Tag Archives: Identity

re:Invent – New security sessions launching soon

Post Syndicated from Marta Taggart original https://aws.amazon.com/blogs/security/reinvent-new-security-sessions-launching-soon/

Where did the last month go? Were you able to catch all of the sessions in the Security, Identity, and Compliance track you hoped to see at AWS re:Invent? If you missed any, don’t worry—you can stream all the sessions released in 2020 via the AWS re:Invent website. Additionally, we’re starting 2021 with all new sessions that you can stream live January 12–15. Here are the new Security, Identity, and Compliance sessions—each session is offered at multiple times, so you can find the time that works best for your location and schedule.

Protecting sensitive data with Amazon Macie and Amazon GuardDuty – SEC210
Himanshu Verma, AWS Speaker

Tuesday, January 12 – 11:00 AM to 11:30 AM PST
Tuesday, January 12 – 7:00 PM to 7:30 PM PST
Wednesday, January 13 – 3:00 AM to 3:30 AM PST

As organizations manage growing volumes of data, identifying and protecting your sensitive data can become increasingly complex, expensive, and time-consuming. In this session, learn how Amazon Macie and Amazon GuardDuty together provide protection for your data stored in Amazon S3. Amazon Macie automates the discovery of sensitive data at scale and lowers the cost of protecting your data. Amazon GuardDuty continuously monitors and profiles S3 data access events and configurations to detect suspicious activities. Come learn about these security services and how to best use them for protecting data in your environment.

BBC: Driving security best practices in a decentralized organization – SEC211
Apurv Awasthi, AWS Speaker
Andrew Carlson, Sr. Software Engineer – BBC

Tuesday, January 12 – 1:15 PM to 1:45 PM PST
Tuesday, January 12 – 9:15 PM to 9:45 PM PST
Wednesday, January 13 – 5:15 AM to 5:45 AM PST

In this session, Andrew Carlson, engineer at BBC, talks about BBC’s journey while adopting AWS Secrets Manager for lifecycle management of its arbitrary credentials such as database passwords, API keys, and third-party keys. He provides insight on BBC’s secrets management best practices and how the company drives these at enterprise scale in a decentralized environment that has a highly visible scope of impact.

Get ahead of the curve with DDoS Response Team escalations – SEC321
Fola Bolodeoku, AWS Speaker

Tuesday, January 12 – 3:30 PM to 4:00 PM PST
Tuesday, January 12 – 11:30 PM to 12:00 AM PST
Wednesday, January – 7:30 AM to 8:00 AM PST

This session identifies tools and tricks that you can use to prepare for application security escalations, with lessons learned provided by the AWS DDoS Response Team. You learn how AWS customers have used different AWS offerings to protect their applications, including network access control lists, security groups, and AWS WAF. You also learn how to avoid common misconfigurations and mishaps observed by the DDoS Response Team, and you discover simple yet effective actions that you can take to better protect your applications’ availability and security controls.

Network security for serverless workloads – SEC322
Alex Tomic, AWS Speaker

Thursday, January 14 -1:30 PM to 2:00 PM PST
Thursday, January 14 – 9:30 PM to 10:00 PM PST
Friday, January 15 – 5:30 AM to 6:00 AM PST

Are you building a serverless application using services like Amazon API Gateway, AWS Lambda, Amazon DynamoDB, Amazon Aurora, and Amazon SQS? Would you like to apply enterprise network security to these AWS services? This session covers how network security concepts like encryption, firewalls, and traffic monitoring can be applied to a well-architected AWS serverless architecture.

Building your cloud incident response program – SEC323
Freddy Kasprzykowski, AWS Speaker

Wednesday, January 13 – 9:00 AM to 9:30 AM PST
Wednesday, January 13 – 5:00 PM to 5:30 PM PST
Thursday, January 14 – 1:00 AM to 1:30 AM PST

You’ve configured your detection services and now you’ve received your first alert. This session provides patterns that help you understand what capabilities you need to build and run an effective incident response program in the cloud. It includes a review of some logs to see what they tell you and a discussion of tools to analyze those logs. You learn how to make sure that your team has the right access, how automation can help, and which incident response frameworks can guide you.

Beyond authentication: Guide to secure Amazon Cognito applications – SEC324
Mahmoud Matouk, AWS Speaker

Wednesday, January 13 – 2:15 PM to 2:45 PM PST
Wednesday, January 13 – 10:15 PM to 10:45 PM PST
Thursday, January 14 – 6:15 AM to 6:45 AM PST

Amazon Cognito is a flexible user directory that can meet the needs of a number of customer identity management use cases. Web and mobile applications can integrate with Amazon Cognito in minutes to offer user authentication and get standard tokens to be used in token-based authorization scenarios. This session covers best practices that you can implement in your application to secure and protect tokens. You also learn about new Amazon Cognito features that give you more options to improve the security and availability of your application.

Event-driven data security using Amazon Macie – SEC325
Neha Joshi, AWS Speaker

Thursday, January 14 – 8:00 AM to 8:30 AM PST
Thursday, January 14 – 4:00 PM to 4:30 PM PST
Friday, January 15 – 12:00 AM to 12:30 AM PST

Amazon Macie sensitive data discovery jobs for Amazon S3 buckets help you discover sensitive data such as personally identifiable information (PII), financial information, account credentials, and workload-specific sensitive information. In this session, you learn about an automated approach to discover sensitive information whenever changes are made to the objects in your S3 buckets.

Instance containment techniques for effective incident response – SEC327
Jonathon Poling, AWS Speaker

Thursday, January 14 – 10:15 AM to 10:45 AM PST
Thursday, January 14 – 6:15 PM to 6:45 PM PST
Friday, January 15 – 2:15 AM to 2:45 AM PST

In this session, learn about several instance containment and isolation techniques, ranging from simple and effective to more complex and powerful, that leverage native AWS networking services and account configuration techniques. If an incident happens, you may have questions like “How do we isolate the system while preserving all the valuable artifacts?” and “What options do we even have?”. These are valid questions, but there are more important ones to discuss amidst a (possible) incident. Join this session to learn highly effective instance containment techniques in a crawl-walk-run approach that also facilitates preservation and collection of valuable artifacts and intelligence.

Trusted connects for government workloads – SEC402
Brad Dispensa, AWS Speaker

Wednesday, January 13 – 11:15 AM to 11:45 AM PST
Wednesday, January 13 – 7:15 PM to 7:45 PM PST
Thursday, January 14 – 3:15 AM to 3:45 AM PST

Cloud adoption across the public sector is making it easier to provide government workforces with seamless access to applications and data. With this move to the cloud, we also need updated security guidance to ensure public-sector data remain secure. For example, the TIC (Trusted Internet Connections) initiative has been a requirement for US federal agencies for some time. The recent TIC-3 moves from prescriptive guidance to an outcomes-based model. This session walks you through how to leverage AWS features to better protect public-sector data using TIC-3 and the National Institute of Standards and Technology (NIST) Cybersecurity Framework (CSF). Also, learn how this might map into other geographies.

I look forward to seeing you in these sessions. Please see the re:Invent agenda for more details and to build your schedule.

If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Marta Taggart

Marta is a Seattle-native and Senior Program Manager in AWS Security, where she focuses on privacy, content development, and educational programs. Her interest in education stems from two years she spent in the education sector while serving in the Peace Corps in Romania. In her free time, she’s on a global hunt for the perfect cup of coffee.

re:Invent 2020 – Your guide to AWS Identity and Data Protection sessions

Post Syndicated from Marta Taggart original https://aws.amazon.com/blogs/security/reinvent-2020-your-guide-to-aws-identity-and-data-protection-sessions/

AWS re:Invent will certainly be different in 2020! Instead of seeing you all in Las Vegas, this year re:Invent will be a free, three-week virtual conference. One thing that will remain the same is the variety of sessions, including many Security, Identity, and Compliance sessions. As we developed sessions, we looked to customers—asking where they would like to expand their knowledge. One way we did this was shared in a recent Security blog post, where we introduced a new customer polling feature that provides us with feedback directly from customers. The initial results of the poll showed that Identity and Access Management and Data Protection are top-ranking topics for customers. We wanted to highlight some of the re:Invent sessions for these two important topics so that you can start building your re:Invent schedule. Each session is offered at multiple times, so you can sign up for the time that works best for your location and schedule.

Managing your Identities and Access in AWS

AWS identity: Secure account and application access with AWS SSO
Ron Cully, Principal Product Manager, AWS

Dec 1, 2020 | 12:00 PM – 12:30 PM PST
Dec 1, 2020 | 8:00 PM – 8:30 PM PST
Dec 2, 2020 | 4:00 AM – 4:30 AM PST

AWS SSO provides an easy way to centrally manage access at scale across all your AWS Organizations accounts, using identities you create and manage in AWS SSO, Microsoft Active Directory, or external identity providers (such as Okta Universal Directory or Azure AD). This session explains how you can use AWS SSO to manage your AWS environment, and it covers key new features to help you secure and automate account access authorization.

Getting started with AWS identity services
Becky Weiss, Senior Principal Engineer, AWS

Dec 1, 2020 | 1:30 PM – 2:00 PM PST
Dec 1, 2020 | 9:30 PM – 10:00 PM PST
Dec 2, 2020 | 5:30 AM – 6:00 AM PST

The number, range, and breadth of AWS services are large, but the set of techniques that you need to secure them is not. Your journey as a builder in the cloud starts with this session, in which practical examples help you quickly get up to speed on the fundamentals of becoming authenticated and authorized in the cloud, as well as on securing your resources and data correctly.

AWS identity: Ten identity health checks to improve security in the cloud
Cassia Martin, Senior Security Solutions Architect, AWS

Dec 2, 2020 | 9:30 AM – 10:00 AM PST
Dec 2, 2020 | 5:30 PM – 6:00 PM PST
Dec 3, 2020 | 1:30 AM – 2:00 AM PST

Get practical advice and code to help you achieve the principle of least privilege in your existing AWS environment. From enabling logs to disabling root, the provided checklist helps you find and fix permissions issues in your resources, your accounts, and throughout your organization. With these ten health checks, you can improve your AWS identity and achieve better security every day.

AWS identity: Choosing the right mix of AWS IAM policies for scale
Josh Du Lac, Principal Security Solutions Architect, AWS

Dec 2, 2020 | 11:00 AM – 11:30 AM PST
Dec 2, 2020 | 7:00 PM – 7:30 PM PST
Dec 3, 2020 | 3:00 AM – 3:30 AM PST

This session provides both a strategic and tactical overview of various AWS Identity and Access Management (IAM) policies that provide a range of capabilities for the security of your AWS accounts. You probably already use a number of these policies today, but this session will dive into the tactical reasons for choosing one capability over another. This session zooms out to help you understand how to manage these IAM policies across a multi-account environment, covering their purpose, deployment, validation, limitations, monitoring, and more.

