Tag Archives: Amazon API Gateway

Managing AWS Lambda Function Concurrency

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/managing-aws-lambda-function-concurrency/

One of the key benefits of serverless applications is the ease in which they can scale to meet traffic demands or requests, with little to no need for capacity planning. In AWS Lambda, which is the core of the serverless platform at AWS, the unit of scale is a concurrent execution. This refers to the number of executions of your function code that are happening at any given time.

Thinking about concurrent executions as a unit of scale is a fairly unique concept. In this post, I dive deeper into this and talk about how you can make use of per function concurrency limits in Lambda.

Understanding concurrency in Lambda

Instead of diving right into the guts of how Lambda works, here’s an appetizing analogy: a magical pizza.
Yes, a magical pizza!

This magical pizza has some unique properties:

  • It has a fixed maximum number of slices, such as 8.
  • Slices automatically re-appear after they are consumed.
  • When you take a slice from the pizza, it does not re-appear until it has been completely consumed.
  • One person can take multiple slices at a time.
  • You can easily ask to have the number of slices increased, but they remain fixed at any point in time otherwise.

Now that the magical pizza’s properties are defined, here’s a hypothetical situation of some friends sharing this pizza.

Shawn, Kate, Daniela, Chuck, Ian and Avleen get together every Friday to share a pizza and catch up on their week. As there is just six of them, they can easily all enjoy a slice of pizza at a time. As they finish each slice, it re-appears in the pizza pan and they can take another slice again. Given the magical properties of their pizza, they can continue to eat all they want, but with two very important constraints:

  • If any of them take too many slices at once, the others may not get as much as they want.
  • If they take too many slices, they might also eat too much and get sick.

One particular week, some of the friends are hungrier than the rest, taking two slices at a time instead of just one. If more than two of them try to take two pieces at a time, this can cause contention for pizza slices. Some of them would wait hungry for the slices to re-appear. They could ask for a pizza with more slices, but then run the same risk again later if more hungry friends join than planned for.

What can they do?

If the friends agreed to accept a limit for the maximum number of slices they each eat concurrently, both of these issues are avoided. Some could have a maximum of 2 of the 8 slices, or other concurrency limits that were more or less. Just so long as they kept it at or under eight total slices to be eaten at one time. This would keep any from going hungry or eating too much. The six friends can happily enjoy their magical pizza without worry!

Concurrency in Lambda

Concurrency in Lambda actually works similarly to the magical pizza model. Each AWS Account has an overall AccountLimit value that is fixed at any point in time, but can be easily increased as needed, just like the count of slices in the pizza. As of May 2017, the default limit is 1000 “slices” of concurrency per AWS Region.

Also like the magical pizza, each concurrency “slice” can only be consumed individually one at a time. After consumption, it becomes available to be consumed again. Services invoking Lambda functions can consume multiple slices of concurrency at the same time, just like the group of friends can take multiple slices of the pizza.

Let’s take our example of the six friends and bring it back to AWS services that commonly invoke Lambda:

  • Amazon S3
  • Amazon Kinesis
  • Amazon DynamoDB
  • Amazon Cognito

In a single account with the default concurrency limit of 1000 concurrent executions, any of these four services could invoke enough functions to consume the entire limit or some part of it. Just like with the pizza example, there is the possibility for two issues to pop up:

  • One or more of these services could invoke enough functions to consume a majority of the available concurrency capacity. This could cause others to be starved for it, causing failed invocations.
  • A service could consume too much concurrent capacity and cause a downstream service or database to be overwhelmed, which could cause failed executions.

For Lambda functions that are launched in a VPC, you have the potential to consume the available IP addresses in a subnet or the maximum number of elastic network interfaces to which your account has access. For more information, see Configuring a Lambda Function to Access Resources in an Amazon VPC. For information about elastic network interface limits, see Network Interfaces section in the Amazon VPC Limits topic.

One way to solve both of these problems is applying a concurrency limit to the Lambda functions in an account.

Configuring per function concurrency limits

You can now set a concurrency limit on individual Lambda functions in an account. The concurrency limit that you set reserves a portion of your account level concurrency for a given function. All of your functions’ concurrent executions count against this account-level limit by default.

If you set a concurrency limit for a specific function, then that function’s concurrency limit allocation is deducted from the shared pool and assigned to that specific function. AWS also reserves 100 units of concurrency for all functions that don’t have a specified concurrency limit set. This helps to make sure that future functions have capacity to be consumed.

Going back to the example of the consuming services, you could set throttles for the functions as follows:

Amazon S3 function = 350
Amazon Kinesis function = 200
Amazon DynamoDB function = 200
Amazon Cognito function = 150
Total = 900

With the 100 reserved for all non-concurrency reserved functions, this totals the account limit of 1000.

Here’s how this works. To start, create a basic Lambda function that is invoked via Amazon API Gateway. This Lambda function returns a single “Hello World” statement with an added sleep time between 2 and 5 seconds. The sleep time simulates an API providing some sort of capability that can take a varied amount of time. The goal here is to show how an API that is underloaded can reach its concurrency limit, and what happens when it does.
To create the example function

  1. Open the Lambda console.
  2. Choose Create Function.
  3. For Author from scratch, enter the following values:
    1. For Name, enter a value (such as concurrencyBlog01).
    2. For Runtime, choose Python 3.6.
    3. For Role, choose Create new role from template and enter a name aligned with this function, such as concurrencyBlogRole.
  4. Choose Create function.
  5. The function is created with some basic example code. Replace that code with the following:

import time
from random import randint
seconds = randint(2, 5)

def lambda_handler(event, context):
time.sleep(seconds)
return {"statusCode": 200,
"body": ("Hello world, slept " + str(seconds) + " seconds"),
"headers":
{
"Access-Control-Allow-Headers": "Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Security-Token",
"Access-Control-Allow-Methods": "GET,OPTIONS",
}}

  1. Under Basic settings, set Timeout to 10 seconds. While this function should only ever take up to 5-6 seconds (with the 5-second max sleep), this gives you a little bit of room if it takes longer.

  1. Choose Save at the top right.

At this point, your function is configured for this example. Test it and confirm this in the console:

  1. Choose Test.
  2. Enter a name (it doesn’t matter for this example).
  3. Choose Create.
  4. In the console, choose Test again.
  5. You should see output similar to the following:

Now configure API Gateway so that you have an HTTPS endpoint to test against.

  1. In the Lambda console, choose Configuration.
  2. Under Triggers, choose API Gateway.
  3. Open the API Gateway icon now shown as attached to your Lambda function:

  1. Under Configure triggers, leave the default values for API Name and Deployment stage. For Security, choose Open.
  2. Choose Add, Save.

API Gateway is now configured to invoke Lambda at the Invoke URL shown under its configuration. You can take this URL and test it in any browser or command line, using tools such as “curl”:


$ curl https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
Hello world, slept 2 seconds

Throwing load at the function

Now start throwing some load against your API Gateway + Lambda function combo. Right now, your function is only limited by the total amount of concurrency available in an account. For this example account, you might have 850 unreserved concurrency out of a full account limit of 1000 due to having configured a few concurrency limits already (also the 100 concurrency saved for all functions without configured limits). You can find all of this information on the main Dashboard page of the Lambda console:

For generating load in this example, use an open source tool called “hey” (https://github.com/rakyll/hey), which works similarly to ApacheBench (ab). You test from an Amazon EC2 instance running the default Amazon Linux AMI from the EC2 console. For more help with configuring an EC2 instance, follow the steps in the Launch Instance Wizard.

After the EC2 instance is running, SSH into the host and run the following:


sudo yum install go
go get -u github.com/rakyll/hey

“hey” is easy to use. For these tests, specify a total number of tests (5,000) and a concurrency of 50 against the API Gateway URL as follows(replace the URL here with your own):


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

The output from “hey” tells you interesting bits of information:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

Summary:
Total: 381.9978 secs
Slowest: 9.4765 secs
Fastest: 0.0438 secs
Average: 3.2153 secs
Requests/sec: 13.0891
Total data: 140024 bytes
Size/request: 28 bytes

Response time histogram:
0.044 [1] |
0.987 [2] |
1.930 [0] |
2.874 [1803] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
3.817 [1518] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
4.760 [719] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
5.703 [917] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
6.647 [13] |
7.590 [14] |
8.533 [9] |
9.477 [4] |

Latency distribution:
10% in 2.0224 secs
25% in 2.0267 secs
50% in 3.0251 secs
75% in 4.0269 secs
90% in 5.0279 secs
95% in 5.0414 secs
99% in 5.1871 secs

Details (average, fastest, slowest):
DNS+dialup: 0.0003 secs, 0.0000 secs, 0.0332 secs
DNS-lookup: 0.0000 secs, 0.0000 secs, 0.0046 secs
req write: 0.0000 secs, 0.0000 secs, 0.0005 secs
resp wait: 3.2149 secs, 0.0438 secs, 9.4472 secs
resp read: 0.0000 secs, 0.0000 secs, 0.0004 secs

Status code distribution:
[200] 4997 responses
[502] 3 responses

You can see a helpful histogram and latency distribution. Remember that this Lambda function has a random sleep period in it and so isn’t entirely representational of a real-life workload. Those three 502s warrant digging deeper, but could be due to Lambda cold-start timing and the “second” variable being the maximum of 5, causing the Lambda functions to time out. AWS X-Ray and the Amazon CloudWatch logs generated by both API Gateway and Lambda could help you troubleshoot this.

Configuring a concurrency reservation

Now that you’ve established that you can generate this load against the function, I show you how to limit it and protect a backend resource from being overloaded by all of these requests.

  1. In the console, choose Configure.
  2. Under Concurrency, for Reserve concurrency, enter 25.

  1. Click on Save in the top right corner.

You could also set this with the AWS CLI using the Lambda put-function-concurrency command or see your current concurrency configuration via Lambda get-function. Here’s an example command:


$ aws lambda get-function --function-name concurrencyBlog01 --output json --query Concurrency
{
"ReservedConcurrentExecutions": 25
}

Either way, you’ve set the Concurrency Reservation to 25 for this function. This acts as both a limit and a reservation in terms of making sure that you can execute 25 concurrent functions at all times. Going above this results in the throttling of the Lambda function. Depending on the invoking service, throttling can result in a number of different outcomes, as shown in the documentation on Throttling Behavior. This change has also reduced your unreserved account concurrency for other functions by 25.

