • Defining operationally excellent architectures

How To Prepare

We also refreshed our exam preparation resources. If you are looking to expand your Architecting knowledge, we recommend the following resources:

AWS Training (aws.amazon.com/training)

AWS Materials

AWS Whitepapers (aws.amazon.com/whitepapers) Kindle and .pdf and Other Materials

  • Architecting for the Cloud: AWS Best Practices whitepaper, February 2016
  • AWS Well-Architected webpage (various whitepapers linked)

Note that if you’ve already started preparing, you also have the option to take the previous version of the exam through August 12, 2018.

Next Steps

If you’re interested in taking this new exam, learn more at the AWS Certified Solutions Architect – Associate webpage, or register for the exam today.

 

Reactive Microservices Architecture on AWS

Post Syndicated from Sascha Moellering original https://aws.amazon.com/blogs/architecture/reactive-microservices-architecture-on-aws/

Microservice-application requirements have changed dramatically in recent years. These days, applications operate with petabytes of data, need almost 100% uptime, and end users expect sub-second response times. Typical N-tier applications can’t deliver on these requirements.

Reactive Manifesto, published in 2014, describes the essential characteristics of reactive systems including: responsiveness, resiliency, elasticity, and being message driven.

Being message driven is perhaps the most important characteristic of reactive systems. Asynchronous messaging helps in the design of loosely coupled systems, which is a key factor for scalability. In order to build a highly decoupled system, it is important to isolate services from each other. As already described, isolation is an important aspect of the microservices pattern. Indeed, reactive systems and microservices are a natural fit.

Implemented Use Case
This reference architecture illustrates a typical ad-tracking implementation.

Many ad-tracking companies collect massive amounts of data in near-real-time. In many cases, these workloads are very spiky and heavily depend on the success of the ad-tech companies’ customers. Typically, an ad-tracking-data use case can be separated into a real-time part and a non-real-time part. In the real-time part, it is important to collect data as fast as possible and ask several questions including:,  “Is this a valid combination of parameters?,””Does this program exist?,” “Is this program still valid?”

Because response time has a huge impact on conversion rate in advertising, it is important for advertisers to respond as fast as possible. This information should be kept in memory to reduce communication overhead with the caching infrastructure. The tracking application itself should be as lightweight and scalable as possible. For example, the application shouldn’t have any shared mutable state and it should use reactive paradigms. In our implementation, one main application is responsible for this real-time part. It collects and validates data, responds to the client as fast as possible, and asynchronously sends events to backend systems.

The non-real-time part of the application consumes the generated events and persists them in a NoSQL database. In a typical tracking implementation, clicks, cookie information, and transactions are matched asynchronously and persisted in a data store. The matching part is not implemented in this reference architecture. Many ad-tech architectures use frameworks like Hadoop for the matching implementation.

The system can be logically divided into the data collection partand the core data updatepart. The data collection part is responsible for collecting, validating, and persisting the data. In the core data update part, the data that is used for validation gets updated and all subscribers are notified of new data.

Components and Services

Main Application
The main application is implemented using Java 8 and uses Vert.x as the main framework. Vert.x is an event-driven, reactive, non-blocking, polyglot framework to implement microservices. It runs on the Java virtual machine (JVM) by using the low-level IO library Netty. You can write applications in Java, JavaScript, Groovy, Ruby, Kotlin, Scala, and Ceylon. The framework offers a simple and scalable actor-like concurrency model. Vert.x calls handlers by using a thread known as an event loop. To use this model, you have to write code known as “verticles.” Verticles share certain similarities with actors in the actor model. To use them, you have to implement the verticle interface. Verticles communicate with each other by generating messages in  a single event bus. Those messages are sent on the event bus to a specific address, and verticles can register to this address by using handlers.

With only a few exceptions, none of the APIs in Vert.x block the calling thread. Similar to Node.js, Vert.x uses the reactor pattern. However, in contrast to Node.js, Vert.x uses several event loops. Unfortunately, not all APIs in the Java ecosystem are written asynchronously, for example, the JDBC API. Vert.x offers a possibility to run this, blocking APIs without blocking the event loop. These special verticles are called worker verticles. You don’t execute worker verticles by using the standard Vert.x event loops, but by using a dedicated thread from a worker pool. This way, the worker verticles don’t block the event loop.

Our application consists of five different verticles covering different aspects of the business logic. The main entry point for our application is the HttpVerticle, which exposes an HTTP-endpoint to consume HTTP-requests and for proper health checking. Data from HTTP requests such as parameters and user-agent information are collected and transformed into a JSON message. In order to validate the input data (to ensure that the program exists and is still valid), the message is sent to the CacheVerticle.

