Tag Archives: metrics

How to Patch, Inspect, and Protect Microsoft Windows Workloads on AWS—Part 2

Post Syndicated from Koen van Blijderveen original https://aws.amazon.com/blogs/security/how-to-patch-inspect-and-protect-microsoft-windows-workloads-on-aws-part-2/

Yesterday in Part 1 of this blog post, I showed you how to:

  1. Launch an Amazon EC2 instance with an AWS Identity and Access Management (IAM) role, an Amazon Elastic Block Store (Amazon EBS) volume, and tags that Amazon EC2 Systems Manager (Systems Manager) and Amazon Inspector use.
  2. Configure Systems Manager to install the Amazon Inspector agent and patch your EC2 instances.

Today in Steps 3 and 4, I show you how to:

  1. Take Amazon EBS snapshots using Amazon EBS Snapshot Scheduler to automate snapshots based on instance tags.
  2. Use Amazon Inspector to check if your EC2 instances running Microsoft Windows contain any common vulnerabilities and exposures (CVEs).

To catch up on Steps 1 and 2, see yesterday’s blog post.

Step 3: Take EBS snapshots using EBS Snapshot Scheduler

In this section, I show you how to use EBS Snapshot Scheduler to take snapshots of your instances at specific intervals. To do this, I will show you how to:

  • Determine the schedule for EBS Snapshot Scheduler by providing you with best practices.
  • Deploy EBS Snapshot Scheduler by using AWS CloudFormation.
  • Tag your EC2 instances so that EBS Snapshot Scheduler backs up your instances when you want them backed up.

In addition to making sure your EC2 instances have all the available operating system patches applied on a regular schedule, you should take snapshots of the EBS storage volumes attached to your EC2 instances. Taking regular snapshots allows you to restore your data to a previous state quickly and cost effectively. With Amazon EBS snapshots, you pay only for the actual data you store, and snapshots save only the data that has changed since the previous snapshot, which minimizes your cost. You will use EBS Snapshot Scheduler to make regular snapshots of your EC2 instance. EBS Snapshot Scheduler takes advantage of other AWS services including CloudFormation, Amazon DynamoDB, and AWS Lambda to make backing up your EBS volumes simple.

Determine the schedule

As a best practice, you should back up your data frequently during the hours when your data changes the most. This reduces the amount of data you lose if you have to restore from a snapshot. For the purposes of this blog post, the data for my instances changes the most between the business hours of 9:00 A.M. to 5:00 P.M. Pacific Time. During these hours, I will make snapshots hourly to minimize data loss.

In addition to backing up frequently, another best practice is to establish a strategy for retention. This will vary based on how you need to use the snapshots. If you have compliance requirements to be able to restore for auditing, your needs may be different than if you are able to detect data corruption within three hours and simply need to restore to something that limits data loss to five hours. EBS Snapshot Scheduler enables you to specify the retention period for your snapshots. For this post, I only need to keep snapshots for recent business days. To account for weekends, I will set my retention period to three days, which is down from the default of 15 days when deploying EBS Snapshot Scheduler.

Deploy EBS Snapshot Scheduler

In Step 1 of Part 1 of this post, I showed how to configure an EC2 for Windows Server 2012 R2 instance with an EBS volume. You will use EBS Snapshot Scheduler to take eight snapshots each weekday of your EC2 instance’s EBS volumes:

  1. Navigate to the EBS Snapshot Scheduler deployment page and choose Launch Solution. This takes you to the CloudFormation console in your account. The Specify an Amazon S3 template URL option is already selected and prefilled. Choose Next on the Select Template page.
  2. On the Specify Details page, retain all default parameters except for AutoSnapshotDeletion. Set AutoSnapshotDeletion to Yes to ensure that old snapshots are periodically deleted. The default retention period is 15 days (you will specify a shorter value on your instance in the next subsection).
  3. Choose Next twice to move to the Review step, and start deployment by choosing the I acknowledge that AWS CloudFormation might create IAM resources check box and then choosing Create.

Tag your EC2 instances

EBS Snapshot Scheduler takes a few minutes to deploy. While waiting for its deployment, you can start to tag your instance to define its schedule. EBS Snapshot Scheduler reads tag values and looks for four possible custom parameters in the following order:

  • <snapshot time> – Time in 24-hour format with no colon.
  • <retention days> – The number of days (a positive integer) to retain the snapshot before deletion, if set to automatically delete snapshots.
  • <time zone> – The time zone of the times specified in <snapshot time>.
  • <active day(s)>all, weekdays, or mon, tue, wed, thu, fri, sat, and/or sun.

Because you want hourly backups on weekdays between 9:00 A.M. and 5:00 P.M. Pacific Time, you need to configure eight tags—one for each hour of the day. You will add the eight tags shown in the following table to your EC2 instance.

Tag Value
scheduler:ebs-snapshot:0900 0900;3;utc;weekdays
scheduler:ebs-snapshot:1000 1000;3;utc;weekdays
scheduler:ebs-snapshot:1100 1100;3;utc;weekdays
scheduler:ebs-snapshot:1200 1200;3;utc;weekdays
scheduler:ebs-snapshot:1300 1300;3;utc;weekdays
scheduler:ebs-snapshot:1400 1400;3;utc;weekdays
scheduler:ebs-snapshot:1500 1500;3;utc;weekdays
scheduler:ebs-snapshot:1600 1600;3;utc;weekdays

Next, you will add these tags to your instance. If you want to tag multiple instances at once, you can use Tag Editor instead. To add the tags in the preceding table to your EC2 instance:

  1. Navigate to your EC2 instance in the EC2 console and choose Tags in the navigation pane.
  2. Choose Add/Edit Tags and then choose Create Tag to add all the tags specified in the preceding table.
  3. Confirm you have added the tags by choosing Save. After adding these tags, navigate to your EC2 instance in the EC2 console. Your EC2 instance should look similar to the following screenshot.
    Screenshot of how your EC2 instance should look in the console
  4. After waiting a couple of hours, you can see snapshots beginning to populate on the Snapshots page of the EC2 console.Screenshot of snapshots beginning to populate on the Snapshots page of the EC2 console
  5. To check if EBS Snapshot Scheduler is active, you can check the CloudWatch rule that runs the Lambda function. If the clock icon shown in the following screenshot is green, the scheduler is active. If the clock icon is gray, the rule is disabled and does not run. You can enable or disable the rule by selecting it, choosing Actions, and choosing Enable or Disable. This also allows you to temporarily disable EBS Snapshot Scheduler.Screenshot of checking to see if EBS Snapshot Scheduler is active
  1. You can also monitor when EBS Snapshot Scheduler has run by choosing the name of the CloudWatch rule as shown in the previous screenshot and choosing Show metrics for the rule.Screenshot of monitoring when EBS Snapshot Scheduler has run by choosing the name of the CloudWatch rule

If you want to restore and attach an EBS volume, see Restoring an Amazon EBS Volume from a Snapshot and Attaching an Amazon EBS Volume to an Instance.

Step 4: Use Amazon Inspector

In this section, I show you how to you use Amazon Inspector to scan your EC2 instance for common vulnerabilities and exposures (CVEs) and set up Amazon SNS notifications. To do this I will show you how to:

  • Install the Amazon Inspector agent by using EC2 Run Command.
  • Set up notifications using Amazon SNS to notify you of any findings.
  • Define an Amazon Inspector target and template to define what assessment to perform on your EC2 instance.
  • Schedule Amazon Inspector assessment runs to assess your EC2 instance on a regular interval.

Amazon Inspector can help you scan your EC2 instance using prebuilt rules packages, which are built and maintained by AWS. These prebuilt rules packages tell Amazon Inspector what to scan for on the EC2 instances you select. Amazon Inspector provides the following prebuilt packages for Microsoft Windows Server 2012 R2:

  • Common Vulnerabilities and Exposures
  • Center for Internet Security Benchmarks
  • Runtime Behavior Analysis

In this post, I’m focused on how to make sure you keep your EC2 instances patched, backed up, and inspected for common vulnerabilities and exposures (CVEs). As a result, I will focus on how to use the CVE rules package and use your instance tags to identify the instances on which to run the CVE rules. If your EC2 instance is fully patched using Systems Manager, as described earlier, you should not have any findings with the CVE rules package. Regardless, as a best practice I recommend that you use Amazon Inspector as an additional layer for identifying any unexpected failures. This involves using Amazon CloudWatch to set up weekly Amazon Inspector scans, and configuring Amazon Inspector to notify you of any findings through SNS topics. By acting on the notifications you receive, you can respond quickly to any CVEs on any of your EC2 instances to help ensure that malware using known CVEs does not affect your EC2 instances. In a previous blog post, Eric Fitzgerald showed how to remediate Amazon Inspector security findings automatically.

Install the Amazon Inspector agent

To install the Amazon Inspector agent, you will use EC2 Run Command, which allows you to run any command on any of your EC2 instances that have the Systems Manager agent with an attached IAM role that allows access to Systems Manager.

  1. Choose Run Command under Systems Manager Services in the navigation pane of the EC2 console. Then choose Run a command.
    Screenshot of choosing "Run a command"
  2. To install the Amazon Inspector agent, you will use an AWS managed and provided command document that downloads and installs the agent for you on the selected EC2 instance. Choose AmazonInspector-ManageAWSAgent. To choose the target EC2 instance where this command will be run, use the tag you previously assigned to your EC2 instance, Patch Group, with a value of Windows Servers. For this example, set the concurrent installations to 1 and tell Systems Manager to stop after 5 errors.
    Screenshot of installing the Amazon Inspector agent
  3. Retain the default values for all other settings on the Run a command page and choose Run. Back on the Run Command page, you can see if the command that installed the Amazon Inspector agent executed successfully on all selected EC2 instances.
    Screenshot showing that the command that installed the Amazon Inspector agent executed successfully on all selected EC2 instances

Set up notifications using Amazon SNS

Now that you have installed the Amazon Inspector agent, you will set up an SNS topic that will notify you of any findings after an Amazon Inspector run.

To set up an SNS topic:

  1. In the AWS Management Console, choose Simple Notification Service under Messaging in the Services menu.
  2. Choose Create topic, name your topic (only alphanumeric characters, hyphens, and underscores are allowed) and give it a display name to ensure you know what this topic does (I’ve named mine Inspector). Choose Create topic.
    "Create new topic" page
  3. To allow Amazon Inspector to publish messages to your new topic, choose Other topic actions and choose Edit topic policy.
  4. For Allow these users to publish messages to this topic and Allow these users to subscribe to this topic, choose Only these AWS users. Type the following ARN for the US East (N. Virginia) Region in which you are deploying the solution in this post: arn:aws:iam::316112463485:root. This is the ARN of Amazon Inspector itself. For the ARNs of Amazon Inspector in other AWS Regions, see Setting Up an SNS Topic for Amazon Inspector Notifications (Console). Amazon Resource Names (ARNs) uniquely identify AWS resources across all of AWS.
    Screenshot of editing the topic policy
  5. To receive notifications from Amazon Inspector, subscribe to your new topic by choosing Create subscription and adding your email address. After confirming your subscription by clicking the link in the email, the topic should display your email address as a subscriber. Later, you will configure the Amazon Inspector template to publish to this topic.
    Screenshot of subscribing to the new topic

Define an Amazon Inspector target and template

Now that you have set up the notification topic by which Amazon Inspector can notify you of findings, you can create an Amazon Inspector target and template. A target defines which EC2 instances are in scope for Amazon Inspector. A template defines which packages to run, for how long, and on which target.

To create an Amazon Inspector target:

  1. Navigate to the Amazon Inspector console and choose Get started. At the time of writing this blog post, Amazon Inspector is available in the US East (N. Virginia), US West (N. California), US West (Oregon), EU (Ireland), Asia Pacific (Mumbai), Asia Pacific (Seoul), Asia Pacific (Sydney), and Asia Pacific (Tokyo) Regions.
  2. For Amazon Inspector to be able to collect the necessary data from your EC2 instance, you must create an IAM service role for Amazon Inspector. Amazon Inspector can create this role for you if you choose Choose or create role and confirm the role creation by choosing Allow.
    Screenshot of creating an IAM service role for Amazon Inspector
  3. Amazon Inspector also asks you to tag your EC2 instance and install the Amazon Inspector agent. You already performed these steps in Part 1 of this post, so you can proceed by choosing Next. To define the Amazon Inspector target, choose the previously used Patch Group tag with a Value of Windows Servers. This is the same tag that you used to define the targets for patching. Then choose Next.
    Screenshot of defining the Amazon Inspector target
  4. Now, define your Amazon Inspector template, and choose a name and the package you want to run. For this post, use the Common Vulnerabilities and Exposures package and choose the default duration of 1 hour. As you can see, the package has a version number, so always select the latest version of the rules package if multiple versions are available.
    Screenshot of defining an assessment template
  5. Configure Amazon Inspector to publish to your SNS topic when findings are reported. You can also choose to receive a notification of a started run, a finished run, or changes in the state of a run. For this blog post, you want to receive notifications if there are any findings. To start, choose Assessment Templates from the Amazon Inspector console and choose your newly created Amazon Inspector assessment template. Choose the icon below SNS topics (see the following screenshot).
    Screenshot of choosing an assessment template
  6. A pop-up appears in which you can choose the previously created topic and the events about which you want SNS to notify you (choose Finding reported).
    Screenshot of choosing the previously created topic and the events about which you want SNS to notify you

Schedule Amazon Inspector assessment runs

The last step in using Amazon Inspector to assess for CVEs is to schedule the Amazon Inspector template to run using Amazon CloudWatch Events. This will make sure that Amazon Inspector assesses your EC2 instance on a regular basis. To do this, you need the Amazon Inspector template ARN, which you can find under Assessment templates in the Amazon Inspector console. CloudWatch Events can run your Amazon Inspector assessment at an interval you define using a Cron-based schedule. Cron is a well-known scheduling agent that is widely used on UNIX-like operating systems and uses the following syntax for CloudWatch Events.

Image of Cron schedule

All scheduled events use a UTC time zone, and the minimum precision for schedules is one minute. For more information about scheduling CloudWatch Events, see Schedule Expressions for Rules.