Rerun the same load generation as before and see what happens. Previously, you tested at 50 concurrency, which worked just fine. By limiting the Lambda functions to 25 concurrency, you should see rate limiting kick in. Run the same test again:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

While this test runs, refresh the Monitoring tab on your function detail page. You see the following warning message:

This is great! It means that your throttle is working as configured and you are now protecting your downstream resources from too much load from your Lambda function.

Here is the output from a new “hey” command:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
Summary:
Total: 379.9922 secs
Slowest: 7.1486 secs
Fastest: 0.0102 secs
Average: 1.1897 secs
Requests/sec: 13.1582
Total data: 164608 bytes
Size/request: 32 bytes

Response time histogram:
0.010 [1] |
0.724 [3075] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
1.438 [0] |
2.152 [811] |∎∎∎∎∎∎∎∎∎∎∎
2.866 [11] |
3.579 [566] |∎∎∎∎∎∎∎
4.293 [214] |∎∎∎
5.007 [1] |
5.721 [315] |∎∎∎∎
6.435 [4] |
7.149 [2] |

Latency distribution:
10% in 0.0130 secs
25% in 0.0147 secs
50% in 0.0205 secs
75% in 2.0344 secs
90% in 4.0229 secs
95% in 5.0248 secs
99% in 5.0629 secs

Details (average, fastest, slowest):
DNS+dialup: 0.0004 secs, 0.0000 secs, 0.0537 secs
DNS-lookup: 0.0002 secs, 0.0000 secs, 0.0184 secs
req write: 0.0000 secs, 0.0000 secs, 0.0016 secs
resp wait: 1.1892 secs, 0.0101 secs, 7.1038 secs
resp read: 0.0000 secs, 0.0000 secs, 0.0005 secs

Status code distribution:
[502] 3076 responses
[200] 1924 responses

This looks fairly different from the last load test run. A large percentage of these requests failed fast due to the concurrency throttle failing them (those with the 0.724 seconds line). The timing shown here in the histogram represents the entire time it took to get a response between the EC2 instance and API Gateway calling Lambda and being rejected. It’s also important to note that this example was configured with an edge-optimized endpoint in API Gateway. You see under Status code distribution that 3076 of the 5000 requests failed with a 502, showing that the backend service from API Gateway and Lambda failed the request.

Other uses

Managing function concurrency can be useful in a few other ways beyond just limiting the impact on downstream services and providing a reservation of concurrency capacity. Here are two other uses:

  • Emergency kill switch
  • Cost controls

Emergency kill switch

On occasion, due to issues with applications I’ve managed in the past, I’ve had a need to disable a certain function or capability of an application. By setting the concurrency reservation and limit of a Lambda function to zero, you can do just that.

With the reservation set to zero every invocation of a Lambda function results in being throttled. You could then work on the related parts of the infrastructure or application that aren’t working, and then reconfigure the concurrency limit to allow invocations again.

Cost controls

While I mentioned how you might want to use concurrency limits to control the downstream impact to services or databases that your Lambda function might call, another resource that you might be cautious about is money. Setting the concurrency throttle is another way to help control costs during development and testing of your application.

You might want to prevent against a function performing a recursive action too quickly or a development workload generating too high of a concurrency. You might also want to protect development resources connected to this function from generating too much cost, such as APIs that your Lambda function calls.

Conclusion

Concurrent executions as a unit of scale are a fairly unique characteristic about Lambda functions. Placing limits on how many concurrency “slices” that your function can consume can prevent a single function from consuming all of the available concurrency in an account. Limits can also prevent a function from overwhelming a backend resource that isn’t as scalable.

Unlike monolithic applications or even microservices where there are mixed capabilities in a single service, Lambda functions encourage a sort of “nano-service” of small business logic directly related to the integration model connected to the function. I hope you’ve enjoyed this post and configure your concurrency limits today!

Easier Certificate Validation Using DNS with AWS Certificate Manager

Post Syndicated from Todd Cignetti original https://aws.amazon.com/blogs/security/easier-certificate-validation-using-dns-with-aws-certificate-manager/

Secure Sockets Layer/Transport Layer Security (SSL/TLS) certificates are used to secure network communications and establish the identity of websites over the internet. Before issuing a certificate for your website, Amazon must validate that you control the domain name for your site. You can now use AWS Certificate Manager (ACM) Domain Name System (DNS) validation to establish that you control a domain name when requesting SSL/TLS certificates with ACM. Previously ACM supported only email validation, which required the domain owner to receive an email for each certificate request and validate the information in the request before approving it.

With DNS validation, you write a CNAME record to your DNS configuration to establish control of your domain name. After you have configured the CNAME record, ACM can automatically renew DNS-validated certificates before they expire, as long as the DNS record has not changed. To make it even easier to validate your domain, ACM can update your DNS configuration for you if you manage your DNS records with Amazon Route 53. In this blog post, I demonstrate how to request a certificate for a website by using DNS validation. To perform the equivalent steps using the AWS CLI or AWS APIs and SDKs, see AWS Certificate Manager in the AWS CLI Reference and the ACM API Reference.

Requesting an SSL/TLS certificate by using DNS validation

In this section, I walk you through the four steps required to obtain an SSL/TLS certificate through ACM to identify your site over the internet. SSL/TLS provides encryption for sensitive data in transit and authentication by using certificates to establish the identity of your site and secure connections between browsers and applications and your site. DNS validation and SSL/TLS certificates provisioned through ACM are free.

Step 1: Request a certificate

To get started, sign in to the AWS Management Console and navigate to the ACM console. Choose Get started to request a certificate.

Screenshot of getting started in the ACM console

If you previously managed certificates in ACM, you will instead see a table with your certificates and a button to request a new certificate. Choose Request a certificate to request a new certificate.

Screenshot of choosing "Request a certificate"

Type the name of your domain in the Domain name box and choose Next. In this example, I type www.example.com. You must use a domain name that you control. Requesting certificates for domains that you don’t control violates the AWS Service Terms.

Screenshot of entering a domain name

Step 2: Select a validation method

With DNS validation, you write a CNAME record to your DNS configuration to establish control of your domain name. Choose DNS validation, and then choose Review.

Screenshot of selecting validation method

Step 3: Review your request

Review your request and choose Confirm and request to request the certificate.

Screenshot of reviewing request and confirming it

Step 4: Submit your request

After a brief delay while ACM populates your domain validation information, choose the down arrow (highlighted in the following screenshot) to display all the validation information for your domain.

Screenshot of validation information

ACM displays the CNAME record you must add to your DNS configuration to validate that you control the domain name in your certificate request. If you use a DNS provider other than Route 53 or if you use a different AWS account to manage DNS records in Route 53, copy the DNS CNAME information from the validation information, or export it to a file (choose Export DNS configuration to a file) and write it to your DNS configuration. For information about how to add or modify DNS records, check with your DNS provider. For more information about using DNS with Route 53 DNS, see the Route 53 documentation.

If you manage DNS records for your domain with Route 53 in the same AWS account, choose Create record in Route 53 to have ACM update your DNS configuration for you.

After updating your DNS configuration, choose Continue to return to the ACM table view.

ACM then displays a table that includes all your certificates. The certificate you requested is displayed so that you can see the status of your request. After you write the DNS record or have ACM write the record for you, it typically takes DNS 30 minutes to propagate the record, and it might take several hours for Amazon to validate it and issue the certificate. During this time, ACM shows the Validation status as Pending validation. After ACM validates the domain name, ACM updates the Validation status to Success. After the certificate is issued, the certificate status is updated to Issued. If ACM cannot validate your DNS record and issue the certificate after 72 hours, the request times out, and ACM displays a Timed out validation status. To recover, you must make a new request. Refer to the Troubleshooting Section of the ACM User Guide for instructions about troubleshooting validation or issuance failures.

Screenshot of a certificate issued and validation successful

You now have an ACM certificate that you can use to secure your application or website. For information about how to deploy certificates with other AWS services, see the documentation for Amazon CloudFront, Amazon API Gateway, Application Load Balancers, and Classic Load Balancers. Note that your certificate must be in the US East (N. Virginia) Region to use the certificate with CloudFront.

ACM automatically renews certificates that are deployed and in use with other AWS services as long as the CNAME record remains in your DNS configuration. To learn more about ACM DNS validation, see the ACM FAQs and the ACM documentation.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about this blog post, start a new thread on the ACM forum or contact AWS Support.

– Todd

Resume AWS Step Functions from Any State

Post Syndicated from Andy Katz original https://aws.amazon.com/blogs/compute/resume-aws-step-functions-from-any-state/


Yash Pant, Solutions Architect, AWS


Aaron Friedman, Partner Solutions Architect, AWS

When we discuss how to build applications with customers, we often align to the Well Architected Framework pillars of security, reliability, performance efficiency, cost optimization, and operational excellence. Designing for failure is an essential component to developing well architected applications that are resilient to spurious errors that may occur.

There are many ways you can use AWS services to achieve high availability and resiliency of your applications. For example, you can couple Elastic Load Balancing with Auto Scaling and Amazon EC2 instances to build highly available applications. Or use Amazon API Gateway and AWS Lambda to rapidly scale out a microservices-based architecture. Many AWS services have built in solutions to help with the appropriate error handling, such as Dead Letter Queues (DLQ) for Amazon SQS or retries in AWS Batch.

AWS Step Functions is an AWS service that makes it easy for you to coordinate the components of distributed applications and microservices. Step Functions allows you to easily design for failure, by incorporating features such as error retries and custom error handling from AWS Lambda exceptions. These features allow you to programmatically handle many common error modes and build robust, reliable applications.

In some rare cases, however, your application may fail in an unexpected manner. In these situations, you might not want to duplicate in a repeat execution those portions of your state machine that have already run. This is especially true when orchestrating long-running jobs or executing a complex state machine as part of a microservice. Here, you need to know the last successful state in your state machine from which to resume, so that you don’t duplicate previous work. In this post, we present a solution to enable you to resume from any given state in your state machine in the case of an unexpected failure.

Resuming from a given state

To resume a failed state machine execution from the state at which it failed, you first run a script that dynamically creates a new state machine. When the new state machine is executed, it resumes the failed execution from the point of failure. The script contains the following two primary steps:

  1. Parse the execution history of the failed execution to find the name of the state at which it failed, as well as the JSON input to that state.
  2. Create a new state machine, which adds an additional state to failed state machine, called "GoToState". "GoToState" is a choice state at the beginning of the state machine that branches execution directly to the failed state, allowing you to skip states that had succeeded in the previous execution.