Zero Trust: An AWS perspective
Quint Van Deman, Principal WW Identity Specialist, AWS

Dec 2, 2020 | 12:30 PM – 1:00 PM PST
Dec 2, 2020 | 8:30 PM – 9:00 PM PST
Dec 3, 2020 | 4:30 AM – 5:00 AM PST

AWS customers have continuously asked, “What are the optimal patterns for ensuring the right levels of security and availability for my systems and data?” Increasingly, they are asking how patterns that fall under the banner of Zero Trust might apply to this question. In this session, you learn about the AWS guiding principles for Zero Trust and explore the larger subdomains that have emerged within this space. Then the session dives deep into how AWS has incorporated some of these concepts, and how AWS can help you on your own Zero Trust journey.

AWS identity: Next-generation permission management
Brigid Johnson, Senior Software Development Manager, AWS

Dec 3, 2020 | 11:00 AM – 11:30 AM PST
Dec 3, 2020 | 7:00 PM – 7:30 PM PST
Dec 4, 2020 | 3:00 AM – 3:30 AM PST

This session is for central security teams and developers who manage application permissions. This session reviews a permissions model that enables you to scale your permissions management with confidence. Learn how to set your organization up for access management success with permission guardrails. Then, learn about granting workforce permissions based on attributes, so they scale as your users and teams adjust. Finally, learn about the access analysis tools and how to use them to identify and reduce broad permissions and give users and systems access to only what they need.

How Goldman Sachs administers temporary elevated AWS access
Harsha Sharma, Solutions Architect, AWS
Chana Garbow Pardes, Associate, Goldman Sachs
Jewel Brown, Analyst, Goldman Sachs

Dec 16, 2020 | 2:00 PM – 2:30 PM PST
Dec 16, 2020 | 10:00 PM – 10:30 PM PST
Dec 17, 2020 | 6:00 AM – 6:30 AM PST

Goldman Sachs takes security and access to AWS accounts seriously. While empowering teams with the freedom to build applications autonomously is critical for scaling cloud usage across the firm, guardrails and controls need to be set in place to enable secure administrative access. In this session, learn how the company built its credential brokering workflow and administrator access for its users. Learn how, with its simple application that uses proprietary and AWS services, including Amazon DynamoDB, AWS Lambda, AWS CloudTrail, Amazon S3, and Amazon Athena, Goldman Sachs is able to control administrator credentials and monitor and report on actions taken for audits and compliance.

Data Protection

Do you need an AWS KMS custom key store?
Tracy Pierce, Senior Consultant, AWS

Dec 15, 2020 | 9:45 AM – 10:15 AM PST
Dec 15, 2020 | 5:45 PM – 6:15 PM PST
Dec 16, 2020 | 1:45 AM – 2:15 AM PST

AWS Key Management Service (AWS KMS) has integrated with AWS CloudHSM, giving you the option to create your own AWS KMS custom key store. In this session, you learn more about how a KMS custom key store is backed by an AWS CloudHSM cluster and how it enables you to generate, store, and use your KMS keys in the hardware security modules that you control. You also learn when and if you really need a custom key store. Join this session to learn why you might choose not to use a custom key store and instead use the AWS KMS default.

Using certificate-based authentication on containers & web servers on AWS
Josh Rosenthol, Senior Product Manager, AWS
Kevin Rioles, Manager, Infrastructure & Security, BlackSky

Dec 8, 2020 | 12:45 PM – 1:15 PM PST
Dec 8, 2020 | 8:45 PM – 9:15 PM PST
Dec 9, 2020 | 4:45 AM – 5:15 AM PST

In this session, BlackSky talks about its experience using AWS Certificate Manager (ACM) end-entity certificates for the processing and distribution of real-time satellite geospatial intelligence and monitoring. Learn how BlackSky uses certificate-based authentication on containers and web servers within its AWS environment to help make TLS ubiquitous in its deployments. The session details the implementation, architecture, and operations best practices that the company chose and how it was able to operate ACM at scale across multiple accounts and regions.

The busy manager’s guide to encryption
Spencer Janyk, Senior Product Manager, AWS

Dec 9, 2020 | 11:45 AM – 12:15 PM PST
Dec 9, 2020 | 7:45 PM – 8:15 PM PST
Dec 10, 2020 | 3:45 AM – 4:15 AM PST

In this session, explore the functionality of AWS cryptography services and learn when and where to deploy each of the following: AWS Key Management Service, AWS Encryption SDK, AWS Certificate Manager, AWS CloudHSM, and AWS Secrets Manager. You also learn about defense-in-depth strategies including asymmetric permissions models, client-side encryption, and permission segmentation by role.

Building post-quantum cryptography for the cloud
Alex Weibel, Senior Software Development Engineer, AWS

Dec 15, 2020 | 12:45 PM – 1:15 PM PST
Dec 15, 2020 | 8:45 PM – 9:15 PM PST
Dec 16, 2020 | 4:45 AM – 5:15 AM PST

This session introduces post-quantum cryptography and how you can use it today to secure TLS communication. Learn about recent updates on standards and existing deployments, including the AWS post-quantum TLS implementation (pq-s2n). A description of the hybrid key agreement method shows how you can combine a new post-quantum key encapsulation method with a classical key exchange to secure network traffic today.

Data protection at scale using Amazon Macie
Neel Sendas, Senior Technical Account Manager, AWS

Dec 17, 2020 | 7:15 AM – 7:45 AM PST
Dec 17, 2020 | 3:15 PM – 3:45 PM PST
Dec 17, 2020 | 11:15 PM – 11:45 PM PST

Data Loss Prevention (DLP) is a common topic among companies that work with sensitive data. If an organization can’t identify its sensitive data, it can’t protect it. Amazon Macie is a fully managed data security and data privacy service that uses machine learning and pattern matching to discover and protect your sensitive data in AWS. In this session, we will share details of the design and architecture you can use to deploy Macie at large scale.

While sessions are virtual this year, they will be offered at multiple times with live moderators and “Ask the Expert” sessions available to help answer any questions that you may have. We look forward to “seeing” you in these sessions. Please see the re:Invent agenda for more details and to build your schedule.

If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Marta Taggart

Marta is a Seattle-native and Senior Program Manager in AWS Security, where she focuses on privacy, content development, and educational programs. Her interest in education stems from two years she spent in the education sector while serving in the Peace Corps in Romania. In her free time, she’s on a global hunt for the perfect cup of coffee.

Author

Himanshu Verma

Himanshu is a Worldwide Specialist for AWS Security Services. In this role, he leads the go-to-market creation and execution for AWS Data Protection and Threat Detection & Monitoring services, field enablement, and strategic customer advisement. Prior to AWS, he held roles as Director of Product Management, engineering and development, working on various identity, information security and data protection technologies.

New – Attributes Based Access Control with AWS Single Sign On

Post Syndicated from Sébastien Stormacq original https://aws.amazon.com/blogs/aws/new-attributes-based-access-control-with-aws-single-sign-on/

Starting today, you can pass user attributes in the AWS session when your workforce sign-in into the cloud using AWS Single Sign-On. This gives you the centralized account access management of AWS Single Sign-On and ABAC, with the flexibility to use AWS SSO, Active Directory, or an external identity provider as your identity source. To learn more about the advantages of ABAC policies on AWS, you may read my previous blog post on the subject.

Overview
On one side, system administrators configure user attributes on the AWS Single Sign-On identity repository, or the managed Active Directory. System administrators may also configure an external identity provider, such as Okta, OneLogin or PingFederate to pass existing user attributes in the AWS sessions when their workforce federates into AWS. These attributes are known as session tags in AWS. On the other side, cloud administrators create fine-grained permissions policies such that your workforce get only access to cloud resources with matching resource tags.

Creating policies based on matching attributes instead of functional roles helps to reduce the number of distinct permissions and roles you must create and manage in your AWS environment. For example, when developers Bob from team red and Alice from team blue sign-in into AWS and assume the same AWS Identity and Access Management (IAM) role, they get distinct permissions to project resources tagged for their team. The identity system sends the team name attribute in the AWS session when Bob and Alice sign-in into AWS. The role’s permissions grant access to project resources with matching team name tags. Now, if Bob moves to team blue and system administrators update his team name in their identity provider directory, Bob automatically gets access to team blue’s project resources without requiring permissions updates in IAM.

How to Configure AWS SSO to Map User Attributes
Before to configure AWS SSO, there are two important points to highlight. First, ABAC will work with attributes from any identity source configured in AWS SSO : AWS SSO itself, a managed Active Directory, or an external identity provider. Second, there are two ways to pass attributes for access control to AWS SSO. Either you can pass attributes directly in the SAML assertion using the prefix https://aws.amazon.com/SAML/Attributes/AccessControl, or you can use attributes that are in the AWS SSO identity store. Those attributes are configured by your AWS SSO administrator for users created in AWS SSO, synchronized in from an Active Directory, or synchronized in from an external identity provider using automatic provisioning (SCIM).

For this demo, I choose to use an external identity provider and SCIM.

I can enable ABAC in AWS using AWS SSO with three steps:

Step 1: I configure my identity source with the associated user identities and attributes in the external identity provider. As of today, AWS SSO supports identity synchronization via SCIM with Azure AD, Okta, OneLogin, and PingFederate. Check this page to get an up-to-date list. The specifics depend on each identity provider.

Step 2: I configure the SCIM attributes I want to use for access control using the new Access Control Attributes global setting in the AWS SSO console or API. This screen allows me to select attributes for access control from the identity source I configured in step 1.

Attributes for Access Control

Step 3: I author ABAC rules through permission sets and resource-based policies using the attributes I configured in Step 2. More about this in a minute.

Now, when my workforce federates into an AWS account using SSO, they get access to their AWS resources based on matching attributes.

Attributes are passed as session tags. They are passed as comma-separated key:value pairs. The total character length of all the attributes together must be less than or equal to 460 characters.

What Does a Policy Look Like?
I now can use user attributes in my permission sets using the aws:PrincipalTag condition key when creating access control rules. For example, I can tag all the resources in my organization with their respective department name, and use a single permission set that grants developers access only to their department resources. Now, whenever developers federate into the AWS account, AWS SSO creates a department session tag with the value received from the identity provider. The security policies allow them to only get access to the resources in their respective department. As the team adds more developers and resources to their project, I only have to tag resources with the correct department name. As a result, as the organization adds new resources and developers to departments, developers can only manage resources aligned to their department without needing any permission updates.

An ABAC SSO permission set policy might look like this:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [ "ec2:DescribeInstances"],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": ["ec2:StartInstances","ec2:StopInstances"],
            "Resource": "*",
            "Condition": {
                "StringEquals": {
                    "ec2:ResourceTag/Department": "${aws:PrincipalTag/Department}"
                }
            }
        }
    ]
}

This policy allows anybody to DescribeInstances, but only users with a aws:PrincipalTag/Department tag’s value matching the EC2 instance ec2:ResourceTag/Department tag’s value are authorized to stop or to start instances.

I attach this policy to an AWS Account’s Permission Set. On the left part of the AWS Single Sign-On console, I click AWS Accounts and select the Permission sets tab. Then I click Create permission set. On the next screen, I select Create a customer permission set.

Create a custom permission set

I enter a name and description, I make sure Create a custom permissions policy is selected. Then I can copy/paste the previous policy allowing to start and stop EC2 instances when the department name tag value is equal to the person’s department name tag value.