To create the CloudWatch Events rule:

  1. Navigate to the CloudWatch console, choose Events, and choose Create rule.
    Screenshot of starting to create a rule in the CloudWatch Events console
  2. On the next page, specify if you want to invoke your rule based on an event pattern or a schedule. For this blog post, you will select a schedule based on a Cron expression.
  3. You can schedule the Amazon Inspector assessment any time you want using the Cron expression, or you can use the Cron expression I used in the following screenshot, which will run the Amazon Inspector assessment every Sunday at 10:00 P.M. GMT.
    Screenshot of scheduling an Amazon Inspector assessment with a Cron expression
  4. Choose Add target and choose Inspector assessment template from the drop-down menu. Paste the ARN of the Amazon Inspector template you previously created in the Amazon Inspector console in the Assessment template box and choose Create a new role for this specific resource. This new role is necessary so that CloudWatch Events has the necessary permissions to start the Amazon Inspector assessment. CloudWatch Events will automatically create the new role and grant the minimum set of permissions needed to run the Amazon Inspector assessment. To proceed, choose Configure details.
    Screenshot of adding a target
  5. Next, give your rule a name and a description. I suggest using a name that describes what the rule does, as shown in the following screenshot.
  6. Finish the wizard by choosing Create rule. The rule should appear in the Events – Rules section of the CloudWatch console.
    Screenshot of completing the creation of the rule
  7. To confirm your CloudWatch Events rule works, wait for the next time your CloudWatch Events rule is scheduled to run. For testing purposes, you can choose your CloudWatch Events rule and choose Edit to change the schedule to run it sooner than scheduled.
    Screenshot of confirming the CloudWatch Events rule works
  8. Now navigate to the Amazon Inspector console to confirm the launch of your first assessment run. The Start time column shows you the time each assessment started and the Status column the status of your assessment. In the following screenshot, you can see Amazon Inspector is busy Collecting data from the selected assessment targets.
    Screenshot of confirming the launch of the first assessment run

You have concluded the last step of this blog post by setting up a regular scan of your EC2 instance with Amazon Inspector and a notification that will let you know if your EC2 instance is vulnerable to any known CVEs. In a previous Security Blog post, Eric Fitzgerald explained How to Remediate Amazon Inspector Security Findings Automatically. Although that blog post is for Linux-based EC2 instances, the post shows that you can learn about Amazon Inspector findings in other ways than email alerts.

Conclusion

In this two-part blog post, I showed how to make sure you keep your EC2 instances up to date with patching, how to back up your instances with snapshots, and how to monitor your instances for CVEs. Collectively these measures help to protect your instances against common attack vectors that attempt to exploit known vulnerabilities. In Part 1, I showed how to configure your EC2 instances to make it easy to use Systems Manager, EBS Snapshot Scheduler, and Amazon Inspector. I also showed how to use Systems Manager to schedule automatic patches to keep your instances current in a timely fashion. In Part 2, I showed you how to take regular snapshots of your data by using EBS Snapshot Scheduler and how to use Amazon Inspector to check if your EC2 instances running Microsoft Windows contain any common vulnerabilities and exposures (CVEs).

If you have comments about today’s or yesterday’s post, submit them in the “Comments” section below. If you have questions about or issues implementing any part of this solution, start a new thread on the Amazon EC2 forum or the Amazon Inspector forum, or contact AWS Support.

– Koen

Now You Can Use AWS Shield Advanced to Help Protect Your Amazon EC2 Instances and Network Load Balancers

Post Syndicated from Ritwik Manan original https://aws.amazon.com/blogs/security/now-you-can-use-aws-shield-advanced-to-protect-your-amazon-ec2-instances-and-network-load-balancers/

AWS Shield image

Starting today, AWS Shield Advanced can help protect your Amazon EC2 instances and Network Load Balancers against infrastructure-layer Distributed Denial of Service (DDoS) attacks. Enable AWS Shield Advanced on an AWS Elastic IP address and attach the address to an internet-facing EC2 instance or Network Load Balancer. AWS Shield Advanced automatically detects the type of AWS resource behind the Elastic IP address and mitigates DDoS attacks.

AWS Shield Advanced also ensures that all your Amazon VPC network access control lists (ACLs) are automatically executed on AWS Shield at the edge of the AWS network, giving you access to additional bandwidth and scrubbing capacity as well as mitigating large volumetric DDoS attacks. You also can customize additional mitigations on AWS Shield by engaging the AWS DDoS Response Team, which can preconfigure the mitigations or respond to incidents as they happen. For every incident detected by AWS Shield Advanced, you also get near-real-time visibility via Amazon CloudWatch metrics and details about the incident, such as the geographic origin and source IP address of the attack.

AWS Shield Advanced for Elastic IP addresses extends the coverage of DDoS cost protection, which safeguards against scaling charges as a result of a DDoS attack. DDoS cost protection now allows you to request service credits for Elastic Load Balancing, Amazon CloudFront, Amazon Route 53, and your EC2 instance hours in the event that these increase as the result of a DDoS attack.

Get started protecting EC2 instances and Network Load Balancers

To get started:

  1. Sign in to the AWS Management Console and navigate to the AWS WAF and AWS Shield console.
  2. Activate AWS Shield Advanced by choosing Activate AWS Shield Advanced and accepting the terms.
  3. Navigate to Protected Resources through the navigation pane.
  4. Choose the Elastic IP addresses that you want to protect (these can point to EC2 instances or Network Load Balancers).

If AWS Shield Advanced detects a DDoS attack, you can get details about the attack by checking CloudWatch, or the Incidents tab on the AWS WAF and AWS Shield console. To learn more about this new feature and AWS Shield Advanced, see the AWS Shield home page.

If you have comments or questions about this post, submit them in the “Comments” section below, start a new thread in the AWS Shield forum, or contact AWS Support.

– Ritwik

New – Interactive AWS Cost Explorer API

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-interactive-aws-cost-explorer-api/

We launched the AWS Cost Explorer a couple of years ago in order to allow you to track, allocate, and manage your AWS costs. The response to that launch, and to additions that we have made since then, has been very positive. However our customers are, as Jeff Bezos has said, “beautifully, wonderfully, dissatisfied.”

I see this first-hand every day. We launch something and that launch inspires our customers to ask for even more. For example, with many customers going all-in and moving large parts of their IT infrastructure to the AWS Cloud, we’ve had many requests for the raw data that feeds into the Cost Explorer. These customers want to programmatically explore their AWS costs, update ledgers and accounting systems with per-application and per-department costs, and to build high-level dashboards that summarize spending. Some of these customers have been going to the trouble of extracting the data from the charts and reports provided by Cost Explorer!

New Cost Explorer API
Today we are making the underlying data that feeds into Cost Explorer available programmatically. The new Cost Explorer API gives you a set of functions that allow you do everything that I described above. You can retrieve cost and usage data that is filtered and grouped across multiple dimensions (Service, Linked Account, tag, Availability Zone, and so forth), aggregated by day or by month. This gives you the power to start simple (total monthly costs) and to refine your requests to any desired level of detail (writes to DynamoDB tables that have been tagged as production) while getting responses in seconds.

Here are the operations:

GetCostAndUsage – Retrieve cost and usage metrics for a single account or all accounts (master accounts in an organization have access to all member accounts) with filtering and grouping.

GetDimensionValues – Retrieve available filter values for a specified filter over a specified period of time.

GetTags – Retrieve available tag keys and tag values over a specified period of time.

GetReservationUtilization – Retrieve EC2 Reserved Instance utilization over a specified period of time, with daily or monthly granularity plus filtering and grouping.

I believe that these functions, and the data that they return, will give you the ability to do some really interesting things that will give you better insights into your business. For example, you could tag the resources used to support individual marketing campaigns or development projects and then deep-dive into the costs to measure business value. You how have the potential to know, down to the penny, how much you spend on infrastructure for important events like Cyber Monday or Black Friday.

Things to Know
Here are a couple of things to keep in mind as you start to think about ways to make use of the API:

Grouping – The Cost Explorer web application provides you with one level of grouping; the APIs give you two. For example you could group costs or RI utilization by Service and then by Region.

Pagination – The functions can return very large amounts of data and follow the AWS-wide model for pagination by including a nextPageToken if additional data is available. You simply call the same function again, supplying the token, to move forward.

Regions – The service endpoint is in the US East (Northern Virginia) Region and returns usage data for all public AWS Regions.

Pricing – Each API call costs $0.01. To put this into perspective, let’s say you use this API to build a dashboard and it gets 1000 hits per month from your users. Your operating cost for the dashboard should be $10 or so; this is far less expensive than setting up your own systems to extract & ingest the data and respond to interactive queries.

The Cost Explorer API is available now and you can start using it today. To learn more, read about the Cost Explorer API.

Jeff;

Amazon QuickSight Update – Geospatial Visualization, Private VPC Access, and More

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-quicksight-update-geospatial-visualization-private-vpc-access-and-more/

We don’t often recognize or celebrate anniversaries at AWS. With nearly 100 services on our list, we’d be eating cake and drinking champagne several times a week. While that might sound like fun, we’d rather spend our working hours listening to customers and innovating. With that said, Amazon QuickSight has now been generally available for a little over a year and I would like to give you a quick update!

QuickSight in Action
Today, tens of thousands of customers (from startups to enterprises, in industries as varied as transportation, legal, mining, and healthcare) are using QuickSight to analyze and report on their business data.

Here are a couple of examples:

Gemini provides legal evidence procurement for California attorneys who represent injured workers. They have gone from creating custom reports and running one-off queries to creating and sharing dynamic QuickSight dashboards with drill-downs and filtering. QuickSight is used to track sales pipeline, measure order throughput, and to locate bottlenecks in the order processing pipeline.

Jivochat provides a real-time messaging platform to connect visitors to website owners. QuickSight lets them create and share interactive dashboards while also providing access to the underlying datasets. This has allowed them to move beyond the sharing of static spreadsheets, ensuring that everyone is looking at the same and is empowered to make timely decisions based on current data.

Transfix is a tech-powered freight marketplace that matches loads and increases visibility into logistics for Fortune 500 shippers in retail, food and beverage, manufacturing, and other industries. QuickSight has made analytics accessible to both BI engineers and non-technical business users. They scrutinize key business and operational metrics including shipping routes, carrier efficient, and process automation.

Looking Back / Looking Ahead
The feedback on QuickSight has been incredibly helpful. Customers tell us that their employees are using QuickSight to connect to their data, perform analytics, and make high-velocity, data-driven decisions, all without setting up or running their own BI infrastructure. We love all of the feedback that we get, and use it to drive our roadmap, leading to the introduction of over 40 new features in just a year. Here’s a summary:

Looking forward, we are watching an interesting trend develop within our customer base. As these customers take a close look at how they analyze and report on data, they are realizing that a serverless approach offers some tangible benefits. They use Amazon Simple Storage Service (S3) as a data lake and query it using a combination of QuickSight and Amazon Athena, giving them agility and flexibility without static infrastructure. They also make great use of QuickSight’s dashboards feature, monitoring business results and operational metrics, then sharing their insights with hundreds of users. You can read Building a Serverless Analytics Solution for Cleaner Cities and review Serverless Big Data Analytics using Amazon Athena and Amazon QuickSight if you are interested in this approach.

New Features and Enhancements
We’re still doing our best to listen and to learn, and to make sure that QuickSight continues to meet your needs. I’m happy to announce that we are making seven big additions today:

Geospatial Visualization – You can now create geospatial visuals on geographical data sets.

Private VPC Access – You can now sign up to access a preview of a new feature that allows you to securely connect to data within VPCs or on-premises, without the need for public endpoints.

Flat Table Support – In addition to pivot tables, you can now use flat tables for tabular reporting. To learn more, read about Using Tabular Reports.

Calculated SPICE Fields – You can now perform run-time calculations on SPICE data as part of your analysis. Read Adding a Calculated Field to an Analysis for more information.

Wide Table Support – You can now use tables with up to 1000 columns.

Other Buckets – You can summarize the long tail of high-cardinality data into buckets, as described in Working with Visual Types in Amazon QuickSight.

HIPAA Compliance – You can now run HIPAA-compliant workloads on QuickSight.

Geospatial Visualization
Everyone seems to want this feature! You can now take data that contains a geographic identifier (country, city, state, or zip code) and create beautiful visualizations with just a few clicks. QuickSight will geocode the identifier that you supply, and can also accept lat/long map coordinates. You can use this feature to visualize sales by state, map stores to shipping destinations, and so forth. Here’s a sample visualization:

To learn more about this feature, read Using Geospatial Charts (Maps), and Adding Geospatial Data.

Private VPC Access Preview
If you have data in AWS (perhaps in Amazon Redshift, Amazon Relational Database Service (RDS), or on EC2) or on-premises in Teradata or SQL Server on servers without public connectivity, this feature is for you. Private VPC Access for QuickSight uses an Elastic Network Interface (ENI) for secure, private communication with data sources in a VPC. It also allows you to use AWS Direct Connect to create a secure, private link with your on-premises resources. Here’s what it looks like:

If you are ready to join the preview, you can sign up today.

Jeff;

 

New White House Announcement on the Vulnerability Equities Process

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/new_white_house_1.html

The White House has released a new version of the Vulnerabilities Equities Process (VEP). This is the inter-agency process by which the US government decides whether to inform the software vendor of a vulnerability it finds, or keep it secret and use it to eavesdrop on or attack other systems. You can read the new policy or the fact sheet, but the best place to start is Cybersecurity Coordinator Rob Joyce’s blog post.

In considering a way forward, there are some key tenets on which we can build a better process.

Improved transparency is critical. The American people should have confidence in the integrity of the process that underpins decision making about discovered vulnerabilities. Since I took my post as Cybersecurity Coordinator, improving the VEP and ensuring its transparency have been key priorities, and we have spent the last few months reviewing our existing policy in order to improve the process and make key details about the VEP available to the public. Through these efforts, we have validated much of the existing process and ensured a rigorous standard that considers many potential equities.

The interests of all stakeholders must be fairly represented. At a high level we consider four major groups of equities: defensive equities; intelligence / law enforcement / operational equities; commercial equities; and international partnership equities. Additionally, ordinary people want to know the systems they use are resilient, safe, and sound. These core considerations, which have been incorporated into the VEP Charter, help to standardize the process by which decision makers weigh the benefit to national security and the national interest when deciding whether to disclose or restrict knowledge of a vulnerability.

Accountability of the process and those who operate it is important to establish confidence in those served by it. Our public release of the unclassified portions Charter will shed light on aspects of the VEP that were previously shielded from public review, including who participates in the VEP’s governing body, known as the Equities Review Board. We make it clear that departments and agencies with protective missions participate in VEP discussions, as well as other departments and agencies that have broader equities, like the Department of State and the Department of Commerce. We also clarify what categories of vulnerabilities are submitted to the process and ensure that any decision not to disclose a vulnerability will be reevaluated regularly. There are still important reasons to keep many of the specific vulnerabilities evaluated in the process classified, but we will release an annual report that provides metrics about the process to further inform the public about the VEP and its outcomes.

Our system of government depends on informed and vigorous dialogue to discover and make available the best ideas that our diverse society can generate. This publication of the VEP Charter will likely spark discussion and debate. This discourse is important. I also predict that articles will make breathless claims of “massive stockpiles” of exploits while describing the issue. That simply isn’t true. The annual reports and transparency of this effort will reinforce that fact.

