Tag Archives: artificial intelligence

Deepfake Election Interference in Slovakia

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/10/deepfake-election-interference-in-slovakia.html

Well designed and well timed deepfake or two Slovakian politicians discussing how to rig the election:

Šimečka and Denník N immediately denounced the audio as fake. The fact-checking department of news agency AFP said the audio showed signs of being manipulated using AI. But the recording was posted during a 48-hour moratorium ahead of the polls opening, during which media outlets and politicians are supposed to stay silent. That meant, under Slovakia’s election rules, the post was difficult to widely debunk. And, because the post was audio, it exploited a loophole in Meta’s manipulated-media policy, which dictates only faked videos—­where a person has been edited to say words they never said­—go against its rules.

I just wrote about this. Countries like Russia and China tend to test their attacks out on smaller countries before unleashing them on larger ones. Consider this a preview to their actions in the US next year.

Political Disinformation and AI

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/10/political-disinformation-and-ai.html

Elections around the world are facing an evolving threat from foreign actors, one that involves artificial intelligence.

Countries trying to influence each other’s elections entered a new era in 2016, when the Russians launched a series of social media disinformation campaigns targeting the US presidential election. Over the next seven years, a number of countries—most prominently China and Iran—used social media to influence foreign elections, both in the US and elsewhere in the world. There’s no reason to expect 2023 and 2024 to be any different.

But there is a new element: generative AI and large language models. These have the ability to quickly and easily produce endless reams of text on any topic in any tone from any perspective. As a security expert, I believe it’s a tool uniquely suited to Internet-era propaganda.

This is all very new. ChatGPT was introduced in November 2022. The more powerful GPT-4 was released in March 2023. Other language and image production AIs are around the same age. It’s not clear how these technologies will change disinformation, how effective they will be or what effects they will have. But we are about to find out.

Election season will soon be in full swing in much of the democratic world. Seventy-one percent of people living in democracies will vote in a national election between now and the end of next year. Among them: Argentina and Poland in October, Taiwan in January, Indonesia in February, India in April, the European Union and Mexico in June, and the US in November. Nine African democracies, including South Africa, will have elections in 2024. Australia and the UK don’t have fixed dates, but elections are likely to occur in 2024.

Many of those elections matter a lot to the countries that have run social media influence operations in the past. China cares a great deal about Taiwan, Indonesia, India, and many African countries. Russia cares about the UK, Poland, Germany, and the EU in general. Everyone cares about the United States.

And that’s only considering the largest players. Every US national election from 2016 has brought with it an additional country attempting to influence the outcome. First it was just Russia, then Russia and China, and most recently those two plus Iran. As the financial cost of foreign influence decreases, more countries can get in on the action. Tools like ChatGPT significantly reduce the price of producing and distributing propaganda, bringing that capability within the budget of many more countries.

A couple of months ago, I attended a conference with representatives from all of the cybersecurity agencies in the US. They talked about their expectations regarding election interference in 2024. They expected the usual players—Russia, China, and Iran—and a significant new one: “domestic actors.” That is a direct result of this reduced cost.

Of course, there’s a lot more to running a disinformation campaign than generating content. The hard part is distribution. A propagandist needs a series of fake accounts on which to post, and others to boost it into the mainstream where it can go viral. Companies like Meta have gotten much better at identifying these accounts and taking them down. Just last month, Meta announced that it had removed 7,704 Facebook accounts, 954 Facebook pages, 15 Facebook groups, and 15 Instagram accounts associated with a Chinese influence campaign, and identified hundreds more accounts on TikTok, X (formerly Twitter), LiveJournal, and Blogspot. But that was a campaign that began four years ago, producing pre-AI disinformation.

Disinformation is an arms race. Both the attackers and defenders have improved, but also the world of social media is different. Four years ago, Twitter was a direct line to the media, and propaganda on that platform was a way to tilt the political narrative. A Columbia Journalism Review study found that most major news outlets used Russian tweets as sources for partisan opinion. That Twitter, with virtually every news editor reading it and everyone who was anyone posting there, is no more.

Many propaganda outlets moved from Facebook to messaging platforms such as Telegram and WhatsApp, which makes them harder to identify and remove. TikTok is a newer platform that is controlled by China and more suitable for short, provocative videos—ones that AI makes much easier to produce. And the current crop of generative AIs are being connected to tools that will make content distribution easier as well.

Generative AI tools also allow for new techniques of production and distribution, such as low-level propaganda at scale. Imagine a new AI-powered personal account on social media. For the most part, it behaves normally. It posts about its fake everyday life, joins interest groups and comments on others’ posts, and generally behaves like a normal user. And once in a while, not very often, it says—or amplifies—something political. These persona bots, as computer scientist Latanya Sweeney calls them, have negligible influence on their own. But replicated by the thousands or millions, they would have a lot more.

That’s just one scenario. The military officers in Russia, China, and elsewhere in charge of election interference are likely to have their best people thinking of others. And their tactics are likely to be much more sophisticated than they were in 2016.

Countries like Russia and China have a history of testing both cyberattacks and information operations on smaller countries before rolling them out at scale. When that happens, it’s important to be able to fingerprint these tactics. Countering new disinformation campaigns requires being able to recognize them, and recognizing them requires looking for and cataloging them now.

In the computer security world, researchers recognize that sharing methods of attack and their effectiveness is the only way to build strong defensive systems. The same kind of thinking also applies to these information campaigns: The more that researchers study what techniques are being employed in distant countries, the better they can defend their own countries.

Disinformation campaigns in the AI era are likely to be much more sophisticated than they were in 2016. I believe the US needs to have efforts in place to fingerprint and identify AI-produced propaganda in Taiwan, where a presidential candidate claims a deepfake audio recording has defamed him, and other places. Otherwise, we’re not going to see them when they arrive here. Unfortunately, researchers are instead being targeted and harassed.

Maybe this will all turn out okay. There have been some important democratic elections in the generative AI era with no significant disinformation issues: primaries in Argentina, first-round elections in Ecuador, and national elections in Thailand, Turkey, Spain, and Greece. But the sooner we know what to expect, the better we can deal with what comes.

This essay previously appeared in The Conversation.

AWS Weekly Roundup – Amazon Bedrock Is Now Generally Available, Attend AWS Innovate Online, and More – Oct 2, 2023

Post Syndicated from Veliswa Boya original https://aws.amazon.com/blogs/aws/aws-weekly-roundup-amazon-bedrock-is-now-generally-available-attend-aws-innovate-online-and-more-oct-2-2023/

Last week I attended the AWS Summit Johannesburg. This was the first summit to be hosted in my own country and my own city since 2019 so it was very special to have the opportunity to attend. It was great to get to meet with so many of our customers and hear how they are building on AWS.

Now on to the AWS updates. I’ve compiled a few announcements and upcoming events you need to know about. Let’s get started!

Last Week’s Launches
Amazon Bedrock Is Now Generally Available – Amazon Bedrock was announced in preview in April of this year as part of a set of new tools for building with generative AI on AWS. Last week’s announcement of this service being generally available was received with a lot of excitement and customers have already been sharing what they are building with Amazon Bedrock. I quite enjoyed this lighthearted post from AWS Serverless Hero Jones Zachariah Noel about the “Bengaluru with traffic-filled roads” image he produced using Stability AI’s Stable Diffusion XL image generation model on Amazon Bedrock.

Amazon MSK Introduces Managed Data Delivery from Apache Kafka to Your Data Lake – Amazon MSK was released in 2019 to help our customers reduce the work needed to set up, scale, and manage Apache Kafka in production. Now you can continuously load data from an Apache Kafka cluster to Amazon Simple Storage Service (Amazon S3).

Other AWS News
A few more news items and blog posts you might have missed:

The Community.AWS Blog is where builders share and learn with the community of cloud enthusiasts. Contributors to this blog include AWS employees, AWS Heroes, AWS Community Builders, and other members of the AWS Community. Last week, AWS Hero Johannes Koch published this awesome post on how to build a simple website using Flutter that interacts with a serverless backend powered by AppSync-merged APIs.

For a full list of AWS announcements, be sure to keep an eye on the What’s New at AWS page.

Upcoming AWS Events
We have the following upcoming events:

AWS Cloud Days (October 10, 24) – Connect and collaborate with other like-minded folks while learning about AWS at the AWS Cloud Day in Athens and Prague.

AWS Innovate Online (October 19)Register for AWS Innovate Online to learn how you can build, run, and scale next-generation applications on the most extensive cloud platform. There will be 80+ sessions delivered in five languages and you’ll receive a certificate of attendance to showcase all you’ve learned.

We’re focused on improving our content to provide a better customer experience, and we need your feedback to do so. Take this quick survey to share insights on your experience with the AWS Blog. Note that this survey is hosted by an external company, so the link doesn’t lead to our website. AWS handles your information as described in the AWS Privacy Notice.

Veliswa

NSA AI Security Center

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/10/nsa-ai-security-center.html

The NSA is starting a new artificial intelligence security center:

The AI security center’s establishment follows an NSA study that identified securing AI models from theft and sabotage as a major national security challenge, especially as generative AI technologies emerge with immense transformative potential for both good and evil.

Nakasone said it would become “NSA’s focal point for leveraging foreign intelligence insights, contributing to the development of best practices guidelines, principles, evaluation, methodology and risk frameworks” for both AI security and the goal of promoting the secure development and adoption of AI within “our national security systems and our defense industrial base.”

He said it would work closely with U.S. industry, national labs, academia and the Department of Defense as well as international partners.

Amazon Bedrock Is Now Generally Available – Build and Scale Generative AI Applications with Foundation Models

Post Syndicated from Antje Barth original https://aws.amazon.com/blogs/aws/amazon-bedrock-is-now-generally-available-build-and-scale-generative-ai-applications-with-foundation-models/

This April, we announced Amazon Bedrock as part of a set of new tools for building with generative AI on AWS. Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies, including AI21 Labs, Anthropic, Cohere, Stability AI, and Amazon, along with a broad set of capabilities to build generative AI applications, simplifying the development while maintaining privacy and security.