Create Custom Policy for Permission Set

On the next screen, I enter some tags, then I review my configuration before clicking Create. Et voila, I am ready to go.

If you have existing federation configured with AWS Security Token Service, remember that external identity providers consider AWS SSO as a new application configuration. This means when you move from direct IAM federation to AWS SSO, you have to update your external identity provider configuration to connect with AWS SSO and to introduce attributes as session tags for this configuration.

Available Today
There is no additional charge to configure user attributes with AWS Single Sign-On. You can start to use it today in all AWS Regions where AWS SSO is available.

— seb

Aligning IAM policies to user personas for AWS Security Hub

Post Syndicated from Vaibhawa Kumar original https://aws.amazon.com/blogs/security/aligning-iam-policies-to-user-personas-for-aws-security-hub/

AWS Security Hub provides you with a comprehensive view of your security posture across your accounts in Amazon Web Services (AWS) and gives you the ability to take action on your high-priority security alerts. There are several different user personas that use Security Hub, and they typically require different AWS Identity and Access Management (IAM) permissions. Those personas include: a security administrator; a security analyst or engineer on a central security team or in a Cloud Center of Excellence; and a Developer Operations (DevOps) engineer or application builder who is the primary owner of an AWS account. In this post, we show how to deploy sample IAM policies for these three personas.

The first persona, a security administrator or cloud system administrator (sysadmin), is responsible for setting up and configuring Security Hub, and they typically need access to all of the Security Hub APIs to do this work. As part of this work, the sysadmin enables Security Hub on various accounts and Regions, decides which standards and controls should be enabled on which accounts, enables product integrations, creates insights, sets up custom actions and automated remediations, and configures IAM policies for other users.

The second persona, a security analyst or engineer using Security Hub, is part of a central security team, often part of a Cloud Center of Excellence. We often see that cloud security efforts are centralized in Cloud Centers of Excellence within a company. These security analysts or engineers typically have access to the master account in Security Hub and can view and take action on findings from any of the connected member accounts. They typically are not configuring Security Hub, so they don’t need permissions to do so.

The third persona is a DevOps engineer or application builder. This user needs the ability to view findings and take action only on the findings associated with their account. For cloud workloads, security is often decentralized down to these users. Security Hub enables them to take more proactive responsibility for the security of their own account by directly viewing and taking action on findings in their account. They typically don’t need permissions to set up and configure Security Hub, because that is done by a central sysadmin.

Overview

The following reference architecture presents an overview of a Security Hub master-member account structure and three personas: a security administrator, a security analyst/engineer, and a DevOps engineer.
 

Figure 1: Reference architecture

Figure 1: Reference architecture

In this blog post, we show how you can create and use the following AWS managed and customer managed IAM policies to support these three personas:

  • The sysadmin persona needs permissions to configure and manage Security Hub, account memberships, insights, and integrations, and to create remediations and take actions and perform record and workflow updates. The AWS managed IAM policy called AWSSecurityHubFullAccess provides the permissions for this persona. An IAM user or role with these permissions can deploy and configure Security Hub in master and member accounts. They can also update findings. The sysadmin also requires permissions to configure AWS Config and Amazon CloudWatch event rules to set up automated responses and remediations.
  • The security analyst persona needs permissions to read, list, and describe findings, standards, controls, and products; to update findings; and to create and update insights for Security Hub resources in the master account. The AWS managed IAM policy called AWSSecurityHubReadOnlyAccess provides the permissions needed for read, list, and describe actions, and a customer managed policy will be attached to give permissions to create and update insights and to update findings.
  • The DevOps engineer persona needs the same permissions as the security analyst persona, but they will only have the ability to access their own Security Hub member AWS account(s) and won’t have access to the master account.

Depending on your specific use case, you might want to provide additional permissions to the security analyst and DevOps engineer personas. For example, you might want to also grant them permissions to create custom actions by using the UpdateActionTarget API. In that case, you should also ensure that they have appropriate permissions to create CloudWatch event rules. You can also restrict these personas to only be able to update certain fields in findings (for example, only update workflow status but not severity) by using IAM context keys.

Prerequisites

You must have already enabled Security Hub with one account as master and other associated accounts as members. You will use the following AWS services:

Implementation

To create the required customer managed policies and associate them to users and roles, you will perform these tasks, described in more detail later in this section:

  1. Create a customer managed policy and associate it with the user and role for the security analyst persona in the Security Hub master account, along with the AWSSecurityHubReadOnlyAccess AWS managed policy.
  2. Create a customer managed policy and associate it with the user and role for the DevOps persona in the Security Hub member account, along with the AWSSecurityHubReadOnlyAccess AWS managed policy.
  3. Create a sysadmin user and role and associate it with the AWS managed policy for AWSSecurityHubFullAccess, along with AWS Config and CloudWatch event rule permissions in the Security Hub master account.

The following policy JSON script is for those two customer managed policies.

Security Hub - Security Analyst policy 
MasterCustomer Managed Policy:
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "SecurityAnalystMasterCMP",
            "Effect": "Allow",
            "Action": [
                "securityhub:UpdateInsight",
                "securityhub:CreateInsight",
	  			"securityhub:BatchUpdateFindings"
            ],
            "Resource": "*"
        }
    ]
}

Security Hub – DevOps Engineer policy: 
MemberCustomer Managed Policy:
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "DevOpsMemberCMP",
            "Effect": "Allow",
            "Action": [
                "securityhub:UpdateInsight",
                "securityhub:CreateInsight",
                "securityhub:BatchUpdateFindings"
            ],
            "Resource": "*"
        }
    ]
}

Step 1: Create the user and role for the security analyst persona

First, create a customer managed policy and associate it with the user and role for the security analyst persona in the Security Hub master account, along with the AWSSecurityHubReadOnlyAccess AWS managed policy.

To create the IAM policy, user, and role (console method)

  1. Sign in to the AWS Management Console in the Security Hub master account and open the IAM console.
  2. In the IAM console navigation pane, choose Policies, and then choose Create Policies.
  3. Choose the JSON tab.
  4. Copy the Security Hub – Security Analyst policy JSON shown earlier in this section, and paste it into the visual editor. When you are finished, choose Review policy.
  5. On the Review policy page, enter a name and a description (optional) for the policy that you’re creating. Review the policy summary to see the permissions that are granted by your policy. Then choose Create policy to save your work.
  6. Follow the instructions in the AWS Identity and Access Management User Guide to create a user and role, and attach the policy you just created.
  7. In the IAM console navigation pane, choose the user or role (or both) that you just created, and on the Permissions tab, choose Add Permissions.
  8. Choose the permissions category Attach existing policies directly to filter and select the managed policy AWSSecurityHubReadOnlyAccess. Review the permissions and then choose Add permissions.
  9. Save all the changes and try using the user and role after few minutes.

Step 2: Create the user and role for the DevOps persona

Next, create a customer managed policy and associate it with the user and role for the DevOps persona in the Security Hub member account, along with the AWSSecurityHubReadOnlyAccess AWS managed policy.

To create the IAM policy, user, and role (console method)

  1. Sign in to the AWS Management Console in the Security Hub member account and open the IAM console.
  2. In the IAM console navigation pane, choose Policies and then choose Create Policies.
  3. Choose the JSON tab.
  4. Copy the Security Hub – DevOps Engineer policy JSON shown earlier in this section, and paste it into the visual editor. When you are finished, choose Review policy.
  5. On the Review policy page, enter a name and a description (optional) for the policy that you are creating. Review the policy summary to see the permissions that are granted by your policy. Then choose Create policy to save your work.
  6. Follow the instructions in the AWS Identity and Access Management User Guide to create a user and role, and attach the policy you just created.
  7. In the IAM console navigation pane, choose the user or role (or both) that you just created, and on the Permissions tab, choose Add Permissions.
  8. Choose the permissions category Attach existing policies directly to filter and select the managed policy AWSSecurityHubReadOnlyAccess. Review the permissions and then choose Add permissions.
  9. Save all the changes and try using the user and role after few minutes.

Step 3: Create the user and role for the sysadmin persona

Next, create a user and role for the sysadmin persona and associate it with the AWS managed policies AWSSecurityHubFullAccess, CloudWatchEventsFullAccess, and full access to AWS Config in the Security Hub master account.

To create the IAM user and role (console method)

  1. Sign in to the AWS Management Console in the Security Hub member account and open the IAM console.
  2. Follow the instructions in the AWS Identity and Access Management User Guide to create a user and role.
  3. In the IAM console navigation pane, choose the user or role (or both) that you just created, and on the Permissions tab, choose Add Permissions.
  4. Choose the permissions category Attach existing policies directly to filter and select managed policies, and attach the managed policies AWSSecurityHubFullAccess and CloudWatchEventsFullAccess.
  5. Create another policy to grant full access to AWS Config as described in the AWS Config Developer Guide, and attach the policy to the user or role. Review the permissions, and choose Add permissions.
  6. Save all the changes and try using the user and role after few minutes.

Test the users and roles in the Security Hub master and member accounts

Finally, test the three users and roles that you created for the respective personas in the preceding steps.

To test the users and roles

  1. Security analyst user and role:
    1. Sign in to the AWS Management Console in the master account and open Security Hub.
    2. Make sure that Security Hub UI features (such as the Summary, Security Standard, Insights, Findings, and Integrations) are rendered so that the Security Analyst can view them.
    3. Navigate to a finding and change the workflow status as described in the topic Setting the workflow status for findings.
  2. DevOps engineer user and role:
    1. Sign in to the AWS Management Console in the member account and open Security Hub.
    2. Make sure that Security Hub UI features (such as the Summary, Security Standard, Insights, Findings, and Integrations) are rendered so that the DevOps Engineer can view them.
    3. Create a custom insight for the member account and other attribute groupings.
  3. Sysadmin user and role:
    1. Sign in to the AWS Management Console in the master or member account, and open Security Hub.
    2. Try admin-related operations such as create a custom action, invite another account, and so on.

Adding policy conditions

You might want to further restrict the permissions for the security analyst and DevOps personas. IAM policies for Security Hub’s BatchUpdateFindings API enable you to specify conditions to prevent a user from making any update to a specific finding field. The following example disallows setting the Workflow Status field to Suppressed.

{
	"Sid": "CMPCondition",
	"Effect": "Deny",
	"Action": "securityhub:BatchUpdateFindings",
	"Resource": "*",
	"Condition": {
		"StringEquals": {
			"securityhub:ASFFSyntaxPath/Workflow.Status": "SUPPRESSED"
		}
	}
}

Summary

In this post, we showed you how to align AWS managed and customer managed IAM policies to different user personas, so that you can allow different users to access Security Hub with least privilege permissions. Security Hub enables both central security teams and individual DevOps engineers to understand and improve the security posture of the AWS accounts in their organization.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on the AWS Security Hub forum or contact AWS Support.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Vaibhawa Kumar

Vaibhawa is a Cloud Infra Architect with AWS Professional Services. He helps customers on their cloud journey of critical workloads to the AWS cloud with infrastructure security and automations. In his free time, you can find him spending time with family, sports, and cooking.