The full script along with a CloudFormation template that creates a demo of this is available in the aws-sfn-resume-from-any-state GitHub repo.

Diving into the script

In this section, we walk you through the script and highlight the core components of its functionality. The script contains a main function, which adds a command line parameter for the failedExecutionArn so that you can easily call the script from the command line:

python gotostate.py --failedExecutionArn '<Failed_Execution_Arn>'

Identifying the failed state in your execution

First, the script extracts the name of the failed state along with the input to that state. It does so by using the failed state machine execution history, which is identified by the Amazon Resource Name (ARN) of the execution. The failed state is marked in the execution history, along with the input to that state (which is also the output of the preceding successful state). The script is able to parse these values from the log.

The script loops through the execution history of the failed state machine, and traces it backwards until it finds the failed state. If the state machine failed in a parallel state, then it must restart from the beginning of the parallel state. The script is able to capture the name of the parallel state that failed, rather than any substate within the parallel state that may have caused the failure. The following code is the Python function that does this.


def parseFailureHistory(failedExecutionArn):

    '''
    Parses the execution history of a failed state machine to get the name of failed state and the input to the failed state:
    Input failedExecutionArn = A string containing the execution ARN of a failed state machine y
    Output = A list with two elements: [name of failed state, input to failed state]
    '''
    failedAtParallelState = False
    try:
        #Get the execution history
        response = client.get\_execution\_history(
            executionArn=failedExecutionArn,
            reverseOrder=True
        )
        failedEvents = response['events']
    except Exception as ex:
        raise ex
    #Confirm that the execution actually failed, raise exception if it didn't fail.
    try:
        failedEvents[0]['executionFailedEventDetails']
    except:
        raise('Execution did not fail')
        
    '''
    If you have a 'States.Runtime' error (for example, if a task state in your state machine attempts to execute a Lambda function in a different region than the state machine), get the ID of the failed state, and use it to determine the failed state name and input.
    '''
    
    if failedEvents[0]['executionFailedEventDetails']['error'] == 'States.Runtime':
        failedId = int(filter(str.isdigit, str(failedEvents[0]['executionFailedEventDetails']['cause'].split()[13])))
        failedState = failedEvents[-1 \* failedId]['stateEnteredEventDetails']['name']
        failedInput = failedEvents[-1 \* failedId]['stateEnteredEventDetails']['input']
        return (failedState, failedInput)
        
    '''
    You need to loop through the execution history, tracing back the executed steps.
    The first state you encounter is the failed state. If you failed on a parallel state, you need the name of the parallel state rather than the name of a state within a parallel state that it failed on. This is because you can only attach goToState to the parallel state, but not a substate within the parallel state.
    This loop starts with the ID of the latest event and uses the previous event IDs to trace back the execution to the beginning (id 0). However, it returns as soon it finds the name of the failed state.
    '''

    currentEventId = failedEvents[0]['id']
    while currentEventId != 0:
        #multiply event ID by -1 for indexing because you're looking at the reversed history
        currentEvent = failedEvents[-1 \* currentEventId]
        
        '''
        You can determine if the failed state was a parallel state because it and an event with 'type'='ParallelStateFailed' appears in the execution history before the name of the failed state
        '''

        if currentEvent['type'] == 'ParallelStateFailed':
            failedAtParallelState = True

        '''
        If the failed state is not a parallel state, then the name of failed state to return is the name of the state in the first 'TaskStateEntered' event type you run into when tracing back the execution history
        '''

        if currentEvent['type'] == 'TaskStateEntered' and failedAtParallelState == False:
            failedState = currentEvent['stateEnteredEventDetails']['name']
            failedInput = currentEvent['stateEnteredEventDetails']['input']
            return (failedState, failedInput)

        '''
        If the failed state was a parallel state, then you need to trace execution back to the first event with 'type'='ParallelStateEntered', and return the name of the state
        '''

        if currentEvent['type'] == 'ParallelStateEntered' and failedAtParallelState:
            failedState = failedState = currentEvent['stateEnteredEventDetails']['name']
            failedInput = currentEvent['stateEnteredEventDetails']['input']
            return (failedState, failedInput)
        #Update the ID for the next execution of the loop
        currentEventId = currentEvent['previousEventId']
        

Create the new state machine

The script uses the name of the failed state to create the new state machine, with "GoToState" branching execution directly to the failed state.

To do this, the script requires the Amazon States Language (ASL) definition of the failed state machine. It modifies the definition to append "GoToState", and create a new state machine from it.

The script gets the ARN of the failed state machine from the execution ARN of the failed state machine. This ARN allows it to get the ASL definition of the failed state machine by calling the DesribeStateMachine API action. It creates a new state machine with "GoToState".

When the script creates the new state machine, it also adds an additional input variable called "resuming". When you execute this new state machine, you specify this resuming variable as true in the input JSON. This tells "GoToState" to branch execution to the state that had previously failed. Here’s the function that does this:

def attachGoToState(failedStateName, stateMachineArn):

    '''
    Given a state machine ARN and the name of a state in that state machine, create a new state machine that starts at a new choice state called 'GoToState'. "GoToState" branches to the named state, and sends the input of the state machine to that state, when a variable called "resuming" is set to True.
    Input failedStateName = A string with the name of the failed state
          stateMachineArn = A string with the ARN of the state machine
    Output response from the create_state_machine call, which is the API call that creates a new state machine
    '''

    try:
        response = client.describe\_state\_machine(
            stateMachineArn=stateMachineArn
        )
    except:
        raise('Could not get ASL definition of state machine')
    roleArn = response['roleArn']
    stateMachine = json.loads(response['definition'])
    #Create a name for the new state machine
    newName = response['name'] + '-with-GoToState'
    #Get the StartAt state for the original state machine, because you point the 'GoToState' to this state
    originalStartAt = stateMachine['StartAt']

    '''
    Create the GoToState with the variable $.resuming.
    If new state machine is executed with $.resuming = True, then the state machine skips to the failed state.
    Otherwise, it executes the state machine from the original start state.
    '''

    goToState = {'Type':'Choice', 'Choices':[{'Variable':'$.resuming', 'BooleanEquals':False, 'Next':originalStartAt}], 'Default':failedStateName}
    #Add GoToState to the set of states in the new state machine
    stateMachine['States']['GoToState'] = goToState
    #Add StartAt
    stateMachine['StartAt'] = 'GoToState'
    #Create new state machine
    try:
        response = client.create_state_machine(
            name=newName,
            definition=json.dumps(stateMachine),
            roleArn=roleArn
        )
    except:
        raise('Failed to create new state machine with GoToState')
    return response

Testing the script

Now that you understand how the script works, you can test it out.

The following screenshot shows an example state machine that has failed, called "TestMachine". This state machine successfully completed "FirstState" and "ChoiceState", but when it branched to "FirstMatchState", it failed.

Use the script to create a new state machine that allows you to rerun this state machine, but skip the "FirstState" and the "ChoiceState" steps that already succeeded. You can do this by calling the script as follows:

python gotostate.py --failedExecutionArn 'arn:aws:states:us-west-2:<AWS_ACCOUNT_ID>:execution:TestMachine-with-GoToState:b2578403-f41d-a2c7-e70c-7500045288595

This creates a new state machine called "TestMachine-with-GoToState", and returns its ARN, along with the input that had been sent to "FirstMatchState". You can then inspect the input to determine what caused the error. In this case, you notice that the input to "FirstMachState" was the following:

{
"foo": 1,
"Message": true
}

However, this state machine expects the "Message" field of the JSON to be a string rather than a Boolean. Execute the new "TestMachine-with-GoToState" state machine, change the input to be a string, and add the "resuming" variable that "GoToState" requires:

{
"foo": 1,
"Message": "Hello!",
"resuming":true
}

When you execute the new state machine, it skips "FirstState" and "ChoiceState", and goes directly to "FirstMatchState", which was the state that failed:

Look at what happens when you have a state machine with multiple parallel steps. This example is included in the GitHub repository associated with this post. The repo contains a CloudFormation template that sets up this state machine and provides instructions to replicate this solution.

The following state machine, "ParallelStateMachine", takes an input through two subsequent parallel states before doing some final processing and exiting, along with the JSON with the ASL definition of the state machine.

{
  "Comment": "An example of the Amazon States Language using a parallel state to execute two branches at the same time.",
  "StartAt": "Parallel",
  "States": {
    "Parallel": {
      "Type": "Parallel",
      "ResultPath":"$.output",
      "Next": "Parallel 2",
      "Branches": [
        {
          "StartAt": "Parallel Step 1, Process 1",
          "States": {
            "Parallel Step 1, Process 1": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
              "End": true
            }
          }
        },
        {
          "StartAt": "Parallel Step 1, Process 2",
          "States": {
            "Parallel Step 1, Process 2": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
              "End": true
            }
          }
        }
      ]
    },
    "Parallel 2": {
      "Type": "Parallel",
      "Next": "Final Processing",
      "Branches": [
        {
          "StartAt": "Parallel Step 2, Process 1",
          "States": {
            "Parallel Step 2, Process 1": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXXX:function:LambdaB",
              "End": true
            }
          }
        },
        {
          "StartAt": "Parallel Step 2, Process 2",
          "States": {
            "Parallel Step 2, Process 2": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
              "End": true
            }
          }
        }
      ]
    },
    "Final Processing": {
      "Type": "Task",
      "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaC",
      "End": true
    }
  }
}

First, use an input that initially fails:

{
  "Message": "Hello!"
}

This fails because the state machine expects you to have a variable in the input JSON called "foo" in the second parallel state to run "Parallel Step 2, Process 1" and "Parallel Step 2, Process 2". Instead, the original input gets processed by the first parallel state and produces the following output to pass to the second parallel state:

{
"output": [
    {
      "Message": "Hello!"
    },
    {
      "Message": "Hello!"
    }
  ],
}

Run the script on the failed state machine to create a new state machine that allows it to resume directly at the second parallel state instead of having to redo the first parallel state. This creates a new state machine called "ParallelStateMachine-with-GoToState". The following JSON was created by the script to define the new state machine in ASL. It contains the "GoToState" value that was attached by the script.