Today, I’m happy to announce that Amazon Bedrock is now generally available! I’m also excited to share that Meta’s Llama 2 13B and 70B parameter models will soon be available on Amazon Bedrock.

Amazon Bedrock

Amazon Bedrock’s comprehensive capabilities help you experiment with a variety of top FMs, customize them privately with your data using techniques such as fine-tuning and retrieval-augmented generation (RAG), and create managed agents that perform complex business tasks—all without writing any code. Check out my previous posts to learn more about agents for Amazon Bedrock and how to connect FMs to your company’s data sources.

Note that some capabilities, such as agents for Amazon Bedrock, including knowledge bases, continue to be available in preview. I’ll share more details on what capabilities continue to be available in preview towards the end of this blog post.

Since Amazon Bedrock is serverless, you don’t have to manage any infrastructure, and you can securely integrate and deploy generative AI capabilities into your applications using the AWS services you are already familiar with.

Amazon Bedrock is integrated with Amazon CloudWatch and AWS CloudTrail to support your monitoring and governance needs. You can use CloudWatch to track usage metrics and build customized dashboards for audit purposes. With CloudTrail, you can monitor API activity and troubleshoot issues as you integrate other systems into your generative AI applications. Amazon Bedrock also allows you to build applications that are in compliance with the GDPR and you can use Amazon Bedrock to run sensitive workloads regulated under the U.S. Health Insurance Portability and Accountability Act (HIPAA).

Get Started with Amazon Bedrock
You can access available FMs in Amazon Bedrock through the AWS Management Console, AWS SDKs, and open-source frameworks such as LangChain.

In the Amazon Bedrock console, you can browse FMs and explore and load example use cases and prompts for each model. First, you need to enable access to the models. In the console, select Model access in the left navigation pane and enable the models you would like to access. Once model access is enabled, you can try out different models and inference configuration settings to find a model that fits your use case.

For example, here’s a contract entity extraction use case example using Cohere’s Command model:

Amazon Bedrock

The example shows a prompt with a sample response, the inference configuration parameter settings for the example, and the API request that runs the example. If you select Open in Playground, you can explore the model and use case further in an interactive console experience.

Amazon Bedrock offers chat, text, and image model playgrounds. In the chat playground, you can experiment with various FMs using a conversational chat interface. The following example uses Anthropic’s Claude model:

Amazon Bedrock

As you evaluate different models, you should try various prompt engineering techniques and inference configuration parameters. Prompt engineering is a new and exciting skill focused on how to better understand and apply FMs to your tasks and use cases. Effective prompt engineering is about crafting the perfect query to get the most out of FMs and obtain proper and precise responses. In general, prompts should be simple, straightforward, and avoid ambiguity. You can also provide examples in the prompt or encourage the model to reason through more complex tasks.

Inference configuration parameters influence the response generated by the model. Parameters such as Temperature, Top P, and Top K give you control over the randomness and diversity, and Maximum Length or Max Tokens control the length of model responses. Note that each model exposes a different but often overlapping set of inference parameters. These parameters are either named the same between models or similar enough to reason through when you try out different models.

We discuss effective prompt engineering techniques and inference configuration parameters in more detail in week 1 of the Generative AI with Large Language Models on-demand course, developed by AWS in collaboration with DeepLearning.AI. You can also check the Amazon Bedrock documentation and the model provider’s respective documentation for additional tips.

Next, let’s see how you can interact with Amazon Bedrock via APIs.

Using the Amazon Bedrock API
Working with Amazon Bedrock is as simple as selecting an FM for your use case and then making a few API calls. In the following code examples, I’ll use the AWS SDK for Python (Boto3) to interact with Amazon Bedrock.

List Available Foundation Models
First, let’s set up the boto3 client and then use list_foundation_models() to see the most up-to-date list of available FMs:

import boto3
import json

bedrock = boto3.client(
    service_name='bedrock', 
    region='us-east-1'
)

bedrock.list_foundation_models()

Run Inference Using Amazon Bedrock’s InvokeModel API
Next, let’s perform an inference request using Amazon Bedrock’s InvokeModel API and boto3 runtime client. The runtime client manages the data plane APIs, including the InvokeModel API.

Amazon Bedrock

The InvokeModel API expects the following parameters:

{
    "modelId": <MODEL_ID>,
    "contentType": "application/json",
    "accept": "application/json",
    "body": <BODY>
}

The modelId parameter identifies the FM you want to use. The request body is a JSON string containing the prompt for your task, together with any inference configuration parameters. Note that the prompt format will vary based on the selected model provider and FM. The contentType and accept parameters define the MIME type of the data in the request body and response and default to application/json. For more information on the latest models, InvokeModel API parameters, and prompt formats, see the Amazon Bedrock documentation.

Example: Text Generation Using AI21 Lab’s Jurassic-2 Model
Here is a text generation example using AI21 Lab’s Jurassic-2 Ultra model. I’ll ask the model to tell me a knock-knock joke—my version of a Hello World.

bedrock_runtime = boto3.client(
    service_name='bedrock-runtime', 
    region='us-east-1'
)

modelId = 'ai21.j2-ultra-v1' 
accept = 'application/json'
contentType = 'application/json'

body = json.dumps(
    {"prompt": "Knock, knock!", 
     "maxTokens": 200,
     "temperature": 0.7,
     "topP": 1,
    }
)

response = bedrock_runtime.invoke_model(
    body=body, 
	modelId=modelId, 
	accept=accept, 
	contentType=contentType
)

response_body = json.loads(response.get('body').read())

Here’s the response:

outputText = response_body.get('completions')[0].get('data').get('text')
print(outputText)
Who's there? 
Boo! 
Boo who? 
Don't cry, it's just a joke!

You can also use the InvokeModel API to interact with embedding models.

Example: Create Text Embeddings Using Amazon’s Titan Embeddings Model
Text embedding models translate text inputs, such as words, phrases, or possibly large units of text, into numerical representations, known as embedding vectors. Embedding vectors capture the semantic meaning of the text in a high-dimension vector space and are useful for applications such as personalization or search. In the following example, I’m using the Amazon Titan Embeddings model to create an embedding vector.

prompt = "Knock-knock jokes are hilarious."

body = json.dumps({
    "inputText": prompt,
})

model_id = 'amazon.titan-embed-g1-text-02'
accept = 'application/json' 
content_type = 'application/json'

response = bedrock_runtime.invoke_model(
    body=body, 
    modelId=model_id, 
    accept=accept, 
    contentType=content_type
)

response_body = json.loads(response['body'].read())
embedding = response_body.get('embedding')

The embedding vector (shortened) will look similar to this:

[0.82421875, -0.6953125, -0.115722656, 0.87890625, 0.05883789, -0.020385742, 0.32421875, -0.00078201294, -0.40234375, 0.44140625, ...]

Note that Amazon Titan Embeddings is available today. The Amazon Titan Text family of models for text generation continues to be available in limited preview.

Run Inference Using Amazon Bedrock’s InvokeModelWithResponseStream API
The InvokeModel API request is synchronous and waits for the entire output to be generated by the model. For models that support streaming responses, Bedrock also offers an InvokeModelWithResponseStream API that lets you invoke the specified model to run inference using the provided input but streams the response as the model generates the output.

Amazon Bedrock

Streaming responses are particularly useful for responsive chat interfaces to keep the user engaged in an interactive application. Here is a Python code example using Amazon Bedrock’s InvokeModelWithResponseStream API:

response = bedrock_runtime.invoke_model_with_response_stream(
    modelId=modelId, 
    body=body)

stream = response.get('body')
if stream:
    for event in stream:
        chunk=event.get('chunk')
        if chunk:
            print(json.loads(chunk.get('bytes').decode))

Data Privacy and Network Security
With Amazon Bedrock, you are in control of your data, and all your inputs and customizations remain private to your AWS account. Your data, such as prompts, completions, and fine-tuned models, is not used for service improvement. Also, the data is never shared with third-party model providers.

Your data remains in the Region where the API call is processed. All data is encrypted in transit with a minimum of TLS 1.2 encryption. Data at rest is encrypted with AES-256 using AWS KMS managed data encryption keys. You can also use your own keys (customer managed keys) to encrypt the data.

You can configure your AWS account and virtual private cloud (VPC) to use Amazon VPC endpoints (built on AWS PrivateLink) to securely connect to Amazon Bedrock over the AWS network. This allows for secure and private connectivity between your applications running in a VPC and Amazon Bedrock.

Governance and Monitoring
Amazon Bedrock integrates with IAM to help you manage permissions for Amazon Bedrock. Such permissions include access to specific models, playground, or features within Amazon Bedrock. All AWS-managed service API activity, including Amazon Bedrock activity, is logged to CloudTrail within your account.

Amazon Bedrock emits data points to CloudWatch using the AWS/Bedrock namespace to track common metrics such as InputTokenCount, OutputTokenCount, InvocationLatency, and (number of) Invocations. You can filter results and get statistics for a specific model by specifying the model ID dimension when you search for metrics. This near real-time insight helps you track usage and cost (input and output token count) and troubleshoot performance issues (invocation latency and number of invocations) as you start building generative AI applications with Amazon Bedrock.

Billing and Pricing Models
Here are a couple of things around billing and pricing models to keep in mind when using Amazon Bedrock:

Billing – Text generation models are billed per processed input tokens and per generated output tokens. Text embedding models are billed per processed input tokens. Image generation models are billed per generated image.

