Tag Archives: Amazon ElastiCache

Serving Billions of Ads in Just 100 ms Using Amazon Elasticache for Redis

Post Syndicated from Rodrigo Asensio original https://aws.amazon.com/blogs/architecture/serving-billions-of-ads-with-amazon-elasticache-for-redis/

This post was co-written with Lucas Ceballos, CTO of Smadex

Introduction

Showing ads may seem to be a simple task, but it’s not. Showing the right ad to the right user is an incredibly complex challenge that involves multiple disciplines such as artificial intelligence, data science, and software engineering. Doing it one million times per second with a 100-ms constraint is even harder.

In the ad-tech business, speed and infrastructure costs are the keys to success. The less the final user waits for an ad, the higher the probability of that user clicking on the ad. Doing that while keeping infrastructure costs under control is crucial for business profitability.

About Smadex

Smadex is the leading mobile-first programmatic advertising platform specifically built to deliver best user acquisition performance and complete transparency.

Its state-of-the-art digital signal processing (DSP) technology provides advertisers with the tools they need to achieve their goals and ROI, with measurable results from web forms, post-app install events, store visits, and sales.

Smadex advertising architecture

What does showing ads look like under the hood? At Smadex, our technology works based on the OpenRTB (Real-Time Bidding) protocol.

RTB is a means by which advertising inventory is bought and sold on a per-impression basis, via programmatic instantaneous auction, which is similar to financial markets.

To show ads, we participate in auctions deciding in real time which ad to show and how much to bid trying to optimize the cost of every impression.

High level diagram

  1. The final user browses the publisher’s website or app.
  2. Ad-exchange is called to start a new auction.
  3. Smadex receives the bid request and has to decide which ad to show and how much to offer in just 100 ms (and this is happening one million times per second).
  4. If Smadex won the auction, the ad must be sent and rendered on the publisher’s website or app.
  5. In the end, the user interacts with the ad sending new requests and events to Smadex platform.

Flow of data

As you can see in the previous diagram, showing ads is just one part of the challenge. After the ad is shown, the final user interacts with it in multiple ways, such as clicking it, installing an application, subscribing to a service, etc. This happens during a determined period that we call the “attribution window.” All of those interactions must be tracked and linked to the original bid transaction (using the request_id parameter).

Doing this is complicated: billions of bid transactions must be stored and available so that they can be quickly accessed every time the user interacts with the ad. The longer we store the transactions, the longer we can “wait” for an interaction to take place, and the better for our business and our clients, too.

Detailed diagram

Challenge #1: Cost

The challenge is: What kind of database can store billions of records per day, with at least a 30-day retention capacity (attribution window), be accessed by key-value, and all by spending as little as possible?

The answer is…none! Based on our research, all the available options that met the technical requirements were way out of our budget.

So…how to solve it? Here is when creativity and the combination of different AWS services comes into place.

We started to analyze the time dispersion of the events trying to find some clues. The interesting thing we spotted was that 90% of what we call “post-bid events” (impression, click, install, etc.) happened within one hour after the auction took place.

That means that we can process 90% of post-bid events by storing just one hour of bids.

Under our current workload, in one hour we participate in approximately 3.7 billion auctions generating 100 million bid records of an average 600 bytes each. This adds up to 55 gigabytes per hour, an easier amount of data to process.

Instead of thinking about one single database to store all the bid requests, we decided to split bids into two different categories:

  • Hot Bid: A request that took place within the last hour (small amount and frequently accessed)
  • Cold Bid: A request that took place more than our hour ago (huge amount and infrequently accessed)

Amazon ElastiCache for Redis is the best option to store 55 GB of data in memory, which gives us the ability to query in a key-value way with the lowest possible latency.

Hot Bids flow

Hot Bids flow diagram

  1. Every new bid is a hot bid by definition so it’s going to be stored in the hot bids Redis cluster.
  2. At the moment of the user interaction with the ad, the Smadex tracker component receives an HTTPS notification, including the bid request UUID that originated it.
  3. Based on the date of occurrence extracted from the received UUID, the tracker component can determine if it’s looking for a hot bid or not. If it’s a hot bid, the tracker reads it directly from Redis performing a key-value lookup query.

It’s been easy so far but what to do with the other 29 days and 23 hours we need to store?

Challenge #2: Performance

As we previously mentioned, cold bids are a huge infrequently accessed number of records with only 10% of post-bid events pointing to them. That sounds like a good use case for an inexpensive and slower data store like Amazon S3.

Thanks to the S3 low-cost storage prices combined with the ability to query S3 objects directly using Amazon Athena, we were able to optimize our costs by storing and querying cold bids by implementing a serverless architecture.

Cold Bids Flow

Cold Bids flow diagram

  1. Incoming bids are buffered by Fluentd and flushed to S3 every one minute in JSON format. Every single file flushed to S3 contains all the bids processed by a specific EC2 instance for one minute.
  2. An AWS Lambda function is automatically triggered on every new PutObject event from S3. This function transforms the JSON records to Parquet format and will save it back the S3 bucket, but this time into a specific partition folder based on file creation timestamp.
  3. As seen on the hot bids flow, the tracker component will determine if it’s looking for a hot or a cold bid based on the extracted timestamp of the request UUID. In this case, the cold bid will be retrieved by running an Amazon Athena look-up query leveraging the use of partitions and Parquet format to reduce as much as possible the latency and data that needs to be scanned.

Conclusion

Thanks to this combined approach using different technologies and a variety of AWS services we were able to extend our attribution window from 30 to 90 days while reducing the infrastructure costs by 45%.

 

 

Now Available: Amazon ElastiCache Global Datastore for Redis

Post Syndicated from Julien Simon original https://aws.amazon.com/blogs/aws/now-available-amazon-elasticache-global-datastore-for-redis/

In-memory data stores are widely used for application scalability, and developers have long appreciated their benefits for storing frequently accessed data, whether volatile or persistent. Systems like Redis help decouple databases and backends from incoming traffic, shedding most of the traffic that would had otherwise reached them, and reducing application latency for users.

Obviously, managing these servers is a critical task, and great care must be taken to keep them up and running no matter what. In a previous job, my team had to move a cluster of physical cache servers across hosting suites: one by one, they connected them to external batteries, unplugged external power, unracked them, and used an office trolley (!) to roll them to the other suite where they racked them again! It happened without any service interruption, but we all breathed a sigh of relief once this was done… Lose cache data on a high-traffic platform, and things get ugly. Fast. Fortunately, cloud infrastructure is more flexible! To help minimize service disruption should an incident occur, we have added many high-availability features to Amazon ElastiCache, our managed in-memory data store for Memcached and Redis: cluster mode, multi-AZ with automatic failover, etc.

As Redis is often used to serve low latency traffic to global users, customers have told us that they’d love to be able to replicate Amazon ElastiCache clusters across AWS regions. We listened to them, got to work, and today, we’re very happy to announce that this replication capability is now available for Redis clusters.

Introducing Amazon ElastiCache Global Datastore For Redis
In a nutshell, Amazon ElastiCache Global Datastore for Redis lets you replicate a cluster in one region to clusters in up to two other regions. Customers typically do this in order to:

  • Bring cached data closer to your users, in order to reduce network latency and improve application responsiveness.
  • Build disaster recovery capabilities, should a region be partially or totally unavailable.

Setting up a global datastore is extremely easy. First, you pick a cluster to be the primary cluster receiving writes from applications: this can either be a new cluster, or an existing cluster provided that it runs Redis 5.0.6 or above. Then, you add up to two secondary clusters in other regions which will receive updates from the primary.

This setup is available for all Redis configurations except single node clusters: of course, you can convert a single node cluster to a replication group cluster, and then use it as a primary cluster.

Last but not least, clusters that are part of a global datastore can be modified and resized as usual (adding or removing nodes, changing node type, adding or removing shards, adding or removing replica nodes).

Let’s do a quick demo.

Replicating a Redis Cluster Across Regions
Let me show you how to build from scratch a three-cluster global datastore: the primary cluster will be located in the us-east-1 region, and the two secondary clusters will be located in the us-west-1 and us-west-2 regions. For the sake of simplicity, I’ll use the same default configuration for all clusters: three cache.r5.large nodes, multi-AZ, one shard.

Heading out to the AWS Console, I click on ‘Global Datastore’, and then on ‘Create’ to create my global datastore. I’m asked if I’d like to create a new cluster supporting the datastore, or if I’d rather use an existing cluster. I go for the former, and create a cluster named global-ds-1-useast1.

I click on ‘Next’, and fill in details for a secondary cluster hosted in the us-west-1 region. I unimaginatively name it global-ds-1-us-west1.

Then, I add another secondary cluster in the us-west-2 region, named global-ds-1-uswest2: I go to ‘Global Datastore’, click on ‘Add Region’, and fill in cluster details.

A little while later, all three clusters are up, and have been associated to the global datastore.

Using the redis-cli client running on an Amazon Elastic Compute Cloud (EC2) instance hosted in the us-east-1 region, I can quickly connect to the cluster endpoint and check that it’s indeed operational.

[us-east-1-instance] $ redis-cli -h $US_EAST_1_CLUSTER_READWRITE
> ping
PONG
> set paris france
OK
> set berlin germany
OK
> set london uk
OK
> keys *
1) "london"
2) "berlin"
3) "paris"
> get paris
"france"

This looks fine. Using an EC2 instance hosted in the us-west-1 region, let’s now check that the data we stored in the primary cluster has been replicated to the us-west-1 secondary cluster.

[us-west-1-instance] $ redis-cli -h $US_WEST_1_CLUSTER_READONLY
> keys *
1) "london"
2) "berlin"
3) "paris"
> get paris
"france"

Nice. Now let’s add some more data on the primary cluster…

> hset Parsifal composer "Richard Wagner" date 1882 acts 3 language "German"
> hset DonGiovanni composer "W.A. Mozart" date 1787 acts 2 language "Italian"
> hset Tosca composer "Giacomo Puccini" date 1900 acts 3 language "Italian"

…and check as quickly as possible on the secondary cluster.

> keys *
1) "DonGiovanni"
2) "london"
3) "berlin"
4) "Parsifal"
5) "Tosca"
6) "paris"
> hget Parsifal composer
"Richard Wagner"

That was fast: by the time I switched to the other terminal and ran the command, the new data was already there. That’s not really surprising since the typical network latency for cross region traffic ranges from 60 milliseconds to 200 milliseconds depending on regions.

Now, what would happen if something went wrong with our primary cluster hosted in us-east-1? Well, we could easily promote one of the secondary clusters to full read/write capabilities.

For good measure, I also remove the us-east-1 cluster from the global datastore. Once this is complete, the global datastore looks like this.

Now, using my EC2 instance in the us-west-1 region, and connecting to the read/write endpoint of my cluster, I add more data…

[us-west-1-instance] $ redis-cli -h $US_WEST_1_CLUSTER_READWRITE
> hset Lohengrin composer "Richard Wagner" date 1850 acts 3 language "German"

… and check that it’s been replicated to the us-west-2 cluster.

[us-west-2-instance] $ redis-cli -h $US_WEST_2_CLUSTER_READONLY
> hgetall Lohengrin
1) "composer"
2) "Richard Wagner"
3) "date"
4) "1850"
5) "acts"
6) "3"
7) "language"
8) "German"

It’s all there. Global datastores make it really easy to replicate Amazon ElastiCache data across regions!