Author

Sanjay Patel

Sanjay is a Senior Cloud Application Architect with AWS Professional Services. He has a diverse background in software design, enterprise architecture, and API integrations. He has helped AWS customers automate infrastructure security. He enjoys working with AWS customers to identify and implement the best fit solution.

Author

Ely Kahn

Ely is the Principal Product Manager for AWS Security Hub. Before his time at AWS, Ely was a co-founder for Sqrrl, a security analytics startup that AWS acquired and is now Amazon Detective. Earlier, Ely served in a variety of positions in the federal government, including Director of Cybersecurity at the National Security Council in the White House.

How to implement password-less authentication with Amazon Cognito and WebAuthn

Post Syndicated from Mahmoud Matouk original https://aws.amazon.com/blogs/security/how-to-implement-password-less-authentication-with-amazon-cognito-and-webauthn/

In this blog post, I show you how to offer a password-less authentication experience to your customers. To do this, you’ll allow physical security keys or platform authenticators (like finger-print scanners) to be used as the authentication factor to your web or mobile applications that use Amazon Cognito user pools for authentication.

An Amazon Cognito user pool is a user directory that Amazon Web Services (AWS) customers use to manage their customer identities. Web Authentication (WebAuthn) is a W3C standard that lets users authenticate to web applications using public-key cryptography. Using public-key cryptography enables you to implement a stronger authentication mechanism that’s less dependent on passwords.

Mobile and web applications can use WebAuthn together with browser and device support for the Client-To-Authenticator-Protocol (CTAP) to implement Fast ID Online (FIDO) authentication. To learn more about the flow of WebAuthn and CTAP, visit the FIDO Alliance.

How it works

Amazon Cognito user pools allow you to build a custom authentication flow that uses AWS Lambda functions to authenticates users based on one or more challenge/response cycles. You can use this flow to implement password-less authentication that is based on custom challenges. To use this flow to implement FIDO authentication, you need to create credentials during the registration phase and reference these credentials in the user’s profile. You can then validate these credentials during the authentication phase in a custom challenge.

During registration, a new set of credentials that are bound to your application (relying party), are created through a FIDO authenticator. For example, a platform authenticator with a biometric sensor or a roaming authenticator like a physical security key. The private key of this credential set remains on the authenticator, the public key, together with a credential identifier are saved in a custom attribute that’s part of the user profile in Amazon Cognito.

During authentication, a Cognito custom authentication flow will be used to implement authentication through a custom challenge. The application prompts the user to sign in using the authenticator that they used during registration. Response from the authenticator is then passed as a challenge response to Amazon Cognito and verified using the stored public key.

In this password-less flow, the private key has never left the physical device, the authenticator also validates that relying party in authentication request matches the relying party that was used to create the credentials. This combination provides a more secured authentication flow that uses stronger credentials, protects user from phishing and provides better user experience.

About the demo project

This blog post and the diagrams below explain a scenario that uses FIDO as the only authentication factor, to implement password-less authentication. To help with implementation details, I created a project to demonstrate WebAuthn integration with Amazon Cognito that provides sample code for three scenarios:

  • A scenario that uses FIDO as the only factor (password-less)
  • A scenario that uses FIDO as a second factor (with password)
  • A scenario that lets users sign-in with only a password

This project is only a demonstration and shouldn’t be used as-is in production environments. When using FIDO as authentication factor, it is a best practice to allow users to register multiple authenticators and you need to implement an account recovery workflow in case of a lost authenticator.

Implementing FIDO Authentication

Let’s take a deeper dive into the design and components involved in implementing this solution. To deploy this project in your development environment, follow the instructions in the WebAuthn integration with Amazon Cognito project.

Creating and configuring user pool

The first step is to create a Cognito user pool and triggers that orchestrate a custom authentication flow. You do that by deploying the CloudFormation stack that will create all resources as explained in the demo project.

Few implementation details to note about the user pool:

  • The template creates a user pool, app client, triggers, and Lambda functions to use for custom authentication.
  • The template creates a custom attribute called publicKeyCred. This is the custom attribute that holds a base64 encoded representation of the credential identifier and public key for the user’s authenticator.
  • The app client defines what authentication flows are allowed. You can limit allowed flows according to your use-case. To support FIDO authentication, you must allow CUSTOM_AUTH flow.
  • The app client has “write” permissions to the custom attribute publicKeyCred but not “read” permissions. This allows your application to write the attribute during registration or profile updates but excludes this attribute from the user’s id_token. Since this attribute is considered back-end data that is only used during authentication, it doesn’t need to be part of user profile in the id_token.

User registration flow

The registration flow needs to create credentials using the authenticator and store the public-key in user’s profile. Let’s take a closer look at the sequence of calls and involved components to implement this flow.
 

Figure 1: WebAuthn user registration process

Figure 1: WebAuthn user registration process

  1. The user navigates to your application, www.example.com (relying party), and creates an account. A request is sent to the relying party to build a credentials options object and send it back to the browser. (in the demo project, this starts in the createCredentials function in webauthn-client.js and creates the credentials options object by making a call to createCredRequest in authn.js)
  2. The browser uses built-in WebAuthn APIs to create the new credentials with an available authenticator using the credentials options object that was created in first step. This is done by making a call to navigator.credentials.create API (this API is available in browsers and platforms that support FIDO and WebAuthn).
  3. The user experience in this step depends on the OS, browser, and the authenticator. For example, the browser could prompt the user to attach a security key or, on devices that support it, to use a biometric scanner.
     
    Figure 2: User registration and browser alert to use an authenticator in Firefox

    Figure 2: User registration and browser alert to use an authenticator in Firefox

  4. The user interacts with an authenticator (by touching a security key or scanning finger on a touch-id device), which generates new credentials bound to the relying party and returns a response object to the browser.
  5. The browser sends a credential response object to the relying party to parse and validate the response on the server-side. The credential identifier and public key are extracted from the credential response. At this step, your application can also check additional authenticator data and use it to make authentication decisions. For example, your application can check if the authenticator was able to verify user identity through PIN or biometrics (UV flag) or only user presence (UP flag) was verified by authenticator. In the demo project, this is still part of createCredentials function and server-side parsing and validation is done in parseCredResponse that is implemented in authn.js
  6. To complete the user registration, the browser passes the profile attributes that have been collected during registration through Amazon Cognito APIs as custom attributes. This step is performed in signUp function in webauthn-client.js

At the conclusion of this process, a new user will be created in Amazon Cognito and the custom attribute “publicKeyCred” will be populated with a base64 encoded string that includes a credential identifier and the public key generated by the authenticator. This attribute is not considered secret or sensitive data, it rather includes the public key that will be used to verify the authenticator response during subsequent authentications.

User authentication flow

The following diagram describes the custom authentication flow to implement password-less authentication.
 

Figure 3: WebAuthn user authentication process

Figure 3: WebAuthn user authentication process

  1. The user provides their user name and selects the sign-in button, script (running in browser) starts the sign-in process using Amazon Cognito InitiateAuth API passing the user name and indicating that authentication flow is CUSTOM_AUTH. In the demo project, this part is performed in the signIn function in webauthn-client.js.
  2. The Amazon Cognito service passes control to the Define Auth Challenge Lambda trigger. The trigger then determines that this is the first step in the authentication and returns CUSTOM_CHALLENGE as the next challenge to the user.
  3. Control then moves to Create Auth Challenge Lambda trigger to create the custom challenge. This trigger creates a random challenge (a 64 bytes random string), extracts the credential identifier from the user profile (the value passed initially during the sign-up process) combines them and returns them as a custom challenge to the client. This is performed in CreateAuthChallenge Lambda function.
  4. The browser then prompts the user to activate an authenticator. At this stage, the authenticator verifies that credentials exist for the identifier and that the relying party matches the one that is bound to the credentials. This is implemented by making a call to navigator.credentials.get API that is available in browsers and devices that support FIDO2 and WebAuthn.
     
    Figure 4: Authentication and browser prompt to use a registered authenticator

    Figure 4: Authentication and browser prompt to use a registered authenticator

  5. If credentials exist and the relying party is verified, the authenticator requests a user attention or verification. Depending on the type of authenticator, user verification through biometrics or a PIN code is performed and the credentials response is passed back to the browser.
     
    Figure 5: Authentication examples from different browsers and platforms

    Figure 5: Authentication examples from different browsers and platforms

  6. The signIn function continues the sign-in process by calling respondToAuthChallenge API and sending the credentials response to Amazon Cognito.
  7. Amazon Cognito sends the response to the Verify Auth Challenge Lambda trigger. This trigger extracts the public key from the user profile, parses and validates the credentials response, and if the signature is valid, it responds with success. This is performed in VerifyAuthChallenge Lambda trigger.
  8. Lastly, Amazon Cognito sends the control again to Define Auth Challenge to determine the next step. If the results from Verify Auth Challenge indicate a successful response, authentication succeeds and Amazon Cognito responds with ID, access, and refresh tokens.

Conclusion

When building customer facing applications, you as the application owner and developer need to balance security with usability. Reducing the risk of account take-over and phishing is based on using strong credentials, strong second-factors, and minimizing the role of passwords. The flexibility of Amazon Cognito custom authentication flow integrated with WebAuthn offer a technical path to make this possible in addition to offering better user experience to your customers.

Check out the WebAuthn with Amazon Cognito project for code samples and deployment steps, deploy this in your development environment to see this integration in action and go build an awesome password-less experience in your application.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on the Amazon Cognito forum or contact AWS Support.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Mahmoud Matouk

Mahmoud is a Senior Solutions Architect with the Amazon Cognito team. He helps AWS customers build secure and innovative solutions for various identity and access management scenarios.

How to configure Duo multi-factor authentication with Amazon Cognito

Post Syndicated from Mahmoud Matouk original https://aws.amazon.com/blogs/security/how-to-configure-duo-multi-factor-authentication-with-amazon-cognito/

Adding multi-factor authentication (MFA) reduces the risk of user account take-over, phishing attacks, and password theft. Adding MFA while providing a frictionless sign-in experience requires you to offer a variety of MFA options that support a wide range of users and devices. Let’s see how you can achieve that with Amazon Cognito and Duo Multi-Factor Authentication (MFA).

Amazon Cognito user pools are user directories that are used by Amazon Web Services (AWS) customers to manage the identities of their customers and to add sign-in, sign-up and user management features to their customer-facing web and mobile applications. Duo Security is an APN Partner that provides unified access security and multi-factor authentication solutions.

In this blog post, I show you how to use Amazon Cognito custom authentication flow to integrate Duo Multi-Factor Authentication (MFA) into your sign-in flow and offer a wide range of MFA options to your customers. Some second factors available through Duo MFA are mobile phone SMS passcodes, approval of login via phone call, push-notification-based approval on smartphones, biometrics on devices that support it, and security keys that can be attached via USB.

How it works

Amazon Cognito user pools enable you to build a custom authentication flow that authenticates users based on one or more challenge/response cycles. You can use this flow to integrate Duo MFA into your authentication as a custom challenge.