Pricing Models – Amazon Bedrock offers two pricing models, on-demand and provisioned throughput. On-demand pricing allows you to use FMs on a pay-as-you-go basis without having to make any time-based term commitments. Provisioned throughput is primarily designed for large, consistent inference workloads that need guaranteed throughput in exchange for a term commitment. Here, you specify the number of model units of a particular FM to meet your application’s performance requirements as defined by the maximum number of input and output tokens processed per minute. For detailed pricing information, see Amazon Bedrock Pricing.

Now Available
Amazon Bedrock is available today in AWS Regions US East (N. Virginia) and US West (Oregon). To learn more, visit Amazon Bedrock, check the Amazon Bedrock documentation, explore the generative AI space at community.aws, and get hands-on with the Amazon Bedrock workshop. You can send feedback to AWS re:Post for Amazon Bedrock or through your usual AWS contacts.

(Available in Preview) The Amazon Titan Text family of text generation models, Stability AI’s Stable Diffusion XL image generation model, and agents for Amazon Bedrock, including knowledge bases, continue to be available in preview. Reach out through your usual AWS contacts if you’d like access.

(Coming Soon) The Llama 2 13B and 70B parameter models by Meta will soon be available via Amazon Bedrock’s fully managed API for inference and fine-tuning.

Start building generative AI applications with Amazon Bedrock, today!

— Antje

Detecting AI-Generated Text

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/09/detecting-ai-generated-text.html

There are no reliable ways to distinguish text written by a human from text written by an large language model. OpenAI writes:

Do AI detectors work?

  • In short, no. While some (including OpenAI) have released tools that purport to detect AI-generated content, none of these have proven to reliably distinguish between AI-generated and human-generated content.
  • Additionally, ChatGPT has no “knowledge” of what content could be AI-generated. It will sometimes make up responses to questions like “did you write this [essay]?” or “could this have been written by AI?” These responses are random and have no basis in fact.
  • To elaborate on our research into the shortcomings of detectors, one of our key findings was that these tools sometimes suggest that human-written content was generated by AI.
    • When we at OpenAI tried to train an AI-generated content detector, we found that it labeled human-written text like Shakespeare and the Declaration of Independence as AI-generated.
    • There were also indications that it could disproportionately impact students who had learned or were learning English as a second language and students whose writing was particularly formulaic or concise.
  • Even if these tools could accurately identify AI-generated content (which they cannot yet), students can make small edits to evade detection.

There is some good research in watermarking LLM-generated text, but the watermarks are not generally robust.

I don’t think the detectors are going to win this arms race.

LLM Summary of My Book Beyond Fear

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/09/llm-summary-of-my-book-beyond-fear.html

Claude (Anthropic’s LLM) was given this prompt: Please summarize the themes and arguments of Bruce Schneier’s book Beyond Fear. I’m particularly interested in a taxonomy of his ethical arguments—please expand on that. Then lay out the most salient criticisms of the book.

Claude’s reply:

Here’s a brief summary of the key themes and arguments made in security expert Bruce Schneier’s book Beyond Fear: Thinking Sensibly About Security in an Uncertain World:

Central Themes:

  • Effective security requires realistic risk assessment, not fear-driven responses. We need to rationally determine actual threats versus perceived ones.
  • Security trade-offs need to be carefully balanced against costs to other values like privacy, freedom, and social/economic impacts.
  • Human psychology and biases lead to exaggerated fears that politicians/marketers can exploit, resulting in wasteful and theatrical “security theater.”
  • Security is a process that requires ongoing flexibility, not total prevention. We can’t anticipate every threat but can build resilience.

Key Arguments:

    Analyze risks empirically using evidence, statistics, and probability rather than intuition. Avoid underestimating everyday risks while overestimating novel or sensational ones.

  • Reject the temptation to implement oppressive security restrictions after tragic but unlikely events. Focus only on proportional responses.
  • Where possible, favor openness and transparency over aggressive data collection or restrictions which erode civil liberties.
  • Seek security policies and technologies that enhance society broadly rather than benefit special interests.

Schneier argues for rational, ethical approaches to security aimed at genuine protection while avoiding violations of human rights in the name of safety.

Here are some of the key ethical arguments Bruce Schneier makes in Beyond Fear regarding security policy and practices:

  • Utilitarian Ethics – Security measures should aim to provide the greatest societal benefit and well-being for the most people, not just special interests.
  • Individual Autonomy – Restrictions should be minimized to avoid excessive infringements on civil liberties and individual freedoms. Surveillance creep risks violating autonomy.
  • Privacy Rights – Pervasive monitoring and data collection erode privacy rights and dignity. Citizens are entitled to some degree of opacity.
  • Proportional Responses – Reactive policies should weigh costs versus statistically likely benefits. Draconian rules beyond proportionality are unethical.
  • Justice and Fairness – Security should not create racial, religious or other profiling biases that punish groups rather than conduct.
  • Accountability and Transparency – Ethical security requires checks against excessive power and oversight for responsibility. Secrecy enables abuses.
  • Honest Representation – Officials and pundits have an ethical duty not to stoke disproportionate public fears. Security theater manufactures consent.
  • Integrity and Character – Leaders should have the wisdom and courage to make difficult trade-offs rather than exploit fears for authority and control.

Overall Schneier argues security policies grounded in ethics rather than fear promote human well-being while recognizing inherent trade-offs. Prudence, transparency, and proportionality are essential.

Here are some of the most salient criticisms made against the arguments put forth in Bruce Schneier’s book Beyond Fear:

  • Downplays real threats – Some argue Schneier dangerously downplays serious risks like terrorism and cybercrime by calling fears overblown.
  • Too theoretical – His risk analysis approach may rely too much on statistics versus real-world uncertainties that defy probabilistic reasoning.
  • No easy answers – While citing misguided policies, critics say Schneier provides few actionable solutions or concrete policy guidance.
  • Conflicting values – His balancing of security, privacy and liberty involves inherent trade-offs and tough choices he gives little direction on.
  • Politically naive – Suggesting special interests drive policy may under-appreciate legitimate national security concerns of elected officials.
  • Hindsight bias – Assessing past overreactions easier than predicting future threats that justify caution today.
  • No accounting for psychology – Factoring human irrationality into policy is essential, not dismissed as “security theater.”
  • Technical focus – Focuses narrowly on certain technologies while ignoring broader organizational and sociological dimensions.

In summary, critics argue Schneier’s risk analysis orientation is too clinical, abstract, and devoid of political and human realities to transform concrete policy in the ways he intends. His framework may therefore lack sufficient nuance or guidance.

It’s interesting. The summary is pretty accurate, and so are the criticisms. The book was a product of my thinking twenty years ago, and my own thinking has evolved to address those criticisms.

Of course, this only works with older books that the LLM has ingested, and probably works better with books that have been written about.

Preview – Connect Foundation Models to Your Company Data Sources with Agents for Amazon Bedrock

Post Syndicated from Antje Barth original https://aws.amazon.com/blogs/aws/preview-connect-foundation-models-to-your-company-data-sources-with-agents-for-amazon-bedrock/

In July, we announced the preview of agents for Amazon Bedrock, a new capability for developers to create generative AI applications that complete tasks. Today, I’m happy to introduce a new capability to securely connect foundation models (FMs) to your company data sources using agents.

With a knowledge base, you can use agents to give FMs in Bedrock access to additional data that helps the model generate more relevant, context-specific, and accurate responses without continuously retraining the FM. Based on user input, agents identify the appropriate knowledge base, retrieve the relevant information, and add the information to the input prompt, giving the model more context information to generate a completion.

Knowledge Base for Amazon Bedrock

Agents for Amazon Bedrock use a concept known as retrieval augmented generation (RAG) to achieve this. To create a knowledge base, specify the Amazon Simple Storage Service (Amazon S3) location of your data, select an embedding model, and provide the details of your vector database. Bedrock converts your data into embeddings and stores your embeddings in the vector database. Then, you can add the knowledge base to agents to enable RAG workflows.

For the vector database, you can choose between vector engine for Amazon OpenSearch Serverless, Pinecone, and Redis Enterprise Cloud. I’ll share more details on how to set up your vector database later in this post.

Primer on Retrieval Augmented Generation, Embeddings, and Vector Databases
RAG isn’t a specific set of technologies but a concept for providing FMs access to data they didn’t see during training. Using RAG, you can augment FMs with additional information, including company-specific data, without continuously retraining your model.

Continuously retraining your model is not only compute-intensive and expensive, but as soon as you’ve retrained the model, your company might have already generated new data, and your model has stale information. RAG addresses this issue by providing your model access to additional external data at runtime. Relevant data is then added to the prompt to help improve both the relevance and the accuracy of completions.

This data can come from a number of data sources, such as document stores or databases. A common implementation for document search is converting your documents, or chunks of the documents, into vector embeddings using an embedding model and then storing the vector embeddings in a vector database, as shown in the following figure.

Knowledge Base for Amazon Bedrock

The vector embedding includes the numeric representations of text data within your documents. Each embedding aims to capture the semantic or contextual meaning of the data. Each vector embedding is put into a vector database, often with additional metadata such as a reference to the original content the embedding was created from. The vector database then indexes the vectors, which can be done using a variety of approaches. This indexing enables quick retrieval of relevant data.

Compared to traditional keyword search, vector search can find relevant results without requiring an exact keyword match. For example, if you search for “What is the cost of product X?” and your documents say “The price of product X is […]”, then keyword search might not work because “price” and “cost” are two different words. With vector search, it will return the accurate result because “price” and “cost” are semantically similar; they have the same meaning. Vector similarity is calculated using distance metrics such as Euclidean distance, cosine similarity, or dot product similarity.

The vector database is then used within the prompt workflow to efficiently retrieve external information based on an input query, as shown in the figure below.

Knowledge Base for Amazon Bedrock

The workflow starts with a user input prompt. Using the same embedding model, you create a vector embedding representation of the input prompt. This embedding is then used to query the database for similar vector embeddings to return the most relevant text as the query result.