Now Available!
This new global datastore feature is available today in US East (N. Virginia), US East (Ohio), US West (N. California), US West (Oregon), Asia Pacific (Seoul), Asia Pacific (Sydney), Asia Pacific (Singapore), Asia Pacific (Tokyo), Europe (Frankfurt), Europe (Ireland), Europe (London). Please give it a try and send us feedback, either on the AWS forum for Amazon ElastiCache, or through your usual AWS support contacts.

Julien;

re:Invent 2019: Introducing the Amazon Builders’ Library (Part I)

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/reinvent-2019-introducing-the-amazon-builders-library-part-i/

Today, I’m going to tell you about a new site we launched at re:Invent, the Amazon Builders’ Library, a collection of living articles covering topics across architecture, software delivery, and operations. You get to peek under the hood of how Amazon architects, releases, and operates the software underpinning Amazon.com and AWS.

Want to know how Amazon.com does what it does? This is for you. In this two-part series (the next one coming December 23), I’ll highlight some of the best architecture articles written by Amazon’s senior technical leaders and engineers.

Avoiding insurmountable queue backlogs

Avoiding insurmountable queue backlogs

In queueing theory, the behavior of queues when they are short is relatively uninteresting. After all, when a queue is short, everyone is happy. It’s only when the queue is backlogged, when the line to an event goes out the door and around the corner, that people start thinking about throughput and prioritization.

In this article, I discuss strategies we use at Amazon to deal with queue backlog scenarios – design approaches we take to drain queues quickly and to prioritize workloads. Most importantly, I describe how to prevent queue backlogs from building up in the first place. In the first half, I describe scenarios that lead to backlogs, and in the second half, I describe many approaches used at Amazon to avoid backlogs or deal with them gracefully.

Read the full article by David Yanacek – Principal Engineer

Timeouts, retries, and backoff with jitter

Timeouts, retries and backoff with jitter

Whenever one service or system calls another, failures can happen. These failures can come from a variety of factors. They include servers, networks, load balancers, software, operating systems, or even mistakes from system operators. We design our systems to reduce the probability of failure, but impossible to build systems that never fail. So in Amazon, we design our systems to tolerate and reduce the probability of failure, and avoid magnifying a small percentage of failures into a complete outage. To build resilient systems, we employ three essential tools: timeouts, retries, and backoff.

Read the full article by Marc Brooker, Senior Principal Engineer

Challenges with distributed systems

Challenges with distributed systems

The moment we added our second server, distributed systems became the way of life at Amazon. When I started at Amazon in 1999, we had so few servers that we could give some of them recognizable names like “fishy” or “online-01”. However, even in 1999, distributed computing was not easy. Then as now, challenges with distributed systems involved latency, scaling, understanding networking APIs, marshalling and unmarshalling data, and the complexity of algorithms such as Paxos. As the systems quickly grew larger and more distributed, what had been theoretical edge cases turned into regular occurrences.

Developing distributed utility computing services, such as reliable long-distance telephone networks, or Amazon Web Services (AWS) services, is hard. Distributed computing is also weirder and less intuitive than other forms of computing because of two interrelated problems. Independent failures and nondeterminism cause the most impactful issues in distributed systems. In addition to the typical computing failures most engineers are used to, failures in distributed systems can occur in many other ways. What’s worse, it’s impossible always to know whether something failed.

Read the full article by Jacob Gabrielson, Senior Principal Engineer

Static stability using Availability Zones

Static stability using availability zones

At Amazon, the services we build must meet extremely high availability targets. This means that we need to think carefully about the dependencies that our systems take. We design our systems to stay resilient even when those dependencies are impaired. In this article, we’ll define a pattern that we use called static stability to achieve this level of resilience. We’ll show you how we apply this concept to Availability Zones, a key infrastructure building block in AWS and therefore a bedrock dependency on which all of our services are built.

Read the full article by Becky Weiss, Senior Principal Engineer, and Mike Furr, Principal Engineer

Check back in two weeks to read about some other architecture-based expert articles that let you in on how Amazon does what it does.

Learn about AWS Services & Solutions – September AWS Online Tech Talks

Post Syndicated from Jenny Hang original https://aws.amazon.com/blogs/aws/learn-about-aws-services-solutions-september-aws-online-tech-talks/

Learn about AWS Services & Solutions – September AWS Online Tech Talks

AWS Tech Talks

Join us this September to learn about AWS services and solutions. The AWS Online Tech Talks are live, online presentations that cover a broad range of topics at varying technical levels. These tech talks, led by AWS solutions architects and engineers, feature technical deep dives, live demonstrations, customer examples, and Q&A with AWS experts. Register Now!

Note – All sessions are free and in Pacific Time.

Tech talks this month:

 

Compute:

September 23, 2019 | 11:00 AM – 12:00 PM PTBuild Your Hybrid Cloud Architecture with AWS – Learn about the extensive range of services AWS offers to help you build a hybrid cloud architecture best suited for your use case.

September 26, 2019 | 1:00 PM – 2:00 PM PTSelf-Hosted WordPress: It’s Easier Than You Think – Learn how you can easily build a fault-tolerant WordPress site using Amazon Lightsail.

October 3, 2019 | 11:00 AM – 12:00 PM PTLower Costs by Right Sizing Your Instance with Amazon EC2 T3 General Purpose Burstable Instances – Get an overview of T3 instances, understand what workloads are ideal for them, and understand how the T3 credit system works so that you can lower your EC2 instance costs today.

 

Containers:

September 26, 2019 | 11:00 AM – 12:00 PM PTDevelop a Web App Using Amazon ECS and AWS Cloud Development Kit (CDK) – Learn how to build your first app using CDK and AWS container services.

 

Data Lakes & Analytics:

September 26, 2019 | 9:00 AM – 10:00 AM PTBest Practices for Provisioning Amazon MSK Clusters and Using Popular Apache Kafka-Compatible Tooling – Learn best practices on running Apache Kafka production workloads at a lower cost on Amazon MSK.

 

Databases:

September 25, 2019 | 1:00 PM – 2:00 PM PTWhat’s New in Amazon DocumentDB (with MongoDB compatibility) – Learn what’s new in Amazon DocumentDB, a fully managed MongoDB compatible database service designed from the ground up to be fast, scalable, and highly available.

October 3, 2019 | 9:00 AM – 10:00 AM PTBest Practices for Enterprise-Class Security, High-Availability, and Scalability with Amazon ElastiCache – Learn about new enterprise-friendly Amazon ElastiCache enhancements like customer managed key and online scaling up or down to make your critical workloads more secure, scalable and available.

 

DevOps:

October 1, 2019 | 9:00 AM – 10:00 AM PT – CI/CD for Containers: A Way Forward for Your DevOps Pipeline – Learn how to build CI/CD pipelines using AWS services to get the most out of the agility afforded by containers.

 

Enterprise & Hybrid:

September 24, 2019 | 1:00 PM – 2:30 PM PT Virtual Workshop: How to Monitor and Manage Your AWS Costs – Learn how to visualize and manage your AWS cost and usage in this virtual hands-on workshop.

October 2, 2019 | 1:00 PM – 2:00 PM PT – Accelerate Cloud Adoption and Reduce Operational Risk with AWS Managed Services – Learn how AMS accelerates your migration to AWS, reduces your operating costs, improves security and compliance, and enables you to focus on your differentiating business priorities.

 

IoT:

September 25, 2019 | 9:00 AM – 10:00 AM PTComplex Monitoring for Industrial with AWS IoT Data Services – Learn how to solve your complex event monitoring challenges with AWS IoT Data Services.

 

Machine Learning:

September 23, 2019 | 9:00 AM – 10:00 AM PTTraining Machine Learning Models Faster – Learn how to train machine learning models quickly and with a single click using Amazon SageMaker.

September 30, 2019 | 11:00 AM – 12:00 PM PTUsing Containers for Deep Learning Workflows – Learn how containers can help address challenges in deploying deep learning environments.

October 3, 2019 | 1:00 PM – 2:30 PM PTVirtual Workshop: Getting Hands-On with Machine Learning and Ready to Race in the AWS DeepRacer League – Join DeClercq Wentzel, Senior Product Manager for AWS DeepRacer, for a presentation on the basics of machine learning and how to build a reinforcement learning model that you can use to join the AWS DeepRacer League.

 

AWS Marketplace:

September 30, 2019 | 9:00 AM – 10:00 AM PTAdvancing Software Procurement in a Containerized World – Learn how to deploy applications faster with third-party container products.

 

Migration:

September 24, 2019 | 11:00 AM – 12:00 PM PTApplication Migrations Using AWS Server Migration Service (SMS) – Learn how to use AWS Server Migration Service (SMS) for automating application migration and scheduling continuous replication, from your on-premises data centers or Microsoft Azure to AWS.

 

Networking & Content Delivery:

September 25, 2019 | 11:00 AM – 12:00 PM PTBuilding Highly Available and Performant Applications using AWS Global Accelerator – Learn how to build highly available and performant architectures for your applications with AWS Global Accelerator, now with source IP preservation.

September 30, 2019 | 1:00 PM – 2:00 PM PTAWS Office Hours: Amazon CloudFront – Just getting started with Amazon CloudFront and [email protected]? Get answers directly from our experts during AWS Office Hours.

 

Robotics:

October 1, 2019 | 11:00 AM – 12:00 PM PTRobots and STEM: AWS RoboMaker and AWS Educate Unite! – Come join members of the AWS RoboMaker and AWS Educate teams as we provide an overview of our education initiatives and walk you through the newly launched RoboMaker Badge.

 

Security, Identity & Compliance:

October 1, 2019 | 1:00 PM – 2:00 PM PTDeep Dive on Running Active Directory on AWS – Learn how to deploy Active Directory on AWS and start migrating your windows workloads.

 

Serverless:

October 2, 2019 | 9:00 AM – 10:00 AM PTDeep Dive on Amazon EventBridge – Learn how to optimize event-driven applications, and use rules and policies to route, transform, and control access to these events that react to data from SaaS apps.

 

Storage:

September 24, 2019 | 9:00 AM – 10:00 AM PTOptimize Your Amazon S3 Data Lake with S3 Storage Classes and Management Tools – Learn how to use the Amazon S3 Storage Classes and management tools to better manage your data lake at scale and to optimize storage costs and resources.

October 2, 2019 | 11:00 AM – 12:00 PM PTThe Great Migration to Cloud Storage: Choosing the Right Storage Solution for Your Workload – Learn more about AWS storage services and identify which service is the right fit for your business.

 

 

New – Redis 5.0 Compatibility for Amazon ElastiCache

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-redis-5-0-compatibility-for-amazon-elasticache/

Earlier this year we announced Redis 4.0 compatibility for Amazon ElastiCache. In that post, Randall explained how ElastiCache for Redis clusters can scale to terabytes of memory and millions of reads and writes per second! Other recent improvements to Amazon ElastiCache for Redis include:

Read Replica Scaling – Support for adding or removing read replica nodes to a Redis Cluster, along with a reduction of up to 40% in cluster creation time.

PCI DSS Compliance – Certification as Payment Card Industry Data Security Standard (PCI DSS) compliant. This allows you to use ElastiCache for Redis (engine versions 4.0.10 and higher) to build low-latency, high-throughput applications that process sensitive payment card data.

FedRAMP Authorized and Available in AWS GovCloud (US) – United States government customers and their partners can use ElastiCache for Redis to process and store their FedRAMP systems and data for mission-critical, high-impact workloads in the AWS GovCloud (US) Region, and at moderate impact level in the other AWS Regions in the US. To learn more, read the ElastiCache for Redis Compliance documentation.

In-Place Upgrades – Support for upgrading a Redis Cluster to a newer engine version in-place and while maintaining availability except for a failover period measured in seconds.