Mozilla is pleased with the new charter. I am less so; it looks to me like the same old policy with some new transparency measures — which I’m not sure I trust. The devil is in the details, and we don’t know the details — and it has giant loopholes that pretty much anything can fall through:

The United States Government’s decision to disclose or restrict vulnerability information could be subject to restrictions by partner agreements and sensitive operations. Vulnerabilities that fall within these categories will be cataloged by the originating Department/Agency internally and reported directly to the Chair of the ERB. The details of these categories are outlined in Annex C, which is classified. Quantities of excepted vulnerabilities from each department and agency will be provided in ERB meetings to all members.

This is me from last June:

There’s a lot we don’t know about the VEP. The Washington Post says that the NSA used EternalBlue “for more than five years,” which implies that it was discovered after the 2010 process was put in place. It’s not clear if all vulnerabilities are given such consideration, or if bugs are periodically reviewed to determine if they should be disclosed. That said, any VEP that allows something as dangerous as EternalBlue — or the Cisco vulnerabilities that the Shadow Brokers leaked last August — to remain unpatched for years isn’t serving national security very well. As a former NSA employee said, the quality of intelligence that could be gathered was “unreal.” But so was the potential damage. The NSA must avoid hoarding vulnerabilities.

I stand by that, and am not sure the new policy changes anything.

More commentary.

Here’s more about the Windows vulnerabilities hoarded by the NSA and released by the Shadow Brokers.

EDITED TO ADD (11/18): More news.

EDITED TO ADD (11/22): Adam Shostack points out that the process does not cover design flaws or trade-offs, and that those need to be covered:

…we need the VEP to expand to cover those issues. I’m not going to claim that will be easy, that the current approach will translate, or that they should have waited to handle those before publishing. One obvious place it gets harder is the sources and methods tradeoff. But we need the internet to be a resilient and trustworthy infrastructure.

timeShift(GrafanaBuzz, 1w) Issue 22

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/11/17/timeshiftgrafanabuzz-1w-issue-22/

Welome to TimeShift

We hope you liked our recent article with videos and slides from the events we’ve participated in recently. With Thanksgiving right around the corner, we’re getting a breather from work-related travel, but only a short one. We have some events in the coming weeks, and of course are busy filling in the details for GrafanaCon EU.

This week we have a lot of articles, videos and presentations to share, as well as some important plugin updates. Enjoy!


Latest Release

Grafana 4.6.2 is now available and includes some bug fixes:

  • Prometheus: Fixes bug with new Prometheus alerts in Grafana. Make sure to download this version if your using Prometheus for alerting. More details in the issue. #9777
  • Color picker: Bug after using textbox input field to change/paste color string #9769
  • Cloudwatch: build using golang 1.9.2 #9667, thanks @mtanda
  • Heatmap: Fixed tooltip for “time series buckets” mode #9332
  • InfluxDB: Fixed query editor issue when using > or < operators in WHERE clause #9871

Download Grafana 4.6.2 Now


From the Blogosphere

Cloud Tech 10 – 13th November 2017 – Grafana, Linux FUSE Adapter, Azure Stack and more!: Mark Whitby is a Cloud Solution Architect at Microsoft UK. Each week he prodcues a video reviewing new developments with Microsoft Azure. This week Mark covers the new Azure Monitoring Plugin we recently announced. He also shows you how to get up and running with Grafana quickly using the Azure Marketplace.

Using Prometheus and Grafana to Monitor WebLogic Server on Kubernetes: Oracle published an article on monitoring WebLogic server on Kubernetes. To do this, you’ll use the WebLogic Monitoring Exporter to scrape the server metrics and feed them to Prometheus, then visualize the data in Grafana. Marina goes into a lot of detail and provides sample files and configs to help you get going.

Getting Started with Prometheus: Will Robinson has started a new series on monitoring with Prometheus from someone who has never touched it before. Part 1 introduces a number of monitoring tools and concepts, and helps define a number of monitoring terms. Part 2 teaches you how to spin up Prometheus in a Docker container, and takes a look at writing queries. Looking forward to the third post, when he dives into the visualization aspect.

Monitoring with Prometheus: Alexander Schwartz has made the slides from his most recent presentation from the Continuous Lifcycle Conference in Germany available. In his talk, he discussed getting started with Prometheus, how it differs from other monitoring concepts, and provides examples of how to monitor and alert. We’ll link to the video of the talk when it’s available.

Using Grafana with SiriDB: Jeroen van der Heijden has written an in-depth tutorial to help you visualize data from the open source TSDB, SiriDB in Grafana. This tutorial will get you familiar with setting up SiriDB and provides a sample dashboard to help you get started.

Real-Time Monitoring with Grafana, StatsD and InfluxDB – Artur Caliendo Prado: This is a video from a talk at The Conf, held in Brazil. Artur’s presentation focuses on the experiences they had building a monitoring stack at Youse, how their monitoring became more complex as they scaled, and the platform they built to make sense of their data.

Using Grafana & Inlfuxdb to view XIV Host Performance Metrics – Part 4 Array Stats: This is the fourth part in a series of posts about host performance metrics. This post dives in to array stats to identify workloads and maintain balance across ports. Check out part 1, part 2 and part 3.


GrafanaCon Tickets are Going Fast

Tickets are going fast for GrafanaCon EU, but we still have a seat reserved for you. Join us March 1-2, 2018 in Amsterdam for 2 days of talks centered around Grafana and the surrounding monitoring ecosystem including Graphite, Prometheus, InfluxData, Elasticsearch, Kubernetes, and more.

Get Your Ticket Now


Grafana Plugins

Plugin authors are often adding new features and fixing bugs, which will make your plugin perform better – so it’s important to keep your plugins up to date. We’ve made updating easy; for on-prem Grafana, use the Grafana-cli tool, or update with 1 click if you’re using Hosted Grafana.

UPDATED PLUGIN

Hawkular data source – There is an important change in this release – as this datasource is now able to fetch not only Hawkular Metrics but also Hawkular Alerts, the server URL in the datasource configuration must be updated: http://myserver:123/hawkular/metrics must be changed to http://myserver:123/hawkular

Some of the changes (see the release notes) for more details):

  • Allow per-query tenant configuration
  • Annotations can now be configured out of Availability metrics and Hawkular Alerts events in addition to string metrics
  • allows dot character in tag names

Update

UPDATED PLUGIN

Diagram Panel – This is the first release in a while for the popular Diagram Panel plugin.

In addition to these changes, there are also a number of bug fixes:

Update

UPDATED PLUGIN

Influx Admin Panel – received a number of improvements:

  • Fix issue always showing query results
  • When there is only one row, swap rows/cols (ie: SHOW DIAGNOSTICS)
  • Improved auto-refresh behavior
  • Fix query time sorting
  • show ‘status’ field (killed, etc)

Update


Upcoming Events:

In between code pushes we like to speak at, sponsor and attend all kinds of conferences and meetups. We have some awesome talks and events coming soon. Hope to see you at one of these!

How to Use Open Source Projects for Performance Monitoring | Webinar
Nov. 29, 1pm EST
:
Check out how you can use popular open source projects, for performance monitoring of your Infrastructure, Application, and Cloud faster, easier, and to scale. In this webinar, Daniel Lee from Grafana Labs, and Chris Churilo from InfluxData, will provide you with step by step instruction from download & configure, to collecting metrics and building dashboards and alerts.

RSVP

KubeCon | Austin, TX – Dec. 6-8, 2017: We’re sponsoring KubeCon 2017! This is the must-attend conference for cloud native computing professionals. KubeCon + CloudNativeCon brings together leading contributors in:

  • Cloud native applications and computing
  • Containers
  • Microservices
  • Central orchestration processing
  • And more

Buy Tickets

FOSDEM | Brussels, Belgium – Feb 3-4, 2018: FOSDEM is a free developer conference where thousands of developers of free and open source software gather to share ideas and technology. Carl Bergquist is managing the Cloud and Monitoring Devroom, and the CFP is now open. There is no need to register; all are welcome. If you’re interested in speaking at FOSDEM, submit your talk now!


Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

We were glad to be a part of InfluxDays this year, and looking forward to seeing the InfluxData team in NYC in February.


Grafana Labs is Hiring!

We are passionate about open source software and thrive on tackling complex challenges to build the future. We ship code from every corner of the globe and love working with the community. If this sounds exciting, you’re in luck – WE’RE HIRING!

Check out our Open Positions


How are we doing?

I enjoy writing these weekly roudups, but am curious how I can improve them. Submit a comment on this article below, or post something at our community forum. Help us make these weekly roundups better!

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.

Event-Driven Computing with Amazon SNS and AWS Compute, Storage, Database, and Networking Services

Post Syndicated from Christie Gifrin original https://aws.amazon.com/blogs/compute/event-driven-computing-with-amazon-sns-compute-storage-database-and-networking-services/

Contributed by Otavio Ferreira, Manager, Software Development, AWS Messaging

Like other developers around the world, you may be tackling increasingly complex business problems. A key success factor, in that case, is the ability to break down a large project scope into smaller, more manageable components. A service-oriented architecture guides you toward designing systems as a collection of loosely coupled, independently scaled, and highly reusable services. Microservices take this even further. To improve performance and scalability, they promote fine-grained interfaces and lightweight protocols.

However, the communication among isolated microservices can be challenging. Services are often deployed onto independent servers and don’t share any compute or storage resources. Also, you should avoid hard dependencies among microservices, to preserve maintainability and reusability.

If you apply the pub/sub design pattern, you can effortlessly decouple and independently scale out your microservices and serverless architectures. A pub/sub messaging service, such as Amazon SNS, promotes event-driven computing that statically decouples event publishers from subscribers, while dynamically allowing for the exchange of messages between them. An event-driven architecture also introduces the responsiveness needed to deal with complex problems, which are often unpredictable and asynchronous.

What is event-driven computing?

Given the context of microservices, event-driven computing is a model in which subscriber services automatically perform work in response to events triggered by publisher services. This paradigm can be applied to automate workflows while decoupling the services that collectively and independently work to fulfil these workflows. Amazon SNS is an event-driven computing hub, in the AWS Cloud, that has native integration with several AWS publisher and subscriber services.

Which AWS services publish events to SNS natively?

Several AWS services have been integrated as SNS publishers and, therefore, can natively trigger event-driven computing for a variety of use cases. In this post, I specifically cover AWS compute, storage, database, and networking services, as depicted below.

Compute services

  • Auto Scaling: Helps you ensure that you have the correct number of Amazon EC2 instances available to handle the load for your application. You can configure Auto Scaling lifecycle hooks to trigger events, as Auto Scaling resizes your EC2 cluster.As an example, you may want to warm up the local cache store on newly launched EC2 instances, and also download log files from other EC2 instances that are about to be terminated. To make this happen, set an SNS topic as your Auto Scaling group’s notification target, then subscribe two Lambda functions to this SNS topic. The first function is responsible for handling scale-out events (to warm up cache upon provisioning), whereas the second is in charge of handling scale-in events (to download logs upon termination).

  • AWS Elastic Beanstalk: An easy-to-use service for deploying and scaling web applications and web services developed in a number of programming languages. You can configure event notifications for your Elastic Beanstalk environment so that notable events can be automatically published to an SNS topic, then pushed to topic subscribers.As an example, you may use this event-driven architecture to coordinate your continuous integration pipeline (such as Jenkins CI). That way, whenever an environment is created, Elastic Beanstalk publishes this event to an SNS topic, which triggers a subscribing Lambda function, which then kicks off a CI job against your newly created Elastic Beanstalk environment.

  • Elastic Load Balancing: Automatically distributes incoming application traffic across Amazon EC2 instances, containers, or other resources identified by IP addresses.You can configure CloudWatch alarms on Elastic Load Balancing metrics, to automate the handling of events derived from Classic Load Balancers. As an example, you may leverage this event-driven design to automate latency profiling in an Amazon ECS cluster behind a Classic Load Balancer. In this example, whenever your ECS cluster breaches your load balancer latency threshold, an event is posted by CloudWatch to an SNS topic, which then triggers a subscribing Lambda function. This function runs a task on your ECS cluster to trigger a latency profiling tool, hosted on the cluster itself. This can enhance your latency troubleshooting exercise by making it timely.

Storage services

  • Amazon S3: Object storage built to store and retrieve any amount of data.You can enable S3 event notifications, and automatically get them posted to SNS topics, to automate a variety of workflows. For instance, imagine that you have an S3 bucket to store incoming resumes from candidates, and a fleet of EC2 instances to encode these resumes from their original format (such as Word or text) into a portable format (such as PDF).In this example, whenever new files are uploaded to your input bucket, S3 publishes these events to an SNS topic, which in turn pushes these messages into subscribing SQS queues. Then, encoding workers running on EC2 instances poll these messages from the SQS queues; retrieve the original files from the input S3 bucket; encode them into PDF; and finally store them in an output S3 bucket.

  • Amazon EFS: Provides simple and scalable file storage, for use with Amazon EC2 instances, in the AWS Cloud.You can configure CloudWatch alarms on EFS metrics, to automate the management of your EFS systems. For example, consider a highly parallelized genomics analysis application that runs against an EFS system. By default, this file system is instantiated on the “General Purpose” performance mode. Although this performance mode allows for lower latency, it might eventually impose a scaling bottleneck. Therefore, you may leverage an event-driven design to handle it automatically.Basically, as soon as the EFS metric “Percent I/O Limit” breaches 95%, CloudWatch could post this event to an SNS topic, which in turn would push this message into a subscribing Lambda function. This function automatically creates a new file system, this time on the “Max I/O” performance mode, then switches the genomics analysis application to this new file system. As a result, your application starts experiencing higher I/O throughput rates.

  • Amazon Glacier: A secure, durable, and low-cost cloud storage service for data archiving and long-term backup.You can set a notification configuration on an Amazon Glacier vault so that when a job completes, a message is published to an SNS topic. Retrieving an archive from Amazon Glacier is a two-step asynchronous operation, in which you first initiate a job, and then download the output after the job completes. Therefore, SNS helps you eliminate polling your Amazon Glacier vault to check whether your job has been completed, or not. As usual, you may subscribe SQS queues, Lambda functions, and HTTP endpoints to your SNS topic, to be notified when your Amazon Glacier job is done.

  • AWS Snowball: A petabyte-scale data transport solution that uses secure appliances to transfer large amounts of data.You can leverage Snowball notifications to automate workflows related to importing data into and exporting data from AWS. More specifically, whenever your Snowball job status changes, Snowball can publish this event to an SNS topic, which in turn can broadcast the event to all its subscribers.As an example, imagine a Geographic Information System (GIS) that distributes high-resolution satellite images to users via Web browser. In this example, the GIS vendor could capture up to 80 TB of satellite images; create a Snowball job to import these files from an on-premises system to an S3 bucket; and provide an SNS topic ARN to be notified upon job status changes in Snowball. After Snowball changes the job status from “Importing” to “Completed”, Snowball publishes this event to the specified SNS topic, which delivers this message to a subscribing Lambda function, which finally creates a CloudFront web distribution for the target S3 bucket, to serve the images to end users.