This verticle implements an LRU-cache with a TTL of 10 minutes and a capacity of 100,000 entries. Instead of adding additional functionality to a standard JDK map implementation, we use Google Guava, which has all the features we need. If the data is not in the L1 cache, the message is sent to the RedisVerticle. This verticle is responsible for data residing in Amazon ElastiCache and uses the Vert.x-redis-client to read data from Redis. In our example, Redis is the central data store. However, in a typical production implementation, Redis would just be the L2 cache with a central data store like Amazon DynamoDB. One of the most important paradigms of a reactive system is to switch from a pull- to a push-based model. To achieve this and reduce network overhead, we’ll use Redis pub/sub to push core data changes to our main application.

Vert.x also supports direct Redis pub/sub-integration, the following code shows our subscriber-implementation:

vertx.eventBus().<JsonObject>consumer(REDIS_PUBSUB_CHANNEL_VERTX, received -> {

JsonObject value = received.body().getJsonObject("value");

String message = value.getString("message");

JsonObject jsonObject = new JsonObject(message);

eb.send(CACHE_REDIS_EVENTBUS_ADDRESS, jsonObject);

});

redis.subscribe(Constants.REDIS_PUBSUB_CHANNEL, res -> {

if (res.succeeded()) {

LOGGER.info("Subscribed to " + Constants.REDIS_PUBSUB_CHANNEL);

} else {

LOGGER.info(res.cause());

}

});

The verticle subscribes to the appropriate Redis pub/sub-channel. If a message is sent over this channel, the payload is extracted and forwarded to the cache-verticle that stores the data in the L1-cache. After storing and enriching data, a response is sent back to the HttpVerticle, which responds to the HTTP request that initially hit this verticle. In addition, the message is converted to ByteBuffer, wrapped in protocol buffers, and send to an Amazon Kinesis Data Stream.

The following example shows a stripped-down version of the KinesisVerticle:

public class KinesisVerticle extends AbstractVerticle {

private static final Logger LOGGER = LoggerFactory.getLogger(KinesisVerticle.class);

private AmazonKinesisAsync kinesisAsyncClient;

private String eventStream = "EventStream";

@Override

public void start() throws Exception {

EventBus eb = vertx.eventBus();

kinesisAsyncClient = createClient();

eventStream = System.getenv(STREAM_NAME) == null ? "EventStream" : System.getenv(STREAM_NAME);

eb.consumer(Constants.KINESIS_EVENTBUS_ADDRESS, message -> {

try {

TrackingMessage trackingMessage = Json.decodeValue((String)message.body(), TrackingMessage.class);

String partitionKey = trackingMessage.getMessageId();

byte [] byteMessage = createMessage(trackingMessage);

ByteBuffer buf = ByteBuffer.wrap(byteMessage);

sendMessageToKinesis(buf, partitionKey);

message.reply("OK");

}

catch (KinesisException exc) {

LOGGER.error(exc);

}

});

}

Kinesis Consumer
This AWS Lambda function consumes data from an Amazon Kinesis Data Stream and persists the data in an Amazon DynamoDB table. In order to improve testability, the invocation code is separated from the business logic. The invocation code is implemented in the class KinesisConsumerHandler and iterates over the Kinesis events pulled from the Kinesis stream by AWS Lambda. Each Kinesis event is unwrapped and transformed from ByteBuffer to protocol buffers and converted into a Java object. Those Java objects are passed to the business logic, which persists the data in a DynamoDB table. In order to improve duration of successive Lambda calls, the DynamoDB-client is instantiated lazily and reused if possible.

Redis Updater
From time to time, it is necessary to update core data in Redis. A very efficient implementation for this requirement is using AWS Lambda and Amazon Kinesis. New core data is sent over the AWS Kinesis stream using JSON as data format and consumed by a Lambda function. This function iterates over the Kinesis events pulled from the Kinesis stream by AWS Lambda. Each Kinesis event is unwrapped and transformed from ByteBuffer to String and converted into a Java object. The Java object is passed to the business logic and stored in Redis. In addition, the new core data is also sent to the main application using Redis pub/sub in order to reduce network overhead and converting from a pull- to a push-based model.

