Tag Archives: AWS Proton

How organizations are modernizing for cloud operations

Post Syndicated from Adam Keller original https://aws.amazon.com/blogs/devops/how-organizations-are-modernizing-for-cloud-operations/

Over the past decade, we’ve seen a rapid evolution in how IT operations teams and application developers work together. In the early days, there was a clear division of responsibilities between the two teams, with one team focused on providing and maintaining the servers and various components (i.e., storage, DNS, networking, etc.) for the application to run, while the other primarily focused on developing the application’s features, fixing bugs, and packaging up their artifacts for the operations team to deploy. Ultimately, this division led to a siloed approach which presented glaring challenges. These siloes hindered communication between the teams, which would often result in developers being ready to ship code and passing it over to the operations teams with little to no collaboration prior. In turn, operations teams were often left scrambling trying to deliver on the requirements at the last minute. This would lead to bottlenecks in software delivery, delaying features and bug fixes from being shipped. Aside from software delivery, operations teams were primarily responsible for handling on-call duties, which encompassed addressing issues arising from both applications and infrastructure. Consequently, when incidents occurred, the operations teams were the ones receiving alerts, irrespective of the source of the problem. This raised the question: what motivates the software developers to create resilient and dependable software? Terms such as “throw it over the wall” and “it works on my laptop” were coined because of this and are still commonly referenced in discussion today.

The DevOps movement emerged in response to these challenges, aiming to build a bridge between developers and operations teams. DevOps focuses on collaboration between the two teams through communication and integration by fostering a culture of shared responsibility. This approach promotes the use of automation of infrastructure and application code leveraging continuous integration (CI) and continuous delivery (CD), microservices architectures, and visibility through monitoring, logging and tracing. The end result of operating in a DevOps model provides quicker and more reliable release cycles. While the ideology is well intentioned, implementing a DevOps practice is not easy as organizations struggle to adapt and adhere to the cultural expectations. In addition, teams can struggle to find the right balance between speed and stability, which often times results in reverting back to old behaviors due to fear of downtime and instability of their environments. While DevOps is very focused on culture through collaboration and automation, not all developers want to be involved in operations and vice versa. This poses the question: how do organizations centralize a frictionless developer experience, with guardrails and best practices baked in, while providing a golden path for developers to self serve? This is where platform engineering comes in.

Platform engineering has emerged as a critical discipline for organizations, which is driving the next evolution of infrastructure and operations, while simultaneously empowering developers to create and deliver robust, scalable applications. It aims to improve developer experience by providing self service mechanisms that provide some level of abstraction for provisioning resources, with good practices baked in. This builds on top of DevOps practices by enabling the developer to have full control of their resources through self service, without having to throw it over the wall. There are various ways that platform engineering teams implement these self service interfaces, from leveraging a GitOps focused strategy to building Internal Developer Platforms with a UI and/or API. With the increasing demand for faster and more agile development, many organizations are adopting this model to streamline their operations, gain visibility, reduce costs, and lower the friction of onboarding new applications.

In this blog post, we will explore the common operational models used within organizations today, where platform engineering fits within these models, the common patterns used to build and develop these self-service platforms, and what lies ahead for this emerging field.

Operational Models

It’s important for us to start by understanding how we see technology teams operate today and the various ways they support development teams from instantiating infrastructure to defining pipelines and deploying application code. In the below diagram we highlight the four common operational models and will discuss each to understand the benefits and challenges they bring. This is also critical in understanding where platform teams fit, and where they don’t.

This image shows a sliding scale of the various provisioning models. For each model it shows the interaction between developers and the platform team.

Centralized Provisioning

In a centralized provisioning model, the responsibility for architecting, deploying, and managing infrastructure falls primarily on a centralized team. Organizations assign enforcement of controls into specific roles with narrow scope, including release management, process management, and segmentation of siloed teams (networking, compute, pipelines, etc). The request model generally requires a ticket or request to be sent to the central or dedicated siloed team, ticket enters a backlog, and the developers wait until resources can be provisioned on their behalf. In an ideal world, the central teams can quickly provision the resources and pipelines to get the developers up and running; but, in reality these teams are busy with work and have to prioritize accordingly which often times leaves development teams waiting or having to predict what they need well in advance.

While this model provides central control over resource provisioning, it introduces bottlenecks into the delivery process and generally results in slower deployment cycles and feedback loops. This model becomes especially challenging when supporting a large number of development teams with varying requirements and use cases. Ultimately this model can lead to frustration and friction between teams and hence why organizations after some time look to move away from operating in this model. This leads us to segue into the next model, which is the Platform-enabled Golden Path.