Duo Web offers a software development kit to make it easier for you to integrate your web applications with Duo MFA. You need an account with Duo and an application to protect (which can be created from the Duo admin dashboard). When you create your application in the Duo admin dashboard, note the integration key (ikey), secret key (skey), and API hostname. These details, together with a random string (akey) that you generate, are the primary factors used to integrate your Amazon Cognito user pool with Duo MFA.

Note: ikey, skey, and akey are referred to as Duo keys.

Duo MFA will be integrated into the sign-in flow as a custom challenge. To do that, you need to generate a signed challenge request using Duo APIs and use it to load Duo MFA in an iframe and request the user’s second factor. When the challenge is answered by the user, a signed response is returned to your application and sent to Amazon Cognito for verification. If the response is valid then the MFA challenge is successful.

Let’s take a closer look at the sequence of calls and components involved in this flow.

Implementation details

In this section, I walk you through the end-to-end flow of integrating Duo MFA with Amazon Cognito using a custom authentication flow. To help you with this integration, I built a demo project that provides deployment steps and sample code to create a working demo in your environment.

Create and configure a user pool

The first step is to create the AWS resources needed for the demo. You can do that by deploying the AWS CloudFormation stack as described in the demo project.

A few implementation details to be aware of:

  • The template creates an Amazon Cognito user pool, application client, and AWS Lambda triggers that are used for the custom authentication.
  • The template also accepts ikey, skey, and akey as inputs. For security, the parameters are masked in the AWS CloudFormation console. These parameters are stored in a secret in AWS Secrets Manager with a resource policy that allows relevant Lambda functions read access to that secret.
  • Duo keys are loaded from secrets manager at the initialization of create auth challenge and verify auth challenge Lambda triggers to be used to create sign-request and verify sign-response.

Authentication flow

Figure 1: User authentication process for the custom authentication flow

Figure 1: User authentication process for the custom authentication flow

The preceding sequence diagram (Figure 1) illustrates the sequence of calls to sign in a user, which are as follows:

  1. In your application, the user is presented with a sign-in UI that captures their user name and password and starts the sign-in flow. A script—running in the browser—starts the sign-in process using the Amazon Cognito authenticateUser API with CUSTOM_AUTH set as the authentication flow. This validates the user’s credentials using Secure Remote Password (SRP) protocol and moves on to the second challenge if the credentials are valid.

    Note: The authenticateUser API automatically starts the authentication process with SRP. The first challenge that’s sent to Amazon Cognito is SRP_A. This is followed by PASSWORD_VERIFIER to verify the user’s credentials.

  2. After the SRP challenge step, the define auth challenge Lambda trigger will return CUSTOM_CHALLENGE and this will move control to the create auth challenge trigger.
  3. The create auth challenge Lambda trigger creates a Duo signed request using the Duo keys plus the username and returns the signed request as a challenge to the client. Here is a sample code of what create auth challenge should look like:
    <JavaScript>
    
    exports.handler = async (event) => {
    
        //load duo keys from secrets manager and store them in global variables
    
        if(ikey == null || skey == null || akey == null){ 
          const promise = new Promise(function(resolve, reject) {
              secretsManagerClient.getSecretValue({SecretId: secretName}, function(err, data) {
                    if (err) {throw err; }
                    else {
                        if ('SecretString' in data) {
                            secret = JSON.parse(data.SecretString);
                            ikey = secret['duo-ikey'];
                            skey = secret['duo-skey'];
                            akey = secret['duo-akey'];
                        }
                    }
                    resolve();
                });
            })
            
            await promise; 
        }
    
        
        var username = event.userName;
        var sig_request = duo_web.sign_request(ikey, skey, akey, username);
        
        event.response.publicChallengeParameters = {
            sig_request: sig_request
        };
        
        return event;
    };
    

  4. The client initializes the Duo Web library with the signed request and displays Duo MFA in an iframe to request a second factor from the user. To initialize the Duo library, you need the api_hostname that is generated for your application in the Duo dashboard, the sign-request that was received as a challenge, and a callback function to invoke after the MFA step is completed by the user. This is done on the client side as follows:
    <JavaScript>
          //render Duo MFA iframe
          $("#duo-mfa").html('<iframe id="duo_iframe" title="Two-Factor Authentication" </iframe>');
            
          Duo.init({
            'host': api_hostname,
            'sig_request': challengeParameters.sig_request,
            'submit_callback': mfa_callback
          });
    

  5. Through the Duo iframe, the user can set up their MFA preferences and respond to an MFA challenge. After successful MFA setup, a signed response from the Duo Web library will be returned to the client and passed to the callback function that was provided in Duo.init call.
     
    Figure 2: The first time a user signs in, Duo MFA displays a Start setup screen

    Figure 2: The first time a user signs in, Duo MFA displays a Start setup screen

  6. The client sends the Duo signed response to the Amazon Cognito service as a challenge response.
  7. Amazon Cognito sends the response to the verify auth challenge Lambda trigger, which uses Duo keys and username to verify the response.
    <JavaScript>
    const duo_web = require('duo_web');
    exports.handler = async (event) => {
    
        //load duo keys from secrets manager and store them in global variables
        
        var username = event.userName;
        
        //-------get challenge response
        const sig_response = event.request.challengeAnswer;
        const verificationResult = duo_web.verify_response(ikey, skey, akey, sig_response);
        
        if (verificationResult === username) {
            event.response.answerCorrect = true;
        } else {
            event.response.answerCorrect = false;
        }
        return event;
    };
    

  8. Validation results and current state are passed once again to the define auth challenge Lambda trigger. If the user response is valid, then the Duo MFA challenge is successful. You can then decide to introduce additional challenges to the user or issue tokens and complete the authentication process.

Conclusion

As you build your mobile or web application, keep in mind that using multi-factor authentication is an effective and recommended approach to protect your customers from account take-over, phishing, and the risks of weak or compromised passwords. Making multi-factor authentication easy for your customers enables you to offer authentication experience that protects their accounts but doesn’t slow them down.

Visit the security pillar of AWS Well-Architected Framework to learn more about AWS security best practices and recommendations.

In this blog post, I showed you how to integrate Duo MFA with an Amazon Cognito user pool. Visit the demo application and review the code samples in it to learn how to integrate this with your application.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on the Amazon Cognito forum or contact AWS Support.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Mahmoud Matouk

Mahmoud is a Senior Solutions Architect with the Amazon Cognito team. He helps AWS customers build secure and innovative solutions for various identity and access management scenarios.

Cloudflare Access: now for SaaS apps, too

Post Syndicated from Sam Rhea original https://blog.cloudflare.com/cloudflare-access-for-saas/

Cloudflare Access: now for SaaS apps, too

Cloudflare Access: now for SaaS apps, too

We built Cloudflare Access™ as a tool to solve a problem we had inside of Cloudflare. We rely on a set of applications to manage and monitor our network. Some of these are popular products that we self-host, like the Atlassian suite, and others are tools we built ourselves. We deployed those applications on a private network. To reach them, you had to either connect through a secure WiFi network in a Cloudflare office, or use a VPN.

That VPN added friction to how we work. We had to dedicate part of Cloudflare’s onboarding just to teaching users how to connect. If someone received a PagerDuty alert, they had to rush to their laptop and sit and wait while the VPN connected. Team members struggled to work while mobile. New offices had to backhaul their traffic. In 2017 and early 2018, our IT team triaged hundreds of help desk tickets with titles like these:

Cloudflare Access: now for SaaS apps, too

While our IT team wrestled with usability issues, our Security team decided that poking holes in our private network was too much of a risk to maintain. Once on the VPN, users almost always had too much access. We had limited visibility into what happened on the private network. We tried to segment the network, but that was error-prone.

Around that time, Google published its BeyondCorp paper that outlined a model of what has become known as Zero Trust Security. Instead of trusting any user on a private network, a Zero Trust perimeter evaluates every request and connection for user identity and other variables.

We decided to create our own implementation by building on top of Cloudflare. Despite BeyondCorp being a new concept, we had experience in this field. For nearly a decade, Cloudflare’s global network had been operating like a Zero Trust perimeter for applications on the Internet – we just didn’t call it that. For example, products like our WAF evaluated requests to public-facing applications. We could add identity as a new layer and use the same network to protect applications teams used internally.

We began moving our self-hosted applications to this new project. Users logged in with our SSO provider from any network or location, and the experience felt like any other SaaS app. Our Security team gained the control and visibility they needed, and our IT team became more productive. Specifically, our IT teams have seen ~80% reduction in the time they spent servicing VPN-related tickets, which unlocked over $100K worth of help desk efficiency annually. Later in 2018, we launched this as a product that our customers could use as well.

By shifting security to Cloudflare’s network, we could also make the perimeter smarter. We could require that users login with a hard key, something that our identity provider couldn’t support. We could restrict connections to applications from specific countries. We added device posture integrations. Cloudflare Access became an aggregator of identity signals in this Zero Trust model.

As a result, our internal tools suddenly became more secure than the SaaS apps we used. We could only add rules to the applications we could place on Cloudflare’s reverse proxy. When users connected to popular SaaS tools, they did not pass through Cloudflare’s network. We lacked a consistent level of visibility and security across all of our applications. So did our customers.

Starting today, our team and yours can fix that. We’re excited to announce that you can now bring the Zero Trust security features of Cloudflare Access to your SaaS applications. You can protect any SaaS application that can integrate with a SAML identity provider with Cloudflare Access.

Even though that SaaS application is not deployed on Cloudflare, we can still add security rules to every login. You can begin using this feature today and, in the next couple of months, you’ll be able to ensure that all traffic to these SaaS applications connects through Cloudflare Gateway.

Standardizing and aggregating identity in Cloudflare’s network

Support for SaaS applications in Cloudflare Access starts with standardizing identity. Cloudflare Access  aggregates different sources of identity: username, password, location, and device. Administrators build rules to determine what requirements a user must meet to reach an application. When users attempt to connect, Cloudflare enforces every rule in that checklist before the user ever reaches the app.

The primary rule in that checklist is user identity. Cloudflare Access is not an identity provider; instead, we source identity from SSO services like Okta, Ping Identity, OneLogin, or public apps like GitHub. When a user attempts to access a resource, we prompt them to login with the provider configured. If successful, the provider shares the user’s identity and other metadata with Cloudflare Access.

A username is just one part of a Zero Trust decision. We consider additional rules, like country restrictions or device posture via partners like Tanium or, soon, additional partners CrowdStrike and VMware Carbon Black. If the user meets all of those criteria, Cloudflare Access summarizes those variables into a standard proof of identity that our network trusts: a JSON Web Token (JWT).

Cloudflare Access: now for SaaS apps, too

A JWT is a secure, information-dense way to share information. Most importantly, JWTs follow a standard, so that different systems can trust one another. When users login to Cloudflare Access, we generate and sign a JWT that contains the decision and information about the user. We store that information in the user’s browser and treat that as proof of identity for the duration of their session.

Every JWT must consist of three Base64-URL strings: the header, the payload, and the signature.