The following example shows the source code to store data in Redis and notify all subscribers:

public void updateRedisData(final TrackingMessage trackingMessage, final Jedis jedis, final LambdaLogger logger) {

try {

ObjectMapper mapper = new ObjectMapper();

String jsonString = mapper.writeValueAsString(trackingMessage);

Map<String, String> map = marshal(jsonString);

String statusCode = jedis.hmset(trackingMessage.getProgramId(), map);

}

catch (Exception exc) {

if (null == logger)

exc.printStackTrace();

else

logger.log(exc.getMessage());

}

}

public void notifySubscribers(final TrackingMessage trackingMessage, final Jedis jedis, final LambdaLogger logger) {

try {

ObjectMapper mapper = new ObjectMapper();

String jsonString = mapper.writeValueAsString(trackingMessage);

jedis.publish(Constants.REDIS_PUBSUB_CHANNEL, jsonString);

}

catch (final IOException e) {

log(e.getMessage(), logger);

}

}

Similarly to our Kinesis Consumer, the Redis-client is instantiated somewhat lazily.

Infrastructure as Code
As already outlined, latency and response time are a very critical part of any ad-tracking solution because response time has a huge impact on conversion rate. In order to reduce latency for customers world-wide, it is common practice to roll out the infrastructure in different AWS Regions in the world to be as close to the end customer as possible. AWS CloudFormation can help you model and set up your AWS resources so that you can spend less time managing those resources and more time focusing on your applications that run in AWS.

You create a template that describes all the AWS resources that you want (for example, Amazon EC2 instances or Amazon RDS DB instances), and AWS CloudFormation takes care of provisioning and configuring those resources for you. Our reference architecture can be rolled out in different Regions using an AWS CloudFormation template, which sets up the complete infrastructure (for example, Amazon Virtual Private Cloud (Amazon VPC), Amazon Elastic Container Service (Amazon ECS) cluster, Lambda functions, DynamoDB table, Amazon ElastiCache cluster, etc.).

Conclusion
In this blog post we described reactive principles and an example architecture with a common use case. We leveraged the capabilities of different frameworks in combination with several AWS services in order to implement reactive principles—not only at the application-level but also at the system-level. I hope I’ve given you ideas for creating your own reactive applications and systems on AWS.

About the Author

Sascha Moellering is a Senior Solution Architect. Sascha is primarily interested in automation, infrastructure as code, distributed computing, containers and JVM. He can be reached at [email protected]

 

 

Scale Your Web Application — One Step at a Time

Post Syndicated from Saurabh Shrivastava original https://aws.amazon.com/blogs/architecture/scale-your-web-application-one-step-at-a-time/

I often encounter people experiencing frustration as they attempt to scale their e-commerce or WordPress site—particularly around the cost and complexity related to scaling. When I talk to customers about their scaling plans, they often mention phrases such as horizontal scaling and microservices, but usually people aren’t sure about how to dive in and effectively scale their sites.

Now let’s talk about different scaling options. For instance if your current workload is in a traditional data center, you can leverage the cloud for your on-premises solution. This way you can scale to achieve greater efficiency with less cost. It’s not necessary to set up a whole powerhouse to light a few bulbs. If your workload is already in the cloud, you can use one of the available out-of-the-box options.

Designing your API in microservices and adding horizontal scaling might seem like the best choice, unless your web application is already running in an on-premises environment and you’ll need to quickly scale it because of unexpected large spikes in web traffic.

So how to handle this situation? Take things one step at a time when scaling and you may find horizontal scaling isn’t the right choice, after all.

For example, assume you have a tech news website where you did an early-look review of an upcoming—and highly-anticipated—smartphone launch, which went viral. The review, a blog post on your website, includes both video and pictures. Comments are enabled for the post and readers can also rate it. For example, if your website is hosted on a traditional Linux with a LAMP stack, you may find yourself with immediate scaling problems.

Let’s get more details on the current scenario and dig out more:

  • Where are images and videos stored?
  • How many read/write requests are received per second? Per minute?
  • What is the level of security required?
  • Are these synchronous or asynchronous requests?

We’ll also want to consider the following if your website has a transactional load like e-commerce or banking:

How is the website handling sessions?

  • Do you have any compliance requests—like the Payment Card Industry Data Security Standard (PCI DSS compliance) —if your website is using its own payment gateway?
  • How are you recording customer behavior data and fulfilling your analytics needs?
  • What are your loading balancing considerations (scaling, caching, session maintenance, etc.)?

So, if we take this one step at a time:

Step 1: Ease server load. We need to quickly handle spikes in traffic, generated by activity on the blog post, so let’s reduce server load by moving image and video to some third -party content delivery network (CDN). AWS provides Amazon CloudFront as a CDN solution, which is highly scalable with built-in security to verify origin access identity and handle any DDoS attacks. CloudFront can direct traffic to your on-premises or cloud-hosted server with its 113 Points of Presence (102 Edge Locations and 11 Regional Edge Caches) in 56 cities across 24 countries, which provides efficient caching.
Step 2: Reduce read load by adding more read replicas. MySQL provides a nice mirror replication for databases. Oracle has its own Oracle plug for replication and AWS RDS provide up to five read replicas, which can span across the region and even the Amazon database Amazon Aurora can have 15 read replicas with Amazon Aurora autoscaling support. If a workload is highly variable, you should consider Amazon Aurora Serverless database  to achieve high efficiency and reduced cost. While most mirror technologies do asynchronous replication, AWS RDS can provide synchronous multi-AZ replication, which is good for disaster recovery but not for scalability. Asynchronous replication to mirror instance means replication data can sometimes be stale if network bandwidth is low, so you need to plan and design your application accordingly.