{
   "Comment":"An example of the Amazon States Language using a parallel state to execute two branches at the same time.",
   "States":{
      "Final Processing":{
         "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaC",
         "End":true,
         "Type":"Task"
      },
      "GoToState":{
         "Default":"Parallel 2",
         "Type":"Choice",
         "Choices":[
            {
               "Variable":"$.resuming",
               "BooleanEquals":false,
               "Next":"Parallel"
            }
         ]
      },
      "Parallel":{
         "Branches":[
            {
               "States":{
                  "Parallel Step 1, Process 1":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 1, Process 1"
            },
            {
               "States":{
                  "Parallel Step 1, Process 2":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:LambdaA",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 1, Process 2"
            }
         ],
         "ResultPath":"$.output",
         "Type":"Parallel",
         "Next":"Parallel 2"
      },
      "Parallel 2":{
         "Branches":[
            {
               "States":{
                  "Parallel Step 2, Process 1":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 2, Process 1"
            },
            {
               "States":{
                  "Parallel Step 2, Process 2":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 2, Process 2"
            }
         ],
         "Type":"Parallel",
         "Next":"Final Processing"
      }
   },
   "StartAt":"GoToState"
}

You can then execute this state machine with the correct input by adding the "foo" and "resuming" variables:

{
  "foo": 1,
  "output": [
    {
      "Message": "Hello!"
    },
    {
      "Message": "Hello!"
    }
  ],
  "resuming": true
}

This yields the following result. Notice that this time, the state machine executed successfully to completion, and skipped the steps that had previously failed.


Conclusion

When you’re building out complex workflows, it’s important to be prepared for failure. You can do this by taking advantage of features such as automatic error retries in Step Functions and custom error handling of Lambda exceptions.

Nevertheless, state machines still have the possibility of failing. With the methodology and script presented in this post, you can resume a failed state machine from its point of failure. This allows you to skip the execution of steps in the workflow that had already succeeded, and recover the process from the point of failure.

To see more examples, please visit the Step Functions Getting Started page.

If you have questions or suggestions, please comment below.

Building a Multi-region Serverless Application with Amazon API Gateway and AWS Lambda

Post Syndicated from Stefano Buliani original https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-gateway-and-aws-lambda/

This post written by: Magnus Bjorkman – Solutions Architect

Many customers are looking to run their services at global scale, deploying their backend to multiple regions. In this post, we describe how to deploy a Serverless API into multiple regions and how to leverage Amazon Route 53 to route the traffic between regions. We use latency-based routing and health checks to achieve an active-active setup that can fail over between regions in case of an issue. We leverage the new regional API endpoint feature in Amazon API Gateway to make this a seamless process for the API client making the requests. This post does not cover the replication of your data, which is another aspect to consider when deploying applications across regions.

Solution overview

Currently, the default API endpoint type in API Gateway is the edge-optimized API endpoint, which enables clients to access an API through an Amazon CloudFront distribution. This typically improves connection time for geographically diverse clients. By default, a custom domain name is globally unique and the edge-optimized API endpoint would invoke a Lambda function in a single region in the case of Lambda integration. You can’t use this type of endpoint with a Route 53 active-active setup and fail-over.

The new regional API endpoint in API Gateway moves the API endpoint into the region and the custom domain name is unique per region. This makes it possible to run a full copy of an API in each region and then use Route 53 to use an active-active setup and failover. The following diagram shows how you do this:

Active/active multi region architecture

  • Deploy your Rest API stack, consisting of API Gateway and Lambda, in two regions, such as us-east-1 and us-west-2.
  • Choose the regional API endpoint type for your API.
  • Create a custom domain name and choose the regional API endpoint type for that one as well. In both regions, you are configuring the custom domain name to be the same, for example, helloworldapi.replacewithyourcompanyname.com
  • Use the host name of the custom domain names from each region, for example, xxxxxx.execute-api.us-east-1.amazonaws.com and xxxxxx.execute-api.us-west-2.amazonaws.com, to configure record sets in Route 53 for your client-facing domain name, for example, helloworldapi.replacewithyourcompanyname.com

The above solution provides an active-active setup for your API across the two regions, but you are not doing failover yet. For that to work, set up a health check in Route 53:

Route 53 Health Check

A Route 53 health check must have an endpoint to call to check the health of a service. You could do a simple ping of your actual Rest API methods, but instead provide a specific method on your Rest API that does a deep ping. That is, it is a Lambda function that checks the status of all the dependencies.

In the case of the Hello World API, you don’t have any other dependencies. In a real-world scenario, you could check on dependencies as databases, other APIs, and external dependencies. Route 53 health checks themselves cannot use your custom domain name endpoint’s DNS address, so you are going to directly call the API endpoints via their region unique endpoint’s DNS address.

Walkthrough

The following sections describe how to set up this solution. You can find the complete solution at the blog-multi-region-serverless-service GitHub repo. Clone or download the repository locally to be able to do the setup as described.

Prerequisites

You need the following resources to set up the solution described in this post:

  • AWS CLI
  • An S3 bucket in each region in which to deploy the solution, which can be used by the AWS Serverless Application Model (SAM). You can use the following CloudFormation templates to create buckets in us-east-1 and us-west-2:
    • us-east-1:
    • us-west-2:
  • A hosted zone registered in Amazon Route 53. This is used for defining the domain name of your API endpoint, for example, helloworldapi.replacewithyourcompanyname.com. You can use a third-party domain name registrar and then configure the DNS in Amazon Route 53, or you can purchase a domain directly from Amazon Route 53.

Deploy API with health checks in two regions

Start by creating a small “Hello World” Lambda function that sends back a message in the region in which it has been deployed.


"""Return message."""
import logging

logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
    """Lambda handler for getting the hello world message."""

    region = context.invoked_function_arn.split(':')[3]

    logger.info("message: " + "Hello from " + region)
    
    return {
		"message": "Hello from " + region
    }

Also create a Lambda function for doing a health check that returns a value based on another environment variable (either “ok” or “fail”) to allow for ease of testing:


"""Return health."""
import logging
import os

logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
    """Lambda handler for getting the health."""

    logger.info("status: " + os.environ['STATUS'])
    
    return {
		"status": os.environ['STATUS']
    }

Deploy both of these using an AWS Serverless Application Model (SAM) template. SAM is a CloudFormation extension that is optimized for serverless, and provides a standard way to create a complete serverless application. You can find the full helloworld-sam.yaml template in the blog-multi-region-serverless-service GitHub repo.

A few things to highlight:

  • You are using inline Swagger to define your API so you can substitute the current region in the x-amazon-apigateway-integration section.
  • Most of the Swagger template covers CORS to allow you to test this from a browser.
  • You are also using substitution to populate the environment variable used by the “Hello World” method with the region into which it is being deployed.

The Swagger allows you to use the same SAM template in both regions.

You can only use SAM from the AWS CLI, so do the following from the command prompt. First, deploy the SAM template in us-east-1 with the following commands, replacing “<your bucket in us-east-1>” with a bucket in your account:


> cd helloworld-api
> aws cloudformation package --template-file helloworld-sam.yaml --output-template-file /tmp/cf-helloworld-sam.yaml --s3-bucket <your bucket in us-east-1> --region us-east-1
> aws cloudformation deploy --template-file /tmp/cf-helloworld-sam.yaml --stack-name multiregionhelloworld --capabilities CAPABILITY_IAM --region us-east-1

Second, do the same in us-west-2:


> aws cloudformation package --template-file helloworld-sam.yaml --output-template-file /tmp/cf-helloworld-sam.yaml --s3-bucket <your bucket in us-west-2> --region us-west-2
> aws cloudformation deploy --template-file /tmp/cf-helloworld-sam.yaml --stack-name multiregionhelloworld --capabilities CAPABILITY_IAM --region us-west-2

The API was created with the default endpoint type of Edge Optimized. Switch it to Regional. In the Amazon API Gateway console, select the API that you just created and choose the wheel-icon to edit it.

API Gateway edit API settings

In the edit screen, select the Regional endpoint type and save the API. Do the same in both regions.

Grab the URL for the API in the console by navigating to the method in the prod stage.

API Gateway endpoint link

You can now test this with curl:


> curl https://2wkt1cxxxx.execute-api.us-west-2.amazonaws.com/prod/helloworld
{"message": "Hello from us-west-2"}

Write down the domain name for the URL in each region (for example, 2wkt1cxxxx.execute-api.us-west-2.amazonaws.com), as you need that later when you deploy the Route 53 setup.

Create the custom domain name

Next, create an Amazon API Gateway custom domain name endpoint. As part of using this feature, you must have a hosted zone and domain available to use in Route 53 as well as an SSL certificate that you use with your specific domain name.

You can create the SSL certificate by using AWS Certificate Manager. In the ACM console, choose Get started (if you have no existing certificates) or Request a certificate. Fill out the form with the domain name to use for the custom domain name endpoint, which is the same across the two regions:

Amazon Certificate Manager request new certificate

Go through the remaining steps and validate the certificate for each region before moving on.

You are now ready to create the endpoints. In the Amazon API Gateway console, choose Custom Domain Names, Create Custom Domain Name.

API Gateway create custom domain name

A few things to highlight:

  • The domain name is the same as what you requested earlier through ACM.
  • The endpoint configuration should be regional.
  • Select the ACM Certificate that you created earlier.
  • You need to create a base path mapping that connects back to your earlier API Gateway endpoint. Set the base path to v1 so you can version your API, and then select the API and the prod stage.

Choose Save. You should see your newly created custom domain name:

API Gateway custom domain setup

Note the value for Target Domain Name as you need that for the next step. Do this for both regions.

Deploy Route 53 setup

Use the global Route 53 service to provide DNS lookup for the Rest API, distributing the traffic in an active-active setup based on latency. You can find the full CloudFormation template in the blog-multi-region-serverless-service GitHub repo.