Database services

  • Amazon RDS: Makes it easy to set up, operate, and scale a relational database in the cloud.RDS leverages SNS to broadcast notifications when RDS events occur. As usual, these notifications can be delivered via any protocol supported by SNS, including SQS queues, Lambda functions, and HTTP endpoints.As an example, imagine that you own a social network website that has experienced organic growth, and needs to scale its compute and database resources on demand. In this case, you could provide an SNS topic to listen to RDS DB instance events. When the “Low Storage” event is published to the topic, SNS pushes this event to a subscribing Lambda function, which in turn leverages the RDS API to increase the storage capacity allocated to your DB instance. The provisioning itself takes place within the specified DB maintenance window.

  • Amazon ElastiCache: A web service that makes it easy to deploy, operate, and scale an in-memory data store or cache in the cloud.ElastiCache can publish messages using Amazon SNS when significant events happen on your cache cluster. This feature can be used to refresh the list of servers on client machines connected to individual cache node endpoints of a cache cluster. For instance, an ecommerce website fetches product details from a cache cluster, with the goal of offloading a relational database and speeding up page load times. Ideally, you want to make sure that each web server always has an updated list of cache servers to which to connect.To automate this node discovery process, you can get your ElastiCache cluster to publish events to an SNS topic. Thus, when ElastiCache event “AddCacheNodeComplete” is published, your topic then pushes this event to all subscribing HTTP endpoints that serve your ecommerce website, so that these HTTP servers can update their list of cache nodes.

  • Amazon Redshift: A fully managed data warehouse that makes it simple to analyze data using standard SQL and BI (Business Intelligence) tools.Amazon Redshift uses SNS to broadcast relevant events so that data warehouse workflows can be automated. As an example, imagine a news website that sends clickstream data to a Kinesis Firehose stream, which then loads the data into Amazon Redshift, so that popular news and reading preferences might be surfaced on a BI tool. At some point though, this Amazon Redshift cluster might need to be resized, and the cluster enters a ready-only mode. Hence, this Amazon Redshift event is published to an SNS topic, which delivers this event to a subscribing Lambda function, which finally deletes the corresponding Kinesis Firehose delivery stream, so that clickstream data uploads can be put on hold.At a later point, after Amazon Redshift publishes the event that the maintenance window has been closed, SNS notifies a subscribing Lambda function accordingly, so that this function can re-create the Kinesis Firehose delivery stream, and resume clickstream data uploads to Amazon Redshift.

  • AWS DMS: Helps you migrate databases to AWS quickly and securely. The source database remains fully operational during the migration, minimizing downtime to applications that rely on the database.DMS also uses SNS to provide notifications when DMS events occur, which can automate database migration workflows. As an example, you might create data replication tasks to migrate an on-premises MS SQL database, composed of multiple tables, to MySQL. Thus, if replication tasks fail due to incompatible data encoding in the source tables, these events can be published to an SNS topic, which can push these messages into a subscribing SQS queue. Then, encoders running on EC2 can poll these messages from the SQS queue, encode the source tables into a compatible character set, and restart the corresponding replication tasks in DMS. This is an event-driven approach to a self-healing database migration process.

Networking services

  • Amazon Route 53: A highly available and scalable cloud-based DNS (Domain Name System). Route 53 health checks monitor the health and performance of your web applications, web servers, and other resources.You can set CloudWatch alarms and get automated Amazon SNS notifications when the status of your Route 53 health check changes. As an example, imagine an online payment gateway that reports the health of its platform to merchants worldwide, via a status page. This page is hosted on EC2 and fetches platform health data from DynamoDB. In this case, you could configure a CloudWatch alarm for your Route 53 health check, so that when the alarm threshold is breached, and the payment gateway is no longer considered healthy, then CloudWatch publishes this event to an SNS topic, which pushes this message to a subscribing Lambda function, which finally updates the DynamoDB table that populates the status page. This event-driven approach avoids any kind of manual update to the status page visited by merchants.

  • AWS Direct Connect (AWS DX): Makes it easy to establish a dedicated network connection from your premises to AWS, which can reduce your network costs, increase bandwidth throughput, and provide a more consistent network experience than Internet-based connections.You can monitor physical DX connections using CloudWatch alarms, and send SNS messages when alarms change their status. As an example, when a DX connection state shifts to 0 (zero), indicating that the connection is down, this event can be published to an SNS topic, which can fan out this message to impacted servers through HTTP endpoints, so that they might reroute their traffic through a different connection instead. This is an event-driven approach to connectivity resilience.

More event-driven computing on AWS

In addition to SNS, event-driven computing is also addressed by Amazon CloudWatch Events, which delivers a near real-time stream of system events that describe changes in AWS resources. With CloudWatch Events, you can route each event type to one or more targets, including:

Many AWS services publish events to CloudWatch. As an example, you can get CloudWatch Events to capture events on your ETL (Extract, Transform, Load) jobs running on AWS Glue and push failed ones to an SQS queue, so that you can retry them later.

Conclusion

Amazon SNS is a pub/sub messaging service that can be used as an event-driven computing hub to AWS customers worldwide. By capturing events natively triggered by AWS services, such as EC2, S3 and RDS, you can automate and optimize all kinds of workflows, namely scaling, testing, encoding, profiling, broadcasting, discovery, failover, and much more. Business use cases presented in this post ranged from recruiting websites, to scientific research, geographic systems, social networks, retail websites, and news portals.

Start now by visiting Amazon SNS in the AWS Management Console, or by trying the AWS 10-Minute Tutorial, Send Fan-out Event Notifications with Amazon SNS and Amazon SQS.

 

Capturing Custom, High-Resolution Metrics from Containers Using AWS Step Functions and AWS Lambda

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/capturing-custom-high-resolution-metrics-from-containers-using-aws-step-functions-and-aws-lambda/

Contributed by Trevor Sullivan, AWS Solutions Architect

When you deploy containers with Amazon ECS, are you gathering all of the key metrics so that you can correctly monitor the overall health of your ECS cluster?

By default, ECS writes metrics to Amazon CloudWatch in 5-minute increments. For complex or large services, this may not be sufficient to make scaling decisions quickly. You may want to respond immediately to changes in workload or to identify application performance problems. Last July, CloudWatch announced support for high-resolution metrics, up to a per-second basis.

These high-resolution metrics can be used to give you a clearer picture of the load and performance for your applications, containers, clusters, and hosts. In this post, I discuss how you can use AWS Step Functions, along with AWS Lambda, to cost effectively record high-resolution metrics into CloudWatch. You implement this solution using a serverless architecture, which keeps your costs low and makes it easier to troubleshoot the solution.

To show how this works, you retrieve some useful metric data from an ECS cluster running in the same AWS account and region (Oregon, us-west-2) as the Step Functions state machine and Lambda function. However, you can use this architecture to retrieve any custom application metrics from any resource in any AWS account and region.

Why Step Functions?

Step Functions enables you to orchestrate multi-step tasks in the AWS Cloud that run for any period of time, up to a year. Effectively, you’re building a blueprint for an end-to-end process. After it’s built, you can execute the process as many times as you want.

For this architecture, you gather metrics from an ECS cluster, every five seconds, and then write the metric data to CloudWatch. After your ECS cluster metrics are stored in CloudWatch, you can create CloudWatch alarms to notify you. An alarm can also trigger an automated remediation activity such as scaling ECS services, when a metric exceeds a threshold defined by you.

When you build a Step Functions state machine, you define the different states inside it as JSON objects. The bulk of the work in Step Functions is handled by the common task state, which invokes Lambda functions or Step Functions activities. There is also a built-in library of other useful states that allow you to control the execution flow of your program.

One of the most useful state types in Step Functions is the parallel state. Each parallel state in your state machine can have one or more branches, each of which is executed in parallel. Another useful state type is the wait state, which waits for a period of time before moving to the next state.

In this walkthrough, you combine these three states (parallel, wait, and task) to create a state machine that triggers a Lambda function, which then gathers metrics from your ECS cluster.

Step Functions pricing

This state machine is executed every minute, resulting in 60 executions per hour, and 1,440 executions per day. Step Functions is billed per state transition, including the Start and End state transitions, and giving you approximately 37,440 state transitions per day. To reach this number, I’m using this estimated math:

26 state transitions per-execution x 60 minutes x 24 hours

Based on current pricing, at $0.000025 per state transition, the daily cost of this metric gathering state machine would be $0.936.

Step Functions offers an indefinite 4,000 free state transitions every month. This benefit is available to all customers, not just customers who are still under the 12-month AWS Free Tier. For more information and cost example scenarios, see Step Functions pricing.

Why Lambda?

The goal is to capture metrics from an ECS cluster, and write the metric data to CloudWatch. This is a straightforward, short-running process that makes Lambda the perfect place to run your code. Lambda is one of the key services that makes up “Serverless” application architectures. It enables you to consume compute capacity only when your code is actually executing.

The process of gathering metric data from ECS and writing it to CloudWatch takes a short period of time. In fact, my average Lambda function execution time, while developing this post, is only about 250 milliseconds on average. For every five-second interval that occurs, I’m only using 1/20th of the compute time that I’d otherwise be paying for.

Lambda pricing

For billing purposes, Lambda execution time is rounded up to the nearest 100-ms interval. In general, based on the metrics that I observed during development, a 250-ms runtime would be billed at 300 ms. Here, I calculate the cost of this Lambda function executing on a daily basis.

Assuming 31 days in each month, there would be 535,680 five-second intervals (31 days x 24 hours x 60 minutes x 12 five-second intervals = 535,680). The Lambda function is invoked every five-second interval, by the Step Functions state machine, and runs for a 300-ms period. At current Lambda pricing, for a 128-MB function, you would be paying approximately the following:

Total compute

Total executions = 535,680
Total compute = total executions x (3 x $0.000000208 per 100 ms) = $0.334 per day

Total requests

Total requests = (535,680 / 1000000) * $0.20 per million requests = $0.11 per day

Total Lambda Cost

$0.11 requests + $0.334 compute time = $0.444 per day

Similar to Step Functions, Lambda offers an indefinite free tier. For more information, see Lambda Pricing.

Walkthrough

In the following sections, I step through the process of configuring the solution just discussed. If you follow along, at a high level, you will:

  • Configure an IAM role and policy
  • Create a Step Functions state machine to control metric gathering execution
  • Create a metric-gathering Lambda function
  • Configure a CloudWatch Events rule to trigger the state machine
  • Validate the solution

Prerequisites

You should already have an AWS account with a running ECS cluster. If you don’t have one running, you can easily deploy a Docker container on an ECS cluster using the AWS Management Console. In the example produced for this post, I use an ECS cluster running Windows Server (currently in beta), but either a Linux or Windows Server cluster works.

Create an IAM role and policy

First, create an IAM role and policy that enables Step Functions, Lambda, and CloudWatch to communicate with each other.

  • The CloudWatch Events rule needs permissions to trigger the Step Functions state machine.
  • The Step Functions state machine needs permissions to trigger the Lambda function.
  • The Lambda function needs permissions to query ECS and then write to CloudWatch Logs and metrics.

When you create the state machine, Lambda function, and CloudWatch Events rule, you assign this role to each of those resources. Upon execution, each of these resources assumes the specified role and executes using the role’s permissions.

  1. Open the IAM console.
  2. Choose Roles, create New Role.
  3. For Role Name, enter WriteMetricFromStepFunction.
  4. Choose Save.

Create the IAM role trust relationship
The trust relationship (also known as the assume role policy document) for your IAM role looks like the following JSON document. As you can see from the document, your IAM role needs to trust the Lambda, CloudWatch Events, and Step Functions services. By configuring your role to trust these services, they can assume this role and inherit the role permissions.

  1. Open the IAM console.
  2. Choose Roles and select the IAM role previously created.
  3. Choose Trust RelationshipsEdit Trust Relationships.
  4. Enter the following trust policy text and choose Save.
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "lambda.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "events.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "states.us-west-2.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

Create an IAM policy

After you’ve finished configuring your role’s trust relationship, grant the role access to the other AWS resources that make up the solution.

The IAM policy is what gives your IAM role permissions to access various resources. You must whitelist explicitly the specific resources to which your role has access, because the default IAM behavior is to deny access to any AWS resources.

I’ve tried to keep this policy document as generic as possible, without allowing permissions to be too open. If the name of your ECS cluster is different than the one in the example policy below, make sure that you update the policy document before attaching it to your IAM role. You can attach this policy as an inline policy, instead of creating the policy separately first. However, either approach is valid.

  1. Open the IAM console.
  2. Select the IAM role, and choose Permissions.
  3. Choose Add in-line policy.
  4. Choose Custom Policy and then enter the following policy. The inline policy name does not matter.
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [ "logs:*" ],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": [ "cloudwatch:PutMetricData" ],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": [ "states:StartExecution" ],
            "Resource": [
                "arn:aws:states:*:*:stateMachine:WriteMetricFromStepFunction"
            ]
        },
        {
            "Effect": "Allow",
            "Action": [ "lambda:InvokeFunction" ],
            "Resource": "arn:aws:lambda:*:*:function:WriteMetricFromStepFunction"
        },
        {
            "Effect": "Allow",
            "Action": [ "ecs:Describe*" ],
            "Resource": "arn:aws:ecs:*:*:cluster/ECSEsgaroth"
        }
    ]
}

Create a Step Functions state machine

In this section, you create a Step Functions state machine that invokes the metric-gathering Lambda function every five (5) seconds, for a one-minute period. If you divide a minute (60) seconds into equal parts of five-second intervals, you get 12. Based on this math, you create 12 branches, in a single parallel state, in the state machine. Each branch triggers the metric-gathering Lambda function at a different five-second marker, throughout the one-minute period. After all of the parallel branches finish executing, the Step Functions execution completes and another begins.