New Instance Types – Support for the use of M5 and R5 instances, with significant performance improvements.

5.0 Compatibility
Today I am happy to announce Redis 5.0 compatibility to Amazon ElastiCache for Redis. This version of Redis includes support for a new Streams data type and new commands (ZPOPMIN and ZPOPMAX) for use on Sorted Sets, and also does a better job of defragmenting memory. To learn more, read What’s New in Redis 5?

As usual, you can use the ElastiCache Console, CLI, APIs, or a CloudFormation template to get started. I’ll use the Console, with the following settings:

My cluster is up and running within minutes:

I can also use the in-place upgrade feature that I mentioned earlier on my existing 4.0-compatible cluster. I select the cluster, click Modify, and the 5.0-compatible engine is already selected. I confirm the other settings and click Modify to proceed:

Streams in Action
The new Stream data type is very powerful! Each Stream has a name, and can be created by simply referencing it as part of an XADD command. Let’s say that I have a long-running process that generates files that need to be scanned and validated. For testing purposes, I can add a bunch of files to a stream name Files from the shell like this:

$  find /usr -name 'a*' -exec redis-cli -h r5cluster.seutl3.ng.0001.use1.cache.amazonaws.com \
    XADD Files \* f {} \;

I can retrieve values starting from the beginning of the stream using the command XREAD BLOCK 1000 STREAMS Files 0:

I can also read the values that are after a given ID:

In most cases, I would be doing the reads and the writes from code rather than from the command line, of course. This is a very simple example of the power of Redis 5 Streams and I am sure that you can do better!

Available Now
You can upgrade existing 4.0-compatible clusters and create new 5.0-compatible clusters today in all commercial AWS regions.

Jeff;

Amazon ElastiCache performance boost with Amazon EC2 M5 and R5 instances

Post Syndicated from Geoff Murase original https://aws.amazon.com/blogs/compute/amazon-elasticache-performance-boost-with-amazon-ec2-m5-and-r5-instances/

Contributed by Ruchita Arora, Sr. Product Manager, Allen Farris, Software Dev Engineer, and Itay Maoz, Sr. Software Engineering Manager

Earlier this year, Amazon EC2 introduced two exciting new instance families, M5 and R5. These instances are based on the new AWS Nitro system, a combination of dedicated hardware and lightweight hypervisor that aims to deliver performance indistinguishable from bare-metal performance. These new instance families deliver up to 25 Gbps of aggregate network bandwidth, with enhanced networking based on the Elastic Network Adapter (ENA).

R5 and M5 instances feature custom hardware and custom Intel Xeon Scalable processors to enable a sustained all core frequency of up to 3.1 GHz and support Intel Advanced Vector Extension 512 (AVX-512). The latest fifth generation EC2 instances offer up to 50% more vCPUs and 60% more memory over the previous generation instances, and larger r5.24xlarge and m5.24xlarge instances.

Amazon ElastiCache

Amazon ElastiCache offers a Redis or Memcached-compatible, fully managed, in-memory data store and caching service in the cloud. The service embodies much of what makes fast data a reality for customers who are looking to process a high volume of data at incredible rates, faster than traditional databases.

As part of adding support for M5 and R5 instances in ElastiCache, we spent the time to take advantage of the AWS Nitro-based system and optimize these instances for ElastiCache for Redis. Developers love the performance, simplicity, and in-memory capabilities of Redis, making it among the most popular NoSQL key-value stores. Redis’s microsecond latency has made it a default choice for caching. The support for advanced data structures (for example, lists, sets, and sorted sets) also enables a variety of in-memory use cases such as leaderboards, in-memory analytics, messaging, and more.

Optimizing performance for ElastiCache for Redis

We started with the M5 and R5 instances and tuned performance by optimizing the Amazon Linux operating system configuration on these instances to maximize network performance for running in-memory workloads.

Using the open-source benchmarking tool rpc-perf, we ran a Redis benchmark with 14.7 million unique keys, 200-byte string values, 80% gets, 20% sets, and no command pipelining. We ran this benchmark on 20 client instances connecting to an optimized R5 instance in the same Availability Zone. We saw up to 30% more transactions per second than running ElastiCache for Redis on the same size instance with the default Linux configuration. For details, see the following table.

Vanilla R4Vanilla R5Tuned R5Vanilla R4 to Tuned R5 Improvement
large88,000 RPS179,000 RPS215,000 RPS144%
xlarge93,000 RPS180,000 RPS207,000 RPS122%
2xlarge107,000 RPS187,000 RPS217,000 RPS102%
4xlarge131,000 RPS208,000 RPS225,000 RPS71%
8xlarge/12xlarge128,000 RPS211,000 RPS247,000 RPS92%
16xlarge/24xlarge149,000 RPS181,000 RPS237,000 RPS59%

We also reduced average (p50) and tail (p99) latencies up to 23%, resulting in average latencies as low as 350 microseconds after these optimizations. The optimized M5 instances yielded 9%-42% incremental requests per second and better CPU utilization for ElastiCache for Redis workloads.

For the same caching use case scenario, ElastiCache for Redis optimized R5 instances benefited from a significant performance improvement over self-managed Redis on R4 instances. The optimized R5 instances supported 59%-144% more transactions per second than similarly sized R4 instances.

We saw similar incremental performance improvements on optimized M5 instances relative to previous generation M4 instances. The optimized M5 instances benefited from throughput improvements of up to 356% relative to previous generation M4 instances.

Among the M5 instances, the most significant improvements were in the smaller size of the M5 family. They take advantage of ENA performance with burst networking up to 10 Gbps for the m5.large through m5.4xlarge sizes, which is useful for handling infrequent traffic spikes.

Summary

We are excited to bring these new instances to customers. You benefit from less hypervisor overhead and better networking, but you also see a dramatic upside from the performance tuning work that the ElastiCache team did to take advantage of the AWS Nitro system. This is just the beginning.

Our performance team is continuing to enhance the full system for optimal ElastiCache for Redis performance, which we are rolling out in the coming months. To get started with ElastiCache on the new M5 and R5 EC2 instances, see the AWS Management Console.

Amazon ElastiCache for Redis now PCI DSS compliant, allowing you to process sensitive payment card data in-memory for faster performance

Post Syndicated from Manan Goel original https://aws.amazon.com/blogs/security/amazon-elasticache-redis-now-pci-dss-compliant-payment-card-data-in-memory/

Amazon ElastiCache for Redis has achieved the Payment Card Industry Data Security Standard (PCI DSS). This means that you can now use ElastiCache for Redis for low-latency and high-throughput in-memory processing of sensitive payment card data, such as Customer Cardholder Data (CHD). ElastiCache for Redis is a Redis-compatible, fully-managed, in-memory data store and caching service in the cloud. It delivers sub-millisecond response times with millions of requests per second.

To create a PCI-Compliant ElastiCache for Redis cluster, you must use the latest Redis engine version 4.0.10 or higher and current generation node types. The service offers various data security controls to store, process, and transmit sensitive financial data. These controls include in-transit encryption (TLS), at-rest encryption, and Redis AUTH. There’s no additional charge for PCI DSS compliant ElastiCache for Redis.

In addition to PCI, ElastiCache for Redis is a HIPAA eligible service. If you want to use your existing Redis clusters that process healthcare information to also process financial information while meeting PCI requirements, you must upgrade your Redis clusters from 3.2.6 to 4.0.10. For more details, see Upgrading Engine Versions and ElastiCache for Redis Compliance.

Meeting these high bars for security and compliance means ElastiCache for Redis can be used for secure database and application caching, session management, queues, chat/messaging, and streaming analytics in industries as diverse as financial services, gaming, retail, e-commerce, and healthcare. For example, you can use ElastiCache for Redis to build an internet-scale, ride-hailing application and add digital wallets that store customer payment card numbers, thus enabling people to perform financial transactions securely and at industry standards.

To get started, see ElastiCache for Redis Compliance Documentation.

Want more AWS Security news? Follow us on Twitter.

New – Redis 4.0 Compatibility in Amazon ElastiCache

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/new-redis-4-0-compatibility-in-amazon-elasticache/

Amazon ElastiCache makes it easy for you to set up a fully managed in-memory data store and cache with Redis or Memcached. Today we’re pleased to launch compatibility with Redis 4.0 in ElastiCache. You can now launch Redis 4.0 compatible ElastiCache nodes or clusters, in all commercial AWS regions. ElastiCache Redis clusters can scale to terabytes of memory and millions of reads / writes per second to serve the most demanding needs of games, IoT devices, financial applications, and web applications.

Launching a Redis cluster in the AWS Management Console or AWS Command Line Interface (CLI) remains simple. I’m going to create a small cluster to play with the new Redis 4.0 features, to use the new version I just select a 4.0 release in “Engine version compatibility”. This will launch, at the time of this writing, a 4.0.10 compatible cluster.

New Features

  • Least Frequently Used (LFU) cache eviction policy – Redis 4.0 launched with a number of caching improvements including a new LFU cache eviction algorithm, customers may see better performance from LFU over Least Recently Used (LRU). Antirez’s blog has a deep dive on some of the changes.
  • Asynchronous FLUSHDB, FLUSHALL, and UNLINK – using the ASYNC option of the FLUSH commands allows users to make a non-blocking call to clear databases. Using UNLINK instead of DEL allows users to asynchronously delete individual keys. There’s also the SWAPDB command which can be useful to atomically switch between entire datasets.
  • Active memory defragmentation – Redis can now defragment memory while running which allows more efficient utilization of memory for customer data. This is off by default but you can modify the parameter group to turn it on. Customers should probably only turn it on if they’re running into fragmentation issues.
  • Online Cluster Resizing and Encryption in transit – with Redis 4.0 you can now use encryption in transit and online cluster resizing at the same time. With Online Cluster Resizing you can add and remove shards from a running cluster to dynamically scale-out or scale-in your Redis cluster and adapt to changes on demand. Previously this feature wasn’t able to be used with encryption in transit but now you can use both features simultaneously. This helps with workloads that require encryption for compliance purposes.
  • MEMORY commands – a whole new family of memory commands: DOCTOR, USAGE, STATS, PURGE, and MALLOC-STATS are available for gathering statistics or usage information on your redis nodes. Running MEMORY DOCTOR will tell you about any memory issues (and it will give you a nice sci-fi easter egg if no problems are detected). The MEMORY STATS command will return some useful statistics like “bytes-per-key” that aren’t available in the INFO commands.

Additional Resources

You can find more information in the documentation and in antirez’s blogs/release notes.

We hope customers can take advantage of these new features right away. As always, feel free to leave any comments below or reach out to us on twitter!

Randall

AWS Online Tech Talks – April & Early May 2018

Post Syndicated from Betsy Chernoff original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-april-early-may-2018/

We have several upcoming tech talks in the month of April and early May. Come join us to learn about AWS services and solution offerings. We’ll have AWS experts online to help answer questions in real-time. Sign up now to learn more, we look forward to seeing you.

Note – All sessions are free and in Pacific Time.

April & early May — 2018 Schedule

Compute

April 30, 2018 | 01:00 PM – 01:45 PM PTBest Practices for Running Amazon EC2 Spot Instances with Amazon EMR (300) – Learn about the best practices for scaling big data workloads as well as process, store, and analyze big data securely and cost effectively with Amazon EMR and Amazon EC2 Spot Instances.

May 1, 2018 | 01:00 PM – 01:45 PM PTHow to Bring Microsoft Apps to AWS (300) – Learn more about how to save significant money by bringing your Microsoft workloads to AWS.