  • The header defines the cryptographic operation that encrypts the data in the JWT.
  • The payload consists of name-value pairs for at least one and typically multiple claims, encoded in JSON. For example, the payload can contain the identity of a user.
  • The signature allows the receiving party to confirm that the payload is authentic.

We store the identity data inside of the payload and include the following details:

  • User identity: typically the email address of the user retrieved from your identity provider.
  • Authentication domain: the domain that signs the token. For Access, we use “example.cloudflareaccess.com” where “example” is a subdomain you can configure.
  • amr: If available, the multifactor authentication method the login used, like a hard key or a TOTP code.
  • Country: The country where the user is connecting from.
  • Audience: The domain of the application you are attempting to reach.
  • Expiration: the time at which the token is no longer valid for use.

Some applications support JWTs natively for SSO. We can send the token to the application and the user can login. In other cases, we’ve released plugins for popular providers like Atlassian and Sentry. However, most applications lack JWT support and rely on a different standard: SAML.

Converting JWT to SAML with Cloudflare Workers

You can deploy Cloudflare’s reverse proxy to protect the applications you host, which puts Cloudflare Access in a position to add identity checks when those requests hit our edge. However, the SaaS applications you use are hosted and managed by the vendors themselves as part of the value they offer. In the same way that I cannot decide who can walk into the front door of the bakery downstairs, you can’t build rules about what requests should and shouldn’t be allowed.

When those applications support integration with your SSO provider, you do have control over the login flow. Many applications rely on a popular standard, SAML, to securely exchange identity data and user attributes between two systems. The SaaS application does not need to know the details of the identity provider’s rules.

Cloudflare Access uses that relationship to force SaaS logins through Cloudflare’s network. The application itself thinks of Cloudflare Access as the SAML identity provider. When users attempt to login, the application sends the user to login with Cloudflare Access.

That said, Cloudflare Access is not an identity provider – it’s an identity aggregator. When the user reaches Access, we will redirect them to the identity provider in the same way that we do today when users request a site that uses Cloudflare’s reverse proxy. By adding that hop through Access, though, we can layer the additional contextual rules and log the event.

Cloudflare Access: now for SaaS apps, too

We still generate a JWT for every login providing a standard proof of identity. Integrating with SaaS applications required us to convert that JWT into a SAML assertion that we can send to the SaaS application. Cloudflare Access runs in every one of Cloudflare’s data centers around the world to improve availability and avoid slowing down users. We did not want to lose those advantages for this flow. To solve that, we turned to Cloudflare Workers.

The core login flow of Cloudflare Access already runs on Cloudflare Workers. We built support for SaaS applications by using Workers to take the JWT and convert its content into SAML assertions that are sent to the SaaS application. The application thinks that Cloudflare Access is the identity provider, even though we’re just aggregating identity signals from your SSO provider and other sources into the JWT, and sending that summary to the app via SAML.

Integrate with Gateway for comprehensive logging (coming soon)

Cloudflare Gateway keeps your users and data safe from threats on the Internet by filtering Internet-bound connections that leave laptops and offices. Gateway gives administrators the ability to block, allow, or log every connection and request to SaaS applications.

However, users are connecting from personal devices and home WiFi networks, potentially bypassing Internet security filtering available on corporate networks. If users have their password and MFA token, they can bypass security requirements and reach into SaaS applications from their own, unprotected devices at home.

To ensure traffic to your SaaS apps only connects over Gateway-protected devices, Cloudflare Access will add a new rule type that requires Gateway when users login to your SaaS applications. Once enabled, users will only be able to connect to your SaaS applications when they use Cloudflare Gateway. Gateway will log those connections and provide visibility into every action within SaaS apps and the Internet.

Every identity provider is now capable of SAML SSO

Identity providers come in two flavors and you probably use both every day. One type is purpose-built to be an identity provider, and the other accidentally became one. With this release, Cloudflare Access can convert either into a SAML-compliant SSO option.

Corporate identity providers, like Okta or Azure AD, manage your business identity. Your IT department creates and maintains the account. They can integrate it with SaaS Applications for SSO.

The second type of login option consists of SaaS providers that began as consumer applications and evolved into public identity providers. LinkedIn, GitHub, and Google required users to create accounts in their applications for networking, coding, or email.

Over the last decade, other applications began to trust those public identity provider logins. You could use your Google account to log into a news reader and your GitHub account to authenticate to DigitalOcean. Services like Google and Facebook became SSO options for everyone. However, most corporate applications only supported integration with a single SAML provider, something public identity providers do not provide. To rely on SSO as a team, you still needed a corporate identity provider.

Cloudflare Access converts a user login from any identity provider into a JWT. With this release, we also generate a standard SAML assertion. Your team can now use the SAML SSO features of a corporate identity provider with public providers like LinkedIn or GitHub.

Multi-SSO meets SaaS applications

We describe Cloudflare Access as a Multi-SSO service because you can integrate multiple identity providers, and their SSO flows, into Cloudflare’s Zero Trust network. That same capability now extends to integrating multiple identity providers with a single SaaS application.

Most SaaS applications will only integrate with a single identity provider, limiting your team to a single option. We know that our customers work with partners, contractors, or acquisitions which can make it difficult to standardize around a single identity option for SaaS logins.

Cloudflare Access can connect to multiple identity providers simultaneously, including multiple instances of the same provider. When users are prompted to login, they can choose the option that their particular team uses.

Cloudflare Access: now for SaaS apps, too

We’ve taken that ability and extended it into the Access for SaaS feature. Access generates a consistent identity from any provider, which we can now extend for SSO purposes to a SaaS application. Even if the application only supports a single identity provider, you can still integrate Cloudflare Access and merge identities across multiple sources. Now, team members who use your Okta instance and contractors who use LinkedIn can both SSO into your Atlassian suite.

All of your apps in one place

Cloudflare Access released the Access App Launch as a single destination for all of your internal applications. Your team members visit a URL that is unique to your organization and the App Launch displays all of the applications they can reach. The feature requires no additional administrative configuration; Cloudflare Access reads the user’s JWT and returns only the applications they are allowed to reach.

Cloudflare Access: now for SaaS apps, too

That experience now extends to all applications in your organization. When you integrate SaaS applications with Cloudflare Access, your users will be able to discover them in the App Launch. Like the flow for internal applications, this requires no additional configuration.

How to get started

To get started, you’ll need a Cloudflare Access account and a SaaS application that supports SAML SSO. Navigate to the Cloudflare for Teams dashboard and choose the “SaaS” application option to start integrating your applications. Cloudflare Access will walk through the steps to configure the application to trust Cloudflare Access as the SSO option.

Cloudflare Access: now for SaaS apps, too

Do you have an application that needs additional configuration? Please let us know.

Protect SaaS applications with Cloudflare for Teams today

Cloudflare Access for SaaS is available to all Cloudflare for Teams customers, including organizations on the free plan. Sign up for a Cloudflare for Teams account and follow the steps in the documentation to get started.

We will begin expanding the Gateway beta program to integrate Gateway’s logging and web filtering with the Access for SaaS feature before the end of the year.

Releasing kubectl support in Access

Post Syndicated from Sam Rhea original https://blog.cloudflare.com/releasing-kubectl-support-in-access/

Releasing kubectl support in Access

Starting today, you can use Cloudflare Access and Argo Tunnel to securely manage your Kubernetes cluster with the kubectl command-line tool.

We built this to address one of the edge cases that stopped all of Cloudflare, as well as some of our customers, from disabling the VPN. With this workflow, you can add SSO requirements and a zero-trust model to your Kubernetes management in under 30 minutes.

Once deployed, you can migrate to Cloudflare Access for controlling Kubernetes clusters without disrupting your current kubectl workflow, a lesson we learned the hard way from dogfooding here at Cloudflare.

What is kubectl?

A Kubernetes deployment consists of a cluster that contains nodes, which run the containers, as well as a control plane that can be used to manage those nodes. Central to that control plane is the Kubernetes API server, which interacts with components like the scheduler and manager.

kubectl is the Kubernetes command-line tool that developers can use to interact with that API server. Users run kubectl commands to perform actions like starting and stopping the nodes, or modifying other elements of the control plane.

In most deployments, users connect to a VPN that allows them to run commands against that API server by addressing it over the same local network. In that architecture, user traffic to run these commands must be backhauled through a physical or virtual VPN appliance. More concerning, in most cases the user connecting to the API server will also be able to connect to other addresses and ports in the private network where the cluster runs.

How does Cloudflare Access apply?

Cloudflare Access can secure web applications as well as non-HTTP connections like SSH, RDP, and the commands sent over kubectl. Access deploys Cloudflare’s network in front of all of these resources. Every time a request is made to one of these destinations, Cloudflare’s network checks for identity like a bouncer in front of each door.

Releasing kubectl support in Access

If the request lacks identity, we send the user to your team’s SSO provider, like Okta, AzureAD, and G Suite, where the user can login. Once they login, they are redirected to Cloudflare where we check their identity against a list of users who are allowed to connect. If the user is permitted, we let their request reach the destination.

In most cases, those granular checks on every request would slow down the experience. However, Cloudflare Access completes the entire check in just a few milliseconds. The authentication flow relies on Cloudflare’s serverless product, Workers, and runs in every one of our data centers in 200 cities around the world. With that distribution, we can improve performance for your applications while also authenticating every request.

How does it work with kubectl?

To replace your VPN with Cloudflare Access for kubectl, you need to complete two steps:

  • Connect your cluster to Cloudflare with Argo Tunnel
  • Connect from a client machine to that cluster with Argo Tunnel
Releasing kubectl support in Access

Connecting the cluster to Cloudflare

On the cluster side, Cloudflare Argo Tunnel connects those resources to our network by creating a secure tunnel with the Cloudflare daemon, cloudflared. As an administrator, you can run cloudflared in any space that can connect to the kubectl API server over TCP.

Once installed, an administrator authenticates the instance of cloudflared by logging in to a browser with their Cloudflare account and choosing a hostname to use. Once selected, Cloudflare will issue a certificate to cloudflared that can be used to create a subdomain for the cluster.

Next, an administrator starts the tunnel. In the example below, the hostname value can be any subdomain of the hostname selected in Cloudflare; the url value should be the API server for the cluster.

cloudflared tunnel --hostname cluster.site.com --url tcp://kubernetes.docker.internal:6443 --socks5=true 

This should be run as a systemd process to ensure the tunnel reconnects if the resource restarts.

Connecting as an end user

End users do not need an agent or client application to connect to web applications secured by Cloudflare Access. They can authenticate to on-premise applications through a browser, without a VPN, like they would for SaaS tools. When we apply that same security model to non-HTTP protocols, we need to establish that secure connection from the client with an alternative to the web browser.

Unlike our SSH flow, end users cannot modify kubeconfig to proxy requests through cloudflared. Pull requests have been submitted to add this functionality to kubeconfig, but in the meantime users can set an alias to serve a similar function.

First, users need to download the same cloudflared tool that administrators deploy on the cluster. Once downloaded, they will need to run a corresponding command to create a local SOCKS proxy. When the user runs the command, cloudflared will launch a browser window to prompt them to login with their SSO and check that they are allowed to reach this hostname.