Follow these steps to create your Step Functions state machine:

  1. Open the Step Functions console.
  2. Choose DashboardCreate State Machine.
  3. For State Machine Name, enter WriteMetricFromStepFunction.
  4. Enter the state machine code below into the editor. Make sure that you insert your own AWS account ID for every instance of “676655494xxx”
  5. Choose Create State Machine.
  6. Select the WriteMetricFromStepFunction IAM role that you previously created.
{
    "Comment": "Writes ECS metrics to CloudWatch every five seconds, for a one-minute period.",
    "StartAt": "ParallelMetric",
    "States": {
      "ParallelMetric": {
        "Type": "Parallel",
        "Branches": [
          {
            "StartAt": "WriteMetricLambda",
            "States": {
             	"WriteMetricLambda": {
                  "Type": "Task",
				  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
    	  {
            "StartAt": "WaitFive",
            "States": {
            	"WaitFive": {
            		"Type": "Wait",
            		"Seconds": 5,
            		"Next": "WriteMetricLambdaFive"
          		},
             	"WriteMetricLambdaFive": {
                  "Type": "Task",
				  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
    	  {
            "StartAt": "WaitTen",
            "States": {
            	"WaitTen": {
            		"Type": "Wait",
            		"Seconds": 10,
            		"Next": "WriteMetricLambda10"
          		},
             	"WriteMetricLambda10": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
    	  {
            "StartAt": "WaitFifteen",
            "States": {
            	"WaitFifteen": {
            		"Type": "Wait",
            		"Seconds": 15,
            		"Next": "WriteMetricLambda15"
          		},
             	"WriteMetricLambda15": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait20",
            "States": {
            	"Wait20": {
            		"Type": "Wait",
            		"Seconds": 20,
            		"Next": "WriteMetricLambda20"
          		},
             	"WriteMetricLambda20": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait25",
            "States": {
            	"Wait25": {
            		"Type": "Wait",
            		"Seconds": 25,
            		"Next": "WriteMetricLambda25"
          		},
             	"WriteMetricLambda25": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait30",
            "States": {
            	"Wait30": {
            		"Type": "Wait",
            		"Seconds": 30,
            		"Next": "WriteMetricLambda30"
          		},
             	"WriteMetricLambda30": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait35",
            "States": {
            	"Wait35": {
            		"Type": "Wait",
            		"Seconds": 35,
            		"Next": "WriteMetricLambda35"
          		},
             	"WriteMetricLambda35": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait40",
            "States": {
            	"Wait40": {
            		"Type": "Wait",
            		"Seconds": 40,
            		"Next": "WriteMetricLambda40"
          		},
             	"WriteMetricLambda40": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait45",
            "States": {
            	"Wait45": {
            		"Type": "Wait",
            		"Seconds": 45,
            		"Next": "WriteMetricLambda45"
          		},
             	"WriteMetricLambda45": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait50",
            "States": {
            	"Wait50": {
            		"Type": "Wait",
            		"Seconds": 50,
            		"Next": "WriteMetricLambda50"
          		},
             	"WriteMetricLambda50": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait55",
            "States": {
            	"Wait55": {
            		"Type": "Wait",
            		"Seconds": 55,
            		"Next": "WriteMetricLambda55"
          		},
             	"WriteMetricLambda55": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          }
        ],
        "End": true
      }
  }
}

Now you’ve got a shiny new Step Functions state machine! However, you might ask yourself, “After the state machine has been created, how does it get executed?” Before I answer that question, create the Lambda function that writes the custom metric, and then you get the end-to-end process moving.

Create a Lambda function

The meaty part of the solution is a Lambda function, written to consume the Python 3.6 runtime, that retrieves metric values from ECS, and then writes them to CloudWatch. This Lambda function is what the Step Functions state machine is triggering every five seconds, via the Task states. Key points to remember:

The Lambda function needs permission to:

  • Write CloudWatch metrics (PutMetricData API).
  • Retrieve metrics from ECS clusters (DescribeCluster API).
  • Write StdOut to CloudWatch Logs.

Boto3, the AWS SDK for Python, is included in the Lambda execution environment for Python 2.x and 3.x.

Because Lambda includes the AWS SDK, you don’t have to worry about packaging it up and uploading it to Lambda. You can focus on writing code and automatically take a dependency on boto3.

As for permissions, you’ve already created the IAM role and attached a policy to it that enables your Lambda function to access the necessary API actions. When you create your Lambda function, make sure that you select the correct IAM role, to ensure it is invoked with the correct permissions.

The following Lambda function code is generic. So how does the Lambda function know which ECS cluster to gather metrics for? Your Step Functions state machine automatically passes in its state to the Lambda function. When you create your CloudWatch Events rule, you specify a simple JSON object that passes the desired ECS cluster name into your Step Functions state machine, which then passes it to the Lambda function.

Use the following property values as you create your Lambda function:

Function Name: WriteMetricFromStepFunction
Description: This Lambda function retrieves metric values from an ECS cluster and writes them to Amazon CloudWatch.
Runtime: Python3.6
Memory: 128 MB
IAM Role: WriteMetricFromStepFunction

import boto3

def handler(event, context):
    cw = boto3.client('cloudwatch')
    ecs = boto3.client('ecs')
    print('Got boto3 client objects')
    
    Dimension = {
        'Name': 'ClusterName',
        'Value': event['ECSClusterName']
    }

    cluster = get_ecs_cluster(ecs, Dimension['Value'])
    
    cw_args = {
       'Namespace': 'ECS',
       'MetricData': [
           {
               'MetricName': 'RunningTask',
               'Dimensions': [ Dimension ],
               'Value': cluster['runningTasksCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           },
           {
               'MetricName': 'PendingTask',
               'Dimensions': [ Dimension ],
               'Value': cluster['pendingTasksCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           },
           {
               'MetricName': 'ActiveServices',
               'Dimensions': [ Dimension ],
               'Value': cluster['activeServicesCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           },
           {
               'MetricName': 'RegisteredContainerInstances',
               'Dimensions': [ Dimension ],
               'Value': cluster['registeredContainerInstancesCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           }
        ]
    }
    cw.put_metric_data(**cw_args)
    print('Finished writing metric data')
    
def get_ecs_cluster(client, cluster_name):
    cluster = client.describe_clusters(clusters = [ cluster_name ])
    print('Retrieved cluster details from ECS')
    return cluster['clusters'][0]

Create the CloudWatch Events rule

Now you’ve created an IAM role and policy, Step Functions state machine, and Lambda function. How do these components actually start communicating with each other? The final step in this process is to set up a CloudWatch Events rule that triggers your metric-gathering Step Functions state machine every minute. You have two choices for your CloudWatch Events rule expression: rate or cron. In this example, use the cron expression.

A couple key learning points from creating the CloudWatch Events rule:

  • You can specify one or more targets, of different types (for example, Lambda function, Step Functions state machine, SNS topic, and so on).
  • You’re required to specify an IAM role with permissions to trigger your target.
    NOTE: This applies only to certain types of targets, including Step Functions state machines.
  • Each target that supports IAM roles can be triggered using a different IAM role, in the same CloudWatch Events rule.
  • Optional: You can provide custom JSON that is passed to your target Step Functions state machine as input.

Follow these steps to create the CloudWatch Events rule:

  1. Open the CloudWatch console.
  2. Choose Events, RulesCreate Rule.
  3. Select Schedule, Cron Expression, and then enter the following rule:
    0/1 * * * ? *
  4. Choose Add Target, Step Functions State MachineWriteMetricFromStepFunction.
  5. For Configure Input, select Constant (JSON Text).
  6. Enter the following JSON input, which is passed to Step Functions, while changing the cluster name accordingly:
    { "ECSClusterName": "ECSEsgaroth" }
  7. Choose Use Existing Role, WriteMetricFromStepFunction (the IAM role that you previously created).

After you’ve completed with these steps, your screen should look similar to this:

Validate the solution

Now that you have finished implementing the solution to gather high-resolution metrics from ECS, validate that it’s working properly.

  1. Open the CloudWatch console.
  2. Choose Metrics.
  3. Choose custom and select the ECS namespace.
  4. Choose the ClusterName metric dimension.

You should see your metrics listed below.

Troubleshoot configuration issues

If you aren’t receiving the expected ECS cluster metrics in CloudWatch, check for the following common configuration issues. Review the earlier procedures to make sure that the resources were properly configured.

  • The IAM role’s trust relationship is incorrectly configured.
    Make sure that the IAM role trusts Lambda, CloudWatch Events, and Step Functions in the correct region.
  • The IAM role does not have the correct policies attached to it.
    Make sure that you have copied the IAM policy correctly as an inline policy on the IAM role.
  • The CloudWatch Events rule is not triggering new Step Functions executions.
    Make sure that the target configuration on the rule has the correct Step Functions state machine and IAM role selected.
  • The Step Functions state machine is being executed, but failing part way through.
    Examine the detailed error message on the failed state within the failed Step Functions execution. It’s possible that the
  • IAM role does not have permissions to trigger the target Lambda function, that the target Lambda function may not exist, or that the Lambda function failed to complete successfully due to invalid permissions.
    Although the above list covers several different potential configuration issues, it is not comprehensive. Make sure that you understand how each service is connected to each other, how permissions are granted through IAM policies, and how IAM trust relationships work.

Conclusion

In this post, you implemented a Serverless solution to gather and record high-resolution application metrics from containers running on Amazon ECS into CloudWatch. The solution consists of a Step Functions state machine, Lambda function, CloudWatch Events rule, and an IAM role and policy. The data that you gather from this solution helps you rapidly identify issues with an ECS cluster.

To gather high-resolution metrics from any service, modify your Lambda function to gather the correct metrics from your target. If you prefer not to use Python, you can implement a Lambda function using one of the other supported runtimes, including Node.js, Java, or .NET Core. However, this post should give you the fundamental basics about capturing high-resolution metrics in CloudWatch.

If you found this post useful, or have questions, please comment below.

Staying Busy Between Code Pushes

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/11/16/staying-busy-between-code-pushes/

Staying Busy Between Code Pushes.

Maintaining a regular cadence of pushing out releases, adding new features, implementing bug fixes and staying on top of support requests is important for any software to thrive; but especially important for open source software due to its rapid pace. It’s easy to lose yourself in code and forget that events are happening all the time – in every corner of the world, where we can learn, share knowledge, and meet like-minded individuals to build better software, together. There are so many amazing events we’d like to participate in, but there simply isn’t enough time (or budget) to fit them all in. Here’s what we’ve been up to recently; between code pushes.

Recent Events

Øredev Conference | Malmö, Sweden: Øredev is one of the biggest developer conferences in Scandinavia, and Grafana Labs jumped at the chance to be a part of it. In early November, Grafana Labs Principal Developer, Carl Bergquist, gave a great talk on “Monitoring for Everyone”, which discussed the concepts of monitoring and why everyone should care, different ways to monitor your systems, extending your monitoring to containers and microservices, and finally what to monitor and alert on. Watch the video of his talk below.

InfluxDays | San Francisco, CA: Dan Cech, our Director of Platform Services, spoke at InfluxDays in San Francisco on Nov 14, and Grafana Labs sponsored the event. InfluxDB is a popular data source for Grafana, so we wanted to connect to the InfluxDB community and show them how to get the most out of their data. Dan discussed building dashboards, choosing the best panels for your data, setting up alerting in Grafana and a few sneak peeks of the upcoming Grafana 5.0. The video of his talk is forthcoming, but Dan has made his presentation available.

PromCon | Munich, Germany: PromCon is the Prometheus-focused event of the year. In August, Carl Bergquist, had the opportunity to speak at PromCon and take a deep dive into Grafana and Prometheus. Many attendees at PromCon were already familiar with Grafana, since it’s the default dashboard tool for Prometheus, but Carl had a trove of tricks and optimizations to share. He also went over some major changes and what we’re currently working on.

CNCF Meetup | New York, NY: Grafana Co-founder and CEO, Raj Dutt, particpated in a panel discussion with the folks of Packet and the Cloud Native Computing Foundation. The discussion focused on the success stories, failures, rationales and in-the-trenches challenges when running cloud native in private or non “public cloud” datacenters (bare metal, colocation, private clouds, special hardware or networking setups, compliance and security-focused deployments).

Percona Live | Dublin: Daniel Lee traveled to Dublin, Ireland this fall to present at the database conference Percona Live. There he showed the new native MySQL support, along with a number of upcoming features in Grafana 5.0. His presentation is available to download.

Big Monitoring Meetup | St. Petersburg, Russian Federation: Alexander Zobnin, our developer located in Russia, is the primary maintainer of our popular Zabbix plugin. He attended the Big Monitoring Meetup to discuss monitoring, Grafana dashboards and democratizing metrics.

Why observability matters – now and in the future | Webinar: Our own Carl Bergquist and Neil Gehani, Director of Product at Weaveworks, to discover best practices on how to get started with monitoring both your application and infrastructure. Start capturing metrics that matter, aggregate and visualize them in a useful way that allows for identifying bottlenecks and proactively preventing incidents. View Carl’s presentation.

Upcoming Events

We’re going to maintain this momentum with a number of upcoming events, and hope you can join us.

KubeCon | Austin, TX – Dec. 6-8, 2017: We’re sponsoring KubeCon 2017! This is the must-attend conference for cloud native computing professionals. KubeCon + CloudNativeCon brings together leading contributors in:

  • Cloud native applications and computing
  • Containers
  • Microservices
  • Central orchestration processing
  • And more.

Buy Tickets

How to Use Open Source Projects for Performance Monitoring | Webinar
Nov. 29, 1pm EST:
Check out how you can use popular open source projects, for performance monitoring of your Infrastructure, Application, and Cloud faster, easier, and to scale. In this webinar, Daniel Lee from Grafana Labs, and Chris Churilo from InfluxData, will provide you with step by step instruction from download & configure, to collecting metrics and building dashboards and alerts.

RSVP

FOSDEM | Brussels, Belgium – Feb 3-4, 2018: FOSDEM is a free developer conference where thousands of developers of free and open source software gather to share ideas and technology. Carl Bergquist is managing the Cloud and Monitoring Devroom, and the CFP is now open. There is no need to register; all are welcome. If you’re interested in speaking at FOSDEM, submit your talk now!

GrafanaCon EU

Last, but certainly not least, the next GrafanaCon is right around the corner. GrafanaCon EU (to be held in Amsterdam, Netherlands, March 1-2. 2018),is a two-day event with talks centered around Grafana and the surrounding ecosystem. In addition to the latest features and functionality of Grafana, you can expect to see and hear from members of the monitoring community like Graphite, Prometheus, InfluxData, Elasticsearch Kubernetes, and more. Head to grafanacon.org to see the latest speakers confirmed. We have speakers from Automattic, Bloomberg, CERN, Fastly, Tinder and more!

Conclusion

The Grafana Labs team is spread across the globe. Having a “post-geographic” company structure give us the opportunity to take part in events wherever they may be held in the world. As our team continues to grow, we hope to take part in even more events, and hope you can find the time to join us.

Protect your Reputation with Email Pausing and Configuration Set Metrics

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/ses/protect-your-reputation-with-email-pausing-and-configuration-set-metrics/

In August, we launched the reputation dashboard, which helps you track important metrics that could impact your ability to send emails. By monitoring the metrics in this dashboard, you can protect your sender reputation, which can increase the likelihood that the emails you send will reach your customers’ inboxes.

Today, we’re launching two features that build upon the capabilities of the reputation dashboard. The first is the ability to temporarily pause email sending, either at the configuration set level, or across your entire Amazon SES account. The second is the ability to export reputation metrics for individual configuration sets.

Email Pausing

Today’s update includes new API operations that can temporarily pause your ability to send email using Amazon SES. To disable email sending across your entire Amazon SES account, you can use the UpdateAccountSendingEnabled operation. To pause sending only for emails sent using a specific configuration set, you can use the UpdateConfigurationSetSendingEnabled operation.