The template sets up health checks, for example, for us-east-1:


HealthcheckRegion1:
  Type: "AWS::Route53::HealthCheck"
  Properties:
    HealthCheckConfig:
      Port: "443"
      Type: "HTTPS_STR_MATCH"
      SearchString: "ok"
      ResourcePath: "/prod/healthcheck"
      FullyQualifiedDomainName: !Ref Region1HealthEndpoint
      RequestInterval: "30"
      FailureThreshold: "2"

Use the health check when you set up the record set and the latency routing, for example, for us-east-1:


Region1EndpointRecord:
  Type: AWS::Route53::RecordSet
  Properties:
    Region: us-east-1
    HealthCheckId: !Ref HealthcheckRegion1
    SetIdentifier: "endpoint-region1"
    HostedZoneId: !Ref HostedZoneId
    Name: !Ref MultiregionEndpoint
    Type: CNAME
    TTL: 60
    ResourceRecords:
      - !Ref Region1Endpoint

You can create the stack by using the following link, copying in the domain names from the previous section, your existing hosted zone name, and the main domain name that is created (for example, hellowordapi.replacewithyourcompanyname.com):

The following screenshot shows what the parameters might look like:
Serverless multi region Route 53 health check

Specifically, the domain names that you collected earlier would map according to following:

  • The domain names from the API Gateway “prod”-stage go into Region1HealthEndpoint and Region2HealthEndpoint.
  • The domain names from the custom domain name’s target domain name goes into Region1Endpoint and Region2Endpoint.

Using the Rest API from server-side applications

You are now ready to use your setup. First, demonstrate the use of the API from server-side clients. You can demonstrate this by using curl from the command line:


> curl https://hellowordapi.replacewithyourcompanyname.com/v1/helloworld/
{"message": "Hello from us-east-1"}

Testing failover of Rest API in browser

Here’s how you can use this from the browser and test the failover. Find all of the files for this test in the browser-client folder of the blog-multi-region-serverless-service GitHub repo.

Use this html file:


<!DOCTYPE HTML>
<html>
<head>
    <meta charset="utf-8"/>
    <meta http-equiv="X-UA-Compatible" content="IE=edge"/>
    <meta name="viewport" content="width=device-width, initial-scale=1"/>
    <title>Multi-Region Client</title>
</head>
<body>
<div>
   <h1>Test Client</h1>

    <p id="client_result">

    </p>

    <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
    <script src="settings.js"></script>
    <script src="client.js"></script>
</body>
</html>

The html file uses this JavaScript file to repeatedly call the API and print the history of messages:


var messageHistory = "";

(function call_service() {

   $.ajax({
      url: helloworldMultiregionendpoint+'v1/helloworld/',
      dataType: "json",
      cache: false,
      success: function(data) {
         messageHistory+="<p>"+data['message']+"</p>";
         $('#client_result').html(messageHistory);
      },
      complete: function() {
         // Schedule the next request when the current one's complete
         setTimeout(call_service, 10000);
      },
      error: function(xhr, status, error) {
         $('#client_result').html('ERROR: '+status);
      }
   });

})();

Also, make sure to update the settings in settings.js to match with the API Gateway endpoints for the DNS-proxy and the multi-regional endpoint for the Hello World API: var helloworldMultiregionendpoint = "https://hellowordapi.replacewithyourcompanyname.com/";

You can now open the HTML file in the browser (you can do this directly from the file system) and you should see something like the following screenshot:

Serverless multi region browser test

You can test failover by changing the environment variable in your health check Lambda function. In the Lambda console, select your health check function and scroll down to the Environment variables section. For the STATUS key, modify the value to fail.

Lambda update environment variable

You should see the region switch in the test client:

Serverless multi region broker test switchover

During an emulated failure like this, the browser might take some additional time to switch over due to connection keep-alive functionality. If you are using a browser like Chrome, you can kill all the connections to see a more immediate fail-over: chrome://net-internals/#sockets

Summary

You have implemented a simple way to do multi-regional serverless applications that fail over seamlessly between regions, either being accessed from the browser or from other applications/services. You achieved this by using the capabilities of Amazon Route 53 to do latency based routing and health checks for fail-over. You unlocked the use of these features in a serverless application by leveraging the new regional endpoint feature of Amazon API Gateway.

The setup was fully scripted using CloudFormation, the AWS Serverless Application Model (SAM), and the AWS CLI, and it can be integrated into deployment tools to push the code across the regions to make sure it is available in all the needed regions. For more information about cross-region deployments, see Building a Cross-Region/Cross-Account Code Deployment Solution on AWS on the AWS DevOps blog.

Updated AWS SOC Reports Are Now Available with 19 Additional Services in Scope

Post Syndicated from Chad Woolf original https://aws.amazon.com/blogs/security/updated-aws-soc-reports-are-now-available-with-19-additional-services-in-scope/

AICPA SOC logo

Newly updated reports are available for AWS System and Organization Control Report 1 (SOC 1), formerly called AWS Service Organization Control Report 1, and AWS SOC 2: Security, Availability, & Confidentiality Report. You can download both reports for free and on demand in the AWS Management Console through AWS Artifact. The updated AWS SOC 3: Security, Availability, & Confidentiality Report also was just released. All three reports cover April 1, 2017, through September 30, 2017.

With the addition of the following 19 services, AWS now supports 51 SOC-compliant AWS services and is committed to increasing the number:

  • Amazon API Gateway
  • Amazon Cloud Directory
  • Amazon CloudFront
  • Amazon Cognito
  • Amazon Connect
  • AWS Directory Service for Microsoft Active Directory
  • Amazon EC2 Container Registry
  • Amazon EC2 Container Service
  • Amazon EC2 Systems Manager
  • Amazon Inspector
  • AWS IoT Platform
  • Amazon Kinesis Streams
  • AWS Lambda
  • AWS [email protected]
  • AWS Managed Services
  • Amazon S3 Transfer Acceleration
  • AWS Shield
  • AWS Step Functions
  • AWS WAF

With this release, we also are introducing a separate spreadsheet, eliminating the need to extract the information from multiple PDFs.

If you are not yet an AWS customer, contact AWS Compliance to access the SOC Reports.

– Chad

Things Go Better With Step Functions

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/things-go-better-with-step-functions/

I often give presentations on Amazon’s culture of innovation, and start out with a slide that features a revealing quote from Amazon founder Jeff Bezos:

I love to sit down with our customers and to learn how we have empowered their creativity and to pursue their dreams. Earlier this year I chatted with Patrick from The Coca-Cola Company in order to learn how they used AWS Step Functions and other AWS services to support the Coke.com Vending Pass program. This program includes drink rewards earned by purchasing products at vending machines equipped to support mobile payments using the Coca-Cola Vending Pass. Participants swipe their NFC-enabled phones to complete an Apple Pay or Android Pay purchase, identifying themselves to the vending machine and earning credit towards future free vending purchases in the process

After the swipe, a combination of SNS topics and AWS Lambda functions initiated a pair of calls to some existing backend code to count the vending points and update the participant’s record. Unfortunately, the backend code was slow to react and had some timing dependencies, leading to missing updates that had the potential to confuse Vending Pass participants. The initial solution to this issue was very simple: modify the Lambda code to include a 90 second delay between the two calls. This solved the problem, but ate up process time for no good reason (billing for the use of Lambda functions is based on the duration of the request, in 100 ms intervals).

In order to make their solution more cost-effective, the team turned to AWS Step Functions, building a very simple state machine. As I wrote in an earlier blog post, Step Functions coordinate the components of distributed applications and microservices at scale, using visual workflows that are easy to build.

Coke built a very simple state machine to simplify their business logic and reduce their costs. Yours can be equally simple, or they can make use of other Step Function features such as sequential and parallel execution and the ability to make decisions and choose alternate states. The Coke state machine looks like this:

The FirstState and the SecondState states (Task states) call the appropriate Lambda functions while Step Functions implements the 90 second delay (a Wait state). This modification simplified their logic and reduced their costs. Here’s how it all fits together:

 

What’s Next
This initial success led them to take a closer look at serverless computing and to consider using it for other projects. Patrick told me that they have already seen a boost in productivity and developer happiness. Developers no longer need to wait for servers to be provisioned, and can now (as Jeff says) unleash their creativity and pursue their dreams. They expect to use Step Functions to improve the scalability, functionality, and reliability of their applications, going far beyond the initial use for the Coca-Cola Vending Pass. For example, Coke has built a serverless solution for publishing nutrition information to their food service partners using Lambda, Step Functions, and API Gateway.

Patrick and his team are now experimenting with machine learning and artificial intelligence. They built a prototype application to analyze a stream of photos from Instagram and extract trends in tastes and flavors. The application (built as a quick, one-day prototype) made use of Lambda, Amazon DynamoDB, Amazon API Gateway, and Amazon Rekognition and was, in Patrick’s words, a “big win and an enabler.”

In order to build serverless applications even more quickly, the development team has created an internal CI/CD reference architecture that builds on the Serverless Application Framework. The architecture includes a guided tour of Serverless and some boilerplate code to access internal services and assets. Patrick told me that this model allows them to easily scale promising projects from “a guy with a computer” to an entire development team.

Patrick will be on stage at AWS re:Invent next to my colleague Tim Bray. To meet them in person, be sure to attend SRV306 – State Machines in the Wild! How Customers Use AWS Step Functions.

Jeff;

Improved Testing on the AWS Lambda Console

Post Syndicated from Orr Weinstein original https://aws.amazon.com/blogs/compute/improved-testing-on-the-aws-lambda-console/

(This post has been written by Chris Tate, SDE on the Lambda Console team)

Today, AWS Lambda released three console enhancements:

  • A quicker creation flow that lets you quickly create a function with the minimum working configuration, so that you can start iterating faster.
  • A streamlined configuration page with Lambda function settings logically grouped into cards, which makes locating and making changes much easier.
  • Persisting multiple events to help test your function.

This post focuses on persisting test events, and I discuss how I’ve been using this new feature. Now when you are testing on the Lambda console, you can save up to 10 test events per function, and each event can be up to 6 megabytes in size, the maximum payload size for synchronous invocations. The events are saved for the logged-in user, so that two different users in the same account have their own set of events.

Testing Lambda functions

As a Lambda console developer, when I work on side projects at home, I sometimes use our development server. I’ve been using this new feature to test a Lambda function in one of my projects. The function is probably more complicated than it should be, because it can be triggered by an Alexa skill, Amazon CloudWatch schedule, or an Amazon API Gateway API. If you have had a similarly complicated function, you may have run into the same problem I did:  How do you test?

For quick testing, I used the console but the console used to save only one test event at a time. To work around this, my solution was a text file with three different JSON events, one for each trigger. I would copy whatever event I needed into the Lambda console, tweak it, and choose Test. This would become particularly annoying when I wanted to quickly test all three.

I also switch between my laptop and desktop depending on my mood. For that reason, I needed to make sure this text file with the events were shared in some way, as the console only locally saved one test event to the current browser. But now you don’t have to worry about any of that.