The query result is then added to the prompt, and the augmented prompt is passed to the FM. The model uses the additional context in the prompt to generate the completion, as shown in the following figure.

Knowledge Stores for Amazon Bedrock

Similar to the fully managed agents experience I described in the blog post on agents for Amazon Bedrock, the knowledge base for Amazon Bedrock manages the data ingestion workflow, and agents manage the RAG workflow for you.

Get Started with Knowledge Bases for Amazon Bedrock
You can add a knowledge base by specifying a data source, such as Amazon S3, select an embedding model, such as Amazon Titan Embeddings to convert the data into vector embeddings, and a destination vector database to store the vector data. Bedrock takes care of creating, storing, managing, and updating your embeddings in the vector database.

If you add knowledge bases to an agent, the agent will identify the appropriate knowledge base based on user input, retrieve the relevant information, and add the information to the input prompt, providing the model with more context information to generate a response, as shown in the figure below. All information retrieved from knowledge bases comes with source attribution to improve transparency and minimize hallucinations.

Knowledge Base for Amazon Bedrock

Let me walk you through those steps in more detail.

Create a Knowledge Base for Amazon Bedrock
Let’s assume you’re a developer at a tax consulting company and want to provide users with a generative AI application—a TaxBot—that can answer US tax filing questions. You first create a knowledge base that holds the relevant tax documents. Then, you configure an agent in Bedrock with access to this knowledge base and integrate the agent into your TaxBot application.

To get started, open the Bedrock console, select Knowledge base in the left navigation pane, then choose Create knowledge base.

Knowledge Base for Amazon Bedrock

Step 1 – Provide knowledge base details. Enter a name for the knowledge base and a description (optional). You also must select an AWS Identity and Access Management (IAM) runtime role with a trust policy for Amazon Bedrock, permissions to access the S3 bucket you want the knowledge base to use, and read/write permissions to your vector database. You can also assign tags as needed.

Knowledge Base for Amazon Bedrock

Step 2 – Set up data source. Enter a data source name and specify the Amazon S3 location for your data. Supported data formats include .txt, .md, .html, .doc and .docx, .csv, .xls and .xlsx, and .pdf files. You can also provide an AWS Key Management Service (AWS KMS) key to allow Bedrock to decrypt and encrypt your data and another AWS KMS key for transient data storage while Bedrock is converting your data into embeddings.

Choose the embedding model, such as Amazon Titan Embeddings – Text, and your vector database. For the vector database, as mentioned earlier, you can choose between vector engine for Amazon OpenSearch Serverless, Pinecone, or Redis Enterprise Cloud.

Knowledge Base for Amazon Bedrock

Important note on the vector database: Amazon Bedrock is not creating a vector database on your behalf. You must create a new, empty vector database from the list of supported options and provide the vector database index name as well as index field and metadata field mappings. This vector database will need to be for exclusive use with Amazon Bedrock.

Let me show you what the setup looks like for vector engine for Amazon OpenSearch Serverless. Assuming you’ve set up an OpenSearch Serverless collection as described in the Developer Guide and this AWS Big Data Blog post, provide the ARN of the OpenSearch Serverless collection, specify the vector index name, and the vector field and metadata field mapping.

Knowledge Base for Amazon Bedrock

The configuration for Pinecone and Redis Enterprise Cloud is similar. Check out this Pinecone blog post and this Redis Inc. blog post for more details on how to set up and prepare their vector database for Bedrock.

Step 3 – Review and create. Review your knowledge base configuration and choose Create knowledge base.

Knowledge Base for Amazon Bedrock

Back in the knowledge base details page, choose Sync for the newly created data source, and whenever you add new data to the data source, to start the ingestion workflow of converting your Amazon S3 data into vector embeddings and upserting the embeddings into the vector database. Depending on the amount of data, this whole workflow can take some time.

Knowledge Base for Amazon Bedrock

Next, I’ll show you how to add the knowledge base to an agent configuration.

Add a Knowledge Base to Agents for Amazon Bedrock
You can add a knowledge base when creating or updating an agent for Amazon Bedrock. Create an agent as described in this AWS News Blog post on agents for Amazon Bedrock.

For my tax bot example, I’ve created an agent called “TaxBot,” selected a foundation model, and provided these instructions for the agent in step 2: “You are a helpful and friendly agent that answers US tax filing questions for users.” In step 4, you can now select a previously created knowledge base and provide instructions for the agent describing when to use this knowledge base.

Knowledge Base for Amazon Bedrock

These instructions are very important as they help the agent decide whether or not a particular knowledge base should be used for retrieval. The agent will identify the appropriate knowledge base based on user input and available knowledge base instructions.

For my tax bot example, I added the knowledge base “TaxBot-Knowledge-Base” together with these instructions: “Use this knowledge base to answer tax filing questions.”

Once you’ve finished the agent configuration, you can test your agent and how it’s using the added knowledge base. Note how the agent provides a source attribution for information pulled from knowledge bases.

Knowledge Base for Amazon Bedrock

Generative AI with large language modelsLearn the Fundamentals of Generative AI
Generative AI with large language models (LLMs) is an on-demand, three-week course for data scientists and engineers who want to learn how to build generative AI applications with LLMs, including RAG. It’s the perfect foundation to start building with Amazon Bedrock. Enroll for generative AI with LLMs today.

Sign up to Learn More about Amazon Bedrock (Preview)
Amazon Bedrock is currently available in preview. Reach out through your usual AWS support contacts if you’d like access to knowledge bases for Amazon Bedrock as part of the preview. We’re regularly providing access to new customers. To learn more, visit the Amazon Bedrock Features page and sign up to learn more about Amazon Bedrock.

— Antje

On Robots Killing People

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/09/on-robots-killing-people.html

The robot revolution began long ago, and so did the killing. One day in 1979, a robot at a Ford Motor Company casting plant malfunctioned—human workers determined that it was not going fast enough. And so twenty-five-year-old Robert Williams was asked to climb into a storage rack to help move things along. The one-ton robot continued to work silently, smashing into Williams’s head and instantly killing him. This was reportedly the first incident in which a robot killed a human; many more would follow.

At Kawasaki Heavy Industries in 1981, Kenji Urada died in similar circumstances. A malfunctioning robot he went to inspect killed him when he obstructed its path, according to Gabriel Hallevy in his 2013 book, When Robots Kill: Artificial Intelligence Under Criminal Law. As Hallevy puts it, the robot simply determined that “the most efficient way to eliminate the threat was to push the worker into an adjacent machine.” From 1992 to 2017, workplace robots were responsible for 41 recorded deaths in the United States—and that’s likely an underestimate, especially when you consider knock-on effects from automation, such as job loss. A robotic anti-aircraft cannon killed nine South African soldiers in 2007 when a possible software failure led the machine to swing itself wildly and fire dozens of lethal rounds in less than a second. In a 2018 trial, a medical robot was implicated in killing Stephen Pettitt during a routine operation that had occurred a few years earlier.

You get the picture. Robots—”intelligent” and not—have been killing people for decades. And the development of more advanced artificial intelligence has only increased the potential for machines to cause harm. Self-driving cars are already on American streets, and robotic "dogs" are being used by law enforcement. Computerized systems are being given the capabilities to use tools, allowing them to directly affect the physical world. Why worry about the theoretical emergence of an all-powerful, superintelligent program when more immediate problems are at our doorstep? Regulation must push companies toward safe innovation and innovation in safety. We are not there yet.

Historically, major disasters have needed to occur to spur regulation—the types of disasters we would ideally foresee and avoid in today’s AI paradigm. The 1905 Grover Shoe Factory disaster led to regulations governing the safe operation of steam boilers. At the time, companies claimed that large steam-automation machines were too complex to rush safety regulations. This, of course, led to overlooked safety flaws and escalating disasters. It wasn’t until the American Society of Mechanical Engineers demanded risk analysis and transparency that dangers from these huge tanks of boiling water, once considered mystifying, were made easily understandable. The 1911 Triangle Shirtwaist Factory fire led to regulations on sprinkler systems and emergency exits. And the preventable 1912 sinking of the Titanic resulted in new regulations on lifeboats, safety audits, and on-ship radios.

Perhaps the best analogy is the evolution of the Federal Aviation Administration. Fatalities in the first decades of aviation forced regulation, which required new developments in both law and technology. Starting with the Air Commerce Act of 1926, Congress recognized that the integration of aerospace tech into people’s lives and our economy demanded the highest scrutiny. Today, every airline crash is closely examined, motivating new technologies and procedures.

Any regulation of industrial robots stems from existing industrial regulation, which has been evolving for many decades. The Occupational Safety and Health Act of 1970 established safety standards for machinery, and the Robotic Industries Association, now merged into the Association for Advancing Automation, has been instrumental in developing and updating specific robot-safety standards since its founding in 1974. Those standards, with obscure names such as R15.06 and ISO 10218, emphasize inherent safe design, protective measures, and rigorous risk assessments for industrial robots.

But as technology continues to change, the government needs to more clearly regulate how and when robots can be used in society. Laws need to clarify who is responsible, and what the legal consequences are, when a robot’s actions result in harm. Yes, accidents happen. But the lessons of aviation and workplace safety demonstrate that accidents are preventable when they are openly discussed and subjected to proper expert scrutiny.

AI and robotics companies don’t want this to happen. OpenAI, for example, has reportedly fought to “water down” safety regulations and reduce AI-quality requirements. According to an article in Time, it lobbied European Union officials against classifying models like ChatGPT as “high risk” which would have brought “stringent legal requirements including transparency, traceability, and human oversight.” The reasoning was supposedly that OpenAI did not intend to put its products to high-risk use—a logical twist akin to the Titanic owners lobbying that the ship should not be inspected for lifeboats on the principle that it was a “general purpose” vessel that also could sail in warm waters where there were no icebergs and people could float for days. (OpenAI did not comment when asked about its stance on regulation; previously, it has said that “achieving our mission requires that we work to mitigate both current and longer-term risks,” and that it is working toward that goal by “collaborating with policymakers, researchers and users.”)