I recommend that you always use a read replica for any reporting needs and try to move non-critical GET services to read replica and reduce the load on the master database. In this case, loading comments associated with a blog can be fetched from a read replica—as it can handle some delay—in case there is any issue with asynchronous reflection.

Step 3: Reduce write requests. This can be achieved by introducing queue to process the asynchronous message. Amazon Simple Queue Service (Amazon SQS) is a highly-scalable queue, which can handle any kind of work-message load. You can process data, like rating and review; or calculate Deal Quality Score (DQS) using batch processing via an SQS queue. If your workload is in AWS, I recommend using a job-observer pattern by setting up Auto Scaling to automatically increase or decrease the number of batch servers, using the number of SQS messages, with Amazon CloudWatch, as the trigger.  For on-premises workloads, you can use SQS SDK to create an Amazon SQS queue that holds messages until they’re processed by your stack. Or you can use Amazon SNS  to fan out your message processing in parallel for different purposes like adding a watermark in an image, generating a thumbnail, etc.

Step 4: Introduce a more robust caching engine. You can use Amazon Elastic Cache for Memcached or Redis to reduce write requests. Memcached and Redis have different use cases so if you can afford to lose and recover your cache from your database, use Memcached. If you are looking for more robust data persistence and complex data structure, use Redis. In AWS, these are managed services, which means AWS takes care of the workload for you and you can also deploy them in your on-premises instances or use a hybrid approach.

Step 5: Scale your server. If there are still issues, it’s time to scale your server.  For the greatest cost-effectiveness and unlimited scalability, I suggest always using horizontal scaling. However, use cases like database vertical scaling may be a better choice until you are good with sharding; or use Amazon Aurora Serverless for variable workloads. It will be wise to use Auto Scaling to manage your workload effectively for horizontal scaling. Also, to achieve that, you need to persist the session. Amazon DynamoDB can handle session persistence across instances.

If your server is on premises, consider creating a multisite architecture, which will help you achieve quick scalability as required and provide a good disaster recovery solution.  You can pick and choose individual services like Amazon Route 53, AWS CloudFormation, Amazon SQS, Amazon SNS, Amazon RDS, etc. depending on your needs.

Your multisite architecture will look like the following diagram:

In this architecture, you can run your regular workload on premises, and use your AWS workload as required for scalability and disaster recovery. Using Route 53, you can direct a precise percentage of users to an AWS workload.

If you decide to move all of your workloads to AWS, the recommended multi-AZ architecture would look like the following:

In this architecture, you are using a multi-AZ distributed workload for high availability. You can have a multi-region setup and use Route53 to distribute your workload between AWS Regions. CloudFront helps you to scale and distribute static content via an S3 bucket and DynamoDB, maintaining your application state so that Auto Scaling can apply horizontal scaling without loss of session data. At the database layer, RDS with multi-AZ standby provides high availability and read replica helps achieve scalability.

This is a high-level strategy to help you think through the scalability of your workload by using AWS even if your workload in on premises and not in the cloud…yet.

I highly recommend creating a hybrid, multisite model by placing your on-premises environment replica in the public cloud like AWS Cloud, and using Amazon Route53 DNS Service and Elastic Load Balancing to route traffic between on-premises and cloud environments. AWS now supports load balancing between AWS and on-premises environments to help you scale your cloud environment quickly, whenever required, and reduce it further by applying Amazon auto-scaling and placing a threshold on your on-premises traffic using Route 53.

AWS Architecture Monthly for Kindle

Post Syndicated from Jamey Tisdale original https://aws.amazon.com/blogs/architecture/aws-architecture-monthly-for-kindle/

We recently launched AWS Architecture Monthly, a new subscription service on Kindle that will push a selection of the best content around cloud architecture from AWS, with a few pointers to other content you might also enjoy.

From building a simple website to crafting an AI-based chat bot, the choices of technologies and the best practices in how to apply them are constantly evolving. Our goal is to supply you each month with a broad selection of the best new tech content from AWS — from deep-dive tutorials to industry-trend articles.