Walkthrough

In the Lambda console, go to the detail page of any function, and select Configure test events from the test events dropdown (the dropdown beside the orange test button). In the dialog box, you can manage 10 test events for your function. First, paste your Alexa trigger event in the dialog box and type an event name, such as AlexaTrigger.

Choose Create. After it saves, you see AlexaTrigger in the Test list.

When you open the dialog box again by choosing Configure test events, you are in edit mode.

To add another event, choose Create new test event. Now you can choose from a list of templates or any of your previously saved test events. This is very useful for a couple of reasons:

  • First, when you want to slightly tweak one of your existing events and still keep the earlier version intact.
  • Second, when you are not sure how to structure a particular event from an event source. You can use one of the sample event templates and tweak them to your needs. Skip it when you know what your event should be.

Paste in your CloudWatch schedule event, give it a name, and choose Create. Repeat for API Gateway.

Now that you have three events saved, you can quickly switch between them and repeatedly test. Furthermore, if you’re on your desktop but you created the test events on your laptop, there’s no problem. You can still see all your events and you can switch back and forth seamlessly between different computers.

Conclusion

This feature should allow you to more easily test your Lambda functions through the console. If you have more suggestions, add a comment to this post or submit feedback through the console. We actually read the feedback, believe it!

Using Enhanced Request Authorizers in Amazon API Gateway

Post Syndicated from Stefano Buliani original https://aws.amazon.com/blogs/compute/using-enhanced-request-authorizers-in-amazon-api-gateway/

Recently, AWS introduced a new type of authorizer in Amazon API Gateway, enhanced request authorizers. Previously, custom authorizers received only the bearer token included in the request and the ARN of the API Gateway method being called. Enhanced request authorizers receive all of the headers, query string, and path parameters as well as the request context. This enables you to make more sophisticated authorization decisions based on parameters such as the client IP address, user agent, or a query string parameter alongside the client bearer token.

Enhanced request authorizer configuration

From the API Gateway console, you can declare a new enhanced request authorizer by selecting the Request option as the AWS Lambda event payload:

Create enhanced request authorizer

 

Just like normal custom authorizers, API Gateway can cache the policy returned by your Lambda function. With enhanced request authorizers, however, you can also specify the values that form the unique key of a policy in the cache. For example, if your authorization decision is based on both the bearer token and the IP address of the client, both values should be part of the unique key in the policy cache. The identity source parameter lets you specify these values as mapping expressions:

  • The bearer token appears in the Authorization header
  • The client IP address is stored in the sourceIp parameter of the request context.

Configure identity sources

 

Using enhanced request authorizers with Swagger

You can also define enhanced request authorizers in your Swagger (Open API) definitions. In the following example, you can see that all of the options configured in the API Gateway console are available as custom extensions in the API definition. For example, the identitySource field is a comma-separated list of mapping expressions.

securityDefinitions:
  IpAuthorizer:
    type: "apiKey"
    name: "IpAuthorizer"
    in: "header"
    x-amazon-apigateway-authtype: "custom"
    x-amazon-apigateway-authorizer:
      authorizerResultTtlInSeconds: 300
      identitySource: "method.request.header.Authorization, context.identity.sourceIp"
      authorizerUri: "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/arn:aws:lambda:us-east-1:XXXXXXXXXX:function:py-ip-authorizer/invocations"
      type: "request"

After you have declared your authorizer in the security definitions section, you can use it in your API methods:

---
swagger: "2.0"
info:
  title: "request-authorizer-demo"
basePath: "/dev"
paths:
  /hello:
    get:
      security:
      - IpAuthorizer: []
...

Enhanced request authorizer Lambda functions

Enhanced request authorizer Lambda functions receive an event object that is similar to proxy integrations. It contains all of the information about a request, excluding the body.

{
    "methodArn": "arn:aws:execute-api:us-east-1:XXXXXXXXXX:xxxxxx/dev/GET/hello",
    "resource": "/hello",
    "requestContext": {
        "resourceId": "xxxx",
        "apiId": "xxxxxxxxx",
        "resourcePath": "/hello",
        "httpMethod": "GET",
        "requestId": "9e04ff18-98a6-11e7-9311-ef19ba18fc8a",
        "path": "/dev/hello",
        "accountId": "XXXXXXXXXXX",
        "identity": {
            "apiKey": "",
            "sourceIp": "58.240.196.186"
        },
        "stage": "dev"
    },
    "queryStringParameters": {},
    "httpMethod": "GET",
    "pathParameters": {},
    "headers": {
        "cache-control": "no-cache",
        "x-amzn-ssl-client-hello": "AQACJAMDAAAAAAAAAAAAAAAAAAAAAAAAAAAA…",
        "Accept-Encoding": "gzip, deflate",
        "X-Forwarded-For": "54.240.196.186, 54.182.214.90",
        "Accept": "*/*",
        "User-Agent": "PostmanRuntime/6.2.5",
        "Authorization": "hello"
    },
    "stageVariables": {},
    "path": "/hello",
    "type": "REQUEST"
}

The following enhanced request authorizer snippet is written in Python and compares the source IP address against a list of valid IP addresses. The comments in the code explain what happens in each step.

...
VALID_IPS = ["58.240.195.186", "201.246.162.38"]

def lambda_handler(event, context):

    # Read the client’s bearer token.
    jwtToken = event["headers"]["Authorization"]
    
    # Read the source IP address for the request form 
    # for the API Gateway context object.
    clientIp = event["requestContext"]["identity"]["sourceIp"]
    
    # Verify that the client IP address is allowed.
    # If it’s not valid, raise an exception to make sure
    # that API Gateway returns a 401 status code.
    if clientIp not in VALID_IPS:
        raise Exception('Unauthorized')
    
    # Only allow hello users in!
    if not validate_jwt(userId):
        raise Exception('Unauthorized')

    # Use the values from the event object to populate the 
    # required parameters in the policy object.
    policy = AuthPolicy(userId, event["requestContext"]["accountId"])
    policy.restApiId = event["requestContext"]["apiId"]
    policy.region = event["methodArn"].split(":")[3]
    policy.stage = event["requestContext"]["stage"]
    
    # Use the scopes from the bearer token to make a 
    # decision on which methods to allow in the API.
    policy.allowMethod(HttpVerb.GET, '/hello')

    # Finally, build the policy.
    authResponse = policy.build()

    return authResponse
...

Conclusion

API Gateway customers build complex APIs, and authorization decisions often go beyond the simple properties in a JWT token. For example, users may be allowed to call the “list cars” endpoint but only with a specific subset of filter parameters. With enhanced request authorizers, you have access to all request parameters. You can centralize all of your application’s access control decisions in a Lambda function, making it easier to manage your application security.

AWS Hot Startups – August 2017

Post Syndicated from Tina Barr original https://aws.amazon.com/blogs/aws/aws-hot-startups-august-2017/

There’s no doubt about it – Artificial Intelligence is changing the world and how it operates. Across industries, organizations from startups to Fortune 500s are embracing AI to develop new products, services, and opportunities that are more efficient and accessible for their consumers. From driverless cars to better preventative healthcare to smart home devices, AI is driving innovation at a fast rate and will continue to play a more important role in our everyday lives.

This month we’d like to highlight startups using AI solutions to help companies grow. We are pleased to feature:

  • SignalBox – a simple and accessible deep learning platform to help businesses get started with AI.
  • Valossa – an AI video recognition platform for the media and entertainment industry.
  • Kaliber – innovative applications for businesses using facial recognition, deep learning, and big data.

SignalBox (UK)

In 2016, SignalBox founder Alain Richardt was hearing the same comments being made by developers, data scientists, and business leaders. They wanted to get into deep learning but didn’t know where to start. Alain saw an opportunity to commodify and apply deep learning by providing a platform that does the heavy lifting with an easy-to-use web interface, blueprints for common tasks, and just a single-click to productize the models. With SignalBox, companies can start building deep learning models with no coding at all – they just select a data set, choose a network architecture, and go. SignalBox also offers step-by-step tutorials, tips and tricks from industry experts, and consulting services for customers that want an end-to-end AI solution.

SignalBox offers a variety of solutions that are being used across many industries for energy modeling, fraud detection, customer segmentation, insurance risk modeling, inventory prediction, real estate prediction, and more. Existing data science teams are using SignalBox to accelerate their innovation cycle. One innovative UK startup, Energi Mine, recently worked with SignalBox to develop deep networks that predict anomalous energy consumption patterns and do time series predictions on energy usage for businesses with hundreds of sites.

SignalBox uses a variety of AWS services including Amazon EC2, Amazon VPC, Amazon Elastic Block Store, and Amazon S3. The ability to rapidly provision EC2 GPU instances has been a critical factor in their success – both in terms of keeping their operational expenses low, as well as speed to market. The Amazon API Gateway has allowed for operational automation, giving SignalBox the ability to control its infrastructure.

To learn more about SignalBox, visit here.

Valossa (Finland)

As students at the University of Oulu in Finland, the Valossa founders spent years doing research in the computer science and AI labs. During that time, the team witnessed how the world was moving beyond text, with video playing a greater role in day-to-day communication. This spawned an idea to use technology to automatically understand what an audience is viewing and share that information with a global network of content producers. Since 2015, Valossa has been building next generation AI applications to benefit the media and entertainment industry and is moving beyond the capabilities of traditional visual recognition systems.

Valossa’s AI is capable of analyzing any video stream. The AI studies a vast array of data within videos and converts that information into descriptive tags, categories, and overviews automatically. Basically, it sees, hears, and understands videos like a human does. The Valossa AI can detect people, visual and auditory concepts, key speech elements, and labels explicit content to make moderating and filtering content simpler. Valossa’s solutions are designed to provide value for the content production workflow, from media asset management to end-user applications for content discovery. AI-annotated content allows online viewers to jump directly to their favorite scenes or search specific topics and actors within a video.

Valossa leverages AWS to deliver the industry’s first complete AI video recognition platform. Using Amazon EC2 GPU instances, Valossa can easily scale their computation capacity based on customer activity. High-volume video processing with GPU instances provides the necessary speed for time-sensitive workflows. The geo-located Availability Zones in EC2 allow Valossa to bring resources close to their customers to minimize network delays. Valossa also uses Amazon S3 for video ingestion and to provide end-user video analytics, which makes managing and accessing media data easy and highly scalable.

To see how Valossa works, check out www.WhatIsMyMovie.com or enable the Alexa Skill, Valossa Movie Finder. To try the Valossa AI, sign up for free at www.valossa.com.