Large corporations have a tendency to develop computer technologies to self-servingly shift the burdens of their own shortcomings onto society at large, or to claim that safety regulations protecting society impose an unjust cost on corporations themselves, or that security baselines stifle innovation. We’ve heard it all before, and we should be extremely skeptical of such claims. Today’s AI-related robot deaths are no different from the robot accidents of the past. Those industrial robots malfunctioned, and human operators trying to assist were killed in unexpected ways. Since the first-known death resulting from the feature in January 2016, Tesla’s Autopilot has been implicated in more than 40 deaths according to official report estimates. Malfunctioning Teslas on Autopilot have deviated from their advertised capabilities by misreading road markings, suddenly veering into other cars or trees, crashing into well-marked service vehicles, or ignoring red lights, stop signs, and crosswalks. We’re concerned that AI-controlled robots already are moving beyond accidental killing in the name of efficiency and “deciding” to kill someone in order to achieve opaque and remotely controlled objectives.

As we move into a future where robots are becoming integral to our lives, we can’t forget that safety is a crucial part of innovation. True technological progress comes from applying comprehensive safety standards across technologies, even in the realm of the most futuristic and captivating robotic visions. By learning lessons from past fatalities, we can enhance safety protocols, rectify design flaws, and prevent further unnecessary loss of life.

For example, the UK government already sets out statements that safety matters. Lawmakers must reach further back in history to become more future-focused on what we must demand right now: modeling threats, calculating potential scenarios, enabling technical blueprints, and ensuring responsible engineering for building within parameters that protect society at large. Decades of experience have given us the empirical evidence to guide our actions toward a safer future with robots. Now we need the political will to regulate.

This essay was written with Davi Ottenheimer, and previously appeared on Atlantic.com.

LLMs and Tool Use

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/09/ai-tool-use.html

Last March, just two weeks after GPT-4 was released, researchers at Microsoft quietly announced a plan to compile millions of APIs—tools that can do everything from ordering a pizza to solving physics equations to controlling the TV in your living room—into a compendium that would be made accessible to large language models (LLMs). This was just one milestone in the race across industry and academia to find the best ways to teach LLMs how to manipulate tools, which would supercharge the potential of AI more than any of the impressive advancements we’ve seen to date.

The Microsoft project aims to teach AI how to use any and all digital tools in one fell swoop, a clever and efficient approach. Today, LLMs can do a pretty good job of recommending pizza toppings to you if you describe your dietary preferences and can draft dialog that you could use when you call the restaurant. But most AI tools can’t place the order, not even online. In contrast, Google’s seven-year-old Assistant tool can synthesize a voice on the telephone and fill out an online order form, but it can’t pick a restaurant or guess your order. By combining these capabilities, though, a tool-using AI could do it all. An LLM with access to your past conversations and tools like calorie calculators, a restaurant menu database, and your digital payment wallet could feasibly judge that you are trying to lose weight and want a low-calorie option, find the nearest restaurant with toppings you like, and place the delivery order. If it has access to your payment history, it could even guess at how generously you usually tip. If it has access to the sensors on your smartwatch or fitness tracker, it might be able to sense when your blood sugar is low and order the pie before you even realize you’re hungry.

Perhaps the most compelling potential applications of tool use are those that give AIs the ability to improve themselves. Suppose, for example, you asked a chatbot for help interpreting some facet of ancient Roman law that no one had thought to include examples of in the model’s original training. An LLM empowered to search academic databases and trigger its own training process could fine-tune its understanding of Roman law before answering. Access to specialized tools could even help a model like this better explain itself. While LLMs like GPT-4 already do a fairly good job of explaining their reasoning when asked, these explanations emerge from a “black box” and are vulnerable to errors and hallucinations. But a tool-using LLM could dissect its own internals, offering empirical assessments of its own reasoning and deterministic explanations of why it produced the answer it did.

If given access to tools for soliciting human feedback, a tool-using LLM could even generate specialized knowledge that isn’t yet captured on the web. It could post a question to Reddit or Quora or delegate a task to a human on Amazon’s Mechanical Turk. It could even seek out data about human preferences by doing survey research, either to provide an answer directly to you or to fine-tune its own training to be able to better answer questions in the future. Over time, tool-using AIs might start to look a lot like tool-using humans. An LLM can generate code much faster than any human programmer, so it can manipulate the systems and services of your computer with ease. It could also use your computer’s keyboard and cursor the way a person would, allowing it to use any program you do. And it could improve its own capabilities, using tools to ask questions, conduct research, and write code to incorporate into itself.

It’s easy to see how this kind of tool use comes with tremendous risks. Imagine an LLM being able to find someone’s phone number, call them and surreptitiously record their voice, guess what bank they use based on the largest providers in their area, impersonate them on a phone call with customer service to reset their password, and liquidate their account to make a donation to a political party. Each of these tasks invokes a simple tool—an Internet search, a voice synthesizer, a bank app—and the LLM scripts the sequence of actions using the tools.

We don’t yet know how successful any of these attempts will be. As remarkably fluent as LLMs are, they weren’t built specifically for the purpose of operating tools, and it remains to be seen how their early successes in tool use will translate to future use cases like the ones described here. As such, giving the current generative AI sudden access to millions of APIs—as Microsoft plans to—could be a little like letting a toddler loose in a weapons depot.

Companies like Microsoft should be particularly careful about granting AIs access to certain combinations of tools. Access to tools to look up information, make specialized calculations, and examine real-world sensors all carry a modicum of risk. The ability to transmit messages beyond the immediate user of the tool or to use APIs that manipulate physical objects like locks or machines carries much larger risks. Combining these categories of tools amplifies the risks of each.

The operators of the most advanced LLMs, such as OpenAI, should continue to proceed cautiously as they begin enabling tool use and should restrict uses of their products in sensitive domains such as politics, health care, banking, and defense. But it seems clear that these industry leaders have already largely lost their moat around LLM technology—open source is catching up. Recognizing this trend, Meta has taken an “If you can’t beat ’em, join ’em” approach and partially embraced the role of providing open source LLM platforms.

On the policy front, national—and regional—AI prescriptions seem futile. Europe is the only significant jurisdiction that has made meaningful progress on regulating the responsible use of AI, but it’s not entirely clear how regulators will enforce it. And the US is playing catch-up and seems destined to be much more permissive in allowing even risks deemed “unacceptable” by the EU. Meanwhile, no government has invested in a “public option” AI model that would offer an alternative to Big Tech that is more responsive and accountable to its citizens.

Regulators should consider what AIs are allowed to do autonomously, like whether they can be assigned property ownership or register a business. Perhaps more sensitive transactions should require a verified human in the loop, even at the cost of some added friction. Our legal system may be imperfect, but we largely know how to hold humans accountable for misdeeds; the trick is not to let them shunt their responsibilities to artificial third parties. We should continue pursuing AI-specific regulatory solutions while also recognizing that they are not sufficient on their own.

We must also prepare for the benign ways that tool-using AI might impact society. In the best-case scenario, such an LLM may rapidly accelerate a field like drug discovery, and the patent office and FDA should prepare for a dramatic increase in the number of legitimate drug candidates. We should reshape how we interact with our governments to take advantage of AI tools that give us all dramatically more potential to have our voices heard. And we should make sure that the economic benefits of superintelligent, labor-saving AI are equitably distributed.

We can debate whether LLMs are truly intelligent or conscious, or have agency, but AIs will become increasingly capable tool users either way. Some things are greater than the sum of their parts. An AI with the ability to manipulate and interact with even simple tools will become vastly more powerful than the tools themselves. Let’s be sure we’re ready for them.

This essay was written with Nathan Sanders, and previously appeared on Wired.com.

December’s Reimagining Democracy Workshop

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/08/decembers-reimagining-democracy-workshop.html

Imagine that we’ve all—all of us, all of society—landed on some alien planet, and we have to form a government: clean slate. We don’t have any legacy systems from the US or any other country. We don’t have any special or unique interests to perturb our thinking.

How would we govern ourselves?

It’s unlikely that we would use the systems we have today. The modern representative democracy was the best form of government that mid-eighteenth-century technology could conceive of. The twenty-first century is a different place scientifically, technically and socially.

For example, the mid-eighteenth-century democracies were designed under the assumption that both travel and communications were hard. Does it still make sense for all of us living in the same place to organize every few years and choose one of us to go to a big room far away and create laws in our name?

Representative districts are organized around geography, because that’s the only way that made sense 200-plus years ago. But we don’t have to do it that way. We can organize representation by age: one representative for the thirty-one-year-olds, another for the thirty-two-year-olds, and so on. We can organize representation randomly: by birthday, perhaps. We can organize any way we want.

US citizens currently elect people for terms ranging from two to six years. Is ten years better? Is ten days better? Again, we have more technology and therefor more options.

Indeed, as a technologist who studies complex systems and their security, I believe the very idea of representative government is a hack to get around the technological limitations of the past. Voting at scale is easier now than it was 200 year ago. Certainly we don’t want to all have to vote on every amendment to every bill, but what’s the optimal balance between votes made in our name and ballot measures that we all vote on?

In December 2022, I organized a workshop to discuss these and other questions. I brought together fifty people from around the world: political scientists, economists, law professors, AI experts, activists, government officials, historians, science fiction writers and more. We spent two days talking about these ideas. Several themes emerged from the event.

Misinformation and propaganda were themes, of course—and the inability to engage in rational policy discussions when people can’t agree on the facts.

Another theme was the harms of creating a political system whose primary goals are economic. Given the ability to start over, would anyone create a system of government that optimizes the near-term financial interest of the wealthiest few? Or whose laws benefit corporations at the expense of people?