Email pausing is helpful because Amazon SES uses automatic enforcement policies. If the bounce or complaint rates for your account are too high, your account is automatically placed on probation. If the bounce or complaint issues continue after the probation period has ended, your account may be suspended.

With email pausing, you can temporarily halt your ability to send email before your account is placed on probation. While your ability to send email is paused, you can identify the issues that were causing your account to register high bounce or complaint rates. You can then resume sending after the issues are resolved.

Email pausing helps ensure that your ability to send email using Amazon SES is not interrupted because of enforcement issues. It helps ensure that your sender reputation won’t be damaged by mistakes or unforeseen issues.

You can learn more about the UpdateAccountSendingEnabled and UpdateConfigurationSetSendingEnabled operations in the Amazon Simple Email Service API Reference.

Configuration Set Reputation Metrics

Amazon SES automatically publishes the bounce and complaint rates for your account to Amazon CloudWatch. In CloudWatch, you can monitor these metrics over time, and create alarms that notify you when your reputation metrics cross certain thresholds.

With today’s update, you can also publish reputation metrics for individual configuration sets to CloudWatch. This feature gives you additional information about the messages you send using Amazon SES. For example, if you send all of your marketing emails using one configuration set, and your transactional emails using a different configuration set, you can view distinct reputation metrics for each type of email.

Because we anticipate that this feature will lead to the creation of many new configuration sets, we’re increasing the maximum number of configuration sets you can create from 50 to 10,000.

For more information about exporting reputation metrics for configuration sets, see Exporting Reputation Metrics for a Configuration Set to CloudWatch in the Amazon Simple Email Service Developer Guide.

Automating These Features

You can use AWS services—including Amazon SNS, AWS Lambda, and Amazon CloudWatch—to create a solution that automatically pauses email sending for your account when your overall reputation metrics cross a certain threshold. Or, to minimize disruption to your email sending program, you can pause email sending for a specific configuration set when the metrics for that configuration set cross a threshold. The following image illustrates the processes that occur when you implement these solutions.

A flow diagram that illustrates a solution for automatically pausing Amazon SES email sending. Amazon SES provides reputation metrics to CloudWatch. If those metrics exceed a threshold, a CloudWatch alarm is triggered, which triggers an SNS topic. The SNS topic sends notifications (email, SMS), and executes a Lambda function, which pauses email sending in SES.

For more information on both of these solutions, see Automatically Pausing Email Sending in the Amazon Simple Email Service Developer Guide.

We’re always looking for ways to help safeguard the reputation you’ve worked hard to build. If you have suggestions, questions, or comments, we’d love to hear from you in the comments below, or in the Amazon SES Forum.

These features are now available in the following AWS Regions: US West (Oregon), US East (N. Virginia), and EU (Ireland).

Cross-Account Integration with Amazon SNS

Post Syndicated from Christie Gifrin original https://aws.amazon.com/blogs/compute/cross-account-integration-with-amazon-sns/

Contributed by Zak Islam, Senior Manager, Software Development, AWS Messaging

 

Amazon Simple Notification Service (Amazon SNS) is a fully managed AWS service that makes it easy to decouple your application components and fan-out messages. SNS provides topics (similar to topics in message brokers such as RabbitMQ or ActiveMQ) that you can use to create 1:1, 1:N, or N:N producer/consumer design patterns. For more information about how to send messages from SNS to Amazon SQS, AWS Lambda, or HTTP(S) endpoints in the same account, see Sending Amazon SNS Messages to Amazon SQS Queues.

SNS can be used to send messages within a single account or to resources in different accounts to create administrative isolation. This enables administrators to grant only the minimum level of permissions required to process a workload (for example, limiting the scope of your application account to only send messages and to deny deletes). This approach is commonly known as the “principle of least privilege.” If you are interested, read more about AWS’s multi-account security strategy.

This is great from a security perspective, but why would you want to share messages between accounts? It may sound scary, but it’s a common practice to isolate application components (such as producer and consumer) to operate using different AWS accounts to lock down privileges in case credentials are exposed. In this post, I go slightly deeper and explore how to set up your SNS topic so that it can route messages to SQS queues that are owned by a separate AWS account.

Potential use cases

First, look at a common order processing design pattern:

This is a simple architecture. A web server submits an order directly to an SNS topic, which then fans out messages to two SQS queues. One SQS queue is used to track all incoming orders for audits (such as anti-entropy, comparing the data of all replicas and updating each replica to the newest version). The other is used to pass the request to the order processing systems.

Imagine now that a few years have passed, and your downstream processes no longer scale, so you are kicking around the idea of a re-architecture project. To thoroughly test your system, you need a way to replay your production messages in your development system. Sure, you can build a system to replicate and replay orders from your production environment in your development environment. Wouldn’t it be easier to subscribe your development queues to the production SNS topic so you can test your new system in real time? That’s exactly what you can do here.

Here’s another use case. As your business grows, you recognize the need for more metrics from your order processing pipeline. The analytics team at your company has built a metrics aggregation service and ingests data via a central SQS queue. Their architecture is as follows:

Again, it’s a fairly simple architecture. All data is ingested via SQS queues (master_ingest_queue, in this case). You subscribe the master_ingest_queue, running under the analytics team’s AWS account, to the topic that is in the order management team’s account.

Making it work

Now that you’ve seen a few scenarios, let’s dig into the details. There are a couple of ways to link an SQS queue to an SNS topic (subscribe a queue to a topic):

  1. The queue owner can create a subscription to the topic.
  2. The topic owner can subscribe a queue in another account to the topic.

Queue owner subscription

What happens when the queue owner subscribes to a topic? In this case, assume that the topic owner has given permission to the subscriber’s account to call the Subscribe API action using the topic ARN (Amazon Resource Name). For the examples below, also assume the following:

  •  Topic_Owner is the identifier for the account that owns the topic MainTopic
  • Queue_Owner is the identifier for the account that owns the queue subscribed to the main topic

To enable the subscriber to subscribe to a topic, the topic owner must add the sns:Subscribe and topic ARN to the topic policy via the AWS Management Console, as follows:

{
  "Version":"2012-10-17",
  "Id":"MyTopicSubscribePolicy",
  "Statement":[{
      "Sid":"Allow-other-account-to-subscribe-to-topic",
      "Effect":"Allow",
      "Principal":{
        "AWS":"Topic_Owner"
      },
      "Action":"sns:Subscribe",
      "Resource":"arn:aws:sns:us-east-1:Queue_Owner:MainTopic"
    }
  ]
}

After this has been set up, the subscriber (using account Queue_Owner) can call Subscribe to link the queue to the topic. After the queue has been successfully subscribed, SNS starts to publish notifications. In this case, neither the topic owner nor the subscriber have had to process any kind of confirmation message.

Topic owner subscription

The second way to subscribe an SQS queue to an SNS topic is to have the Topic_Owner account initiate the subscription for the queue from account Queue_Owner. In this case, SNS first sends a confirmation message to the queue. To confirm the subscription, a user who can read messages from the queue must visit the URL specified in the SubscribeURL value in the message. Until the subscription is confirmed, no notifications published to the topic are sent to the queue. To confirm a subscription, you can use the SQS console or the ReceiveMessage API action.

What’s next?

In this post, I covered a few simple use cases but the principles can be extended to complex systems as well. As you architect new systems and refactor existing ones, think about where you can leverage queues (SQS) and topics (SNS) to build a loosely coupled system that can be quickly and easily extended to meet your business need.

For step by step instructions, see Sending Amazon SNS messages to an Amazon SQS queue in a different account. You can also visit the following resources to get started working with message queues and topics:

The Decision on Transparency

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/transparency-in-business/

Backblaze transparency

This post by Backblaze’s CEO and co-founder Gleb Budman is the seventh in a series about entrepreneurship. You can choose posts in the series from the list below:

  1. How Backblaze got Started: The Problem, The Solution, and the Stuff In-Between
  2. Building a Competitive Moat: Turning Challenges Into Advantages
  3. From Idea to Launch: Getting Your First Customers
  4. How to Get Your First 1,000 Customers
  5. Surviving Your First Year
  6. How to Compete with Giants
  7. The Decision on Transparency

Use the Join button above to receive notification of new posts in this series.

“Are you crazy?” “Why would you do that?!” “You shouldn’t share that!”

These are just a few of the common questions and comments we heard after posting some of the information we have shared over the years. So was it crazy? Misguided? Should you do it?

With that background I’d like to dig into the decision to become so transparent, from releasing stats on hard drive failures, to storage pod specs, to publishing our cloud storage costs, and open sourcing the Reed-Solomon code. What was the thought process behind becoming so transparent when most companies work so hard to hide their inner workings, especially information such as the Storage Pod specs that would normally be considered a proprietary advantage? Most importantly I’d like to explore the positives and negatives of being so transparent.

Sharing Intellectual Property

The first “transparency” that garnered a flurry of “why would you share that?!” came as a result of us deciding to open source our Storage Pod design: publishing the specs, parts, prices, and how to build it yourself. The Storage Pod was a key component of our infrastructure, gave us a cost (and thus competitive) advantage, took significant effort to develop, and had a fair bit of intellectual property: the “IP.”

The negatives of sharing this are obvious: it allows our competitors to use the design to reduce our cost advantage, and it gives away the IP, which could be patentable or have value as a trade secret.

The positives were certainly less obvious, and at the time we couldn’t have guessed how massive they would be.

We wrestled with the decision: prospective users and others online didn’t believe we could offer our service for such a low price, thinking that we would burn through some cash hoard and then go out of business. We wanted to reassure them, but how?

This is how our response evolved:

We’ve built a lower cost storage platform.
But why would anyone believe us?
Because, we’ve designed our own servers and they’re less expensive.
But why would anyone believe they were so low cost and efficient?
Because here’s how much they cost versus others.
But why would anyone believe they cost that little and still enabled us to efficiently store data?
Because here are all the components they’re made of, this is how to build them, and this is how they work.
Ok, you can’t argue with that.

Great — so that would reassure people. But should we do this? Is it worth it?

This was 2009, we were a tiny company of seven people working from our co-founder’s one-bedroom apartment. We decided that the risk of not having potential customers trust us was more impactful than the risk of our competitors possibly deciding to use our server architecture. The former might kill the company in short order; the latter might make it harder for us to compete in the future. Moreover, we figured that most competitors were established on their own platforms and were unlikely to switch to ours, even if it were better.

Takeaway: Build your brand today. There are no assurances you will make it to tomorrow if you can’t make people believe in you today.

A Sharing Success Story — The Backblaze Storage Pod

So with that, we decided to publish everything about the Storage Pod. As for deciding to actually open source it? That was a ‘thank you’ to the open source community upon whose shoulders we stood as we used software such as Linux, Tomcat, etc.

With eight years of hindsight, here’s what happened:

As best as I can tell, none of our direct competitors ever used our Storage Pod design, opting instead to continue paying more for commercial solutions.

  • Hundreds of press articles have been written about Backblaze as a direct result of sharing the Storage Pod design.
  • Millions of people have read press articles or our blog posts about the Storage Pods.
  • Backblaze was established as a storage tech thought leader, and a resource for those looking for information in the space.
  • Our blog became viewed as a resource, not a corporate mouthpiece.
  • Recruiting has been made easier through the awareness of Backblaze, the appreciation for us taking on challenging tech problems in interesting ways, and for our openness.
  • Sourcing for our Storage Pods has become easier because we can point potential vendors to our blog posts and say, “here’s what we need.”

And those are just the direct benefits for us. One of the things that warms my heart is that doing this has helped others:

  • Several companies have started selling servers based on our Storage Pod designs.
  • Netflix credits Backblaze with being the inspiration behind their CDN servers.
  • Many schools, labs, and others have shared that they’ve been able to do what they didn’t think was possible because using our Storage Pod designs provided lower-cost storage.
  • And I want to believe that in general we pushed forward the development of low-cost storage servers in the industry.

So overall, the decision on being transparent and sharing our Storage Pod designs was a clear win.

Takeaway: Never underestimate the value of goodwill. It can help build new markets that fuel your future growth and create new ecosystems.

Sharing An “Almost Acquisition”

Acquisition announcements are par for the course. No company, however, talks about the acquisition that fell through. If rumors appear in the press, the company’s response is always, “no comment.” But in 2010, when Backblaze was almost, but not acquired, we wrote about it in detail. Crazy?

The negatives of sharing this are slightly less obvious, but the two issues most people worried about were, 1) the fact that the company could be acquired would spook customers, and 2) the fact that it wasn’t would signal to potential acquirers that something was wrong.

So, why share this at all? No one was asking “did you almost get acquired?”

First, we had established a culture of transparency and this was a significant event that occurred for us, thus we defaulted to assuming we would share. Second, we learned that acquisitions fall through all the time, not just during the early fishing stage, but even after term sheets are signed, diligence is done, and all the paperwork is complete. I felt we had learned some things about the process that would be valuable to others that were going through it.

As it turned out, we received emails from startup founders saying they saved the post for the future, and from lawyers, VCs, and advisors saying they shared them with their portfolio companies. Among the most touching emails I received was from a founder who said that after an acquisition fell through she felt so alone that she became incredibly depressed, and that reading our post helped her see that this happens and that things could be OK after. Being transparent about almost getting acquired was worth it just to help that one founder.

And what about the concerns? As for spooking customers, maybe some were — but our sign-ups went up, not down, afterward. Any company can be acquired, and many of the world’s largest have been. That we were being both thoughtful about where to go with it, and open about it, I believe gave customers a sense that we would do the right thing if it happened. And as for signaling to potential acquirers? The ones I’ve spoken with all knew this happens regularly enough that it’s not a factor.

Takeaway: Being open and transparent is also a form of giving back to others.

Sharing Strategic Data

For years people have been desperate to know how reliable are hard drives. They could go to Amazon for individual reviews, but someone saying “this drive died for me” doesn’t provide statistical insight. Google published a study that showed annualized drive failure rates, but didn’t break down the results by manufacturer or model. Since Backblaze has deployed about 100,000 hard drives to store customer data, we have been able to collect a wealth of data on the reliability of the drives by make, model, and size. Was Backblaze the only one with this data? Of course not — Google, Amazon, Microsoft, and any other cloud-scale storage provider tracked it. Yet none would publish. Should Backblaze?

Again, starting with the main negatives: 1) sharing which drives we liked could increase demand for them, thus reducing availability or increasing prices, and 2) publishing the data might make the drive vendors unhappy with us, thereby making it difficult for us to buy drives.

But we felt that the largest drive purchasers (Amazon, Google, etc.) already had their own stats and would buy the drives they chose, and if individuals or smaller companies used our stats, they wouldn’t sufficiently move the overall market demand. Also, we hoped that the drive companies would see that we were being fair in our analysis and, if anything, would leverage our data to make drives even better.