$ cloudflared access tcp --hostname cluster.site.com url 172.0.0.3:1234

The proxy allows your local kubectl tool to connect to cloudflared via a SOCKS5 proxy, which helps avoid issues with TLS handshakes to the cluster itself. In this model, TLS verification can still be exchanged with the kubectl API server without disabling or modifying that flow for end users.

Users can then create an alias to save time when connecting. The example below aliases all of the steps required to connect in a single command. This can be added to the user’s bash profile so that it persists between restarts.

$ alias kubeone=”env HTTPS_PROXY=socks5://127.0.0.3:1234 kubectl

A (hard) lesson when dogfooding

When we build products at Cloudflare, we release them to our own organization first. The entire company becomes a feature’s first customer, and we ask them to submit feedback in a candid way.

Cloudflare Access began as a product we built to solve our own challenges with security and connectivity. The product impacts every user in our team, so as we’ve grown, we’ve been able to gather more expansive feedback and catch more edge cases.

The kubectl release was no different. At Cloudflare, we have a team that manages our own Kubernetes deployments and we went to them to discuss the prototype. However, they had more than just some casual feedback and notes for us.

They told us to stop.

We had started down an implementation path that was technically sound and solved the use case, but did so in a way that engineers who spend all day working with pods and containers would find to be a real irritant. The flow required a small change in presenting certificates, which did not feel cumbersome when we tested it, but we do not use it all day. That grain of sand would cause real blisters as a new requirement in the workflow.

With their input, we stopped the release, and changed that step significantly. We worked through ideas, iterated with them, and made sure the Kubernetes team at Cloudflare felt this was not just good enough, but better.

What’s next?

Support for kubectl is available in the latest release of the cloudflared tool. You can begin using it today, on any plan. More detailed instructions are available to get started.

If you try it out, please send us your feedback! We’re focused on improving the ease of use for this feature, and other non-HTTP workflows in Access, and need your input.

New to Cloudflare for Teams? You can use all of the Teams products for free through September. You can learn more about the program, and request a dedicated onboarding session, here.

Rely on employee attributes from your corporate directory to create fine-grained permissions in AWS

Post Syndicated from Sulay Shah original https://aws.amazon.com/blogs/security/rely-employee-attributes-from-corporate-directory-create-fine-grained-permissions-aws/

In my earlier post Simplify granting access to your AWS resources by using tags on AWS IAM users and roles, I explained how to implement attribute-based access control (ABAC) in AWS to simplify permissions management at scale. In that scenario, I talked about relying on attributes on your IAM users and roles for access control in AWS. But more often, customers manage workforce user identities with an identity provider (IdP) and want to use identity attributes from their IdP for fine-grained permissions in AWS. In this post I introduce a new capability that enables you to do just that.

In AWS, you can configure your IdP to allow workforce users federated access to AWS resources using credentials from your corporate directory. Along with user credentials, your directory also stores user attributes such as cost center, department, and email address. Now you can configure your IdP to pass in user attributes as tags in federated AWS sessions. These are called session tags. You can then control access to AWS resources based on these session tags. Moreover, when user attributes change or new users are added to your directory, permissions automatically apply based on these attributes. For example, developers can federate into AWS using an IAM role, but can only access resources specific to their project. This is because you define permissions that require the project attribute from their IdP to match the project tag on AWS resources. Additionally, AWS logs these attributes in AWS CloudTrail and enable security administrators to track the user identity for a given role session.

In this post, I introduce session tags and walk you through an example of how to use session tags for ABAC and tracking user activity.

What are session tags?

Session tags are attributes passed in the AWS session. You can use session tags for access control in IAM policies and for monitoring. These tags are not stored in AWS and are valid only for the duration of the session. You define session tags just like tags in AWS—consisting of a customer-defined key and an optional value.

How to pass session tags in the AWS session?

One of the most widely used mechanisms for requesting a session in AWS is by assuming an IAM role. For user identities stored in an external directory, you can configure your SAML IdP in IAM to allow your users federated access to AWS using IAM roles. To understand how to set up SAML federation using an IdP, read AWS Federated Authentication with Active Directory Federation Services (ADFS). If you’re using IAM users, you can also request a session in AWS using AssumeRole and GetFederationToken APIs or using AssumeRoleWithWebIdentity API for applications that require access to AWS resources.

For session tags, you can use all of the above-mentioned APIs to pass tags into your AWS session based on your use case. For details on how to use these APIs to pass session tags, please visit Tags in AWS Sessions.

What permissions do I need to use session tags?

To perform any action in AWS, developers need permissions. For example, to assume a role, your developers need sts:AssumeRole permission. Similarly with session tags, we’re introducing a new action, sts:TagSession, that is required to pass session tags in the session. Additionally, you can require and control session tags using existing AWS conditions:

ActionUse CaseWhere to add
sts:TagSessionRequired to pass attributes as session tags when using AssumeRole, AssumRoleWithSAML, AssumeRoleWithWebIdentity, or GetFederatioToken APIRole’s trust policy or IAM user’s permissions policy based on the API you are using to pass session tags.
Condition KeyUse CaseActions that supports the condition key
aws:RequestTagUse this condition to require specific tags in the session.sts:TagSession
aws:TagKeysUse this condition key to control the tag keys that are allowed in the session.sts:TagSession
aws:PrincipalTag*Use this condition in IAM policies to compare tags on AWS resources.AWS Global Condition Keys (all actions across all services support this condition key)

Note: The table above explains only the additional use cases that the keys now support. Support for existing use cases, such as IAM users and roles remains unchanged. For details please visit AWS Global Condition Keys.

Now, I’ll show you how to create fine-grained permissions based on user attributes from your directory and how permissions automatically apply based on attributes when employees switch projects within your organization.

Example: Grant employees access to their project resources in AWS based on their job function

Consider a scenario where your organization deployed AWS EC2 and RDS instances in your AWS account for your company’s production web applications. Your systems engineers manage the EC2 instances and database engineers manage the RDS instances. They both access AWS by federating into your AWS account from a SAML IdP. Your organization’s security policy requires employees to have access to manage only the resources related to their job function and project they work on.

To meet these requirements, your cloud administrator, Michelle, implements attribute-based access control (ABAC) using the jobfunction and project attributes as session tags by following three steps:

  1. Michelle tags all existing EC2 and RDS instances with the corresponding project attribute.
  2. She creates a MyProjectResources IAM role and an IAM permission policy for this role such that employees can access resources with their jobfunction and project tags.
  3. She then configures your SAML IdP to pass the jobfunction and project attributes in the federated session when employees federate into AWS using the MyProjectResources role.

Let’s have a look at these steps in detail.

Step 1: Tag all the project resources

Michelle tags all the project resources with the appropriate project tag. This is important since she wants to create permission rules based on this tag to implement ABAC. To learn how to tag resources in EC2 and RDS, read tagging your Amazon EC2 resources and tagging Amazon RDS resources.

Step 2: Create an IAM role with permissions based on attributes

Next, Michelle creates an IAM role called MyProjectResources using the AWS Management Console or CLI. This is the role that your systems engineers and database engineers will assume when they federate into AWS to access and manage the EC2 and RDS instances respectively. To grant this role permissions, Michelle creates the following IAM policy and attaches it to the MyProjectResources role.

IAM Permissions Policy


{
	"Version": "2012-10-17",
	"Statement": [
		{
			"Effect": "Allow",
			"Action": "rds:DescribeDBInstances",
			"Resource": "*"
		},
		{
			"Effect": "Allow",
			"Action": [
				"rds:RebootDBInstance",
				"rds:StartDBInstance",
				"rds:StopDBInstance"
			],
			"Resource": "*",
			"Condition": {
				"StringEquals": {
					"aws:PrincipalTag/jobfunction": "DatabaseEngineer",
					"rds:db-tag/project": "${aws:PrincipalTag/project}"
				}
			}
		},
		{
			"Effect": "Allow",
			"Action": "ec2:DescribeInstances",
			"Resource": "*"
		},
		{
			"Effect": "Allow",
			"Action": [
				"ec2:StartInstances",
				"ec2:StopInstances",
				"ec2:RebootInstances",
				"ec2:TerminateInstances"
			],
			"Resource": "*",
			"Condition": {
				"StringEquals": {
					"aws:PrincipalTag/jobfunction": "SystemsEngineer",
					"ec2:ResourceTag/project": "${aws:PrincipalTag/project}"
				}
			}
		}
	]
}

In the policy above, Michelle allows specific actions related to EC2 and RDS that the systems engineers and database engineers need to manage their project instances. In the condition element of the policy statements, Michelle adds a condition based on the jobfunction and project attributes to ensure engineers can access only the instances which belong to their jobfunction and have a matching project tag.

To ensure your systems engineers and database engineers can assume this role when they federate into AWS from your IdP, Michelle modifies the role’s trust policy to trust your SAML IdP as shown in the policy statement below. Since we also want to include session tags when engineers federate in, Michelle adds the new action sts:TagSession in the policy statement as shown below. She also adds a condition that requires the jobfunction and project attributes to be included as session tags when engineers assume this role.

Role Trust Policy


{
	"Version": "2012-10-17",
	"Statement": [
		{
			"Effect": "Allow",
			"Principal": {
				"Federated": "arn:aws:iam::999999999999:saml-provider/ExampleCorpProvider"
			},
			"Action": [
				"sts:AssumeRoleWithSAML",
				"sts:TagSession"
			],
			"Condition": {
				"StringEquals": {
					"SAML:aud": "https://signin.aws.amazon.com/saml"
				},
				"StringLike": {
					"aws:RequestTag/project": "*",
					"aws:RequestTag/jobfunction": [
						"SystemsEngineer",
						"DatabaseEngineer"
					]
				}
			}
		}
	]
}

Step 3: Configuring your SAML IdP to pass the jobfunction and project attributes as session tags

Once Michelle creates the role and permissions policy in AWS, she configures her SAML IdP to include the jobfunction and project attributes as session tags in the SAML assertion when engineers federate into AWS using this role.

To pass attributes as session tags in the federated session, the SAML assertion must contain the attributes with the following prefix:

https://aws.amazon.com/SAML/Attributes/PrincipalTag

The example given below shows a part of the SAML assertion generated from my IdP with two attributes (project:Automation and jobfunction:SystemsEngineer) that we want to pass as session tags.


<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:project">
		< AttributeValue >Automation<AttributeValue>
</ Attribute>
<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:jobfunction">
		< AttributeValue >SystemsEngineer<AttributeValue>
</ Attribute>

Note: This sample only contains the new properties in the SAML assertion. There are additional required fields in the SAML assertion that must be present to successfully federate into AWS. To learn more about creating SAML assertions with session tags, visit configuring SAML assertions for the authentication response.

AWS identity partners such as Ping Identity, OneLogin, Auth0, ForgeRock, IBM, Okta, and RSA have validated the end-to-end experience for this new capability with their identity solutions, and we look forward to additional partners validating this capability. To learn more about how to use these identity providers for configuring session tags, please visit integrating third-party SAML solution providers with AWS. If you are using Active Directory Federation Services (ADFS) for SAML federation with AWS, then please visit Configuring ADFS to start using session tags for attribute-based access control.