May 2, 2018 | 01:00 PM – 01:45 PM PTDeep Dive on Amazon EC2 Accelerated Computing (300) – Get a technical deep dive on how AWS’ GPU and FGPA-based compute services can help you to optimize and accelerate your ML/DL and HPC workloads in the cloud.

Containers

April 23, 2018 | 11:00 AM – 11:45 AM PTNew Features for Building Powerful Containerized Microservices on AWS (300) – Learn about how this new feature works and how you can start using it to build and run modern, containerized applications on AWS.

Databases

April 23, 2018 | 01:00 PM – 01:45 PM PTElastiCache: Deep Dive Best Practices and Usage Patterns (200) – Learn about Redis-compatible in-memory data store and cache with Amazon ElastiCache.

April 25, 2018 | 01:00 PM – 01:45 PM PTIntro to Open Source Databases on AWS (200) – Learn how to tap the benefits of open source databases on AWS without the administrative hassle.

DevOps

April 25, 2018 | 09:00 AM – 09:45 AM PTDebug your Container and Serverless Applications with AWS X-Ray in 5 Minutes (300) – Learn how AWS X-Ray makes debugging your Container and Serverless applications fun.

Enterprise & Hybrid

April 23, 2018 | 09:00 AM – 09:45 AM PTAn Overview of Best Practices of Large-Scale Migrations (300) – Learn about the tools and best practices on how to migrate to AWS at scale.

April 24, 2018 | 11:00 AM – 11:45 AM PTDeploy your Desktops and Apps on AWS (300) – Learn how to deploy your desktops and apps on AWS with Amazon WorkSpaces and Amazon AppStream 2.0

IoT

May 2, 2018 | 11:00 AM – 11:45 AM PTHow to Easily and Securely Connect Devices to AWS IoT (200) – Learn how to easily and securely connect devices to the cloud and reliably scale to billions of devices and trillions of messages with AWS IoT.

Machine Learning

April 24, 2018 | 09:00 AM – 09:45 AM PT Automate for Efficiency with Amazon Transcribe and Amazon Translate (200) – Learn how you can increase the efficiency and reach your operations with Amazon Translate and Amazon Transcribe.

April 26, 2018 | 09:00 AM – 09:45 AM PT Perform Machine Learning at the IoT Edge using AWS Greengrass and Amazon Sagemaker (200) – Learn more about developing machine learning applications for the IoT edge.

Mobile

April 30, 2018 | 11:00 AM – 11:45 AM PTOffline GraphQL Apps with AWS AppSync (300) – Come learn how to enable real-time and offline data in your applications with GraphQL using AWS AppSync.

Networking

May 2, 2018 | 09:00 AM – 09:45 AM PT Taking Serverless to the Edge (300) – Learn how to run your code closer to your end users in a serverless fashion. Also, David Von Lehman from Aerobatic will discuss how they used [email protected] to reduce latency and cloud costs for their customer’s websites.

Security, Identity & Compliance

April 30, 2018 | 09:00 AM – 09:45 AM PTAmazon GuardDuty – Let’s Attack My Account! (300) – Amazon GuardDuty Test Drive – Practical steps on generating test findings.

May 3, 2018 | 09:00 AM – 09:45 AM PTProtect Your Game Servers from DDoS Attacks (200) – Learn how to use the new AWS Shield Advanced for EC2 to protect your internet-facing game servers against network layer DDoS attacks and application layer attacks of all kinds.

Serverless

April 24, 2018 | 01:00 PM – 01:45 PM PTTips and Tricks for Building and Deploying Serverless Apps In Minutes (200) – Learn how to build and deploy apps in minutes.

Storage

May 1, 2018 | 11:00 AM – 11:45 AM PTBuilding Data Lakes That Cost Less and Deliver Results Faster (300) – Learn how Amazon S3 Select And Amazon Glacier Select increase application performance by up to 400% and reduce total cost of ownership by extending your data lake into cost-effective archive storage.

May 3, 2018 | 11:00 AM – 11:45 AM PTIntegrating On-Premises Vendors with AWS for Backup (300) – Learn how to work with AWS and technology partners to build backup & restore solutions for your on-premises, hybrid, and cloud native environments.

AWS Achieves Spain’s ENS High Certification Across 29 Services

Post Syndicated from Oliver Bell original https://aws.amazon.com/blogs/security/aws-achieves-spains-ens-high-certification-across-29-services/

AWS has achieved Spain’s Esquema Nacional de Seguridad (ENS) High certification across 29 services. To successfully achieve the ENS High Standard, BDO España conducted an independent audit and attested that AWS meets confidentiality, integrity, and availability standards. This provides the assurance needed by Spanish Public Sector organizations wanting to build secure applications and services on AWS.

The National Security Framework, regulated under Royal Decree 3/2010, was developed through close collaboration between ENAC (Entidad Nacional de Acreditación), the Ministry of Finance and Public Administration and the CCN (National Cryptologic Centre), and other administrative bodies.

The following AWS Services are ENS High accredited across our Dublin and Frankfurt Regions:

  • Amazon API Gateway
  • Amazon DynamoDB
  • Amazon Elastic Container Service
  • Amazon Elastic Block Store
  • Amazon Elastic Compute Cloud
  • Amazon Elastic File System
  • Amazon Elastic MapReduce
  • Amazon ElastiCache
  • Amazon Glacier
  • Amazon Redshift
  • Amazon Relational Database Service
  • Amazon Simple Queue Service
  • Amazon Simple Storage Service
  • Amazon Simple Workflow Service
  • Amazon Virtual Private Cloud
  • Amazon WorkSpaces
  • AWS CloudFormation
  • AWS CloudTrail
  • AWS Config
  • AWS Database Migration Service
  • AWS Direct Connect
  • AWS Directory Service
  • AWS Elastic Beanstalk
  • AWS Key Management Service
  • AWS Lambda
  • AWS Snowball
  • AWS Storage Gateway
  • Elastic Load Balancing
  • VM Import/Export

Reactive Microservices Architecture on AWS

Post Syndicated from Sascha Moellering original https://aws.amazon.com/blogs/architecture/reactive-microservices-architecture-on-aws/

Microservice-application requirements have changed dramatically in recent years. These days, applications operate with petabytes of data, need almost 100% uptime, and end users expect sub-second response times. Typical N-tier applications can’t deliver on these requirements.

Reactive Manifesto, published in 2014, describes the essential characteristics of reactive systems including: responsiveness, resiliency, elasticity, and being message driven.

Being message driven is perhaps the most important characteristic of reactive systems. Asynchronous messaging helps in the design of loosely coupled systems, which is a key factor for scalability. In order to build a highly decoupled system, it is important to isolate services from each other. As already described, isolation is an important aspect of the microservices pattern. Indeed, reactive systems and microservices are a natural fit.

Implemented Use Case
This reference architecture illustrates a typical ad-tracking implementation.

Many ad-tracking companies collect massive amounts of data in near-real-time. In many cases, these workloads are very spiky and heavily depend on the success of the ad-tech companies’ customers. Typically, an ad-tracking-data use case can be separated into a real-time part and a non-real-time part. In the real-time part, it is important to collect data as fast as possible and ask several questions including:,  “Is this a valid combination of parameters?,””Does this program exist?,” “Is this program still valid?”

Because response time has a huge impact on conversion rate in advertising, it is important for advertisers to respond as fast as possible. This information should be kept in memory to reduce communication overhead with the caching infrastructure. The tracking application itself should be as lightweight and scalable as possible. For example, the application shouldn’t have any shared mutable state and it should use reactive paradigms. In our implementation, one main application is responsible for this real-time part. It collects and validates data, responds to the client as fast as possible, and asynchronously sends events to backend systems.

The non-real-time part of the application consumes the generated events and persists them in a NoSQL database. In a typical tracking implementation, clicks, cookie information, and transactions are matched asynchronously and persisted in a data store. The matching part is not implemented in this reference architecture. Many ad-tech architectures use frameworks like Hadoop for the matching implementation.

The system can be logically divided into the data collection partand the core data updatepart. The data collection part is responsible for collecting, validating, and persisting the data. In the core data update part, the data that is used for validation gets updated and all subscribers are notified of new data.

Components and Services

Main Application
The main application is implemented using Java 8 and uses Vert.x as the main framework. Vert.x is an event-driven, reactive, non-blocking, polyglot framework to implement microservices. It runs on the Java virtual machine (JVM) by using the low-level IO library Netty. You can write applications in Java, JavaScript, Groovy, Ruby, Kotlin, Scala, and Ceylon. The framework offers a simple and scalable actor-like concurrency model. Vert.x calls handlers by using a thread known as an event loop. To use this model, you have to write code known as “verticles.” Verticles share certain similarities with actors in the actor model. To use them, you have to implement the verticle interface. Verticles communicate with each other by generating messages in  a single event bus. Those messages are sent on the event bus to a specific address, and verticles can register to this address by using handlers.

With only a few exceptions, none of the APIs in Vert.x block the calling thread. Similar to Node.js, Vert.x uses the reactor pattern. However, in contrast to Node.js, Vert.x uses several event loops. Unfortunately, not all APIs in the Java ecosystem are written asynchronously, for example, the JDBC API. Vert.x offers a possibility to run this, blocking APIs without blocking the event loop. These special verticles are called worker verticles. You don’t execute worker verticles by using the standard Vert.x event loops, but by using a dedicated thread from a worker pool. This way, the worker verticles don’t block the event loop.

Our application consists of five different verticles covering different aspects of the business logic. The main entry point for our application is the HttpVerticle, which exposes an HTTP-endpoint to consume HTTP-requests and for proper health checking. Data from HTTP requests such as parameters and user-agent information are collected and transformed into a JSON message. In order to validate the input data (to ensure that the program exists and is still valid), the message is sent to the CacheVerticle.

This verticle implements an LRU-cache with a TTL of 10 minutes and a capacity of 100,000 entries. Instead of adding additional functionality to a standard JDK map implementation, we use Google Guava, which has all the features we need. If the data is not in the L1 cache, the message is sent to the RedisVerticle. This verticle is responsible for data residing in Amazon ElastiCache and uses the Vert.x-redis-client to read data from Redis. In our example, Redis is the central data store. However, in a typical production implementation, Redis would just be the L2 cache with a central data store like Amazon DynamoDB. One of the most important paradigms of a reactive system is to switch from a pull- to a push-based model. To achieve this and reduce network overhead, we’ll use Redis pub/sub to push core data changes to our main application.

Vert.x also supports direct Redis pub/sub-integration, the following code shows our subscriber-implementation:

vertx.eventBus().<JsonObject>consumer(REDIS_PUBSUB_CHANNEL_VERTX, received -> {

JsonObject value = received.body().getJsonObject("value");

String message = value.getString("message");

JsonObject jsonObject = new JsonObject(message);

eb.send(CACHE_REDIS_EVENTBUS_ADDRESS, jsonObject);

});

redis.subscribe(Constants.REDIS_PUBSUB_CHANNEL, res -> {

if (res.succeeded()) {

LOGGER.info("Subscribed to " + Constants.REDIS_PUBSUB_CHANNEL);

} else {

LOGGER.info(res.cause());

}

});

The verticle subscribes to the appropriate Redis pub/sub-channel. If a message is sent over this channel, the payload is extracted and forwarded to the cache-verticle that stores the data in the L1-cache. After storing and enriching data, a response is sent back to the HttpVerticle, which responds to the HTTP request that initially hit this verticle. In addition, the message is converted to ByteBuffer, wrapped in protocol buffers, and send to an Amazon Kinesis Data Stream.