Another theme was capitalism, and how it is or isn’t intertwined with democracy. And while the modern market economy made a lot of sense in the industrial age, it’s starting to fray in the information age. What comes after capitalism, and how does it affect how we govern ourselves?

Many participants examined the effects of technology, especially artificial intelligence. We looked at whether—and when—we might be comfortable ceding power to an AI. Sometimes it’s easy. I’m happy for an AI to figure out the optimal timing of traffic lights to ensure the smoothest flow of cars through the city. When will we be able to say the same thing about setting interest rates? Or designing tax policies?

How would we feel about an AI device in our pocket that voted in our name, thousands of times per day, based on preferences that it inferred from our actions? If an AI system could determine optimal policy solutions that balanced every voter’s preferences, would it still make sense to have representatives? Maybe we should vote directly for ideas and goals instead, and leave the details to the computers. On the other hand, technological solutionism regularly fails.

Scale was another theme. The size of modern governments reflects the technology at the time of their founding. European countries and the early American states are a particular size because that’s what was governable in the 18th and 19th centuries. Larger governments—the US as a whole, the European Union—reflect a world in which travel and communications are easier. The problems we have today are primarily either local, at the scale of cities and towns, or global—even if they are currently regulated at state, regional or national levels. This mismatch is especially acute when we try to tackle global problems. In the future, do we really have a need for political units the size of France or Virginia? Or is it a mixture of scales that we really need, one that moves effectively between the local and the global?

As to other forms of democracy, we discussed one from history and another made possible by today’s technology.

Sortition is a system of choosing political officials randomly to deliberate on a particular issue. We use it today when we pick juries, but both the ancient Greeks and some cities in Renaissance Italy used it to select major political officials. Today, several countries—largely in Europe—are using sortition for some policy decisions. We might randomly choose a few hundred people, representative of the population, to spend a few weeks being briefed by experts and debating the problem—and then decide on environmental regulations, or a budget, or pretty much anything.

Liquid democracy does away with elections altogether. Everyone has a vote, and they can keep the power to cast it themselves or assign it to another person as a proxy. There are no set elections; anyone can reassign their proxy at any time. And there’s no reason to make this assignment all or nothing. Perhaps proxies could specialize: one set of people focused on economic issues, another group on health and a third bunch on national defense. Then regular people could assign their votes to whichever of the proxies most closely matched their views on each individual matter—or step forward with their own views and begin collecting proxy support from other people.

This all brings up another question: Who gets to participate? And, more generally, whose interests are taken into account? Early democracies were really nothing of the sort: They limited participation by gender, race and land ownership.

We should debate lowering the voting age, but even without voting we recognize that children too young to vote have rights—and, in some cases, so do other species. Should future generations get a “voice,” whatever that means? What about nonhumans or whole ecosystems?

Should everyone get the same voice? Right now in the US, the outsize effect of money in politics gives the wealthy disproportionate influence. Should we encode that explicitly? Maybe younger people should get a more powerful vote than everyone else. Or maybe older people should.

Those questions lead to ones about the limits of democracy. All democracies have boundaries limiting what the majority can decide. We all have rights: the things that cannot be taken away from us. We cannot vote to put someone in jail, for example.

But while we can’t vote a particular publication out of existence, we can to some degree regulate speech. In this hypothetical community, what are our rights as individuals? What are the rights of society that supersede those of individuals?

Personally, I was most interested in how these systems fail. As a security technologist, I study how complex systems are subverted—hacked, in my parlance—for the benefit of a few at the expense of the many. Think tax loopholes, or tricks to avoid government regulation. I want any government system to be resilient in the face of that kind of trickery.

Or, to put it another way, I want the interests of each individual to align with the interests of the group at every level. We’ve never had a system of government with that property before—even equal protection guarantees and First Amendment rights exist in a competitive framework that puts individuals’ interests in opposition to one another. But—in the age of such existential risks as climate and biotechnology and maybe AI—aligning interests is more important than ever.

Our workshop didn’t produce any answers; that wasn’t the point. Our current discourse is filled with suggestions on how to patch our political system. People regularly debate changes to the Electoral College, or the process of creating voting districts, or term limits. But those are incremental changes.

It’s hard to find people who are thinking more radically: looking beyond the horizon for what’s possible eventually. And while true innovation in politics is a lot harder than innovation in technology, especially without a violent revolution forcing change, it’s something that we as a species are going to have to get good at—one way or another.

This essay previously appeared in The Conversation.

Applying AI to License Plate Surveillance

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/08/applying-ai-to-license-plate-surveillance.html

License plate scanners aren’t new. Neither is using them for bulk surveillance. What’s new is that AI is being used on the data, identifying “suspicious” vehicle behavior:

Typically, Automatic License Plate Recognition (ALPR) technology is used to search for plates linked to specific crimes. But in this case it was used to examine the driving patterns of anyone passing one of Westchester County’s 480 cameras over a two-year period. Zayas’ lawyer Ben Gold contested the AI-gathered evidence against his client, decrying it as “dragnet surveillance.”

And he had the data to back it up. A FOIA he filed with the Westchester police revealed that the ALPR system was scanning over 16 million license plates a week, across 480 ALPR cameras. Of those systems, 434 were stationary, attached to poles and signs, while the remaining 46 were mobile, attached to police vehicles. The AI was not just looking at license plates either. It had also been taking notes on vehicles’ make, model and color—useful when a plate number for a suspect vehicle isn’t visible or is unknown.

White House Announces AI Cybersecurity Challenge

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/08/white-house-announces-ai-cybersecurity-challenge.html

At Black Hat last week, the White House announced an AI Cyber Challenge. Gizmodo reports:

The new AI cyber challenge (which is being abbreviated “AIxCC”) will have a number of different phases. Interested would-be competitors can now submit their proposals to the Small Business Innovation Research program for evaluation and, eventually, selected teams will participate in a 2024 “qualifying event.” During that event, the top 20 teams will be invited to a semifinal competition at that year’s DEF CON, another large cybersecurity conference, where the field will be further whittled down.

[…]

To secure the top spot in DARPA’s new competition, participants will have to develop security solutions that do some seriously novel stuff. “To win first-place, and a top prize of $4 million, finalists must build a system that can rapidly defend critical infrastructure code from attack,” said Perri Adams, program manager for DARPA’s Information Innovation Office, during a Zoom call with reporters Tuesday. In other words: the government wants software that is capable of identifying and mitigating risks by itself.

This is a great idea. I was a big fan of DARPA’s AI capture-the-flag event in 2016, and am happy to see that DARPA is again inciting research in this area. (China has been doing this every year since 2017.)

Detecting “Violations of Social Norms” in Text with AI

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/08/detecting-violations-of-social-norms-in-text-with-ai.html

Researchers are trying to use AI to detect “social norms violations.” Feels a little sketchy right now, but this is the sort of thing that AIs will get better at. (Like all of these systems, anything but a very low false positive rate makes the detection useless in practice.)

News article.

Zoom Can Spy on Your Calls and Use the Conversation to Train AI, But Says That It Won’t

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/08/zoom-can-spy-on-your-calls-and-use-the-conversation-to-train-ai-but-says-that-it-wont.html

This is why we need regulation:

Zoom updated its Terms of Service in March, spelling out that the company reserves the right to train AI on user data with no mention of a way to opt out. On Monday, the company said in a blog post that there’s no need to worry about that. Zoom execs swear the company won’t actually train its AI on your video calls without permission, even though the Terms of Service still say it can.

Of course, these are Terms of Service. They can change at any time. Zoom can renege on its promise at any time. There are no rules, only the whims of the company as it tries to maximize its profits.

It’s a stupid way to run a technological revolution. We should not have to rely on the benevolence of for-profit corporations to protect our rights. It’s not their job, and it shouldn’t be.

New – Improve Amazon S3 Glacier Flexible Restore Time By Up To 85% Using Standard Retrieval Tier and S3 Batch Operations

Post Syndicated from Channy Yun original https://aws.amazon.com/blogs/aws/new-improve-amazon-s3-glacier-flexible-restore-time-by-up-to-85-using-standard-retrieval-tier-and-s3-batch-operations/

Last year, Amazon S3 Glacier celebrated its tenth anniversary. Amazon S3 Glacier is the leader in cloud cold storage, and I wrote about its innovations over the last decade.

The Amazon S3 Glacier storage classes provide you with long-term, secure, and durable storage options to optimally archive your data at the lowest cost. The Amazon S3 Glacier storage classes (Amazon S3 Glacier Instant Retrieval, Amazon S3 Glacier Flexible Retrieval, and Amazon S3 Glacier Deep Archive) are purpose-built for colder data, providing you with retrieval flexibility from milliseconds to days, in addition to the ability to store archive data for as low as $1 per terabyte per month.

Many customers tell us that they are keeping their data for longer periods of time because they recognize its future value potential, and that they are already monetizing subsets of their archival data, or plan to use large sets of their archive data in the future. Modern data archiving is not only about optimizing storage costs for cold data; it’s also about setting up mechanisms so that when you need to put that data to work for your business, you can access it as quickly as your business requirements demand.

In 2022, AWS customers restored over 32 billion objects from Amazon S3 Glacier. Customers need to retrieve archived objects quickly when transcoding media, restoring operational backups, training machine learning (ML) models, or analyzing historical data. While customers using S3 Glacier Instant Retrieval can access their data in just milliseconds, S3 Glacier Flexible Retrieval is lower cost and provides three retrieval options: expedited retrievals in 1–5 minutes, standard retrievals in 3–5 hours, and free bulk retrievals in 5–12 hours. S3 Glacier Deep Archive is our lowest cost storage class and provides data retrieval within 12 hours using the standard retrieval option or 48 hours using the bulk retrieval option.