With your free subscription, you can look forward to fresh content delivered directly to your Kindledevice or Kindle app including:
– Technical whitepapers
– Reference architectures
– New solutions and implementation guides
– Training and certification opportunities
– Industry trends

The January issue is now live. This month includes:
– AWS Architecture Blog: Glenn Gore’s Take on re:Invent 2017 (Chief Architect for AWS)
– AWS Reference Architectures: Java Microservices Deployed on EC2 Container Service; Node.js Microservices Deployed on EC2 Container Service
– AWS Training & Certification: AWS Certified Solutions Architect – Associate
– Sample Code: aws-serverless-express
– Technical Whitepaper: Serverless Architectures with AWS Lambda – Overview and Best Practices

At this time, Architecture Monthly annual subscriptions are only available in the France (new), US, UK, and Germany. As more countries become available, we’ll update you here on the blog. For Amazon.com countries not listed above, we are offering single-issue downloads — also accessible from our landing page. The content is the same as in the subscription but requires individual-issue downloads.

FAQ
I have to submit my credit card information for a free subscription?
While you do have to submit your card information at this time (as you would for a free book in the Kindle store), it won’t be charged. This will remain a free, annual subscription and includes all 10 issues for the year.

Why isn’t the subscription available everywhere?
As new countries get added to Kindle Newsstand, we’ll ensure we add them for Architecture Monthly. This month we added France but anticipate it will take some time for the new service to move into additional markets.

What countries are included in the Amazon.com list where the issues can be downloaded?
Andorra, Australia, Austria, Belgium, Brazil, Canada, Gibraltar, Guernsey, India, Ireland, Isle of Man, Japan, Jersey, Liechtenstein, Luxembourg, Mexico, Monaco, Netherlands, New Zealand, San Marino, Spain, Switzerland, Vatican City

Glenn’s Take on re:Invent 2017 – Part 3

Post Syndicated from Glenn Gore original https://aws.amazon.com/blogs/architecture/glenns-take-on-reinvent-2017-part-3/

Glenn Gore here, Chief Architect for AWS. I was in Las Vegas last week — with 43K others — for re:Invent 2017. I checked in to the Architecture blog here and here with my take on what was interesting about some of the bigger announcements from a cloud-architecture perspective.

In the excitement of so many new services being launched, we sometimes overlook feature updates that, while perhaps not as exciting as Amazon DeepLens, have significant impact on how you architect and develop solutions on AWS.

Amazon DynamoDB is used by more than 100,000 customers around the world, handling over a trillion requests every day. From the start, DynamoDB has offered high availability by natively spanning multiple Availability Zones within an AWS Region. As more customers started building and deploying truly-global applications, there was a need to replicate a DynamoDB table to multiple AWS Regions, allowing for read/write operations to occur in any region where the table was replicated. This update is important for providing a globally-consistent view of information — as users may transition from one region to another — or for providing additional levels of availability, allowing for failover between AWS Regions without loss of information.

There are some interesting concurrency-design aspects you need to be aware of and ensure you can handle correctly. For example, we support the “last writer wins” reconciliation where eventual consistency is being used and an application updates the same item in different AWS Regions at the same time. If you require strongly-consistent read/writes then you must perform all of your read/writes in the same AWS Region. The details behind this can be found in the DynamoDB documentation. Providing a globally-distributed, replicated DynamoDB table simplifies many different use cases and allows for the logic of replication, which may have been pushed up into the application layers to be simplified back down into the data layer.

The other big update for DynamoDB is that you can now back up your DynamoDB table on demand with no impact to performance. One of the features I really like is that when you trigger a backup, it is available instantly, regardless of the size of the table. Behind the scenes, we use snapshots and change logs to ensure a consistent backup. While backup is instant, restoring the table could take some time depending on its size and ranges — from minutes to hours for very large tables.

This feature is super important for those of you who work in regulated industries that often have strict requirements around data retention and backups of data, which sometimes limited the use of DynamoDB or required complex workarounds to implement some sort of backup feature in the past. This often incurred significant, additional costs due to increased read transactions on their DynamoDB tables.

Amazon Simple Storage Service (Amazon S3) was our first-released AWS service over 11 years ago, and it proved the simplicity and scalability of true API-driven architectures in the cloud. Today, Amazon S3 stores trillions of objects, with transactional requests per second reaching into the millions! Dealing with data as objects opened up an incredibly diverse array of use cases ranging from libraries of static images, game binary downloads, and application log data, to massive data lakes used for big data analytics and business intelligence. With Amazon S3, when you accessed your data in an object, you effectively had to write/read the object as a whole or use the range feature to retrieve a part of the object — if possible — in your individual use case.