The following example shows a stripped-down version of the KinesisVerticle:

public class KinesisVerticle extends AbstractVerticle {

private static final Logger LOGGER = LoggerFactory.getLogger(KinesisVerticle.class);

private AmazonKinesisAsync kinesisAsyncClient;

private String eventStream = "EventStream";

@Override

public void start() throws Exception {

EventBus eb = vertx.eventBus();

kinesisAsyncClient = createClient();

eventStream = System.getenv(STREAM_NAME) == null ? "EventStream" : System.getenv(STREAM_NAME);

eb.consumer(Constants.KINESIS_EVENTBUS_ADDRESS, message -> {

try {

TrackingMessage trackingMessage = Json.decodeValue((String)message.body(), TrackingMessage.class);

String partitionKey = trackingMessage.getMessageId();

byte [] byteMessage = createMessage(trackingMessage);

ByteBuffer buf = ByteBuffer.wrap(byteMessage);

sendMessageToKinesis(buf, partitionKey);

message.reply("OK");

}

catch (KinesisException exc) {

LOGGER.error(exc);

}

});

}

Kinesis Consumer
This AWS Lambda function consumes data from an Amazon Kinesis Data Stream and persists the data in an Amazon DynamoDB table. In order to improve testability, the invocation code is separated from the business logic. The invocation code is implemented in the class KinesisConsumerHandler and iterates over the Kinesis events pulled from the Kinesis stream by AWS Lambda. Each Kinesis event is unwrapped and transformed from ByteBuffer to protocol buffers and converted into a Java object. Those Java objects are passed to the business logic, which persists the data in a DynamoDB table. In order to improve duration of successive Lambda calls, the DynamoDB-client is instantiated lazily and reused if possible.

Redis Updater
From time to time, it is necessary to update core data in Redis. A very efficient implementation for this requirement is using AWS Lambda and Amazon Kinesis. New core data is sent over the AWS Kinesis stream using JSON as data format and consumed by a Lambda function. This function iterates over the Kinesis events pulled from the Kinesis stream by AWS Lambda. Each Kinesis event is unwrapped and transformed from ByteBuffer to String and converted into a Java object. The Java object is passed to the business logic and stored in Redis. In addition, the new core data is also sent to the main application using Redis pub/sub in order to reduce network overhead and converting from a pull- to a push-based model.

The following example shows the source code to store data in Redis and notify all subscribers:

public void updateRedisData(final TrackingMessage trackingMessage, final Jedis jedis, final LambdaLogger logger) {

try {

ObjectMapper mapper = new ObjectMapper();

String jsonString = mapper.writeValueAsString(trackingMessage);

Map<String, String> map = marshal(jsonString);

String statusCode = jedis.hmset(trackingMessage.getProgramId(), map);

}

catch (Exception exc) {

if (null == logger)

exc.printStackTrace();

else

logger.log(exc.getMessage());

}

}

public void notifySubscribers(final TrackingMessage trackingMessage, final Jedis jedis, final LambdaLogger logger) {

try {

ObjectMapper mapper = new ObjectMapper();

String jsonString = mapper.writeValueAsString(trackingMessage);

jedis.publish(Constants.REDIS_PUBSUB_CHANNEL, jsonString);

}

catch (final IOException e) {

log(e.getMessage(), logger);

}

}

Similarly to our Kinesis Consumer, the Redis-client is instantiated somewhat lazily.

Infrastructure as Code
As already outlined, latency and response time are a very critical part of any ad-tracking solution because response time has a huge impact on conversion rate. In order to reduce latency for customers world-wide, it is common practice to roll out the infrastructure in different AWS Regions in the world to be as close to the end customer as possible. AWS CloudFormation can help you model and set up your AWS resources so that you can spend less time managing those resources and more time focusing on your applications that run in AWS.

You create a template that describes all the AWS resources that you want (for example, Amazon EC2 instances or Amazon RDS DB instances), and AWS CloudFormation takes care of provisioning and configuring those resources for you. Our reference architecture can be rolled out in different Regions using an AWS CloudFormation template, which sets up the complete infrastructure (for example, Amazon Virtual Private Cloud (Amazon VPC), Amazon Elastic Container Service (Amazon ECS) cluster, Lambda functions, DynamoDB table, Amazon ElastiCache cluster, etc.).

Conclusion
In this blog post we described reactive principles and an example architecture with a common use case. We leveraged the capabilities of different frameworks in combination with several AWS services in order to implement reactive principles—not only at the application-level but also at the system-level. I hope I’ve given you ideas for creating your own reactive applications and systems on AWS.

About the Author

Sascha Moellering is a Senior Solution Architect. Sascha is primarily interested in automation, infrastructure as code, distributed computing, containers and JVM. He can be reached at [email protected]

 

 

Now Open AWS EU (Paris) Region

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/now-open-aws-eu-paris-region/

Today we are launching our 18th AWS Region, our fourth in Europe. Located in the Paris area, AWS customers can use this Region to better serve customers in and around France.

The Details
The new EU (Paris) Region provides a broad suite of AWS services including Amazon API Gateway, Amazon Aurora, Amazon CloudFront, Amazon CloudWatch, CloudWatch Events, Amazon CloudWatch Logs, Amazon DynamoDB, Amazon Elastic Compute Cloud (EC2), EC2 Container Registry, Amazon ECS, Amazon Elastic Block Store (EBS), Amazon EMR, Amazon ElastiCache, Amazon Elasticsearch Service, Amazon Glacier, Amazon Kinesis Streams, Polly, Amazon Redshift, Amazon Relational Database Service (RDS), Amazon Route 53, Amazon Simple Notification Service (SNS), Amazon Simple Queue Service (SQS), Amazon Simple Storage Service (S3), Amazon Simple Workflow Service (SWF), Amazon Virtual Private Cloud, Auto Scaling, AWS Certificate Manager (ACM), AWS CloudFormation, AWS CloudTrail, AWS CodeDeploy, AWS Config, AWS Database Migration Service, AWS Direct Connect, AWS Elastic Beanstalk, AWS Identity and Access Management (IAM), AWS Key Management Service (KMS), AWS Lambda, AWS Marketplace, AWS OpsWorks Stacks, AWS Personal Health Dashboard, AWS Server Migration Service, AWS Service Catalog, AWS Shield Standard, AWS Snowball, AWS Snowball Edge, AWS Snowmobile, AWS Storage Gateway, AWS Support (including AWS Trusted Advisor), Elastic Load Balancing, and VM Import.

The Paris Region supports all sizes of C5, M5, R4, T2, D2, I3, and X1 instances.

There are also four edge locations for Amazon Route 53 and Amazon CloudFront: three in Paris and one in Marseille, all with AWS WAF and AWS Shield. Check out the AWS Global Infrastructure page to learn more about current and future AWS Regions.

The Paris Region will benefit from three AWS Direct Connect locations. Telehouse Voltaire is available today. AWS Direct Connect will also become available at Equinix Paris in early 2018, followed by Interxion Paris.

All AWS infrastructure regions around the world are designed, built, and regularly audited to meet the most rigorous compliance standards and to provide high levels of security for all AWS customers. These include ISO 27001, ISO 27017, ISO 27018, SOC 1 (Formerly SAS 70), SOC 2 and SOC 3 Security & Availability, PCI DSS Level 1, and many more. This means customers benefit from all the best practices of AWS policies, architecture, and operational processes built to satisfy the needs of even the most security sensitive customers.

AWS is certified under the EU-US Privacy Shield, and the AWS Data Processing Addendum (DPA) is GDPR-ready and available now to all AWS customers to help them prepare for May 25, 2018 when the GDPR becomes enforceable. The current AWS DPA, as well as the AWS GDPR DPA, allows customers to transfer personal data to countries outside the European Economic Area (EEA) in compliance with European Union (EU) data protection laws. AWS also adheres to the Cloud Infrastructure Service Providers in Europe (CISPE) Code of Conduct. The CISPE Code of Conduct helps customers ensure that AWS is using appropriate data protection standards to protect their data, consistent with the GDPR. In addition, AWS offers a wide range of services and features to help customers meet the requirements of the GDPR, including services for access controls, monitoring, logging, and encryption.

From Our Customers
Many AWS customers are preparing to use this new Region. Here’s a small sample:

Societe Generale, one of the largest banks in France and the world, has accelerated their digital transformation while working with AWS. They developed SG Research, an application that makes reports from Societe Generale’s analysts available to corporate customers in order to improve the decision-making process for investments. The new AWS Region will reduce latency between applications running in the cloud and in their French data centers.

SNCF is the national railway company of France. Their mobile app, powered by AWS, delivers real-time traffic information to 14 million riders. Extreme weather, traffic events, holidays, and engineering works can cause usage to peak at hundreds of thousands of users per second. They are planning to use machine learning and big data to add predictive features to the app.

Radio France, the French public radio broadcaster, offers seven national networks, and uses AWS to accelerate its innovation and stay competitive.

Les Restos du Coeur, a French charity that provides assistance to the needy, delivering food packages and participating in their social and economic integration back into French society. Les Restos du Coeur is using AWS for its CRM system to track the assistance given to each of their beneficiaries and the impact this is having on their lives.

AlloResto by JustEat (a leader in the French FoodTech industry), is using AWS to to scale during traffic peaks and to accelerate their innovation process.

AWS Consulting and Technology Partners
We are already working with a wide variety of consulting, technology, managed service, and Direct Connect partners in France. Here’s a partial list:

AWS Premier Consulting PartnersAccenture, Capgemini, Claranet, CloudReach, DXC, and Edifixio.

AWS Consulting PartnersABC Systemes, Atos International SAS, CoreExpert, Cycloid, Devoteam, LINKBYNET, Oxalide, Ozones, Scaleo Information Systems, and Sopra Steria.

AWS Technology PartnersAxway, Commerce Guys, MicroStrategy, Sage, Software AG, Splunk, Tibco, and Zerolight.

AWS in France
We have been investing in Europe, with a focus on France, for the last 11 years. We have also been developing documentation and training programs to help our customers to improve their skills and to accelerate their journey to the AWS Cloud.

As part of our commitment to AWS customers in France, we plan to train more than 25,000 people in the coming years, helping them develop highly sought after cloud skills. They will have access to AWS training resources in France via AWS Academy, AWSome days, AWS Educate, and webinars, all delivered in French by AWS Technical Trainers and AWS Certified Trainers.

Use it Today
The EU (Paris) Region is open for business now and you can start using it today!

Jeff;

 

Now Open – AWS China (Ningxia) Region

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/now-open-aws-china-ningxia-region/

Today we launched our 17th Region globally, and the second in China. The AWS China (Ningxia) Region, operated by Ningxia Western Cloud Data Technology Co. Ltd. (NWCD), is generally available now and provides customers another option to run applications and store data on AWS in China.

The Details
At launch, the new China (Ningxia) Region, operated by NWCD, supports Auto Scaling, AWS Config, AWS CloudFormation, AWS CloudTrail, Amazon CloudWatch, CloudWatch Events, Amazon CloudWatch Logs, AWS CodeDeploy, AWS Direct Connect, Amazon DynamoDB, Amazon Elastic Compute Cloud (EC2), Amazon Elastic Block Store (EBS), Amazon EC2 Systems Manager, AWS Elastic Beanstalk, Amazon ElastiCache, Amazon Elasticsearch Service, Elastic Load Balancing, Amazon EMR, Amazon Glacier, AWS Identity and Access Management (IAM), Amazon Kinesis Streams, Amazon Redshift, Amazon Relational Database Service (RDS), Amazon Simple Storage Service (S3), Amazon Simple Notification Service (SNS), Amazon Simple Queue Service (SQS), AWS Support API, AWS Trusted Advisor, Amazon Simple Workflow Service (SWF), Amazon Virtual Private Cloud, and VM Import. Visit the AWS China Products page for additional information on these services.