Again, publishing the data resulted in tremendous value for Backblaze, with millions of people having read the analysis that we put out quarterly. Also, becoming known as the place to go for drive reliability information is a natural fit with being a backup and storage provider. In addition, in a twist from many people’s expectations, some of the drive companies actually started working closer with us, seeing that we could be a good source of data for them as feedback. We’ve also seen many individuals and companies make more data-based decisions on which drives to buy, and researchers have used the data for a variety of analyses.

traffic spike from hard drive reliability post

Backblaze blog analytics showing spike in readership after a hard drive stats post

Takeaway: Being open and transparent is rarely as risky as it seems.

Sharing Revenue (And Other Metrics)

Journalists always want to publish company revenue and other metrics, and private companies always shy away from sharing. For a long time we did, too. Then, we opened up about that, as well.

The negatives of sharing these numbers are: 1) external parties may otherwise perceive you’re doing better than you are, 2) if you share numbers often, you may show that growth has slowed or worse, 3) it gives your competitors info to compare their own business too.

We decided that, while some may have perceived we were bigger, our scale was plenty significant. Since we choose what we share and when, it’s up to us whether to disclose at any point. And if our competitors compare, what will they actually change that would affect us?

I did wait to share revenue until I felt I had the right person to write about it. At one point a journalist said she wouldn’t write about us unless I disclosed revenue. I suggested we had a lot to offer for the story, but didn’t want to share revenue yet. She refused to budge and I walked away from the article. Several year later, I reached out to a journalist who had covered Backblaze before and I felt understood our business and offered to share revenue with him. He wrote a deep-dive about the company, with revenue being one of the components of the story.

Sharing these metrics showed that we were at scale and running a real business, one with positive unit economics and margins, but not one where we were gouging customers.

Takeaway: Being open with the press about items typically not shared can be uncomfortable, but the press can amplify your story.

Should You Share?

For Backblaze, I believe the results of transparency have been staggering. However, it’s not for everyone. Apple has, clearly, been wildly successful taking secrecy to the extreme. In their case, early disclosure combined with the long cycle of hardware releases could significantly impact sales of current products.

“For Backblaze, I believe the results of transparency have been staggering.” — Gleb Budman

I will argue, however, that for most startups transparency wins. Most startups need to establish credibility and trust, build awareness and a fan base, show that they understand what their customers need and be useful to them, and show the soul and passion behind the company. Some startup companies try to buy these virtues with investor money, and sometimes amplifying your brand via paid marketing helps. But, authentic transparency can build awareness and trust not only less expensively, but more deeply than money can buy.

Backblaze was open from the beginning. With no outside investors, as founders we were able to express ourselves and make our decisions. And it’s easier to be a company that shares if you do it from the start, but for any company, here are a few suggestions:

  1. Ask about sharing: If something significant happens — good or bad — ask “should we share this?” If you made a tough decision, ask “should we share the thinking behind the decision and why it was tough?”
  2. Default to yes: It’s often scary to share, but look for the reasons to say ‘yes,’ not the reasons to say ‘no.’ That doesn’t mean you won’t sometimes decide not to, but make that the high bar.
  3. Minimize reviews: Press releases tend to be sanitized and boring because they’ve been endlessly wordsmithed by committee. Establish the few things you don’t want shared, but minimize the number of people that have to see anything else before it can go out. Teach, then trust.
  4. Engage: Sharing will result in comments on your blog, social, articles, etc. Reply to people’s questions and engage. It’ll make the readers more engaged and give you a better understanding of what they’re looking for.
  5. Accept mistakes: Things will become public that aren’t perfectly sanitized. Accept that and don’t punish people for oversharing.

Building a culture of a company that is open to sharing takes time, but continuous practice will build that, and over time the company will navigate its voice and approach to sharing.

The post The Decision on Transparency appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Grafana and Microsoft Azure

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/11/10/grafana-and-microsoft-azure/

Grafana Launches Microsoft Azure Data Source

Microsoft is a whole new company. Way back in college, I remember that they were vehemently anti-Linux, with Steve Ballmer even going even going so far as to call open source a “cancer”. More recently, I’ve been watching with a sense of astonishment and admiration at some of their moves and announcements. I’ve been particularly impressed with the rise of Azure, and how they’ve come to embrace open source and open standards.

We got a chance to talk to the Azure metrics team a few months ago, and they shared some of their strategy and vision for metrics and observability. They’re all about interoperability and making the data easy to consume; whatever is best for the customer.

The Grafana Labs team quickly realized there was a lot of alignment; we both wanted to help Azure users bring their valuable metrics into Grafana. There, they can be unified with other data to get a complete understanding.

Fast forward a couple of short months, and we now have an official Azure metrics data source for Grafana. Other solutions that integrate with Azure generally require you to ETL all that data out, and deal with the associated pain and cost. This plugin just talks directly to Azure metrics, on demand.

The plugin is the result of collaboration between the Microsoft Azure team and Daniel Lee from Grafana Labs. It’s a preview version, so it’s at the beginning of what will hopefully be a fruitful journey. We’d love your feedback to help shape future development. This plugin can be installed into your self-hosted Grafana or GrafanaCloud – check out the plugin page for installation instructions. If you’d like to dig in a bit more and learn how everything fits together, check out the documentation.

The Azure team also announced the collaboration on their blog, and the availability of Grafana on the Azure Marketplace.

At Grafana Labs, we’re dead serious about bringing together ALL your time series data, wherever it lives. The Azure data source plugin is the 43rd data source in our growing catalog, and I’m sure it will be really well received by our users!

Amazon ElastiCache Update – Online Resizing for Redis Clusters

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-elasticache-update-online-resizing-for-redis-clusters/

Amazon ElastiCache makes it easy to for you to set up a fast, in-memory data store and cache. With support for the two most popular open source offerings (Redis and Memcached), ElastiCache supports the demanding needs of game leaderboards, in-memory analytics, and large-scale messaging.

Today I would like to tell you about an important addition to Amazon ElastiCache for Redis. You can already create clusters with up to 15 shards, each responsible for storing keys and values for a specific set of slots (each cluster has exactly 16,384 slots). A single cluster can expand to store 3.55 terabytes of in-memory data while supporting up to 20 million reads and 4.5 million writes per second.

Now with Online Resizing
You can now adjust the number of shards in a running ElastiCache for Redis cluster while the cluster remains online and responding to requests. This gives you the power to respond to changes in traffic and data volume without having to take the cluster offline or to start with an empty cache. You can also rebalance a running cluster to uniformly redistribute slot space without changing the number of shards.

When you initiate a resharding or rebalancing operation, ElastiCache for Redis starts by preparing a plan that will result in an even distribution of slots across the shards in the cluster. Then it transfers slots across shards, moving many in parallel for efficiency. This all happens while the cluster continues to respond to requests, with a modest impact on write throughput for writes to a slot that is in motion. The migration rate is dependent on the instance type, network speed, read/write traffic to the slots, and is generally about 1 gigabyte per minute.

The resharding and rebalancing operations apply to Redis clusters that were created with Cluster Mode enabled:

Resharding a Cluster
In general, you will know that it is time to expand a cluster via resharding when it starts to face significant memory pressure or when individual nodes are becoming bottlenecks. You can watch the cluster’s CloudWatch metrics to identify each situation:

Memory Pressure – FreeableMemory, SwapUsage, BytesUsedForCache.

CPU Bottleneck – CPUUtilization, CurrConnections, NewConnections.

Network Bottleneck – NetworkBytesIn, NetworkBytesOut.

You can use CloudWatch Dashboards to monitor these metrics, and CloudWatch Alarms to automate the resharding process.

To reshard a Redis cluster from the ElastiCache Dashboard, click on the cluster to visit the detail page, and then click on the Add shards button:

Enter the number of shards to add and (optionally) the desired Availability Zones, then click on Add:

The status of the cluster will change to modifying and the resharding process will begin. It can take anywhere from a few minutes to several hours, as indicated above. You can track the progress on the detail page for the cluster:

You can see the slots moving from shard to shard:

You can also watch the Events for the cluster:

During the resharding you should avoid the use of the KEYS and SMEMBERS commands, as well as compute-intensive Lua scripts in order to moderate the load on the cluster shards. You should avoid the FLUSHDB and FLUSHALL commands entirely; using them will interrupt and then abort the resharding process.

The status of each shard will return to available when the process is complete:

The same process takes place when you delete shards.

Rebalancing Slots
You can perform this operation by heading to the cluster’s detail page and clicking on Rebalance Slot Distribution:

Things to Know
Here are a couple of things to keep in mind about this new feature:

Engine Version – Your cluster must be running version 3.2.10 of the Redis engine.

Migration Size – Slots that contain items that are larger than 256 megabytes after serialization are not migrated.

Cluster Endpoint – The cluster endpoint does not change as a result of a resharding or rebalancing.

Available Now
This feature is available now and you can start using it today.

Jeff;

 

Just in Case You Missed It: Catching Up on Some Recent AWS Launches

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/just-in-case-you-missed-it-catching-up-on-some-recent-aws-launches/

So many launches and cloud innovations, that you simply may not believe.  In order to catch up on some service launches and features, this post will be a round-up of some cool releases that happened this summer and through the end of September.

The launches and features I want to share with you today are:

  • AWS IAM for Authenticating Database Users for RDS MySQL and Amazon Aurora
  • Amazon SES Reputation Dashboard
  • Amazon SES Open and Click Tracking Metrics
  • Serverless Image Handler by the Solutions Builder Team
  • AWS Ops Automator by the Solutions Builder Team

Let’s dive in, shall we!

AWS IAM for Authenticating Database Users for RDS MySQL and Amazon Aurora

Wished you could manage access to your Amazon RDS database instances and clusters using AWS IAM? Well, wish no longer. Amazon RDS has launched the ability for you to use IAM to manage database access for Amazon RDS for MySQL and Amazon Aurora DB.

What I like most about this new service feature is, it’s very easy to get started.  To enable database user authentication using IAM, you would select a checkbox Enable IAM DB Authentication when creating, modifying, or restoring your DB instance or cluster. You can enable IAM access using the RDS console, the AWS CLI, and/or the Amazon RDS API.

After configuring the database for IAM authentication, client applications authenticate to the database engine by providing temporary security credentials generated by the IAM Security Token Service. These credentials can be used instead of providing a password to the database engine.

You can learn more about using IAM to provide targeted permissions and authentication to MySQL and Aurora by reviewing the Amazon RDS user guide.

Amazon SES Reputation Dashboard

In order to aid Amazon Simple Email Service customers’ in utilizing best practice guidelines for sending email, I am thrilled to announce we launched the Reputation Dashboard to provide comprehensive reporting on email sending health. To aid in proactively managing emails being sent, customers now have visibility into overall account health, sending metrics, and compliance or enforcement status.

The Reputation Dashboard will provide the following information:

  • Account status: A description of your account health status.
    • Healthy – No issues currently impacting your account.
    • Probation – Account is on probation; Issues causing probation must be resolved to prevent suspension
    • Pending end of probation decision – Your account is on probation. Amazon SES team member must review your account prior to action.
    • Shutdown – Your account has been shut down. No email will be able to be sent using Amazon SES.
    • Pending shutdown – Your account is on probation and issues causing probation are unresolved.
  • Bounce Rate: Percentage of emails sent that have bounced and bounce rate status messages.
  • Complaint Rate: Percentage of emails sent that recipients have reported as spam and complaint rate status messages.
  • Notifications: Messages about other account reputation issues.

Amazon SES Open and Click Tracking Metrics

Another exciting feature recently added to Amazon SES is support for Email Open and Click Tracking Metrics. With Email Open and Click Tracking Metrics feature, SES customers can now track when email they’ve sent has been opened and track when links within the email have been clicked.  Using this SES feature will allow you to better track email campaign engagement and effectiveness.

How does this work?

When using the email open tracking feature, SES will add a transparent, miniature image into the emails that you choose to track. When the email is opened, the mail application client will load the aforementioned tracking which triggers an open track event with Amazon SES. For the email click (link) tracking, links in email and/or email templates are replaced with a custom link.  When the custom link is clicked, a click event is recorded in SES and the custom link will redirect the email user to the link destination of the original email.

You can take advantage of the new open tracking and click tracking features by creating a new configuration set or altering an existing configuration set within SES. After choosing either; Amazon SNS, Amazon CloudWatch, or Amazon Kinesis Firehose as the AWS service to receive the open and click metrics, you would only need to select a new configuration set to successfully enable these new features for any emails you want to send.

AWS Solutions: Serverless Image Handler & AWS Ops Automator

The AWS Solution Builder team has been hard at work helping to make it easier for you all to find answers to common architectural questions to aid in building and running applications on AWS. You can find these solutions on the AWS Answers page. Two new solutions released earlier this fall on AWS Answers are  Serverless Image Handler and the AWS Ops Automator.
Serverless Image Handler was developed to provide a solution to help customers dynamically process, manipulate, and optimize the handling of images on the AWS Cloud. The solution combines Amazon CloudFront for caching, AWS Lambda to dynamically retrieve images and make image modifications, and Amazon S3 bucket to store images. Additionally, the Serverless Image Handler leverages the open source image-processing suite, Thumbor, for additional image manipulation, processing, and optimization.

AWS Ops Automator solution helps you to automate manual tasks using time-based or event-based triggers to automatically such as snapshot scheduling by providing a framework for automated tasks and includes task audit trails, logging, resource selection, scaling, concurrency handling, task completion handing, and API request retries. The solution includes the following AWS services:

  • AWS CloudFormation: a templates to launches the core framework of microservices and solution generated task configurations
  • Amazon DynamoDB: a table which stores task configuration data to defines the event triggers, resources, and saves the results of the action and the errors.
  • Amazon CloudWatch Logs: provides logging to track warning and error messages
  • Amazon SNS: topic to send messages to a subscribed email address to which to send the logging information from the solution

Have fun exploring and coding.

Tara

timeShift(GrafanaBuzz, 1w) Issue 20

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/11/03/timeshiftgrafanabuzz-1w-issue-20/

This week, in addition to rolling out a Grafana 4.6.1 release, we’ve been busy prepping for upcoming events. In Europe, we’ll be speaking at and sponsoring the sold-out Øredev Conference in Malmö, Sweden, Nov 7-11, and on the west coast, we’ll be speaking at and sponsoring InfluxDays, Nov 14 in San Francisco, CA. We hope to get a chance to say hi to you at one of these events.

We also closed the CFP window this week for talks at GrafanaCon EU. We received a tremendous number of great submissions, and will spend the next few weeks making our selections. As speakers are confirmed, we’ll add them to the website, so be sure to keep an eye out. We’re thrilled that the community is so excited to share their knowledge of Grafana and open source monitoring.