Now, with Amazon S3 Select, an SQL-like query language is used that can work with delimited text and JSON files, as well as work with GZIP compressed files. We don’t support encryption during the preview of Amazon S3 Select.

Amazon S3 Select provides two major benefits:

  • Faster access
  • Lower running costs

Serverless Lambda functions, where every millisecond matters when you are being charged, will benefit greatly from Amazon S3 Select as data retrieval and processing of your Lambda function will experience significant speedups and cost reductions. For example, we have seen 2x speed improvement and 80% cost reduction with the Serverless MapReduce code.

Other AWS services such as Amazon Athena, Amazon Redshift, and Amazon EMR will support Amazon S3 Select as well as partner offerings including Cloudera and Hortonworks. If you are using Amazon Glacier for longer-term data archival, you will be able to use Amazon Glacier Select to retrieve a subset of your content from within Amazon Glacier.

As the volume of data that can be stored within Amazon S3 and Amazon Glacier continues to scale on a daily basis, we will continue to innovate and develop improved and optimized services that will allow you to work with these magnificently-large data sets while reducing your costs (retrieval and processing). I believe this will also allow you to simplify the transformation and storage of incoming data into Amazon S3 in basic, semi-structured formats as a single copy vs. some of the duplication and reformatting of data sometimes required to do upfront optimizations for downstream processing. Amazon S3 Select largely removes the need for this upfront optimization and instead allows you to store data once and process it based on your individual Amazon S3 Select query per application or transaction need.

Thanks for reading!

Glenn contemplating why CSV format is still relevant in 2017 (Italy).

Glenn’s Take on re:Invent Part 2

Post Syndicated from Glenn Gore original https://aws.amazon.com/blogs/architecture/glenns-take-on-reinvent-part-2/

Glenn Gore here, Chief Architect for AWS. I’m in Las Vegas this week — with 43K others — for re:Invent 2017. We’ve got a lot of exciting announcements this week. I’m going to check in to the Architecture blog with my take on what’s interesting about some of the announcements from an cloud architectural perspective. My first post can be found here.

The Media and Entertainment industry has been a rapid adopter of AWS due to the scale, reliability, and low costs of our services. This has enabled customers to create new, online, digital experiences for their viewers ranging from broadcast to streaming to Over-the-Top (OTT) services that can be a combination of live, scheduled, or ad-hoc viewing, while supporting devices ranging from high-def TVs to mobile devices. Creating an end-to-end video service requires many different components often sourced from different vendors with different licensing models, which creates a complex architecture and a complex environment to support operationally.

AWS Media Services
Based on customer feedback, we have developed AWS Media Services to help simplify distribution of video content. AWS Media Services is comprised of five individual services that can either be used together to provide an end-to-end service or individually to work within existing deployments: AWS Elemental MediaConvert, AWS Elemental MediaLive, AWS Elemental MediaPackage, AWS Elemental MediaStore and AWS Elemental MediaTailor. These services can help you with everything from storing content safely and durably to setting up a live-streaming event in minutes without having to be concerned about the underlying infrastructure and scalability of the stream itself.

In my role, I participate in many AWS and industry events and often work with the production and event teams that put these shows together. With all the logistical tasks they have to deal with, the biggest question is often: “Will the live stream work?” Compounding this fear is the reality that, as users, we are also quick to jump on social media and make noise when a live stream drops while we are following along remotely. Worse is when I see event organizers actively selecting not to live stream content because of the risk of failure and and exposure — leading them to decide to take the safe option and not stream at all.

With AWS Media Services addressing many of the issues around putting together a high-quality media service, live streaming, and providing access to a library of content through a variety of mechanisms, I can’t wait to see more event teams use live streaming without the concern and worry I’ve seen in the past. I am excited for what this also means for non-media companies, as video becomes an increasingly common way of sharing information and adding a more personalized touch to internally- and externally-facing content.

AWS Media Services will allow you to focus more on the content and not worry about the platform. Awesome!

Amazon Neptune
As a civilization, we have been developing new ways to record and store information and model the relationships between sets of information for more than a thousand years. Government census data, tax records, births, deaths, and marriages were all recorded on medium ranging from knotted cords in the Inca civilization, clay tablets in ancient Babylon, to written texts in Western Europe during the late Middle Ages.

One of the first challenges of computing was figuring out how to store and work with vast amounts of information in a programmatic way, especially as the volume of information was increasing at a faster rate than ever before. We have seen different generations of how to organize this information in some form of database, ranging from flat files to the Information Management System (IMS) used in the 1960s for the Apollo space program, to the rise of the relational database management system (RDBMS) in the 1970s. These innovations drove a lot of subsequent innovations in information management and application development as we were able to move from thousands of records to millions and billions.