Platform-enabled Golden Path

The platform-enabled golden path model is an approach that allows for developer to have some form of customization while still maintaining consistency by following a set of standards. In this model, platform engineers clearly lay out “preferred” standards with sane defaults, guardrails, and good practices based on common architectures that development teams can use as-is. Sophisticated platform teams may implement their own customizations on top of this framework in the following ways:

The platform engineering team is responsible for creating and updating the templates, with maintenance responsibilities typically being shared. This approach strikes a balance between consistency and flexibility, allowing for some customization while still maintaining standards. However, it can be challenging to maintain visibility across the organization, as development teams have more freedom to customize their infrastructure. This becomes especially challenging when platform teams want a change to propagate across resources deployed by the various development teams building on top of these patterns.

Embedded DevOps

Embedded DevOps is a model in which DevOps engineers are directly aligned with development teams to define, provision, and maintain their infrastructure. There are a couple of common patterns around how organizations use this model.

  • Floating model: A central DevOps team can leverage a floating model where a DevOps engineer will be directly embedded onto a development team early in the development process to help build out the required pipelines and infrastructure resources, and jump to another team once everything is up and running.
  • Permanent embedded model: Alternatively, a development team can have a permanent DevOps engineer on the team to help support early iterations as well as maintenance as the application evolves. The DevOps engineer is ideally there from the beginning of the project and continues to support and improve the infrastructure and automation based on feature requests and bug fixes.

A central platform and/or architecture team may define the acceptable configurations and resources, while DevOps engineers decide how to best use them to meet the needs of their development team. Individual teams are responsible for maintenance and updating of the templates and pipelines. This model offers greater agility and flexibility, but also requires the funding to hire DevOps engineers per development team, which can become costly as development teams scale. It’s important that when operating in this model to maintain collaboration between members of the DevOps team to ensure that best practices can be shared.

Decentralized DevOps

Lastly, the decentralized DevOps model gives development teams full end-to-end ownership and responsibility for defining and managing their infrastructure and pipelines. A central team may be focused on building out guardrails and boundaries to ensure that they limit the blast radius within the boundaries. They can also create a process to ensure that infrastructure deployed meets company standards, while ensuring development teams are free to make design decisions and remain autonomous. This approach offers the greatest agility and flexibility, but also the highest risk of inconsistency, errors, and security vulnerabilities. Additionally, this model requires a cultural shift in the organization because the development teams now own the entire stack, which results in more responsibility. This model can be a deterrent to developers, especially if they are unfamiliar with building resources in the cloud and/or don’t want to do it.

Overall, each model has its strengths and weaknesses, and the purpose of this blog is to educate on the patterns that are emerging. Ultimately the right approach depends on the organization’s specific needs and goals as well as their willingness to shift culturally. Of the above patterns, the two that are emerging as the most common are Platform-enabled Golden Path and Decentralized DevOps. Furthermore, we’re seeing that more often than not platform teams are finding themselves going back and forth between the two patterns within the same organization. This is in part due to technology making infrastructure creation in the cloud more accessible through abstraction and automation (think of tools like the AWS Cloud Development Kit (CDK), AWS Serverless Application Model (SAM) CLI, AWS Copilot, Serverless framework, etc). Let’s now look at the technology patterns that are emerging to support these use cases.

Emerging patterns

Of the trends that are on the rise, Internal Developer Platforms and GitOps practices are becoming increasingly popular in the industry due to their ability to streamline the software development process and improve collaboration between development and platform teams. Internal Developer Platforms provide a centralized platform for developers to access resources and tools needed to build, test, deploy, and monitor applications and associated infrastructure resources. By providing a self-service interface with pre-approved patterns (via UI, API, or Git), internal developer platforms empower development teams to work independently and collaborate with one another more effectively. This reduces the burden on IT and operations teams while also increasing the agility and speed of development as developers aren’t required to wait in line to get resources provisioned. The paradigm shifts with Internal Developer Platforms because the platform teams are focused on building the blueprints and defining the standards for backend resources that development teams centrally consume via the provided interfaces. The platform team should view the internal developer platform as a product and look at developers as their customer.

While internal developer platforms provide a lot of value and abstraction through a UI and API’s, some organizations prefer to use Git as the center of deployment orchestration, and this is where leveraging GitOps can help. GitOps is a methodology that leverages Git as the source of orchestrating and managing the deployment of infrastructure and applications. With GitOps, infrastructure is defined declaratively as code, and changes are tracked in Git, allowing for a more standardized and automated deployment process. Using git for deployment orchestration is not new, but there are some concepts with GitOps that take Git orchestration to a new level.