The Region supports all sizes of C4, D2, M4, T2, R4, I3, and X1 instances.

Check out the AWS Global Infrastructure page to learn more about current and future AWS Regions.

Operating Partner
To comply with China’s legal and regulatory requirements, AWS has formed a strategic technology collaboration with NWCD to operate and provide services from the AWS China (Ningxia) Region. Founded in 2015, NWCD is a licensed datacenter and cloud services provider, based in Ningxia, China. NWCD joins Sinnet, the operator of the AWS China China (Beijing) Region, as an AWS operating partner in China. Through these relationships, AWS provides its industry-leading technology, guidance, and expertise to NWCD and Sinnet, while NWCD and Sinnet operate and provide AWS cloud services to local customers. While the cloud services offered in both AWS China Regions are the same as those available in other AWS Regions, the AWS China Regions are different in that they are isolated from all other AWS Regions and operated by AWS’s Chinese partners separately from all other AWS Regions. Customers using the AWS China Regions enter into customer agreements with Sinnet and NWCD, rather than with AWS.

Use it Today
The AWS China (Ningxia) Region, operated by NWCD, is open for business, and you can start using it now! Starting today, Chinese developers, startups, and enterprises, as well as government, education, and non-profit organizations, can leverage AWS to run their applications and store their data in the new AWS China (Ningxia) Region, operated by NWCD. Customers already using the AWS China (Beijing) Region, operated by Sinnet, can select the AWS China (Ningxia) Region directly from the AWS Management Console, while new customers can request an account at www.amazonaws.cn to begin using both AWS China Regions.

Jeff;

 

 

Glenn’s Take on re:Invent 2017 Part 1

Post Syndicated from Glenn Gore original https://aws.amazon.com/blogs/architecture/glenns-take-on-reinvent-2017-part-1/

GREETINGS FROM LAS VEGAS

Glenn Gore here, Chief Architect for AWS. I’m in Las Vegas this week — with 43K others — for re:Invent 2017. We have a lot of exciting announcements this week. I’m going to post to the AWS Architecture blog each day with my take on what’s interesting about some of the announcements from a cloud architectural perspective.

Why not start at the beginning? At the Midnight Madness launch on Sunday night, we announced Amazon Sumerian, our platform for VR, AR, and mixed reality. The hype around VR/AR has existed for many years, though for me, it is a perfect example of how a working end-to-end solution often requires innovation from multiple sources. For AR/VR to be successful, we need many components to come together in a coherent manner to provide a great experience.

First, we need lightweight, high-definition goggles with motion tracking that are comfortable to wear. Second, we need to track movement of our body and hands in a 3-D space so that we can interact with virtual objects in the virtual world. Third, we need to build the virtual world itself and populate it with assets and define how the interactions will work and connect with various other systems.

There has been rapid development of the physical devices for AR/VR, ranging from iOS devices to Oculus Rift and HTC Vive, which provide excellent capabilities for the first and second components defined above. With the launch of Amazon Sumerian we are solving for the third area, which will help developers easily build their own virtual worlds and start experimenting and innovating with how to apply AR/VR in new ways.

Already, within 48 hours of Amazon Sumerian being announced, I have had multiple discussions with customers and partners around some cool use cases where VR can help in training simulations, remote-operator controls, or with new ideas around interacting with complex visual data sets, which starts bringing concepts straight out of sci-fi movies into the real (virtual) world. I am really excited to see how Sumerian will unlock the creative potential of developers and where this will lead.

Amazon MQ
I am a huge fan of distributed architectures where asynchronous messaging is the backbone of connecting the discrete components together. Amazon Simple Queue Service (Amazon SQS) is one of my favorite services due to its simplicity, scalability, performance, and the incredible flexibility of how you can use Amazon SQS in so many different ways to solve complex queuing scenarios.

While Amazon SQS is easy to use when building cloud-native applications on AWS, many of our customers running existing applications on-premises required support for different messaging protocols such as: Java Message Service (JMS), .Net Messaging Service (NMS), Advanced Message Queuing Protocol (AMQP), MQ Telemetry Transport (MQTT), Simple (or Streaming) Text Orientated Messaging Protocol (STOMP), and WebSockets. One of the most popular applications for on-premise message brokers is Apache ActiveMQ. With the release of Amazon MQ, you can now run Apache ActiveMQ on AWS as a managed service similar to what we did with Amazon ElastiCache back in 2012. For me, there are two compelling, major benefits that Amazon MQ provides:

  • Integrate existing applications with cloud-native applications without having to change a line of application code if using one of the supported messaging protocols. This removes one of the biggest blockers for integration between the old and the new.
  • Remove the complexity of configuring Multi-AZ resilient message broker services as Amazon MQ provides out-of-the-box redundancy by always storing messages redundantly across Availability Zones. Protection is provided against failure of a broker through to complete failure of an Availability Zone.

I believe that Amazon MQ is a major component in the tools required to help you migrate your existing applications to AWS. Having set up cross-data center Apache ActiveMQ clusters in the past myself and then testing to ensure they work as expected during critical failure scenarios, technical staff working on migrations to AWS benefit from the ease of deploying a fully redundant, managed Apache ActiveMQ cluster within minutes.

Who would have thought I would have been so excited to revisit Apache ActiveMQ in 2017 after using SQS for many, many years? Choice is a wonderful thing.

Amazon GuardDuty
Maintaining application and information security in the modern world is increasingly complex and is constantly evolving and changing as new threats emerge. This is due to the scale, variety, and distribution of services required in a competitive online world.

At Amazon, security is our number one priority. Thus, we are always looking at how we can increase security detection and protection while simplifying the implementation of advanced security practices for our customers. As a result, we released Amazon GuardDuty, which provides intelligent threat detection by using a combination of multiple information sources, transactional telemetry, and the application of machine learning models developed by AWS. One of the biggest benefits of Amazon GuardDuty that I appreciate is that enabling this service requires zero software, agents, sensors, or network choke points. which can all impact performance or reliability of the service you are trying to protect. Amazon GuardDuty works by monitoring your VPC flow logs, AWS CloudTrail events, DNS logs, as well as combing other sources of security threats that AWS is aggregating from our own internal and external sources.

The use of machine learning in Amazon GuardDuty allows it to identify changes in behavior, which could be suspicious and require additional investigation. Amazon GuardDuty works across all of your AWS accounts allowing for an aggregated analysis and ensuring centralized management of detected threats across accounts. This is important for our larger customers who can be running many hundreds of AWS accounts across their organization, as providing a single common threat detection of their organizational use of AWS is critical to ensuring they are protecting themselves.

Detection, though, is only the beginning of what Amazon GuardDuty enables. When a threat is identified in Amazon GuardDuty, you can configure remediation scripts or trigger Lambda functions where you have custom responses that enable you to start building automated responses to a variety of different common threats. Speed of response is required when a security incident may be taking place. For example, Amazon GuardDuty detects that an Amazon Elastic Compute Cloud (Amazon EC2) instance might be compromised due to traffic from a known set of malicious IP addresses. Upon detection of a compromised EC2 instance, we could apply an access control entry restricting outbound traffic for that instance, which stops loss of data until a security engineer can assess what has occurred.

Whether you are a customer running a single service in a single account, or a global customer with hundreds of accounts with thousands of applications, or a startup with hundreds of micro-services with hourly release cycle in a devops world, I recommend enabling Amazon GuardDuty. We have a 30-day free trial available for all new customers of this service. As it is a monitor of events, there is no change required to your architecture within AWS.

Stay tuned for tomorrow’s post on AWS Media Services and Amazon Neptune.

 

Glenn during the Tour du Mont Blanc

Access Resources in a VPC from AWS CodeBuild Builds

Post Syndicated from John Pignata original https://aws.amazon.com/blogs/devops/access-resources-in-a-vpc-from-aws-codebuild-builds/

John Pignata, Startup Solutions Architect, Amazon Web Services

In this blog post we’re going to discuss a new AWS CodeBuild feature that is available starting today. CodeBuild builds can now access resources in a VPC directly without these resources being exposed to the public internet. These resources include Amazon Relational Database Service (Amazon RDS) databases, Amazon ElastiCache clusters, internal services running on Amazon Elastic Compute Cloud (Amazon EC2), and Amazon EC2 Container Service (Amazon ECS), or any service endpoints that are only reachable from within a specific VPC.

CodeBuild is a fully managed build service that compiles source code, runs tests, and produces software packages that are ready to deploy. As part of the build process, developers often require access to resources that should be isolated from the public Internet. Now CodeBuild builds can be optionally configured to have VPC connectivity and access these resources directly.

Accessing Resources in a VPC

You can configure builds to have access to a VPC when you create a CodeBuild project or you can update an existing CodeBuild project with VPC configuration attributes. Here’s how it looks in the console:

 

To configure VPC connectivity: select a VPC, one or more subnets within that VPC, and one or more VPC security groups that CodeBuild should apply when attaching to your VPC. Once configured, commands running as part of your build will be able to access resources in your VPC without transiting across the public Internet.

Use Cases

The availability of VPC connectivity from CodeBuild builds unlocks many potential uses. For example, you can:

  • Run integration tests from your build against data in an Amazon RDS instance that’s isolated on a private subnet.
  • Query data in an ElastiCache cluster directly from tests.
  • Interact with internal web services hosted on Amazon EC2, Amazon ECS, or services that use internal Elastic Load Balancing.
  • Retrieve dependencies from self-hosted, internal artifact repositories such as PyPI for Python, Maven for Java, npm for Node.js, and so on.
  • Access objects in an Amazon S3 bucket configured to allow access only through a VPC endpoint.
  • Query external web services that require fixed IP addresses through the Elastic IP address of the NAT gateway associated with your subnet(s).

… and more! Your builds can now access any resource that’s hosted in your VPC without any compromise on network isolation.

Internet Connectivity

CodeBuild requires access to resources on the public Internet to successfully execute builds. At a minimum, it must be able to reach your source repository system (such as AWS CodeCommit, GitHub, Bitbucket), Amazon Simple Storage Service (Amazon S3) to deliver build artifacts, and Amazon CloudWatch Logs to stream logs from the build process. The interface attached to your VPC will not be assigned a public IP address so to enable Internet access from your builds, you will need to set up a managed NAT Gateway or NAT instance for the subnets you configure. You must also ensure your security groups allow outbound access to these services.

IP Address Space

Each running build will be assigned an IP address from one of the subnets in your VPC that you designate for CodeBuild to use. As CodeBuild scales to meet your build volume, ensure that you select subnets with enough address space to accommodate your expected number of concurrent builds.

Service Role Permissions

CodeBuild requires new permissions in order to manage network interfaces on your VPCs. If you create a service role for your new projects, these permissions will be included in that role’s policy automatically. For existing service roles, you can edit the policy document to include the additional actions. For the full policy document to apply to your service role, see Advanced Setup in the CodeBuild documentation.

For more information, see VPC Support in the CodeBuild documentation. We hope you find the ability to access internal resources on a VPC useful in your build processes! If you have any questions or feedback, feel free to reach out to us through the AWS CodeBuild forum or leave a comment!