Today, as architects and developers, we have a vast variety of database technologies to select from, which have different characteristics that are optimized for different use cases:

  • Relational databases are well understood after decades of use in the majority of companies who required a database to store information. Amazon Relational Database (Amazon RDS) supports many popular relational database engines such as MySQL, Microsoft SQL Server, PostgreSQL, MariaDB, and Oracle. We have even brought the traditional RDBMS into the cloud world through Amazon Aurora, which provides MySQL and PostgreSQL support with the performance and reliability of commercial-grade databases at 1/10th the cost.
  • Non-relational databases (NoSQL) provided a simpler method of storing and retrieving information that was often faster and more scalable than traditional RDBMS technology. The concept of non-relational databases has existed since the 1960s but really took off in the early 2000s with the rise of web-based applications that required performance and scalability that relational databases struggled with at the time. AWS published this Dynamo whitepaper in 2007, with DynamoDB launching as a service in 2012. DynamoDB has quickly become one of the critical design elements for many of our customers who are building highly-scalable applications on AWS. We continue to innovate with DynamoDB, and this week launched global tables and on-demand backup at re:Invent 2017. DynamoDB excels in a variety of use cases, such as tracking of session information for popular websites, shopping cart information on e-commerce sites, and keeping track of gamers’ high scores in mobile gaming applications, for example.
  • Graph databases focus on the relationship between data items in the store. With a graph database, we work with nodes, edges, and properties to represent data, relationships, and information. Graph databases are designed to make it easy and fast to traverse and retrieve complex hierarchical data models. Graph databases share some concepts from the NoSQL family of databases such as key-value pairs (properties) and the use of a non-SQL query language such as Gremlin. Graph databases are commonly used for social networking, recommendation engines, fraud detection, and knowledge graphs. We released Amazon Neptune to help simplify the provisioning and management of graph databases as we believe that graph databases are going to enable the next generation of smart applications.

A common use case I am hearing every week as I talk to customers is how to incorporate chatbots within their organizations. Amazon Lex and Amazon Polly have made it easy for customers to experiment and build chatbots for a wide range of scenarios, but one of the missing pieces of the puzzle was how to model decision trees and and knowledge graphs so the chatbot could guide the conversation in an intelligent manner.

Graph databases are ideal for this particular use case, and having Amazon Neptune simplifies the deployment of a graph database while providing high performance, scalability, availability, and durability as a managed service. Security of your graph database is critical. To help ensure this, you can store your encrypted data by running AWS in Amazon Neptune within your Amazon Virtual Private Cloud (Amazon VPC) and using encryption at rest integrated with AWS Key Management Service (AWS KMS). Neptune also supports Amazon VPC and AWS Identity and Access Management (AWS IAM) to help further protect and restrict access.

Our customers now have the choice of many different database technologies to ensure that they can optimize each application and service for their specific needs. Just as DynamoDB has unlocked and enabled many new workloads that weren’t possible in relational databases, I can’t wait to see what new innovations and capabilities are enabled from graph databases as they become easier to use through Amazon Neptune.

Look for more on DynamoDB and Amazon S3 from me on Monday.

 

Glenn at Tour de Mont Blanc

 

 

Glenn’s Take on re:Invent 2017 Part 1

Post Syndicated from Glenn Gore original https://aws.amazon.com/blogs/architecture/glenns-take-on-reinvent-2017-part-1/

GREETINGS FROM LAS VEGAS

Glenn Gore here, Chief Architect for AWS. I’m in Las Vegas this week — with 43K others — for re:Invent 2017. We have a lot of exciting announcements this week. I’m going to post to the AWS Architecture blog each day with my take on what’s interesting about some of the announcements from a cloud architectural perspective.

Why not start at the beginning? At the Midnight Madness launch on Sunday night, we announced Amazon Sumerian, our platform for VR, AR, and mixed reality. The hype around VR/AR has existed for many years, though for me, it is a perfect example of how a working end-to-end solution often requires innovation from multiple sources. For AR/VR to be successful, we need many components to come together in a coherent manner to provide a great experience.

First, we need lightweight, high-definition goggles with motion tracking that are comfortable to wear. Second, we need to track movement of our body and hands in a 3-D space so that we can interact with virtual objects in the virtual world. Third, we need to build the virtual world itself and populate it with assets and define how the interactions will work and connect with various other systems.

There has been rapid development of the physical devices for AR/VR, ranging from iOS devices to Oculus Rift and HTC Vive, which provide excellent capabilities for the first and second components defined above. With the launch of Amazon Sumerian we are solving for the third area, which will help developers easily build their own virtual worlds and start experimenting and innovating with how to apply AR/VR in new ways.