Let’s look at the principles of GitOps, as defined by OpenGitOps:

  • Declarative
    • A system managed by GitOps must have its desired state expressed declaratively.
  • Versioned and Immutable
    • Desired state is stored in a way that enforces immutability, versioning and retains a complete version history.
  • Pulled Automatically
    • Software agents automatically pull the desired state declarations from the source.
  • Continuously Reconciled
    • Software agents continuously observe actual system state and attempt to apply the desired state.

GitOps helps to reduce the risk of errors and improve consistency across the organization as all change is tracked centrally. Additionally this provides developers with a familiar interface in git as well as the ability to store the desired state of their infrastructure and applications in one place. Lastly, GitOps is focused on ensuring that the desired state in git is always maintained, and if drift occurs, an external process will reconcile the state of the resources. GitOps was born in the Kubernetes ecosystem using tools like Flux and ArgoCD.

The final emerging trend to discuss is particularly relevant to teams functioning within a decentralized DevOps model, possessing end-to-end responsibility for the stack, encompassing infrastructure and application delivery. The amount of cognitive load required to connect the underlying cloud resources together while also being an expert in building out business logic for the application is extremely high, and hence why teams look to harness the power of abstraction and automation for infrastructure provisioning. While this may appear analogous to previously mentioned practices, the key distinction lies in the utilization of tools specifically designed to enhance the developer experience. By abstracting various components (such as networking, identity, and stitching everything together), these tools eliminate the necessity for interaction with centralized teams, empowering developers to operate autonomously and assume complete ownership of the infrastructure. This trend is exemplified by the adoption of innovative tools such as AWS App Composer, AWS CodeCatalyst, SAM CLI, AWS Copilot CLI, and the AWS Cloud Development Kit (CDK).

Looking ahead

If there is one thing that we can ascertain it’s that the journey to successful developer enablement is ongoing, and it’s clear that finding that balance of speed, security, and flexibility can be difficult to achieve. Throughout all of these evolutionary trends in technology, Git has remained as the nucleus of infrastructure and application deployment automation. This is not new; however, the processes being built around Git such as GitOps are. The industry continues to gravitate towards this model, and at AWS we are looking at ways to enable builders to leverage git as the source of truth with simple integrations. For example, AWS Proton has built integrations with git for central template storage with a feature called template sync and recently released a feature called service sync, which allows developers to configure and deploy their Proton services using Git. These features empower the platform team and developers to seamlessly store their templates and desired infrastructure resource states within Git, requiring no additional effort beyond the initial setup.

We also see that interest in building internal developer platforms is on a sharp incline, and it’s still in the early days. With tools like AWS Proton, AWS Service Catalog, Backstage, and other SaaS providers, platform teams are able to define patterns centrally for developers to self serve patterns via a library or “shopping cart”. As mentioned earlier, it’s vital that the teams building out the internal developer platforms think of ways to enable the developer to deploy supplemental resources that aren’t defined in the central templates. While the developer platform can solve the majority of the use cases, it’s nearly impossible to solve them all. If you can’t enable developers to deploy resources on top of their platform deployed services, you’ll find that you’re back to the original problem statement outlined in the beginning of this blog which can ultimately result in a failed implementation. AWS Proton solves this through a feature we call components, which enables developers to bring their own IaC templates to deploy on top of their services deployed through Proton.

The rising popularity of the aforementioned patterns reveals an unmet need for developers who seek to tailor their cloud resources according to the specific requirements of their applications and the demands of platform/central teams that require governance. This is particularly prevalent in serverless workloads, where developers often integrate their application and infrastructure code, utilizing services such as AWS Step Functions to transfer varying degrees of logic from the application layer to the managed service itself. Centralizing these resources becomes increasingly challenging due to their dynamic nature, which adapts to the evolving requirements of business logic. Consequently, it is nearly impossible to consolidate these patterns into a universally applicable blueprint for reuse across diverse business scenarios.

As the distinction between cloud resources and application code becomes increasingly blurred, developers are compelled to employ tools that streamline the underlying logic, enabling them to achieve their desired outcomes swiftly and securely. In this context, it is crucial for platform teams to identify and incorporate these tools, ensuring that organizational safeguards and expectations are upheld. By doing so, they can effectively bridge the gap between developers’ preferences and the essential governance required by the platform or central team.