Kaliber (San Francisco, CA)

Serial entrepreneurs Ray Rahman and Risto Haukioja founded Kaliber in 2016. The pair had previously worked in startups building smart cities and online privacy tools, and teamed up to bring AI to the workplace and change the hospitality industry. Our world is designed to appeal to our senses – stores and warehouses have clearly marked aisles, products are colorfully packaged, and we use these designs to differentiate one thing from another. We tell each other apart by our faces, and previously that was something only humans could measure or act upon. Kaliber is using facial recognition, deep learning, and big data to create solutions for business use. Markets and companies that aren’t typically associated with cutting-edge technology will be able to use their existing camera infrastructure in a whole new way, making them more efficient and better able to serve their customers.

Computer video processing is rapidly expanding, and Kaliber believes that video recognition will extend to far more than security cameras and robots. Using the clients’ network of in-house cameras, Kaliber’s platform extracts key data points and maps them to actionable insights using their machine learning (ML) algorithm. Dashboards connect users to the client’s BI tools via the Kaliber enterprise APIs, and managers can view these analytics to improve their real-world processes, taking immediate corrective action with real-time alerts. Kaliber’s Real Metrics are aimed at combining the power of image recognition with ML to ultimately provide a more meaningful experience for all.

Kaliber uses many AWS services, including Amazon Rekognition, Amazon Kinesis, AWS Lambda, Amazon EC2 GPU instances, and Amazon S3. These services have been instrumental in helping Kaliber meet the needs of enterprise customers in record time.

Learn more about Kaliber here.

Thanks for reading and we’ll see you next month!

-Tina

 

Announcing the Winners of the AWS Chatbot Challenge – Conversational, Intelligent Chatbots using Amazon Lex and AWS Lambda

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/announcing-the-winners-of-the-aws-chatbot-challenge-conversational-intelligent-chatbots-using-amazon-lex-and-aws-lambda/

A couple of months ago on the blog, I announced the AWS Chatbot Challenge in conjunction with Slack. The AWS Chatbot Challenge was an opportunity to build a unique chatbot that helped to solve a problem or that would add value for its prospective users. The mission was to build a conversational, natural language chatbot using Amazon Lex and leverage Lex’s integration with AWS Lambda to execute logic or data processing on the backend.

I know that you all have been anxiously waiting to hear announcements of who were the winners of the AWS Chatbot Challenge as much as I was. Well wait no longer, the winners of the AWS Chatbot Challenge have been decided.

May I have the Envelope Please? (The Trumpets sound)

The winners of the AWS Chatbot Challenge are:

  • First Place: BuildFax Counts by Joe Emison
  • Second Place: Hubsy by Andrew Riess, Andrew Puch, and John Wetzel
  • Third Place: PFMBot by Benny Leong and his team from MoneyLion.
  • Large Organization Winner: ADP Payroll Innovation Bot by Eric Liu, Jiaxing Yan, and Fan Yang

 

Diving into the Winning Chatbot Projects

Let’s take a walkthrough of the details for each of the winning projects to get a view of what made these chatbots distinctive, as well as, learn more about the technologies used to implement the chatbot solution.

 

BuildFax Counts by Joe Emison

The BuildFax Counts bot was created as a real solution for the BuildFax company to decrease the amount the time that sales and marketing teams can get answers on permits or properties with permits meet certain criteria.

BuildFax, a company co-founded by bot developer Joe Emison, has the only national database of building permits, which updates data from approximately half of the United States on a monthly basis. In order to accommodate the many requests that come in from the sales and marketing team regarding permit information, BuildFax has a technical sales support team that fulfills these requests sent to a ticketing system by manually writing SQL queries that run across the shards of the BuildFax databases. Since there are a large number of requests received by the internal sales support team and due to the manual nature of setting up the queries, it may take several days for getting the sales and marketing teams to receive an answer.

The BuildFax Counts chatbot solves this problem by taking the permit inquiry that would normally be sent into a ticket from the sales and marketing team, as input from Slack to the chatbot. Once the inquiry is submitted into Slack, a query executes and the inquiry results are returned immediately.

Joe built this solution by first creating a nightly export of the data in their BuildFax MySQL RDS database to CSV files that are stored in Amazon S3. From the exported CSV files, an Amazon Athena table was created in order to run quick and efficient queries on the data. He then used Amazon Lex to create a bot to handle the common questions and criteria that may be asked by the sales and marketing teams when seeking data from the BuildFax database by modeling the language used from the BuildFax ticketing system. He added several different sample utterances and slot types; both custom and Lex provided, in order to correctly parse every question and criteria combination that could be received from an inquiry.  Using Lambda, Joe created a Javascript Lambda function that receives information from the Lex intent and used it to build a SQL statement that runs against the aforementioned Athena database using the AWS SDK for JavaScript in Node.js library to return inquiry count result and SQL statement used.

The BuildFax Counts bot is used today for the BuildFax sales and marketing team to get back data on inquiries immediately that previously took up to a week to receive results.

Not only is BuildFax Counts bot our 1st place winner and wonderful solution, but its creator, Joe Emison, is a great guy.  Joe has opted to donate his prize; the $5,000 cash, the $2,500 in AWS Credits, and one re:Invent ticket to the Black Girls Code organization. I must say, you rock Joe for helping these kids get access and exposure to technology.

 

Hubsy by Andrew Riess, Andrew Puch, and John Wetzel

Hubsy bot was created to redefine and personalize the way users traditionally manage their HubSpot account. HubSpot is a SaaS system providing marketing, sales, and CRM software. Hubsy allows users of HubSpot to create engagements and log engagements with customers, provide sales teams with deals status, and retrieves client contact information quickly. Hubsy uses Amazon Lex’s conversational interface to execute commands from the HubSpot API so that users can gain insights, store and retrieve data, and manage tasks directly from Facebook, Slack, or Alexa.

In order to implement the Hubsy chatbot, Andrew and the team members used AWS Lambda to create a Lambda function with Node.js to parse the users request and call the HubSpot API, which will fulfill the initial request or return back to the user asking for more information. Terraform was used to automatically setup and update Lambda, CloudWatch logs, as well as, IAM profiles. Amazon Lex was used to build the conversational piece of the bot, which creates the utterances that a person on a sales team would likely say when seeking information from HubSpot. To integrate with Alexa, the Amazon Alexa skill builder was used to create an Alexa skill which was tested on an Echo Dot. Cloudwatch Logs are used to log the Lambda function information to CloudWatch in order to debug different parts of the Lex intents. In order to validate the code before the Terraform deployment, ESLint was additionally used to ensure the code was linted and proper development standards were followed.

 

PFMBot by Benny Leong and his team from MoneyLion

PFMBot, Personal Finance Management Bot,  is a bot to be used with the MoneyLion finance group which offers customers online financial products; loans, credit monitoring, and free credit score service to improve the financial health of their customers. Once a user signs up an account on the MoneyLion app or website, the user has the option to link their bank accounts with the MoneyLion APIs. Once the bank account is linked to the APIs, the user will be able to login to their MoneyLion account and start having a conversation with the PFMBot based on their bank account information.

The PFMBot UI has a web interface built with using Javascript integration. The chatbot was created using Amazon Lex to build utterances based on the possible inquiries about the user’s MoneyLion bank account. PFMBot uses the Lex built-in AMAZON slots and parsed and converted the values from the built-in slots to pass to AWS Lambda. The AWS Lambda functions interacting with Amazon Lex are Java-based Lambda functions which call the MoneyLion Java-based internal APIs running on Spring Boot. These APIs obtain account data and related bank account information from the MoneyLion MySQL Database.

 

ADP Payroll Innovation Bot by Eric Liu, Jiaxing Yan, and Fan Yang

ADP PI (Payroll Innovation) bot is designed to help employees of ADP customers easily review their own payroll details and compare different payroll data by just asking the bot for results. The ADP PI Bot additionally offers issue reporting functionality for employees to report payroll issues and aids HR managers in quickly receiving and organizing any reported payroll issues.

The ADP Payroll Innovation bot is an ecosystem for the ADP payroll consisting of two chatbots, which includes ADP PI Bot for external clients (employees and HR managers), and ADP PI DevOps Bot for internal ADP DevOps team.


The architecture for the ADP PI DevOps bot is different architecture from the ADP PI bot shown above as it is deployed internally to ADP. The ADP PI DevOps bot allows input from both Slack and Alexa. When input comes into Slack, Slack sends the request to Lex for it to process the utterance. Lex then calls the Lambda backend, which obtains ADP data sitting in the ADP VPC running within an Amazon VPC. When input comes in from Alexa, a Lambda function is called that also obtains data from the ADP VPC running on AWS.

The architecture for the ADP PI bot consists of users entering in requests and/or entering issues via Slack. When requests/issues are entered via Slack, the Slack APIs communicate via Amazon API Gateway to AWS Lambda. The Lambda function either writes data into one of the Amazon DynamoDB databases for recording issues and/or sending issues or it sends the request to Lex. When sending issues, DynamoDB integrates with Trello to keep HR Managers abreast of the escalated issues. Once the request data is sent from Lambda to Lex, Lex processes the utterance and calls another Lambda function that integrates with the ADP API and it calls ADP data from within the ADP VPC, which runs on Amazon Virtual Private Cloud (VPC).

Python and Node.js were the chosen languages for the development of the bots.

The ADP PI bot ecosystem has the following functional groupings:

Employee Functionality

  • Summarize Payrolls
  • Compare Payrolls
  • Escalate Issues
  • Evolve PI Bot

HR Manager Functionality

  • Bot Management
  • Audit and Feedback

DevOps Functionality

  • Reduce call volume in service centers (ADP PI Bot).
  • Track issues and generate reports (ADP PI Bot).
  • Monitor jobs for various environment (ADP PI DevOps Bot)
  • View job dashboards (ADP PI DevOps Bot)
  • Query job details (ADP PI DevOps Bot)

 

Summary

Let’s all wish all the winners of the AWS Chatbot Challenge hearty congratulations on their excellent projects.

You can review more details on the winning projects, as well as, all of the submissions to the AWS Chatbot Challenge at: https://awschatbot2017.devpost.com/submissions. If you are curious on the details of Chatbot challenge contest including resources, rules, prizes, and judges, you can review the original challenge website here:  https://awschatbot2017.devpost.com/.