Already, within 48 hours of Amazon Sumerian being announced, I have had multiple discussions with customers and partners around some cool use cases where VR can help in training simulations, remote-operator controls, or with new ideas around interacting with complex visual data sets, which starts bringing concepts straight out of sci-fi movies into the real (virtual) world. I am really excited to see how Sumerian will unlock the creative potential of developers and where this will lead.

Amazon MQ
I am a huge fan of distributed architectures where asynchronous messaging is the backbone of connecting the discrete components together. Amazon Simple Queue Service (Amazon SQS) is one of my favorite services due to its simplicity, scalability, performance, and the incredible flexibility of how you can use Amazon SQS in so many different ways to solve complex queuing scenarios.

While Amazon SQS is easy to use when building cloud-native applications on AWS, many of our customers running existing applications on-premises required support for different messaging protocols such as: Java Message Service (JMS), .Net Messaging Service (NMS), Advanced Message Queuing Protocol (AMQP), MQ Telemetry Transport (MQTT), Simple (or Streaming) Text Orientated Messaging Protocol (STOMP), and WebSockets. One of the most popular applications for on-premise message brokers is Apache ActiveMQ. With the release of Amazon MQ, you can now run Apache ActiveMQ on AWS as a managed service similar to what we did with Amazon ElastiCache back in 2012. For me, there are two compelling, major benefits that Amazon MQ provides:

  • Integrate existing applications with cloud-native applications without having to change a line of application code if using one of the supported messaging protocols. This removes one of the biggest blockers for integration between the old and the new.
  • Remove the complexity of configuring Multi-AZ resilient message broker services as Amazon MQ provides out-of-the-box redundancy by always storing messages redundantly across Availability Zones. Protection is provided against failure of a broker through to complete failure of an Availability Zone.

I believe that Amazon MQ is a major component in the tools required to help you migrate your existing applications to AWS. Having set up cross-data center Apache ActiveMQ clusters in the past myself and then testing to ensure they work as expected during critical failure scenarios, technical staff working on migrations to AWS benefit from the ease of deploying a fully redundant, managed Apache ActiveMQ cluster within minutes.

Who would have thought I would have been so excited to revisit Apache ActiveMQ in 2017 after using SQS for many, many years? Choice is a wonderful thing.

Amazon GuardDuty
Maintaining application and information security in the modern world is increasingly complex and is constantly evolving and changing as new threats emerge. This is due to the scale, variety, and distribution of services required in a competitive online world.

At Amazon, security is our number one priority. Thus, we are always looking at how we can increase security detection and protection while simplifying the implementation of advanced security practices for our customers. As a result, we released Amazon GuardDuty, which provides intelligent threat detection by using a combination of multiple information sources, transactional telemetry, and the application of machine learning models developed by AWS. One of the biggest benefits of Amazon GuardDuty that I appreciate is that enabling this service requires zero software, agents, sensors, or network choke points. which can all impact performance or reliability of the service you are trying to protect. Amazon GuardDuty works by monitoring your VPC flow logs, AWS CloudTrail events, DNS logs, as well as combing other sources of security threats that AWS is aggregating from our own internal and external sources.

The use of machine learning in Amazon GuardDuty allows it to identify changes in behavior, which could be suspicious and require additional investigation. Amazon GuardDuty works across all of your AWS accounts allowing for an aggregated analysis and ensuring centralized management of detected threats across accounts. This is important for our larger customers who can be running many hundreds of AWS accounts across their organization, as providing a single common threat detection of their organizational use of AWS is critical to ensuring they are protecting themselves.

Detection, though, is only the beginning of what Amazon GuardDuty enables. When a threat is identified in Amazon GuardDuty, you can configure remediation scripts or trigger Lambda functions where you have custom responses that enable you to start building automated responses to a variety of different common threats. Speed of response is required when a security incident may be taking place. For example, Amazon GuardDuty detects that an Amazon Elastic Compute Cloud (Amazon EC2) instance might be compromised due to traffic from a known set of malicious IP addresses. Upon detection of a compromised EC2 instance, we could apply an access control entry restricting outbound traffic for that instance, which stops loss of data until a security engineer can assess what has occurred.

Whether you are a customer running a single service in a single account, or a global customer with hundreds of accounts with thousands of applications, or a startup with hundreds of micro-services with hourly release cycle in a devops world, I recommend enabling Amazon GuardDuty. We have a 30-day free trial available for all new customers of this service. As it is a monitor of events, there is no change required to your architecture within AWS.

Stay tuned for tomorrow’s post on AWS Media Services and Amazon Neptune.

 

Glenn during the Tour du Mont Blanc