Wrapping up

We’ve explored the various operating models and emerging trends designed to facilitate these models. Platform Engineering represents the ongoing evolution of DevOps, aiming to enhance the developer experience for rapid and secure deployments. It is crucial to recognize that developers possess varying skill sets and preferences, even within the same organization. As previously discussed, some developers prefer complete ownership of the entire stack, while others concentrate solely on writing code without concerning themselves with infrastructure. Consequently, the platform engineering practice must continuously adapt to accommodate these patterns in a manner that fosters enablement rather than posing as obstacles. To achieve this, the platform must be treated as a product, with developers as its customers, ensuring that their needs and preferences are prioritized and addressed effectively.

To determine where your organization fits within the discussed operational models, we encourage you to initiate a self-assessment and have internal discussions. Evaluate your current infrastructure provisioning, deployment processes, and development team support. Consider the benefits and challenges of each model and how they align with your organization’s specific needs, goals, and cultural willingness to shift.

To facilitate this process, gather key stakeholders from various teams, including leadership, platform engineering, development, and DevOps, for a collaborative workshop. During this workshop, review the four operational models (Centralized Provisioning, Platform-enabled Golden Path, Embedded DevOps, and Decentralized DevOps) and discuss the following:

  • How closely does each model align with your current organizational structure and processes?
  • What are the potential benefits and challenges of adopting or transitioning to each model within your organization?
  • What challenges are you currently facing with the model that you operate under?
  • How can technology be leveraged to optimize infrastructure creation and deployment automation?

By conducting this self-assessment and engaging in open dialogue, your organization can identify the most suitable operational model and develop a strategic plan to optimize collaboration, efficiency, and agility within your technology teams. If a more guided approach is preferred, reach out to our solutions architects and/or AWS partners to assist.

Adam Keller

Adam is a Senior Developer Advocate @ AWS working on all things related to IaC, Platform Engineering, DevOps, and modernization. Reach out to him on twitter @realadamjkeller.

AWS Week in Review – November 21, 2022

Post Syndicated from Danilo Poccia original https://aws.amazon.com/blogs/aws/aws-week-in-review-november-21-2022/

This post is part of our Week in Review series. Check back each week for a quick roundup of interesting news and announcements from AWS!

A new week starts, and the News Blog team is getting ready for AWS re:Invent! Many of us will be there next week and it would be great to meet in person. If you’re coming, do you know about PeerTalk? It’s an onsite networking program for re:Invent attendees available through the AWS Events mobile app (which you can get on Google Play or Apple App Store) to help facilitate connections among the re:Invent community.

If you’re not coming to re:Invent, no worries, you can get a free online pass to watch keynotes and leadership sessions.

Last Week’s Launches
It was a busy week for our service teams! Here are the launches that got my attention:

AWS Region in Spain – The AWS Region in Aragón, Spain, is now open. The official name is Europe (Spain), and the API name is eu-south-2.

Amazon Athena – You can now apply AWS Lake Formation fine-grained access control policies with all table and file format supported by Amazon Athena to centrally manage permissions and access data catalog resources in your Amazon Simple Storage Service (Amazon S3) data lake. With fine-grained access control, you can restrict access to data in query results using data filters to achieve column-level, row-level, and cell-level security.

Amazon EventBridge – With these additional filtering capabilities, you can now filter events by suffix, ignore case, and match if at least one condition is true. This makes it easier to write complex rules when building event-driven applications.

AWS Controllers for Kubernetes (ACK) – The ACK for Amazon Elastic Compute Cloud (Amazon EC2) is now generally available and lets you provision and manage EC2 networking resources, such as VPCs, security groups and internet gateways using the Kubernetes API. Also, the ACK for Amazon EMR on EKS is now generally available to allow you to declaratively define and manage EMR on EKS resources such as virtual clusters and job runs as Kubernetes custom resources. Learn more about ACK for Amazon EMR on EKS in this blog post.

Amazon HealthLake – New analytics capabilities make it easier to query, visualize, and build machine learning (ML) models. Now HealthLake transforms customer data into an analytics-ready format in near real-time so that you can query, and use the resulting data to build visualizations or ML models. Also new is Amazon HealthLake Imaging (preview), a new HIPAA-eligible capability that enables you to easily store, access, and analyze medical images at any scale. More on HealthLake Imaging can be found in this blog post.

Amazon RDS – You can now transfer files between Amazon Relational Database Service (RDS) for Oracle and an Amazon Elastic File System (Amazon EFS) file system. You can use this integration to stage files like Oracle Data Pump export files when you import them. You can also use EFS to share a file system between an application and one or more RDS Oracle DB instances to address specific application needs.