Hopefully, you are just as inspired as I am to build your own chatbot using Lex and Lambda. For more information, take a look at the Amazon Lex developer guide or the AWS AI blog on Building Better Bots Using Amazon Lex (Part 1)

Chat with you soon!

Tara

New – AWS SAM Local (Beta) – Build and Test Serverless Applications Locally

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/new-aws-sam-local-beta-build-and-test-serverless-applications-locally/

Today we’re releasing a beta of a new tool, SAM Local, that makes it easy to build and test your serverless applications locally. In this post we’ll use SAM local to build, debug, and deploy a quick application that allows us to vote on tabs or spaces by curling an endpoint. AWS introduced Serverless Application Model (SAM) last year to make it easier for developers to deploy serverless applications. If you’re not already familiar with SAM my colleague Orr wrote a great post on how to use SAM that you can read in about 5 minutes. At it’s core, SAM is a powerful open source specification built on AWS CloudFormation that makes it easy to keep your serverless infrastructure as code – and they have the cutest mascot.

SAM Local takes all the good parts of SAM and brings them to your local machine.

There are a couple of ways to install SAM Local but the easiest is through NPM. A quick npm install -g aws-sam-local should get us going but if you want the latest version you can always install straight from the source: go get github.com/awslabs/aws-sam-local (this will create a binary named aws-sam-local, not sam).

I like to vote on things so let’s write a quick SAM application to vote on Spaces versus Tabs. We’ll use a very simple, but powerful, architecture of API Gateway fronting a Lambda function and we’ll store our results in DynamoDB. In the end a user should be able to curl our API curl https://SOMEURL/ -d '{"vote": "spaces"}' and get back the number of votes.

Let’s start by writing a simple SAM template.yaml:

AWSTemplateFormatVersion : '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
  VotesTable:
    Type: "AWS::Serverless::SimpleTable"
  VoteSpacesTabs:
    Type: "AWS::Serverless::Function"
    Properties:
      Runtime: python3.6
      Handler: lambda_function.lambda_handler
      Policies: AmazonDynamoDBFullAccess
      Environment:
        Variables:
          TABLE_NAME: !Ref VotesTable
      Events:
        Vote:
          Type: Api
          Properties:
            Path: /
            Method: post

So we create a [dynamo_i] table that we expose to our Lambda function through an environment variable called TABLE_NAME.

To test that this template is valid I’ll go ahead and call sam validate to make sure I haven’t fat-fingered anything. It returns Valid! so let’s go ahead and get to work on our Lambda function.

import os
import os
import json
import boto3
votes_table = boto3.resource('dynamodb').Table(os.getenv('TABLE_NAME'))

def lambda_handler(event, context):
    print(event)
    if event['httpMethod'] == 'GET':
        resp = votes_table.scan()
        return {'body': json.dumps({item['id']: int(item['votes']) for item in resp['Items']})}
    elif event['httpMethod'] == 'POST':
        try:
            body = json.loads(event['body'])
        except:
            return {'statusCode': 400, 'body': 'malformed json input'}
        if 'vote' not in body:
            return {'statusCode': 400, 'body': 'missing vote in request body'}
        if body['vote'] not in ['spaces', 'tabs']:
            return {'statusCode': 400, 'body': 'vote value must be "spaces" or "tabs"'}

        resp = votes_table.update_item(
            Key={'id': body['vote']},
            UpdateExpression='ADD votes :incr',
            ExpressionAttributeValues={':incr': 1},
            ReturnValues='ALL_NEW'
        )
        return {'body': "{} now has {} votes".format(body['vote'], resp['Attributes']['votes'])}

So let’s test this locally. I’ll need to create a real DynamoDB database to talk to and I’ll need to provide the name of that database through the enviornment variable TABLE_NAME. I could do that with an env.json file or I can just pass it on the command line. First, I can call:
$ echo '{"httpMethod": "POST", "body": "{\"vote\": \"spaces\"}"}' |\
TABLE_NAME="vote-spaces-tabs" sam local invoke "VoteSpacesTabs"

to test the Lambda – it returns the number of votes for spaces so theoritically everything is working. Typing all of that out is a pain so I could generate a sample event with sam local generate-event api and pass that in to the local invocation. Far easier than all of that is just running our API locally. Let’s do that: sam local start-api. Now I can curl my local endpoints to test everything out.
I’ll run the command: $ curl -d '{"vote": "tabs"}' http://127.0.0.1:3000/ and it returns: “tabs now has 12 votes”. Now, of course I did not write this function perfectly on my first try. I edited and saved several times. One of the benefits of hot-reloading is that as I change the function I don’t have to do any additional work to test the new function. This makes iterative development vastly easier.

Let’s say we don’t want to deal with accessing a real DynamoDB database over the network though. What are our options? Well we can download DynamoDB Local and launch it with java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar -sharedDb. Then we can have our Lambda function use the AWS_SAM_LOCAL environment variable to make some decisions about how to behave. Let’s modify our function a bit:

import os
import json
import boto3
if os.getenv("AWS_SAM_LOCAL"):
    votes_table = boto3.resource(
        'dynamodb',
        endpoint_url="http://docker.for.mac.localhost:8000/"
    ).Table("spaces-tabs-votes")
else:
    votes_table = boto3.resource('dynamodb').Table(os.getenv('TABLE_NAME'))

Now we’re using a local endpoint to connect to our local database which makes working without wifi a little easier.

SAM local even supports interactive debugging! In Java and Node.js I can just pass the -d flag and a port to immediately enable the debugger. For Python I could use a library like import epdb; epdb.serve() and connect that way. Then we can call sam local invoke -d 8080 "VoteSpacesTabs" and our function will pause execution waiting for you to step through with the debugger.

Alright, I think we’ve got everything working so let’s deploy this!

First I’ll call the sam package command which is just an alias for aws cloudformation package and then I’ll use the result of that command to sam deploy.

$ sam package --template-file template.yaml --s3-bucket MYAWESOMEBUCKET --output-template-file package.yaml
Uploading to 144e47a4a08f8338faae894afe7563c3  90570 / 90570.0  (100.00%)
Successfully packaged artifacts and wrote output template to file package.yaml.
Execute the following command to deploy the packaged template
aws cloudformation deploy --template-file package.yaml --stack-name 
$ sam deploy --template-file package.yaml --stack-name VoteForSpaces --capabilities CAPABILITY_IAM
Waiting for changeset to be created..
Waiting for stack create/update to complete
Successfully created/updated stack - VoteForSpaces

Which brings us to our API:
.

I’m going to hop over into the production stage and add some rate limiting in case you guys start voting a lot – but otherwise we’ve taken our local work and deployed it to the cloud without much effort at all. I always enjoy it when things work on the first deploy!

You can vote now and watch the results live! http://spaces-or-tabs.s3-website-us-east-1.amazonaws.com/

We hope that SAM Local makes it easier for you to test, debug, and deploy your serverless apps. We have a CONTRIBUTING.md guide and we welcome pull requests. Please tweet at us to let us know what cool things you build. You can see our What’s New post here and the documentation is live here.

Randall

AWS HIPAA Eligibility Update (July 2017) – Eight Additional Services

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-hipaa-eligibility-update-july-2017-eight-additional-services/

It is time for an update on our on-going effort to make AWS a great host for healthcare and life sciences applications. As you can see from our Health Customer Stories page, Philips, VergeHealth, and Cambia (to choose a few) trust AWS with Protected Health Information (PHI) and Personally Identifying Information (PII) as part of their efforts to comply with HIPAA and HITECH.

In May we announced that we added Amazon API Gateway, AWS Direct Connect, AWS Database Migration Service, and Amazon Simple Queue Service (SQS) to our list of HIPAA eligible services and discussed our how customers and partners are putting them to use.

Eight More Eligible Services
Today I am happy to share the news that we are adding another eight services to the list:

Amazon CloudFront can now be utilized to enhance the delivery and transfer of Protected Health Information data to applications on the Internet. By providing a completely secure and encryptable pathway, CloudFront can now be used as a part of applications that need to cache PHI. This includes applications for viewing lab results or imaging data, and those that transfer PHI from Healthcare Information Exchanges (HIEs).

AWS WAF can now be used to protect applications running on AWS which operate on PHI such as patient care portals, patient scheduling systems, and HIEs. Requests and responses containing encrypted PHI and PII can now pass through AWS WAF.

AWS Shield can now be used to protect web applications such as patient care portals and scheduling systems that operate on encrypted PHI from DDoS attacks.

Amazon S3 Transfer Acceleration can now be used to accelerate the bulk transfer of large amounts of research, genetics, informatics, insurance, or payer/payment data containing PHI/PII information. Transfers can take place between a pair of AWS Regions or from an on-premises system and an AWS Region.

Amazon WorkSpaces can now be used by researchers, informaticists, hospital administrators and other users to analyze, visualize or process PHI/PII data using on-demand Windows virtual desktops.

AWS Directory Service can now be used to connect the authentication and authorization systems of organizations that use or process PHI/PII to their resources in the AWS Cloud. For example, healthcare providers operating hybrid cloud environments can now use AWS Directory Services to allow their users to easily transition between cloud and on-premises resources.

Amazon Simple Notification Service (SNS) can now be used to send notifications containing encrypted PHI/PII as part of patient care, payment processing, and mobile applications.

Amazon Cognito can now be used to authenticate users into mobile patient portal and payment processing applications that use PHI/PII identifiers for accounts.

Additional HIPAA Resources
Here are some additional resources that will help you to build applications that comply with HIPAA and HITECH:

Keep in Touch
In order to make use of any AWS service in any manner that involves PHI, you must first enter into an AWS Business Associate Addendum (BAA). You can contact us to start the process.

Jeff;

AWS Adds 12 More Services to Its PCI DSS Compliance Program

Post Syndicated from Sara Duffer original https://aws.amazon.com/blogs/security/aws-adds-12-more-services-to-its-pci-dss-compliance-program/

Twelve more AWS services have obtained Payment Card Industry Data Security Standard (PCI DSS) compliance, giving you more options, flexibility, and functionality to process and store sensitive payment card data in the AWS Cloud. The services were audited by Coalfire to ensure that they meet strict PCI DSS standards.

The newly compliant AWS services are:

AWS now offers 42 services that meet PCI DSS standards, putting administrators in better control of their frameworks and making workloads more efficient and cost effective.

For more information about the AWS PCI DSS compliance program, see Compliance Resources, AWS Services in Scope by Compliance Program, and PCI DSS Compliance.

– Sara