Latest Release

Grafana 4.6.1 adds some bug fixes:

  • Singlestat: Lost thresholds when using save dashboard as #96816
  • Graph: Fix for series override color picker #97151
  • Go: build using golang 1.9.2 #97134
  • Plugins: Fixed problem with loading plugin js files behind auth proxy #95092
  • Graphite: Annotation tooltip should render empty string when undefined #9707

Download Grafana 4.6.1 Now


From the Blogosphere

FOSDEM 2018 Monitoring & Cloud Devroom CFP: The CFP is now open for the Monitoring & Cloud Devroom at FOSDEM 2018, held in Brussels, Belgium, Feb 3-4, 2018. FOSDEM is the premier open source conference in europe, and covers a broad range of topics. The Monitoring and Cloud devroom was a popular devroom last year, so be sure to submit your talk before the November 26 deadline!

PRTG plus Grafana FTW!: @neuralfraud has written a plugin for PRTG that allows you to view PRTG data directly in Grafana. This article goes over the features of the plugin, beautiful dashboards and visualization options, and how to get started.

Grafana-based GUI for mgstat, a system monitoring tool for InterSystems Caché, Ensemble or HealthShare: This is a continuation of the previous article Making Prometheus Monitoring for InterSystems Caché where we examine how to visualize the results from the mgstat tool. This article is broken down into which stats are collected and how these stats are collected.

Using Grafana & InfluxDB to view XIV Host Performance Metrics: Allan wanted to get an unified view of what his hosts were doing, however, the XIV GUI only allowed 12 hosts to be displayed at a given time– which was extremely limiting. This is the first in a series of articles on how to gather and parse host data and visualize it in Grafana.

Service telemetry with Grafana and InfluxDB – Part I: Introduction: This is the first in a new series of posts which will walk you through the process of building a production-ready solution for monitoring real-time metrics for any application or service, complete with useful and beautiful dashboards.


GrafanaCon General Admission Now Available!

Early bird tickets are no longer available, but you can still lock in your seat for GrafanaCon! Join us March 1-2, 2018 in Amsterdam for 2 days of talks centered around Grafana and the surrounding monitoring ecosystem including Graphite, Prometheus, InfluxData, Elasticsearch, Kubernetes, and more.

Get Your Ticket Now


Grafana Plugins

Keeping your Grafana plugins up to date is important. Plugin authors are often adding new features and fixing bugs, which will make your plugin perform better. We’ve made updating easy; for on-prem Grafana, use the Grafana-cli tool, or update with 1 click if you’re using Hosted Grafana.

UPDATED PLUGIN

Piechart Panel – The latest version of the Piechart Panel has the following fixes:

  • Add “No data points” description for pie chart with 0 value
  • Donut now works with transparent panel
  • Can toggle to hide series from piechart
  • On graph legend can show values. Can choose how many decimals
  • Sort pie slices upon sorting of legend entries
  • Fix for color picker for Grafana 4.6

Update


Contribution of the Week:

Each week we highlight some of the important contributions from our amazing open source community. Thank you for helping make Grafana better!

@akshaychhajed
We got an amazing PR this week. Grafana has lots of docker-compose files for internal testing that were created using a very old version of docker-compose. @akshaychhajed sent a PR converting them all to the latest version of docker-compose. Huge thanks from the Grafana team!


Upcoming Events:

In between code pushes we like to speak at, sponsor and attend all kinds of conferences and meetups. We have some awesome talks lined up this November. Hope to see you at one of these events!


Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

Beautiful – I want to build a real-life version of this using a block of wood, some nails and colored string… or maybe have it cross-stitched on a pillow 🙂


Grafana Labs is Hiring!

We are passionate about open source software and thrive on tackling complex challenges to build the future. We ship code from every corner of the globe and love working with the community. If this sounds exciting, you’re in luck – WE’RE HIRING!

Check out our Open Positions


How are we doing?

Well, that wraps up another week! How we’re doing? Submit a comment on this article below, or post something at our community forum. Help us make these weekly roundups better!

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.

Now You Can Monitor DDoS Attack Trends with AWS Shield Advanced

Post Syndicated from Ritwik Manan original https://aws.amazon.com/blogs/security/now-you-can-monitor-ddos-attack-trends-with-aws-shield-advanced/

AWS Shield Advanced has always notified you about DDoS attacks on your applications via the AWS Management Console and API as well as Amazon CloudWatch metrics. Today, we added the global threat environment dashboard to AWS Shield Advanced to allow you to view trends and metrics about DDoS attacks across Amazon CloudFront, Elastic Load Balancing, and Amazon Route 53. This information can help you understand the DDoS target profile of the AWS services you use and, in turn, can help you create a more resilient and distributed architecture for your application.

The global threat environment dashboard shows comprehensive and easy-to-understand data about DDoS attacks. The dashboard displays a summary of the global threat environment, including the largest attacks, top vectors, and the relative number of significant attacks. You also can view the dashboard for different time durations to give you a history of DDoS attacks.

To get started with the global threat environment dashboard:

  1. Sign in to the AWS Management Console and navigate to the AWS WAF and AWS Shield console.
  2. To activate AWS Shield Advanced, choose Protected resources in the navigation pane, choose Activate AWS Shield Advanced, and then accept the terms by typing I accept.
  3. Navigate to the global threat environment dashboard through the navigation pane.
  4. Choose your desired time period from the time period drop-down menu in the top right part of the page.

You can use the information on the global threat environment dashboard to understand the threat landscape as well as to inform decisions you make that will help to better protect your AWS resources.

To learn more information, see Global Threat Environment Dashboard: View DDoS Attack Trends Across AWS.

– Ritwik

AWS HIPAA Eligibility Update (October 2017) – Sixteen Additional Services

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-hipaa-eligibility-post-update-october-2017-sixteen-additional-services/

Our Health Customer Stories page lists just a few of the many customers that are building and running healthcare and life sciences applications that run on AWS. Customers like Verge Health, Care Cloud, and Orion Health trust AWS with Protected Health Information (PHI) and Personally Identifying Information (PII) as part of their efforts to comply with HIPAA and HITECH.

Sixteen More Services
In my last HIPAA Eligibility Update I shared the news that we added eight additional services to our list of HIPAA eligible services. Today I am happy to let you know that we have added another sixteen services to the list, bringing the total up to 46. Here are the newest additions, along with some short descriptions and links to some of my blog posts to jog your memory:

Amazon Aurora with PostgreSQL Compatibility – This brand-new addition to Amazon Aurora allows you to encrypt your relational databases using keys that you create and manage through AWS Key Management Service (KMS). When you enable encryption for an Amazon Aurora database, the underlying storage is encrypted, as are automated backups, read replicas, and snapshots. Read New – Encryption at Rest for Amazon Aurora to learn more.

Amazon CloudWatch Logs – You can use the logs to monitor and troubleshoot your systems and applications. You can monitor your existing system, application, and custom log files in near real-time, watching for specific phrases, values, or patterns. Log data can be stored durably and at low cost, for as long as needed. To learn more, read Store and Monitor OS & Application Log Files with Amazon CloudWatch and Improvements to CloudWatch Logs and Dashboards.

Amazon Connect – This self-service, cloud-based contact center makes it easy for you to deliver better customer service at a lower cost. You can use the visual designer to set up your contact flows, manage agents, and track performance, all without specialized skills. Read Amazon Connect – Customer Contact Center in the Cloud and New – Amazon Connect and Amazon Lex Integration to learn more.

Amazon ElastiCache for Redis – This service lets you deploy, operate, and scale an in-memory data store or cache that you can use to improve the performance of your applications. Each ElastiCache for Redis cluster publishes key performance metrics to Amazon CloudWatch. To learn more, read Caching in the Cloud with Amazon ElastiCache and Amazon ElastiCache – Now With a Dash of Redis.

Amazon Kinesis Streams – This service allows you to build applications that process or analyze streaming data such as website clickstreams, financial transactions, social media feeds, and location-tracking events. To learn more, read Amazon Kinesis – Real-Time Processing of Streaming Big Data and New: Server-Side Encryption for Amazon Kinesis Streams.

Amazon RDS for MariaDB – This service lets you set up scalable, managed MariaDB instances in minutes, and offers high performance, high availability, and a simplified security model that makes it easy for you to encrypt data at rest and in transit. Read Amazon RDS Update – MariaDB is Now Available to learn more.

Amazon RDS SQL Server – This service lets you set up scalable, managed Microsoft SQL Server instances in minutes, and also offers high performance, high availability, and a simplified security model. To learn more, read Amazon RDS for SQL Server and .NET support for AWS Elastic Beanstalk and Amazon RDS for Microsoft SQL Server – Transparent Data Encryption (TDE) to learn more.

Amazon Route 53 – This is a highly available Domain Name Server. It translates names like www.example.com into IP addresses. To learn more, read Moving Ahead with Amazon Route 53.

AWS Batch – This service lets you run large-scale batch computing jobs on AWS. You don’t need to install or maintain specialized batch software or build your own server clusters. Read AWS Batch – Run Batch Computing Jobs on AWS to learn more.

AWS CloudHSM – A cloud-based Hardware Security Module (HSM) for key storage and management at cloud scale. Designed for sensitive workloads, CloudHSM lets you manage your own keys using FIPS 140-2 Level 3 validated HSMs. To learn more, read AWS CloudHSM – Secure Key Storage and Cryptographic Operations and AWS CloudHSM Update – Cost Effective Hardware Key Management at Cloud Scale for Sensitive & Regulated Workloads.

AWS Key Management Service – This service makes it easy for you to create and control the encryption keys used to encrypt your data. It uses HSMs to protect your keys, and is integrated with AWS CloudTrail in order to provide you with a log of all key usage. Read New AWS Key Management Service (KMS) to learn more.

AWS Lambda – This service lets you run event-driven application or backend code without thinking about or managing servers. To learn more, read AWS Lambda – Run Code in the Cloud, AWS Lambda – A Look Back at 2016, and AWS Lambda – In Full Production with New Features for Mobile Devs.

[email protected] – You can use this new feature of AWS Lambda to run Node.js functions across the global network of AWS locations without having to provision or manager servers, in order to deliver rich, personalized content to your users with low latency. Read [email protected] – Intelligent Processing of HTTP Requests at the Edge to learn more.

AWS Snowball Edge – This is a data transfer device with 100 terabytes of on-board storage as well as compute capabilities. You can use it to move large amounts of data into or out of AWS, as a temporary storage tier, or to support workloads in remote or offline locations. To learn more, read AWS Snowball Edge – More Storage, Local Endpoints, Lambda Functions.

AWS Snowmobile – This is an exabyte-scale data transfer service. Pulled by a semi-trailer truck, each Snowmobile packs 100 petabytes of storage into a ruggedized 45-foot long shipping container. Read AWS Snowmobile – Move Exabytes of Data to the Cloud in Weeks to learn more (and to see some of my finest LEGO work).

AWS Storage Gateway – This hybrid storage service lets your on-premises applications use AWS cloud storage (Amazon Simple Storage Service (S3), Amazon Glacier, and Amazon Elastic File System) in a simple and seamless way, with storage for volumes, files, and virtual tapes. To learn more, read The AWS Storage Gateway – Integrate Your Existing On-Premises Applications with AWS Cloud Storage and File Interface to AWS Storage Gateway.

And there you go! Check out my earlier post for a list of resources that will help you to build applications that comply with HIPAA and HITECH.

Jeff;

 

timeShift(GrafanaBuzz, 1w) Issue 19

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/10/27/timeshiftgrafanabuzz-1w-issue-19/

This week, we were busy prepping for our latest stable release, Grafana 4.6! This is a sizeable release that adds some key new functionality, but there’s no time to pat ourselves on the back – now it’s time to focus on Grafana 5.0! In the meantime, find out more about what’s in 4.6 in our release blog post, and let us know what you think of the new features and enhancements.


Latest Release

Grafana 4.6 Stable is now available! The Grafana 4.6 release contains some exciting and much anticipated new additions:

  • The new Postgres Data Source
  • Create your own Annotations from the Graph panel
  • Cloudwatch Alerting Support
  • Prometheus query editor enhancements

Download Grafana 4.6 Stable Now


From the Blogosphere

Lyft’s Envoy dashboards: Lyft developed Envoy to relieve operational and reliability headaches. Envoy is a “service mesh” substrate that provides common utilities such as service discovery, load balancing, rate limiting, circuit breaking, stats, logging, tracing, etc. to application architectures. They’ve recently shared their Envoy dashboards, and walk you through their setup.

Monitoring Data in a SQL Table with Prometheus and Grafana Joseph recently built a proof-of-concept to add monitoring and alerting on the results of a Microsoft SQL Server query. Since he knew he’d eventually want to monitor many other things, from many other sources, he chose Prometheus and Grafana as his starting point. In this article, he walks us through his steps of exposing SQL queries to Prometheus, collecting metrics, alerting, and visualizing the results in Grafana.

Crypto Exchange Trading Data Discovering interesting public Grafana dashboards has been happening more and more lately. This week, I came across a dashboard visualizing trading data on the crypto exchanges. If you have a public dashboard you’d like shared, Let us know.


GrafanaCon EU Early Bird is Ending

Early bird discounts will be ending October 31; this is your last chance to take advantage of the discounted tickets!

Get Your Early Bird Ticket Now


Grafana Plugins

Each week we review updated plugins to ensure code quality and compatibility before publishing them on grafana.com. This process can take time, and we appreciate all of the communication from plugin authors. This week we have two plugins that received some major TLC. These are two very popular plugins, so we encourage you to update. We’ve made updating easy; for on-prem Grafana, use the Grafana-cli tool, or update with 1 click if you are using Hosted Grafana.

UPDATED PLUGIN

Zabbix App Plugin – The Zabbix App Plugin just got a big update! Here are just a few of the changes:

  • PostgreSQL support for Direct DB Connection.
  • Triggers query mode, which allows counting active alerts by group, host and application, #141.
  • sortSeries() function that sorts multiple timeseries by name, #447, thanks to @mdorenkamp.
  • percentil() function, thanks to @pedrohrf.
  • Zabbix System Status example dashboard.

Update

UPDATED PLUGIN

Wroldmap Panel Plugin – The Worldmap panel also got a new update. Zooming with the mouse wheel has been turned off, as it was too easy to accidentally zoom in when scrolling the page. You can zoom in with the mouse by either double-clicking or using shift+drag to zoom in on an area.

  • Support for new data source integration, the Dynamic JSON endpoint #103, thanks @LostInBrittany
  • Fix for using floats in thresholds #79, thanks @fabienpomerol
  • Turned off mouse wheel zoom

Update


Upcoming Events:

In between code pushes we like to speak at, sponsor and attend all kinds of conferences and meetups. We have some awesome talks lined up this November. Hope to see you at one of these events!


Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

Nice – but dashboards are meant for sharing! You should upload that to our list of Icinga2 dashboards.


Grafana Labs is Hiring!

We are passionate about open source software and thrive on tackling complex challenges to build the future. We ship code from every corner of the globe and love working with the community. If this sounds exciting, you’re in luck – WE’RE HIRING!

Check out our Open Positions


How are we doing?

Well, that wraps up another week! How we’re doing? Submit a comment on this article below, or post something at our community forum. Help us make these weekly roundups better!

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.