Amazon ECS and Amazon EKS – We added centralized logging support for Windows containers to help you easily process and forward container logs to various AWS and third-party destinations such as Amazon CloudWatch, S3, Amazon Kinesis Data Firehose, Datadog, and Splunk. See these blog posts for how to use this new capability with ECS and with EKS.

AWS SAM CLI – You can now use the Serverless Application Model CLI to locally test and debug an AWS Lambda function defined in a Terraform application. You can see a walkthrough in this blog post.

AWS Lambda – Now supports Node.js 18 as both a managed runtime and a container base image, which you can learn more about in this blog post. Also check out this interesting article on why and how you should use AWS SDK for JavaScript V3 with Node.js 18. And last but not least, there is new tooling support to build and deploy native AOT compiled .NET 7 applications to AWS Lambda. With this tooling, you can enable faster application starts and benefit from reduced costs through the faster initialization times and lower memory consumption of native AOT applications. Learn more in this blog post.

AWS Step Functions – Now supports cross-account access for more than 220 AWS services to process data, automate IT and business processes, and build applications across multiple accounts. Learn more in this blog post.

AWS Fargate – Adds the ability to monitor the utilization of the ephemeral storage attached to an Amazon ECS task. You can track the storage utilization with Amazon CloudWatch Container Insights and ECS Task Metadata endpoint.

AWS Proton – Now has a centralized dashboard for all resources deployed and managed by AWS Proton, which you can learn more about in this blog post. You can now also specify custom commands to provision infrastructure from templates. In this way, you can manage templates defined using the AWS Cloud Development Kit (AWS CDK) and other templating and provisioning tools. More on CDK support and AWS CodeBuild provisioning can be found in this blog post.

AWS IAM – You can now use more than one multi-factor authentication (MFA) device for root account users and IAM users in your AWS accounts. More information is available in this post.

Amazon ElastiCache – You can now use IAM authentication to access Redis clusters. With this new capability, IAM users and roles can be associated with ElastiCache for Redis users to manage their cluster access.

Amazon WorkSpaces – You can now use version 2.0 of the WorkSpaces Streaming Protocol (WSP) host agent that offers significant streaming quality and performance improvements, and you can learn more in this blog post. Also, with Amazon WorkSpaces Multi-Region Resilience, you can implement business continuity solutions that keep users online and productive with less than 30-minute recovery time objective (RTO) in another AWS Region during disruptive events. More on multi-region resilience is available in this post.

Amazon CloudWatch RUM – You can now send custom events (in addition to predefined events) for better troubleshooting and application specific monitoring. In this way, you can monitor specific functions of your application and troubleshoot end user impacting issues unique to the application components.

AWS AppSync – You can now define GraphQL API resolvers using JavaScript. You can also mix functions written in JavaScript and Velocity Template Language (VTL) inside a single pipeline resolver. To simplify local development of resolvers, AppSync released two new NPM libraries and a new API command. More info can be found in this blog post.

AWS SDK for SAP ABAP – This new SDK makes it easier for ABAP developers to modernize and transform SAP-based business processes and connect to AWS services natively using the SAP ABAP language. Learn more in this blog post.

AWS CloudFormation – CloudFormation can now send event notifications via Amazon EventBridge when you create, update, or delete a stack set.

AWS Console – With the new Applications widget on the Console home, you have one-click access to applications in AWS Systems Manager Application Manager and their resources, code, and related data. From Application Manager, you can view the resources that power your application and your costs using AWS Cost Explorer.

AWS Amplify – Expands Flutter support (developer preview) to Web and Desktop for the API, Analytics, and Storage use cases. You can now build cross-platform Flutter apps with Amplify that target iOS, Android, Web, and Desktop (macOS, Windows, Linux) using a single codebase. Learn more on Flutter Web and Desktop support for AWS Amplify in this post. Amplify Hosting now supports fully managed CI/CD deployments and hosting for server-side rendered (SSR) apps built using Next.js 12 and 13. Learn more in this blog post and see how to deploy a NextJS 13 app with the AWS CDK here.

Amazon SQS – With attribute-based access control (ABAC), you can define permissions based on tags attached to users and AWS resources. With this release, you can now use tags to configure access permissions and policies for SQS queues. More details can be found in this blog.

AWS Well-Architected Framework – The latest version of the Data Analytics Lens is now available. The Data Analytics Lens is a collection of design principles, best practices, and prescriptive guidance to help you running analytics on AWS.

AWS Organizations – You can now manage accounts, organizational units (OUs), and policies within your organization using CloudFormation templates.

For a full list of AWS announcements, be sure to keep an eye on the What’s New at AWS page.