In November 2022, Amazon S3 Glacier improved restore throughput by up to 10 times at no additional cost when retrieving large volumes of archived data in S3 Glacier Flexible Retrieval and S3 Glacier Deep Archive. With Amazon S3 Batch Operations, you can automatically initiate requests at a faster rate, allowing you to restore billions of objects containing petabytes of data.

To continue the decade-long trend of cold storage innovation, we are announcing today the general availability of faster Standard retrievals from S3 Glacier Flexible Retrieval by up to 85 percent, at no additional cost. Faster data restores automatically apply to the Standard retrieval tier when using S3 Batch Operations.

Using S3 Batch Operations, you can restore archived data at scale by providing a manifest of objects to be retrieved and specifying a retrieval tier. With S3 Batch Operations, restores in the Standard retrieval tier now typically begin to return objects to you within minutes, down from 3–5 hours, so you can easily speed up your data restores from archive.

Additionally, S3 Batch Operations improves overall restore throughput by applying new performance optimizations to your jobs. As a result, you can restore your data faster and process restored objects sooner. Processing restored data in parallel with ongoing restores helps you accelerate data workflows and quickly respond to business needs.

Getting Started with Faster Standard Retrievals from S3 Glacier Flexible Retrieval
To restore archived data with this performance improvement, you can use S3 Batch Operations to perform both large- and small-scale batch operations on S3 objects. S3 Batch Operations can perform a single operation on lists of S3 objects that you specify. You can use S3 Batch Operations through the AWS Management Console, AWS Command Line Interface (AWS CLI), SDKs, or REST API.

To create a batch job, choose Batch Operations on the left navigation pane of the Amazon S3 console and choose Create job. You can select one of the manifest formats, a list of S3 objects that contains object keys that you want to retrieve. If your manifest format is a CSV file, each row in the file must include the bucket name, object key, and, optionally, the object version.

In the next step, choose the operation that you want to perform on all objects listed in the manifest. The Restore operation initiates restore requests for archived objects on a list of S3 objects that you specify. Using a restore operation results in a restore request for every object that is specified in the manifest.

When you restore with the Standard retrieval tier from the S3 Glacier Flexible Retrieval storage class, you automatically get faster retrievals.

You can also create a restore job with S3InitiateRestoreObject job using the AWS CLI:

$aws s3control create-job \
     --region us-east-1 \
     --account-id 123456789012 \
     --operation '{"S3InitiateRestoreObject": { "ExpirationInDays": 1, "GlacierJobTier":"STANDARD"} }' \
     --report '{"Bucket":"arn:aws:s3:::reports-bucket ","Prefix":"batch-op-restore-job", "Format":" S3BatchOperations_CSV_20180820","Enabled":true,"ReportScope":"FailedTasksOnly"}' \
     --manifest '{"Spec":{"Format":"S3BatchOperations_CSV_20180820", "Fields":["Bucket","Key"]},"Location":{"ObjectArn":"arn:aws:s3:::inventory-bucket/inventory_for_restore.csv", "ETag":"<ETag>"}}' \
     --role-arn arn:aws:iam::123456789012:role/s3batch-role

You can then check the status of the job submission of the requests by running the following CLI command:

$ aws s3control describe-job \
     --region us-east-1 \
     --account-id 123456789012 \
     --job-id <JobID> \
     --query 'Job'.'ProgressSummary'

You can view and update the job status, add notifications and logging, track job failures, and generate completion reports. S3 Batch Operations job activity is recorded as events in AWS CloudTrail. For tracking job events, you can create a custom rule in Amazon EventBridge and send these events to the target notification resource of your choice, such as Amazon Simple Notification Service (Amazon SNS).

When you create an S3 Batch Operations job, you can also request a completion report for all tasks or just for failed tasks. The completion report contains additional information for each task, including the object key name and version, status, error codes, and descriptions of any errors.

For more information, see Tracking job status and completion reports in the Amazon S3 User Guide.

Here is the result of a sample retrieval job with 250 objects, each sized 100 MB. As you can see from the Previous restore performance line (blue line at the right), these restores would typically finish in 3–5 hours using Standard retrievals. Now, when you use Standard retrievals with S3 Batch Operations, your job typically starts within minutes, as shown in the Improved restore performance line (orange line at the left), improving data restore time by up to 85 percent.

To learn more, see Restoring archived objects at scale from the Amazon S3 Glacier storage classes on the AWS Storage Blog and Restoring an archived object in the Amazon S3 User Guide.

Now Available
Faster standard retrievals for Amazon S3 Glacier Flexible Retrieval are now available in all AWS Regions, including the AWS GovCloud (US) Regions and China Regions. This performance improvement is available to you at no additional cost. You are charged for S3 Batch Operations and data retrievals. For more information, see the S3 pricing page.

Lastly, we published a new ebook titled “Maximize the value of cold storage with Amazon S3 Glacier“. Read this ebook to learn how Amazon S3 Glacier is helping organizations of all sizes and from all industries transform their data archiving to unlock business value, increase agility, and save on storage costs.

To learn more, visit the S3 Glacier storage classes page and getting started guide, and send feedback to AWS re:Post for S3 Glacier or through your usual AWS Support contacts.

I’m really excited for you to start using this new feature, and I look forward to hearing about even more ways you are reinventing your business with archive data.

Channy

Political Milestones for AI

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/08/political-milestones-for-ai.html

ChatGPT was released just nine months ago, and we are still learning how it will affect our daily lives, our careers, and even our systems of self-governance.

But when it comes to how AI may threaten our democracy, much of the public conversation lacks imagination. People talk about the danger of campaigns that attack opponents with fake images (or fake audio or video) because we already have decades of experience dealing with doctored images. We’re on the lookout for foreign governments that spread misinformation because we were traumatized by the 2016 US presidential election. And we worry that AI-generated opinions will swamp the political preferences of real people because we’ve seen political “astroturfing”—the use of fake online accounts to give the illusion of support for a policy—grow for decades.

Threats of this sort seem urgent and disturbing because they’re salient. We know what to look for, and we can easily imagine their effects.

The truth is, the future will be much more interesting. And even some of the most stupendous potential impacts of AI on politics won’t be all bad. We can draw some fairly straight lines between the current capabilities of AI tools and real-world outcomes that, by the standards of current public understanding, seem truly startling.

With this in mind, we propose six milestones that will herald a new era of democratic politics driven by AI. All feel achievable—perhaps not with today’s technology and levels of AI adoption, but very possibly in the near future.

Good benchmarks should be meaningful, representing significant outcomes that come with real-world consequences. They should be plausible; they must be realistically achievable in the foreseeable future. And they should be observable—we should be able to recognize when they’ve been achieved.

Worries about AI swaying an election will very likely fail the observability test. While the risks of election manipulation through the robotic promotion of a candidate’s or party’s interests is a legitimate threat, elections are massively complex. Just as the debate continues to rage over why and how Donald Trump won the presidency in 2016, we’re unlikely to be able to attribute a surprising electoral outcome to any particular AI intervention.

Thinking further into the future: Could an AI candidate ever be elected to office? In the world of speculative fiction, from The Twilight Zone to Black Mirror, there is growing interest in the possibility of an AI or technologically assisted, otherwise-not-traditionally-eligible candidate winning an election. In an era where deepfaked videos can misrepresent the views and actions of human candidates and human politicians can choose to be represented by AI avatars or even robots, it is certainly possible for an AI candidate to mimic the media presence of a politician. Virtual politicians have received votes in national elections, for example in Russia in 2017. But this doesn’t pass the plausibility test. The voting public and legal establishment are likely to accept more and more automation and assistance supported by AI, but the age of non-human elected officials is far off.

Let’s start with some milestones that are already on the cusp of reality. These are achievements that seem well within the technical scope of existing AI technologies and for which the groundwork has already been laid.

Milestone #1: The acceptance by a legislature or agency of a testimony or comment generated by, and submitted under the name of, an AI.

Arguably, we’ve already seen legislation drafted by AI, albeit under the direction of human users and introduced by human legislators. After some early examples of bills written by AIs were introduced in Massachusetts and the US House of Representatives, many major legislative bodies have had their “first bill written by AI,” “used ChatGPT to generate committee remarks,” or “first floor speech written by AI” events.

Many of these bills and speeches are more stunt than serious, and they have received more criticism than consideration. They are short, have trivial levels of policy substance, or were heavily edited or guided by human legislators (through highly specific prompts to large language model-based AI tools like ChatGPT).

The interesting milestone along these lines will be the acceptance of testimony on legislation, or a comment submitted to an agency, drafted entirely by AI. To be sure, a large fraction of all writing going forward will be assisted by—and will truly benefit from—AI assistive technologies. So to avoid making this milestone trivial, we have to add the second clause: “submitted under the name of the AI.”

What would make this benchmark significant is the submission under the AI’s own name; that is, the acceptance by a governing body of the AI as proffering a legitimate perspective in public debate. Regardless of the public fervor over AI, this one won’t take long. The New York Times has published a letter under the name of ChatGPT (responding to an opinion piece we wrote), and legislators are already turning to AI to write high-profile opening remarks at committee hearings.

Milestone #2: The adoption of the first novel legislative amendment to a bill written by AI.

Moving beyond testimony, there is an immediate pathway for AI-generated policies to become law: microlegislation. This involves making tweaks to existing laws or bills that are tuned to serve some particular interest. It is a natural starting point for AI because it’s tightly scoped, involving small changes guided by a clear directive associated with a well-defined purpose.

By design, microlegislation is often implemented surreptitiously. It may even be filed anonymously within a deluge of other amendments to obscure its intended beneficiary. For that reason, microlegislation can often be bad for society, and it is ripe for exploitation by generative AI that would otherwise be subject to heavy scrutiny from a polity on guard for risks posed by AI.

Milestone #3: AI-generated political messaging outscores campaign consultant recommendations in poll testing.