Event-Driven Computing with Amazon SNS and AWS Compute, Storage, Database, and Networking Services

Post Syndicated from Christie Gifrin original https://aws.amazon.com/blogs/compute/event-driven-computing-with-amazon-sns-compute-storage-database-and-networking-services/

Contributed by Otavio Ferreira, Manager, Software Development, AWS Messaging

Like other developers around the world, you may be tackling increasingly complex business problems. A key success factor, in that case, is the ability to break down a large project scope into smaller, more manageable components. A service-oriented architecture guides you toward designing systems as a collection of loosely coupled, independently scaled, and highly reusable services. Microservices take this even further. To improve performance and scalability, they promote fine-grained interfaces and lightweight protocols.

However, the communication among isolated microservices can be challenging. Services are often deployed onto independent servers and don’t share any compute or storage resources. Also, you should avoid hard dependencies among microservices, to preserve maintainability and reusability.

If you apply the pub/sub design pattern, you can effortlessly decouple and independently scale out your microservices and serverless architectures. A pub/sub messaging service, such as Amazon SNS, promotes event-driven computing that statically decouples event publishers from subscribers, while dynamically allowing for the exchange of messages between them. An event-driven architecture also introduces the responsiveness needed to deal with complex problems, which are often unpredictable and asynchronous.

What is event-driven computing?

Given the context of microservices, event-driven computing is a model in which subscriber services automatically perform work in response to events triggered by publisher services. This paradigm can be applied to automate workflows while decoupling the services that collectively and independently work to fulfil these workflows. Amazon SNS is an event-driven computing hub, in the AWS Cloud, that has native integration with several AWS publisher and subscriber services.

Which AWS services publish events to SNS natively?

Several AWS services have been integrated as SNS publishers and, therefore, can natively trigger event-driven computing for a variety of use cases. In this post, I specifically cover AWS compute, storage, database, and networking services, as depicted below.

Compute services

  • Auto Scaling: Helps you ensure that you have the correct number of Amazon EC2 instances available to handle the load for your application. You can configure Auto Scaling lifecycle hooks to trigger events, as Auto Scaling resizes your EC2 cluster.As an example, you may want to warm up the local cache store on newly launched EC2 instances, and also download log files from other EC2 instances that are about to be terminated. To make this happen, set an SNS topic as your Auto Scaling group’s notification target, then subscribe two Lambda functions to this SNS topic. The first function is responsible for handling scale-out events (to warm up cache upon provisioning), whereas the second is in charge of handling scale-in events (to download logs upon termination).

  • AWS Elastic Beanstalk: An easy-to-use service for deploying and scaling web applications and web services developed in a number of programming languages. You can configure event notifications for your Elastic Beanstalk environment so that notable events can be automatically published to an SNS topic, then pushed to topic subscribers.As an example, you may use this event-driven architecture to coordinate your continuous integration pipeline (such as Jenkins CI). That way, whenever an environment is created, Elastic Beanstalk publishes this event to an SNS topic, which triggers a subscribing Lambda function, which then kicks off a CI job against your newly created Elastic Beanstalk environment.

  • Elastic Load Balancing: Automatically distributes incoming application traffic across Amazon EC2 instances, containers, or other resources identified by IP addresses.You can configure CloudWatch alarms on Elastic Load Balancing metrics, to automate the handling of events derived from Classic Load Balancers. As an example, you may leverage this event-driven design to automate latency profiling in an Amazon ECS cluster behind a Classic Load Balancer. In this example, whenever your ECS cluster breaches your load balancer latency threshold, an event is posted by CloudWatch to an SNS topic, which then triggers a subscribing Lambda function. This function runs a task on your ECS cluster to trigger a latency profiling tool, hosted on the cluster itself. This can enhance your latency troubleshooting exercise by making it timely.

Storage services

  • Amazon S3: Object storage built to store and retrieve any amount of data.You can enable S3 event notifications, and automatically get them posted to SNS topics, to automate a variety of workflows. For instance, imagine that you have an S3 bucket to store incoming resumes from candidates, and a fleet of EC2 instances to encode these resumes from their original format (such as Word or text) into a portable format (such as PDF).In this example, whenever new files are uploaded to your input bucket, S3 publishes these events to an SNS topic, which in turn pushes these messages into subscribing SQS queues. Then, encoding workers running on EC2 instances poll these messages from the SQS queues; retrieve the original files from the input S3 bucket; encode them into PDF; and finally store them in an output S3 bucket.

  • Amazon EFS: Provides simple and scalable file storage, for use with Amazon EC2 instances, in the AWS Cloud.You can configure CloudWatch alarms on EFS metrics, to automate the management of your EFS systems. For example, consider a highly parallelized genomics analysis application that runs against an EFS system. By default, this file system is instantiated on the “General Purpose” performance mode. Although this performance mode allows for lower latency, it might eventually impose a scaling bottleneck. Therefore, you may leverage an event-driven design to handle it automatically.Basically, as soon as the EFS metric “Percent I/O Limit” breaches 95%, CloudWatch could post this event to an SNS topic, which in turn would push this message into a subscribing Lambda function. This function automatically creates a new file system, this time on the “Max I/O” performance mode, then switches the genomics analysis application to this new file system. As a result, your application starts experiencing higher I/O throughput rates.

  • Amazon Glacier: A secure, durable, and low-cost cloud storage service for data archiving and long-term backup.You can set a notification configuration on an Amazon Glacier vault so that when a job completes, a message is published to an SNS topic. Retrieving an archive from Amazon Glacier is a two-step asynchronous operation, in which you first initiate a job, and then download the output after the job completes. Therefore, SNS helps you eliminate polling your Amazon Glacier vault to check whether your job has been completed, or not. As usual, you may subscribe SQS queues, Lambda functions, and HTTP endpoints to your SNS topic, to be notified when your Amazon Glacier job is done.

  • AWS Snowball: A petabyte-scale data transport solution that uses secure appliances to transfer large amounts of data.You can leverage Snowball notifications to automate workflows related to importing data into and exporting data from AWS. More specifically, whenever your Snowball job status changes, Snowball can publish this event to an SNS topic, which in turn can broadcast the event to all its subscribers.As an example, imagine a Geographic Information System (GIS) that distributes high-resolution satellite images to users via Web browser. In this example, the GIS vendor could capture up to 80 TB of satellite images; create a Snowball job to import these files from an on-premises system to an S3 bucket; and provide an SNS topic ARN to be notified upon job status changes in Snowball. After Snowball changes the job status from “Importing” to “Completed”, Snowball publishes this event to the specified SNS topic, which delivers this message to a subscribing Lambda function, which finally creates a CloudFront web distribution for the target S3 bucket, to serve the images to end users.

Database services

  • Amazon RDS: Makes it easy to set up, operate, and scale a relational database in the cloud.RDS leverages SNS to broadcast notifications when RDS events occur. As usual, these notifications can be delivered via any protocol supported by SNS, including SQS queues, Lambda functions, and HTTP endpoints.As an example, imagine that you own a social network website that has experienced organic growth, and needs to scale its compute and database resources on demand. In this case, you could provide an SNS topic to listen to RDS DB instance events. When the “Low Storage” event is published to the topic, SNS pushes this event to a subscribing Lambda function, which in turn leverages the RDS API to increase the storage capacity allocated to your DB instance. The provisioning itself takes place within the specified DB maintenance window.

  • Amazon ElastiCache: A web service that makes it easy to deploy, operate, and scale an in-memory data store or cache in the cloud.ElastiCache can publish messages using Amazon SNS when significant events happen on your cache cluster. This feature can be used to refresh the list of servers on client machines connected to individual cache node endpoints of a cache cluster. For instance, an ecommerce website fetches product details from a cache cluster, with the goal of offloading a relational database and speeding up page load times. Ideally, you want to make sure that each web server always has an updated list of cache servers to which to connect.To automate this node discovery process, you can get your ElastiCache cluster to publish events to an SNS topic. Thus, when ElastiCache event “AddCacheNodeComplete” is published, your topic then pushes this event to all subscribing HTTP endpoints that serve your ecommerce website, so that these HTTP servers can update their list of cache nodes.

  • Amazon Redshift: A fully managed data warehouse that makes it simple to analyze data using standard SQL and BI (Business Intelligence) tools.Amazon Redshift uses SNS to broadcast relevant events so that data warehouse workflows can be automated. As an example, imagine a news website that sends clickstream data to a Kinesis Firehose stream, which then loads the data into Amazon Redshift, so that popular news and reading preferences might be surfaced on a BI tool. At some point though, this Amazon Redshift cluster might need to be resized, and the cluster enters a ready-only mode. Hence, this Amazon Redshift event is published to an SNS topic, which delivers this event to a subscribing Lambda function, which finally deletes the corresponding Kinesis Firehose delivery stream, so that clickstream data uploads can be put on hold.At a later point, after Amazon Redshift publishes the event that the maintenance window has been closed, SNS notifies a subscribing Lambda function accordingly, so that this function can re-create the Kinesis Firehose delivery stream, and resume clickstream data uploads to Amazon Redshift.

  • AWS DMS: Helps you migrate databases to AWS quickly and securely. The source database remains fully operational during the migration, minimizing downtime to applications that rely on the database.DMS also uses SNS to provide notifications when DMS events occur, which can automate database migration workflows. As an example, you might create data replication tasks to migrate an on-premises MS SQL database, composed of multiple tables, to MySQL. Thus, if replication tasks fail due to incompatible data encoding in the source tables, these events can be published to an SNS topic, which can push these messages into a subscribing SQS queue. Then, encoders running on EC2 can poll these messages from the SQS queue, encode the source tables into a compatible character set, and restart the corresponding replication tasks in DMS. This is an event-driven approach to a self-healing database migration process.

Networking services

  • Amazon Route 53: A highly available and scalable cloud-based DNS (Domain Name System). Route 53 health checks monitor the health and performance of your web applications, web servers, and other resources.You can set CloudWatch alarms and get automated Amazon SNS notifications when the status of your Route 53 health check changes. As an example, imagine an online payment gateway that reports the health of its platform to merchants worldwide, via a status page. This page is hosted on EC2 and fetches platform health data from DynamoDB. In this case, you could configure a CloudWatch alarm for your Route 53 health check, so that when the alarm threshold is breached, and the payment gateway is no longer considered healthy, then CloudWatch publishes this event to an SNS topic, which pushes this message to a subscribing Lambda function, which finally updates the DynamoDB table that populates the status page. This event-driven approach avoids any kind of manual update to the status page visited by merchants.

  • AWS Direct Connect (AWS DX): Makes it easy to establish a dedicated network connection from your premises to AWS, which can reduce your network costs, increase bandwidth throughput, and provide a more consistent network experience than Internet-based connections.You can monitor physical DX connections using CloudWatch alarms, and send SNS messages when alarms change their status. As an example, when a DX connection state shifts to 0 (zero), indicating that the connection is down, this event can be published to an SNS topic, which can fan out this message to impacted servers through HTTP endpoints, so that they might reroute their traffic through a different connection instead. This is an event-driven approach to connectivity resilience.

More event-driven computing on AWS

In addition to SNS, event-driven computing is also addressed by Amazon CloudWatch Events, which delivers a near real-time stream of system events that describe changes in AWS resources. With CloudWatch Events, you can route each event type to one or more targets, including:

Many AWS services publish events to CloudWatch. As an example, you can get CloudWatch Events to capture events on your ETL (Extract, Transform, Load) jobs running on AWS Glue and push failed ones to an SQS queue, so that you can retry them later.