Other AWS News
A few more stuff you might have missed:

Introducing our final AWS Heroes of the year – As the end of 2022 approaches, we are recognizing individuals whose enthusiasm for knowledge-sharing has a real impact with the AWS community. Please meet them here!

The Distributed Computing ManifestoWerner Vogles, VP & CTO at Amazon.com, shared the Distributed Computing Manifesto, a canonical document from the early days of Amazon that transformed the way we built architectures and highlights the challenges faced at the end of the 20th century.

AWS re:Post – To make this community more accessible globally, we expanded the user experience to support five additional languages. You can now interact with AWS re:Post also using Traditional Chinese, Simplified Chinese, French, Japanese, and Korean.

For AWS open-source news and updates, here’s the latest newsletter curated by Ricardo to bring you the most recent updates on open-source projects, posts, events, and more.

Upcoming AWS Events
As usual, there are many opportunities to meet:

AWS re:Invent – Our yearly event is next week from November 28 to December 2. If you can’t be there in person, get your free online pass to watch live the keynotes and the leadership sessions.

AWS Community DaysAWS Community Day events are community-led conferences to share and learn together. Join us in Sri Lanka (on December 6-7), Dubai, UAE (December 10), Pune, India (December 10), and Ahmedabad, India (December 17).

That’s all from me for this week. Next week we’ll focus on re:Invent, and then we’ll take a short break. We’ll be back with the next Week in Review on December 12!

Danilo

New – AWS Proton Supports Terraform and Git Repositories to Manage Templates

Post Syndicated from Marcia Villalba original https://aws.amazon.com/blogs/aws/new-aws-proton-supports-terraform-and-git-repositories-to-manage-templates/

Today we are announcing the launch of two features for AWS Proton. First, the most requested one in the AWS Proton open roadmap, to define and provision infrastructure using Terraform. Second, the capability to manage AWS Proton templates directly from Git repositories.

AWS Proton is a fully managed application delivery service for containers and serverless applications, announced during reinvent 2020. AWS Proton aims to help infrastructure teams automate and manage their infrastructure without impacting developer productivity. It allows developers to get the templates they need to deliver their applications without the need to involve the platform team.

When using AWS Proton, the infrastructure team needs to define the environment and the service templates. Learn more about the templates.

Template Sync
This new feature in AWS Proton enables the platform team to push, update, and publish templates directly from their Git repositories. Now when you create a new service or environment template, you can specify a remote Git repository containing the templates. AWS Proton will automatically sync those templates and make them available for use. When there are changes to the Git repository, AWS Proton will take care of the updates.

Create enviroment template

One important advantage of using repositories and syncing the templates is that it simplifies the process of the administrators for uploading, updating, and registering the templates. This process, when done manually, can be error-prone and inconvenient. Now you can automate the process of authoring and updating the templates. Also, you can add more validations using pull requests and track the changes to the templates.

Template sync allows collaboration between the platform team and the developers. By having all the templates in a Git repository, all the collaboration tooling available in platforms like GitHub becomes available to everybody. Now developers can see all the templates, and when they want to improve them, they can just create a pull request with the changes. In addition, tools like bug trackers and features requests can be used to manage the templates.

Configuring the Repository Link
To get started using template sync, you need to give AWS Proton permissions to access your repositories. For that, you need to create a link between AWS Proton and your repository.

To do this, first create a new source connection for your GitHub account. Then you need to create a new repository link from the AWS Proton. Go to the Repositories option in the side bar. Then in the Link new repository screen, use the GitHub connection that you just created and specify a repository name.

Create new link repository

AWS Proton supports Terraform
Until now, AWS CloudFormation was the only infrastructure as code (IaC) engine available in AWS Proton. Now you can define service and environment templates based on infrastructure defined using Terraform and through a pull-request-based mechanism, use Terraform to provision and keep your infrastructure updated.

Platforms teams author their IaC templates in HCL, the Terraform language, and then provision the infrastructure using Terraform Open Source. AWS Proton renders the ready-to-provision Terraform module and makes a pull request to your infrastructure repository, from where you can plan and apply the changes.

This operation is asynchronous, as AWS Proton is not the one managing the provision of infrastructure. Therefore it is important that in the process of provisioning the infrastructure, there is a step that notifies AWS Proton of the status of the deployment.

I want to show you a demo on how you can set up an environment using Terraform. For that, you will use GitHub actions to provision the Terraform infrastructure in your AWS account.

To get started with Terraform templates, first, configure the repository link as it was described before. Then you need to create a new role to give permissions to GitHub actions to perform some activities in your AWS account. You can find the AWS CloudFormation template for this role here.