Some of the most important near-term implications of AI for politics will happen largely behind closed doors. Like everyone else, political campaigners and pollsters will turn to AI to help with their jobs. We’re already seeing campaigners turn to AI-generated images to manufacture social content and pollsters simulate results using AI-generated respondents.

The next step in this evolution is political messaging developed by AI. A mainstay of the campaigner’s toolbox today is the message testing survey, where a few alternate formulations of a position are written down and tested with audiences to see which will generate more attention and a more positive response. Just as an experienced political pollster can anticipate effective messaging strategies pretty well based on observations from past campaigns and their impression of the state of the public debate, so can an AI trained on reams of public discourse, campaign rhetoric, and political reporting.

With these near-term milestones firmly in sight, let’s look further to some truly revolutionary possibilities. While these concepts may have seemed absurd just a year ago, they are increasingly conceivable with either current or near-future technologies.

Milestone #4: AI creates a political party with its own platform, attracting human candidates who win elections.

While an AI is unlikely to be allowed to run for and hold office, it is plausible that one may be able to found a political party. An AI could generate a political platform calculated to attract the interest of some cross-section of the public and, acting independently or through a human intermediary (hired help, like a political consultant or legal firm), could register formally as a political party. It could collect signatures to win a place on ballots and attract human candidates to run for office under its banner.

A big step in this direction has already been taken, via the campaign of the Danish Synthetic Party in 2022. An artist collective in Denmark created an AI chatbot to interact with human members of its community on Discord, exploring political ideology in conversation with them and on the basis of an analysis of historical party platforms in the country. All this happened with earlier generations of general purpose AI, not current systems like ChatGPT. However, the party failed to receive enough signatures to earn a spot on the ballot, and therefore did not win parliamentary representation.

Future AI-led efforts may succeed. One could imagine a generative AI with skills at the level of or beyond today’s leading technologies could formulate a set of policy positions targeted to build support among people of a specific demographic, or even an effective consensus platform capable of attracting broad-based support. Particularly in a European-style multiparty system, we can imagine a new party with a strong news hook—an AI at its core—winning attention and votes.

Milestone #5: AI autonomously generates profit and makes political campaign contributions.

Let’s turn next to the essential capability of modern politics: fundraising. “An entity capable of directing contributions to a campaign fund” might be a realpolitik definition of a political actor, and AI is potentially capable of this.

Like a human, an AI could conceivably generate contributions to a political campaign in a variety of ways. It could take a seed investment from a human controlling the AI and invest it to yield a return. It could start a business that generates revenue. There is growing interest and experimentation in auto-hustling: AI agents that set about autonomously growing businesses or otherwise generating profit. While ChatGPT-generated businesses may not yet have taken the world by storm, this possibility is in the same spirit as the algorithmic agents powering modern high-speed trading and so-called autonomous finance capabilities that are already helping to automate business and financial decisions.

Or, like most political entrepreneurs, AI could generate political messaging to convince humans to spend their own money on a defined campaign or cause. The AI would likely need to have some humans in the loop, and register its activities to the government (in the US context, as officers of a 501(c)(4) or political action committee).

Milestone #6: AI achieves a coordinated policy outcome across multiple jurisdictions.

Lastly, we come to the most meaningful of impacts: achieving outcomes in public policy. Even if AI cannot—now or in the future—be said to have its own desires or preferences, it could be programmed by humans to have a goal, such as lowering taxes or relieving a market regulation.

An AI has many of the same tools humans use to achieve these ends. It may advocate, formulating messaging and promoting ideas through digital channels like social media posts and videos. It may lobby, directing ideas and influence to key policymakers, even writing legislation. It may spend; see milestone #5.

The “multiple jurisdictions” piece is key to this milestone. A single law passed may be reasonably attributed to myriad factors: a charismatic champion, a political movement, a change in circumstances. The influence of any one actor, such as an AI, will be more demonstrable if it is successful simultaneously in many different places. And the digital scalability of AI gives it a special advantage in achieving these kinds of coordinated outcomes.

The greatest challenge to most of these milestones is their observability: will we know it when we see it? The first campaign consultant whose ideas lose out to an AI may not be eager to report that fact. Neither will the campaign. Regarding fundraising, it’s hard enough for us to track down the human actors who are responsible for the “dark money” contributions controlling much of modern political finance; will we know if a future dominant force in fundraising for political action committees is an AI?

We’re likely to observe some of these milestones indirectly. At some point, perhaps politicians’ dollars will start migrating en masse to AI-based campaign consultancies and, eventually, we may realize that political movements sweeping across states or countries have been AI-assisted.

While the progression of technology is often unsettling, we need not fear these milestones. A new political platform that wins public support is itself a neutral proposition; it may lead to good or bad policy outcomes. Likewise, a successful policy program may or may not be beneficial to one group of constituents or another.

We think the six milestones outlined here are among the most viable and meaningful upcoming interactions between AI and democracy, but they are hardly the only scenarios to consider. The point is that our AI-driven political future will involve far more than deepfaked campaign ads and manufactured letter-writing campaigns. We should all be thinking more creatively about what comes next and be vigilant in steering our politics toward the best possible ends, no matter their means.

This essay was written with Nathan Sanders, and previously appeared in MIT Technology Review.

The Need for Trustworthy AI

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/08/the-need-for-trustworthy-ai.html

If you ask Alexa, Amazon’s voice assistant AI system, whether Amazon is a monopoly, it responds by saying it doesn’t know. It doesn’t take much to make it lambaste the other tech giants, but it’s silent about its own corporate parent’s misdeeds.

When Alexa responds in this way, it’s obvious that it is putting its developer’s interests ahead of yours. Usually, though, it’s not so obvious whom an AI system is serving. To avoid being exploited by these systems, people will need to learn to approach AI skeptically. That means deliberately constructing the input you give it and thinking critically about its output.

Newer generations of AI models, with their more sophisticated and less rote responses, are making it harder to tell who benefits when they speak. Internet companies’ manipulating what you see to serve their own interests is nothing new. Google’s search results and your Facebook feed are filled with paid entries. Facebook, TikTok and others manipulate your feeds to maximize the time you spend on the platform, which means more ad views, over your well-being.

What distinguishes AI systems from these other internet services is how interactive they are, and how these interactions will increasingly become like relationships. It doesn’t take much extrapolation from today’s technologies to envision AIs that will plan trips for you, negotiate on your behalf or act as therapists and life coaches.

They are likely to be with you 24/7, know you intimately, and be able to anticipate your needs. This kind of conversational interface to the vast network of services and resources on the web is within the capabilities of existing generative AIs like ChatGPT. They are on track to become personalized digital assistants.

As a security expert and data scientist, we believe that people who come to rely on these AIs will have to trust them implicitly to navigate daily life. That means they will need to be sure the AIs aren’t secretly working for someone else. Across the internet, devices and services that seem to work for you already secretly work against you. Smart TVs spy on you. Phone apps collect and sell your data. Many apps and websites manipulate you through dark patterns, design elements that deliberately mislead, coerce or deceive website visitors. This is surveillance capitalism, and AI is shaping up to be part of it.

Quite possibly, it could be much worse with AI. For that AI digital assistant to be truly useful, it will have to really know you. Better than your phone knows you. Better than Google search knows you. Better, perhaps, than your close friends, intimate partners and therapist know you.

You have no reason to trust today’s leading generative AI tools. Leave aside the hallucinations, the made-up “facts” that GPT and other large language models produce. We expect those will be largely cleaned up as the technology improves over the next few years.

But you don’t know how the AIs are configured: how they’ve been trained, what information they’ve been given, and what instructions they’ve been commanded to follow. For example, researchers uncovered the secret rules that govern the Microsoft Bing chatbot’s behavior. They’re largely benign but can change at any time.

Many of these AIs are created and trained at enormous expense by some of the largest tech monopolies. They’re being offered to people to use free of charge, or at very low cost. These companies will need to monetize them somehow. And, as with the rest of the internet, that somehow is likely to include surveillance and manipulation.

Imagine asking your chatbot to plan your next vacation. Did it choose a particular airline or hotel chain or restaurant because it was the best for you or because its maker got a kickback from the businesses? As with paid results in Google search, newsfeed ads on Facebook and paid placements on Amazon queries, these paid influences are likely to get more surreptitious over time.

If you’re asking your chatbot for political information, are the results skewed by the politics of the corporation that owns the chatbot? Or the candidate who paid it the most money? Or even the views of the demographic of the people whose data was used in training the model? Is your AI agent secretly a double agent? Right now, there is no way to know.

We believe that people should expect more from the technology and that tech companies and AIs can become more trustworthy. The European Union’s proposed AI Act takes some important steps, requiring transparency about the data used to train AI models, mitigation for potential bias, disclosure of foreseeable risks and reporting on industry standard tests.

Most existing AIs fail to comply with this emerging European mandate, and, despite recent prodding from Senate Majority Leader Chuck Schumer, the US is far behind on such regulation.

The AIs of the future should be trustworthy. Unless and until the government delivers robust consumer protections for AI products, people will be on their own to guess at the potential risks and biases of AI, and to mitigate their worst effects on people’s experiences with them.

So when you get a travel recommendation or political information from an AI tool, approach it with the same skeptical eye you would a billboard ad or a campaign volunteer. For all its technological wizardry, the AI tool may be little more than the same.

This essay was written with Nathan Sanders, and previously appeared on The Conversation.

Hacking AI Resume Screening with Text in a White Font

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/08/hacking-ai-resume-screening-with-text-in-a-white-font.html

The Washington Post is reporting on a hack to fool automatic resume sorting programs: putting text in a white font. The idea is that the programs rely primarily on simple pattern matching, and the trick is to copy a list of relevant keywords—or the published job description—into the resume in a white font. The computer will process the text, but humans won’t see it.

Clever. I’m not sure it’s actually useful in getting a job, though. Eventually the humans will figure out that the applicant doesn’t actually have the required skills. But…maybe.