Conclusion

Amazon SNS is a pub/sub messaging service that can be used as an event-driven computing hub to AWS customers worldwide. By capturing events natively triggered by AWS services, such as EC2, S3 and RDS, you can automate and optimize all kinds of workflows, namely scaling, testing, encoding, profiling, broadcasting, discovery, failover, and much more. Business use cases presented in this post ranged from recruiting websites, to scientific research, geographic systems, social networks, retail websites, and news portals.

Start now by visiting Amazon SNS in the AWS Management Console, or by trying the AWS 10-Minute Tutorial, Send Fan-out Event Notifications with Amazon SNS and Amazon SQS.

 

Amazon ElastiCache Update – Online Resizing for Redis Clusters

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-elasticache-update-online-resizing-for-redis-clusters/

Amazon ElastiCache makes it easy to for you to set up a fast, in-memory data store and cache. With support for the two most popular open source offerings (Redis and Memcached), ElastiCache supports the demanding needs of game leaderboards, in-memory analytics, and large-scale messaging.

Today I would like to tell you about an important addition to Amazon ElastiCache for Redis. You can already create clusters with up to 15 shards, each responsible for storing keys and values for a specific set of slots (each cluster has exactly 16,384 slots). A single cluster can expand to store 3.55 terabytes of in-memory data while supporting up to 20 million reads and 4.5 million writes per second.

Now with Online Resizing
You can now adjust the number of shards in a running ElastiCache for Redis cluster while the cluster remains online and responding to requests. This gives you the power to respond to changes in traffic and data volume without having to take the cluster offline or to start with an empty cache. You can also rebalance a running cluster to uniformly redistribute slot space without changing the number of shards.

When you initiate a resharding or rebalancing operation, ElastiCache for Redis starts by preparing a plan that will result in an even distribution of slots across the shards in the cluster. Then it transfers slots across shards, moving many in parallel for efficiency. This all happens while the cluster continues to respond to requests, with a modest impact on write throughput for writes to a slot that is in motion. The migration rate is dependent on the instance type, network speed, read/write traffic to the slots, and is generally about 1 gigabyte per minute.

The resharding and rebalancing operations apply to Redis clusters that were created with Cluster Mode enabled:

Resharding a Cluster
In general, you will know that it is time to expand a cluster via resharding when it starts to face significant memory pressure or when individual nodes are becoming bottlenecks. You can watch the cluster’s CloudWatch metrics to identify each situation:

Memory Pressure – FreeableMemory, SwapUsage, BytesUsedForCache.

CPU Bottleneck – CPUUtilization, CurrConnections, NewConnections.

Network Bottleneck – NetworkBytesIn, NetworkBytesOut.

You can use CloudWatch Dashboards to monitor these metrics, and CloudWatch Alarms to automate the resharding process.

To reshard a Redis cluster from the ElastiCache Dashboard, click on the cluster to visit the detail page, and then click on the Add shards button:

Enter the number of shards to add and (optionally) the desired Availability Zones, then click on Add:

The status of the cluster will change to modifying and the resharding process will begin. It can take anywhere from a few minutes to several hours, as indicated above. You can track the progress on the detail page for the cluster:

You can see the slots moving from shard to shard:

You can also watch the Events for the cluster:

During the resharding you should avoid the use of the KEYS and SMEMBERS commands, as well as compute-intensive Lua scripts in order to moderate the load on the cluster shards. You should avoid the FLUSHDB and FLUSHALL commands entirely; using them will interrupt and then abort the resharding process.

The status of each shard will return to available when the process is complete:

The same process takes place when you delete shards.

Rebalancing Slots
You can perform this operation by heading to the cluster’s detail page and clicking on Rebalance Slot Distribution:

Things to Know
Here are a couple of things to keep in mind about this new feature:

Engine Version – Your cluster must be running version 3.2.10 of the Redis engine.

Migration Size – Slots that contain items that are larger than 256 megabytes after serialization are not migrated.

Cluster Endpoint – The cluster endpoint does not change as a result of a resharding or rebalancing.

Available Now
This feature is available now and you can start using it today.

Jeff;

 

Amazon ElastiCache for Redis Is Now a HIPAA Eligible Service and You Can Use It to Power Real-Time Healthcare Applications

Post Syndicated from Manan Goel original https://aws.amazon.com/blogs/security/now-you-can-use-amazon-elasticache-for-redis-a-hipaa-eligible-service-to-power-real-time-healthcare-applications/

HIPAA image

Amazon ElastiCache for Redis is now a HIPAA Eligible Service and has been added to the AWS Business Associate Addendum (BAA). This means you can use ElastiCache for Redis to help you power healthcare applications as well as process, maintain, and store protected health information (PHI). ElastiCache for Redis is a Redis-compatible, fully-managed, in-memory data store and cache in the cloud that provides sub-millisecond latency to power applications. Now you can use the speed, simplicity, and flexibility of ElastiCache for Redis to build secure, fast, and internet-scale healthcare applications.

ElastiCache for Redis with HIPAA eligibility is available for all current-generation instance node types and requires Redis engine version 3.2.6. You must ensure that nodes are configured to encrypt the data in transit and at rest, and to authenticate Redis commands before the engine executes them. See Architecting for HIPAA Security and Compliance on Amazon Web Services for information about how to configure Amazon HIPAA Eligible Services to store, process, and transmit PHI.

ElastiCache for Redis uses Advanced Encryption Standard (AES)-512 symmetric keys to encrypt data on disk. The Redis backups stored in Amazon S3 are encrypted with server-side encryption (SSE) using AES-256 symmetric keys. ElastiCache for Redis uses Transport Layer Security (TLS) to encrypt data in transit. It uses the Redis AUTH token that you provide at the time of Redis cluster creation to authenticate the Redis commands coming from clients. The AUTH token is encrypted using AWS Key Management Service.

There is no additional charge for using ElastiCache for Redis clusters with HIPAA eligibility. To get started, see HIPAA Compliance for Amazon ElastiCache for Redis.

– Manan

AWS HIPAA Eligibility Update (October 2017) – Sixteen Additional Services

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-hipaa-eligibility-post-update-october-2017-sixteen-additional-services/

Our Health Customer Stories page lists just a few of the many customers that are building and running healthcare and life sciences applications that run on AWS. Customers like Verge Health, Care Cloud, and Orion Health trust AWS with Protected Health Information (PHI) and Personally Identifying Information (PII) as part of their efforts to comply with HIPAA and HITECH.

Sixteen More Services
In my last HIPAA Eligibility Update I shared the news that we added eight additional services to our list of HIPAA eligible services. Today I am happy to let you know that we have added another sixteen services to the list, bringing the total up to 46. Here are the newest additions, along with some short descriptions and links to some of my blog posts to jog your memory:

Amazon Aurora with PostgreSQL Compatibility – This brand-new addition to Amazon Aurora allows you to encrypt your relational databases using keys that you create and manage through AWS Key Management Service (KMS). When you enable encryption for an Amazon Aurora database, the underlying storage is encrypted, as are automated backups, read replicas, and snapshots. Read New – Encryption at Rest for Amazon Aurora to learn more.

Amazon CloudWatch Logs – You can use the logs to monitor and troubleshoot your systems and applications. You can monitor your existing system, application, and custom log files in near real-time, watching for specific phrases, values, or patterns. Log data can be stored durably and at low cost, for as long as needed. To learn more, read Store and Monitor OS & Application Log Files with Amazon CloudWatch and Improvements to CloudWatch Logs and Dashboards.

Amazon Connect – This self-service, cloud-based contact center makes it easy for you to deliver better customer service at a lower cost. You can use the visual designer to set up your contact flows, manage agents, and track performance, all without specialized skills. Read Amazon Connect – Customer Contact Center in the Cloud and New – Amazon Connect and Amazon Lex Integration to learn more.

Amazon ElastiCache for Redis – This service lets you deploy, operate, and scale an in-memory data store or cache that you can use to improve the performance of your applications. Each ElastiCache for Redis cluster publishes key performance metrics to Amazon CloudWatch. To learn more, read Caching in the Cloud with Amazon ElastiCache and Amazon ElastiCache – Now With a Dash of Redis.

Amazon Kinesis Streams – This service allows you to build applications that process or analyze streaming data such as website clickstreams, financial transactions, social media feeds, and location-tracking events. To learn more, read Amazon Kinesis – Real-Time Processing of Streaming Big Data and New: Server-Side Encryption for Amazon Kinesis Streams.

Amazon RDS for MariaDB – This service lets you set up scalable, managed MariaDB instances in minutes, and offers high performance, high availability, and a simplified security model that makes it easy for you to encrypt data at rest and in transit. Read Amazon RDS Update – MariaDB is Now Available to learn more.

Amazon RDS SQL Server – This service lets you set up scalable, managed Microsoft SQL Server instances in minutes, and also offers high performance, high availability, and a simplified security model. To learn more, read Amazon RDS for SQL Server and .NET support for AWS Elastic Beanstalk and Amazon RDS for Microsoft SQL Server – Transparent Data Encryption (TDE) to learn more.

Amazon Route 53 – This is a highly available Domain Name Server. It translates names like www.example.com into IP addresses. To learn more, read Moving Ahead with Amazon Route 53.

AWS Batch – This service lets you run large-scale batch computing jobs on AWS. You don’t need to install or maintain specialized batch software or build your own server clusters. Read AWS Batch – Run Batch Computing Jobs on AWS to learn more.

AWS CloudHSM – A cloud-based Hardware Security Module (HSM) for key storage and management at cloud scale. Designed for sensitive workloads, CloudHSM lets you manage your own keys using FIPS 140-2 Level 3 validated HSMs. To learn more, read AWS CloudHSM – Secure Key Storage and Cryptographic Operations and AWS CloudHSM Update – Cost Effective Hardware Key Management at Cloud Scale for Sensitive & Regulated Workloads.

AWS Key Management Service – This service makes it easy for you to create and control the encryption keys used to encrypt your data. It uses HSMs to protect your keys, and is integrated with AWS CloudTrail in order to provide you with a log of all key usage. Read New AWS Key Management Service (KMS) to learn more.

AWS Lambda – This service lets you run event-driven application or backend code without thinking about or managing servers. To learn more, read AWS Lambda – Run Code in the Cloud, AWS Lambda – A Look Back at 2016, and AWS Lambda – In Full Production with New Features for Mobile Devs.

[email protected] – You can use this new feature of AWS Lambda to run Node.js functions across the global network of AWS locations without having to provision or manager servers, in order to deliver rich, personalized content to your users with low latency. Read [email protected] – Intelligent Processing of HTTP Requests at the Edge to learn more.

AWS Snowball Edge – This is a data transfer device with 100 terabytes of on-board storage as well as compute capabilities. You can use it to move large amounts of data into or out of AWS, as a temporary storage tier, or to support workloads in remote or offline locations. To learn more, read AWS Snowball Edge – More Storage, Local Endpoints, Lambda Functions.

AWS Snowmobile – This is an exabyte-scale data transfer service. Pulled by a semi-trailer truck, each Snowmobile packs 100 petabytes of storage into a ruggedized 45-foot long shipping container. Read AWS Snowmobile – Move Exabytes of Data to the Cloud in Weeks to learn more (and to see some of my finest LEGO work).

AWS Storage Gateway – This hybrid storage service lets your on-premises applications use AWS cloud storage (Amazon Simple Storage Service (S3), Amazon Glacier, and Amazon Elastic File System) in a simple and seamless way, with storage for volumes, files, and virtual tapes. To learn more, read The AWS Storage Gateway – Integrate Your Existing On-Premises Applications with AWS Cloud Storage and File Interface to AWS Storage Gateway.

And there you go! Check out my earlier post for a list of resources that will help you to build applications that comply with HIPAA and HITECH.

Jeff;