Create an empty GitHub repository and create a folder .github/workflows/. Create a file called terraform.yml. In that file, you need to define the GitHub actions to plan and apply the infrastructure changes. Copy the template from the terraform example file.

This template configures your AWS credentials, configures Terraform, plans the whole infrastructure, and applies the changes in the infrastructure using Terraform, and then notifies AWS Proton on the status of this process.

In addition, you need to modify the file env_config.json, which is located inside that folder. In that file, you need to add the configuration for the environment you plan to create. You can append new environments to the JSON file. In the example, the environment is called tf-test. The role is the role you created previously, and the region is the region where you want to deploy this infrastructure. Look at the example file.

{
    “tf-test”: {
        “role”: “arn:aws:iam::123456789:role/TerraformGitHubActionsRole”,
        “region”: “us-west-2”
    }
}

For this example, you upload the Terraform project to Amazon S3. See an example of a Terraform project.

Now it is time to create a new environment template in AWS Proton. You can follow the instructions in the console.

When your environment template is ready, create a new environment using the template you just created. When configuring the environment, select Provision through pull request and then configure the repository with the correct parameters.

Configure new enviromentNow, in the Environment details, you can see the Deployment status to be In progress. This will stay like this until the GitHub action finishes.

Environment details

If you go to your repository, you should see a new pull request. Next to the pull request name, you will see a red cross, yellow dot, or green check. That icon depends on the status of the GitHub action. If you have a yellow dot, wait for it to turn red or green. If there is an error, you need to see what is going on inside the logs of the GitHub action.

If you see a green check on the pull request, it means that the GitHub actions has completed, and the pull request can be merged. After the pull request is merged, the infrastructure is provisioned. Go back to the Environment Details page. After a while, and once your infrastructure is provisioned, which can take some minutes depending on your template, you should see that the Deployment Status is Successful.

Github pull request

By the end of this demo, you have provisioned your infrastructure using AWS Proton to handle the environment templates and GitHub actions, and Terraform Open Source to provision the infrastructure in your AWS account.

Availability
Terraform support is available in public preview mode.

These new features are available in the regions where AWS Proton is available: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Tokyo), and Europe (Ireland).

To learn more about these features, visit the AWS Proton service page.

Marcia

Simplifying Multi-account CI/CD Deployments using AWS Proton

Post Syndicated from Marvin Fernandes original https://aws.amazon.com/blogs/architecture/simplifying-multi-account-ci-cd-deployments-using-aws-proton/

Many large enterprises, startups, and public sector entities maintain different deployment environments within multiple Amazon Web Services (AWS) accounts to securely develop, test, and deploy their applications. Maintaining separate AWS accounts for different deployment stages is a standard practice for organizations. It helps developers limit the blast radius in case of failure when deploying updates to an application, and provides for more resilient and distributed systems.

Typically, the team that owns and maintains these environments (the platform team) is segregated from the development team. A platform team performs critical activities. These can include setting infrastructure and governance standards, keeping patch levels up to date, and maintaining security and monitoring standards. Development teams are responsible for writing the code, performing appropriate testing, and pushing code to repositories to initiate deployments. The development teams are focused more on delivering their application and less on the infrastructure and networking that ties them together. The segregation of duties and use of multi-account environments are effective from a regulatory and development standpoint. But monitoring, maintaining, and enabling the safe release to these environments can be cumbersome and error prone.

In this blog, you will see how to simplify multi-account deployments in an environment that is segregated between platform and development teams. We will show how you can use one consistent and standardized continuous delivery pipeline with AWS Proton.

Challenges with multi-account deployment

For platform teams, maintaining these large environments at different stages in the development lifecycle and within separate AWS accounts can be tedious. The platform teams must ensure that certain security and regulatory requirements (like networking or encryption standards) are implemented in each separate account and environment. When working in a multi-account structure, AWS Identity and Access Management (IAM) permissions and cross-account access management can be a challenge for many account administrators. Many organizations rely on specific monitoring metrics and tagging strategies to perform basic functions. The platform team is responsible for enforcing these processes and implementing these details repeatedly across multiple accounts. This is a pain point for many infrastructure administrators or platform teams.

Platform teams are also responsible for ensuring a safe and secure application deployment pipeline. To do this, they isolate deployment and production environments from one another limiting the blast radius in case of failure. Platform teams enforce the principle of least privilege on each account, and implement proper testing and monitoring standards across the deployment pipeline.

Instead of focusing on the application and code, many developers face challenges complying with these rigorous security and infrastructure standards. This results in limited access to resources for developers. Delays come with reliance on administrators to deploy application code into production. This can lead to lags in deployment of updated code.

Deployment using AWS Proton

The ownership for infrastructure lies with the platform teams. They set the standards for security, code deployment, monitoring, and even networking. AWS Proton is an infrastructure provisioning and deployment service for serverless and container-based applications. Using AWS Proton, the platform team can provide their developers with a highly customized and catered “platform as a service” experience. This allows developers to focus their energy on building the best application, rather than spending time on orchestration tools. Platform teams can similarly focus on building the best platform for that application.

With AWS Proton, developers use predefined templates. With only a few input parameters, infrastructure can be provisioned and code deployed in an effective pipeline. This way you can get your application running and updated more quickly, see Figure 1.

Figure 1. Platform and development team roles when using AWS Proton

Figure 1. Platform and development team roles when using AWS Proton

AWS Proton allows you to deploy any serverless or container-based application across multiple accounts. You can define infrastructure standards and effective continuous delivery pipelines for your organization. Proton breaks down the infrastructure into environment and service (“infrastructure as code” templates).

In Figure 2, platform teams provide a service template of a secure environment to host a microservices application on Amazon Elastic Container Service (Amazon ECS) and AWS Fargate. The environment template contains infrastructure that is shared across services. This includes the networking configuration: Amazon Virtual Private Cloud (VPC), subnets, route tables, Internet Gateway, security groups, and ECS cluster definition for the Fargate service.

The service template provides details of the service. It includes the container task definitions, monitoring and logging definitions, and an effective continuous delivery pipeline. Using the environment and service template definitions, development teams can define the microservices that are running on Amazon ECS. They can deploy their code following the continuous integration and continuous delivery (CI/CD) pipeline.

Figure 2. Platform teams provision environment and service infrastructure as code templates in AWS Proton management account

Figure 2. Platform teams provision environment and service infrastructure as code templates in AWS Proton management account

Multi-account CI/CD deployment

For Figures 3 and 4, we used publicly available templates and created three separate AWS accounts: the AWS Proton management account, development account, and production environment accounts. Additional accounts may be added based on your use case and security requirements. As shown in Figure 3, the AWS Proton service account contains the environment, service, and pipeline templates. It also provides the connection to other accounts within the organization. The development and production accounts follow the structure of a development pipeline for a typical organization.

AWS Proton alleviates complicated cross-account policies by using a secure “environment account connection” feature. With environment account connections, platform administrators can give AWS Proton permissions to provision infrastructure in other accounts. They create an IAM role and specify a set of permissions in the target account. This enables Proton to assume the role from the management account to build resources in the target accounts.

AWS Key Management Service (KMS) policies can also be hard to manage in multi-account deployments. Proton reduces managing cross-account KMS permissions. In an AWS Proton management account, you can build a pipeline using a single artifact repository. You can also extend the pipeline to additional accounts from a single source of truth. This feature can be helpful when accounts are located in different Regions, due to regulatory requirements for example.

Figure 3. AWS Proton uses cross-account policies and provisions infrastructure in development and production accounts with environment connection feature

Figure 3. AWS Proton uses cross-account policies and provisions infrastructure in development and production accounts with environment connection feature

Once the environment and service templates are defined in the AWS Proton management account, the developer selects the templates. Proton then provisions the infrastructure, and the continuous delivery pipeline that will deploy the services to each separate account.

Developers commit code to a repository, and the pipeline is responsible for deploying to the different deployment stages. You don’t have to worry about any of the environment connection workflows. Proton allows platform teams to provide a single pipeline definition to deploy the code into multiple different accounts without any additional account level information. This standardizes the deployment process and implements effective testing and staging policies across the organization.

Platform teams can also inject manual approvals into the pipeline so they can control when a release is deployed. Developers can define tests that initiate after a deployment to ensure the validity of releases before moving to a production environment. This simplifies application code deployment in an AWS multi-account environment and allows updates to be deployed more quickly into production. The resulting deployed infrastructure is shown in Figure 4.

Figure 4. AWS Proton deploys service into multi-account environment through standardized continuous delivery pipeline

Figure 4. AWS Proton deploys service into multi-account environment through standardized continuous delivery pipeline

Conclusion

In this blog, we have outlined how using AWS Proton can simplify handling multi-account deployments using one consistent and standardized continuous delivery pipeline. AWS Proton addresses multiple challenges in the segregation of duties between developers and platform teams. By having one uniform resource for all these accounts and environments, developers can develop and deploy applications faster, while still complying with infrastructure and security standards.

For further reading:

Getting started with Proton
Identity and Access Management for AWS Proton
Proton administrative guide