Now, when your systems engineers and database engineers federate into AWS using the MyProjectResources role, they only get access to their project resources based on the project and jobfunction attributes passed in their federated session. Session tags enabled Michelle to define unique permissions based on user attributes without having to create and manage multiple roles and policies. This helps simplify permissions management in her company.

Permissions automatically apply when employees change projects

Consider the same example with a scenario where your systems engineer, Bob, switches from the automation project to the integration project. Due to this switch, Michelle sets Bob’s project attribute in the IdP to integration. Now, the next time Bob federates into AWS he automatically has access to resources in integration project. Using session tags, permissions automatically apply when you update attributes or create new AWS resources with appropriate attributes without requiring any permissions updates in AWS.

Track user identity using session tags

When developers federate into AWS with session tags, AWS CloudTrail logs these tags to make it easier for security administrators to track the user identity of the session. To view session tags in CloudTrail, your administrator Michelle looks for the AssumeRoleWithSAML event in the eventName filter of CloudTrail. In the example below, Michelle has configured the SAML IdP to pass three session tags: project, jobfunction, and userID. When developers federate into your account, Michelle views the AssumeRoleWithSAML event in CloudTrail to track the user identity of the session using the session tags project, jobfunction, and userID as shown below:
 

Figure 1: Search for the logged events

Figure 1: Search for the logged events

Note: You can use session tags in conjunction with the instructions to track account activity to its origin using AWS CloudTrail to trace the identity of the session.

Summary

You can use session tags to rely on your employee attributes from your corporate directory to create fine-grained permissions at scale in AWS to simplify your permissions management workflows. To learn more about session tags, please visit tags in AWS session.

If you have feedback about this blog post, submit comments in the Comments section below. If you have questions about this blog post, start a new thread on the Amazon IAM forum.

Want more AWS Security news? Follow us on Twitter.

Sulay Shah

Sulay is a Senior Product Manager for Identity and Access Management service at AWS. He strongly believes in the customer first approach and is always looking for new opportunities to assist customers. Outside of work, Sulay enjoys playing soccer and watching movies. Sulay holds a master’s degree in computer science from the North Carolina State University.

Use IAM to share your AWS resources with groups of AWS accounts in AWS Organizations

Post Syndicated from Michael Switzer original https://aws.amazon.com/blogs/security/iam-share-aws-resources-groups-aws-accounts-aws-organizations/

You can now reference Organizational Units (OUs), which are groups of AWS accounts in AWS Organizations, in AWS Identity and Access Management (IAM) policies, making it easier to define access for your IAM principals (users and roles) to the AWS resources in your organization. AWS Organizations lets you organize your accounts into OUs to align them with your business or security purposes. Now, you can use a new condition key, aws:PrincipalOrgPaths, in your policies to allow or deny access based on a principal’s membership in an OU. This makes it easier than ever to share resources between accounts you own in your AWS environments.

For example, you might have an Amazon S3 bucket you need to share with developers and applications from accounts that are members of a specific OU. To accomplish this, you can specify the aws:PrincipalOrgPaths condition and set the value to the organizational unit ID of the caller in the resource-based policy attached to the bucket. When a principal tries to access the bucket, AWS verifies that their account’s OU matches the one specified in the policy. With this condition, permissions automatically apply when you add accounts to the OU without any additional updates to the policy.

In this post, I introduce the new condition key, and show you how to use it in two examples. In the first example you will see how to use the aws:PrincipalOrgPaths condition key to grant multiple AWS accounts access to a resource, without needing to maintain a list of account IDs in your policy. In the second example, you will see how to add a guardrail to your administrative roles that prevents access to powerful actions unless coming from a protected OU in your organization.

AWS Organizations Concepts

Before I walk through the condition, let’s review some important concepts from AWS Organizations.

AWS Organizations allows you to group a set of AWS accounts into an organization that you can manage centrally. Once the accounts have joined the organization, you can group them into organizational units (OUs), allowing you to set policies that help you meet your security and compliance requirements. You can create multiple OUs within a single organization, and you can create OUs within other OUs to form hierarchical relationships between your accounts. When you create an organization, AWS Organizations creates your first account container automatically. It has a special name, called a root. All OUs you create exist inside the root.

Organizations, roots, and OUs use a different format for their identifiers. You can see the differences in the table below:

ResourceID FormatExample ValueGlobally Unique
Organizationo-exampleorgido-p8iu8lkookYes
Rootr-examplerootidr-tkh7No
Organizational Unitou-examplerootid-exampleouidou-tkh7-pbevdy6hNo

Organization IDs are globally unique, meaning no organizations share Organization IDs. OU and Root IDs are not globally unique. This means another customer’s organization OU may have the same ID as those from your organization. OU and Root IDs are unique within an organization. Therefore, you should always include the organization identifier when specifying an OU to make sure it is unique to your organization.

Control access to resources based on OU

You use condition keys in the condition element of an IAM policy. A condition is an optional IAM policy element you can use to specify circumstances under which the policy grants or denies permission. A condition includes a condition key, operator, and value for the condition.

Condition keyDescriptionOperator(s)Value(s)
aws:PrincipalOrgPathsThe paths of the principals’ OU from AWS OrganizationsAll string operatorsPaths of AWS Organization IDs and organizational unit IDs

The aws:PrincipalOrgPaths condition key is a global condition, meaning you can use it in conjunction with any AWS action. When you use it in the condition element of your IAM policy, it validates the organization, root, and OUs of the principal performing the action on the resource. For example, let’s say a principal was a member of an OU with the id ou-abcd-zzyyxxww inside a root r-abcd in the organization o-1122334455. When the principal makes a request on the resource, its aws:PrincipalOrgPaths value is:

["o-1122334455/r-abcd/ou-abcd-zzyyxxww/"]

The path includes the organization ID to ensure global uniqueness. This ensures only principals from your organization can access your AWS resources. You can use any string operator, such as StringEquals, with the condition. You can also use the wildcard characters (* and ?) when providing a path.

Aws:PrincipalOrgPaths is a multi-value condition key. Multi-value keys allow you to provide multiple values in a list format. Here’s a sample condition statement from a policy that uses the key to validate that a principal is from either ou-1 or ou-2:


"Condition":{
	"ForAnyValue:StringLike":{
		"aws:PrincipalOrgPaths":[
		  "o-1122334455/r-abcd/ou-1/",
		  "o-1122334455/r-abcd/ou-2/"
		]
	}
}

For all multi-value condition keys, you must provide the value as a JSON-formatted list as shown above, even if you’re only specifying one value. As shown in the example above, you also must use the ForAnyValue qualifier in your conditions to specify you’re checking membership of one OU path. For more information, see Creating a Condition That Tests Multiple Key Values in the IAM documentation.

In the next section, I’ll go over an example of how to use the new condition key to protect resources in your account from access outside of a given OU.

Example: Grant S3 bucket access to all principals in an OU in your organization

This example demonstrates how you can use the new condition key to share resources with groups of accounts. By placing the accounts into an OU and granting access based on membership, you can grant targeted access without having to list and maintain all the AWS account IDs in your permission policies.

Consider an example where I want to grant my Machine Learning team permissions to access an S3 bucket training-data that contains images that the team will use to train their machine learning models. I’ve set up my organization such that all AWS accounts owned by my Machine Learning team are part of a specific OU with the ID ou-machinelearn. For the purpose of this example, my organization ID is o-myorganization.

For this example, I want to allow users and applications from the Machine Learning OU or any OU beneath it to have permissions to read the training-data S3 bucket. Any other AWS accounts should not have the ability to view the resource.

To grant these permissions, I author an S3 bucket policy for my training-data resource as shown below.


{
	"Version":"2012-10-17",
	"Statement":{
		"Sid":"TrainingDataS3ReadOnly",
		"Effect":"Allow",
		"Principal": "*",
		"Action":"s3:GetObject",
		"Resource":"arn:aws:s3:::training-data/*",
		"Condition":{
			"ForAnyValue:StringLike":{
				"aws:PrincipalOrgPaths":["o-myorganization/*/ou-machinelearn/*"]
			}
		}
	}
}

In the policy above, I assert that principals trying to read the contents of the training-data bucket must be either a member of the OU that corresponds to the ou-machinelearn ID I provided (my Machine Learning OU Identifier), or a member of any OUs that are children of it. For the aws:PrincipalOrgPaths value, I used two asterisk (*) wildcards. I used the first asterisk (*) between my organization ID and my OU ID because OU IDs are unique within my organization. This means specifying the full path is not necessary to select the OU I need. The second asterisk (*), at the end of the path, is used to specify that I want to allow all child OUs to be included in my string comparison. If I didn’t want to include the child OUs, I could remove the wildcard character.

With this policy on the bucket, any principals in the Machine Learning OU may read objects inside the bucket if the user or role has the appropriate S3 permissions. Note that if this policy did not have the condition statement, it would be accessible by any AWS account. As a best practice, AWS recommends only granting access to the principals that need it. As for next steps, I could edit the Principal section of the policy to restrict access to specific principals in my Machine Learning accounts. For more information, see Specifying a Principal in a Policy in the S3 documentation.

Example: Restrict access to an IAM role to only accounts in an OU in my organization

The next example will show how to use aws:PrincipalOrgPaths to add another layer of security to your existing IAM role trust policies, ensuring only members of specific OUs may assume your roles.

For this example, say my company requires that only network security engineers can create or manage AWS Virtual Private Cloud (VPC) resources in my accounts. The network security team has a dedicated OU, ou-netsec, for their workloads. I have the same organization ID as the previous example, o-myorganization.

Each account in my organization has a dedicated IAM role, VPCManager, with the permissions needed to manage VPCs. I want to ensure that only my network security team, who use principals that are tagged as such, has access to the role. To do this, I edited the role trust policy for VPCManager, which defines who can access an IAM role. In this case, I added a condition to the policy to require that anyone assuming the role must come from an account in ou-netsec.

This is the trust policy I created for VPCManager:


{
  "Version": "2012-10-17",
  "Statement": [
	{
			"Effect": "Allow",
			"Principal": {
			"AWS": [
				"123456789012",
				"345678901234",
				"567890123456"
			]
		},
		"Action": "sts:AssumeRole",
		"Condition":{
		"StringEquals":{
		"aws:PrincipalTag/JobRole":"NetworkAdmin"
			},
			"ForAnyValue:StringLike":{
				"aws:PrincipalOrgPaths":["o-myorganization/*/ou-netsec/"]
            }
         }
      }
   ]
}

I started by adding the Effect, Principal, and Action to allow principals from three network security accounts to assume the role. To ensure they have the right job role, I added a condition to require the JobRole=NetworkAdmin tag must be applied to principals before they can assume the role. Finally, as an added layer of security, I added the second condition that requires anyone assuming the role must come from an account in the network security OU. This final step ensures that I specified the correct account IDs for my network security accounts—even if I accidentally provided an account that is not part of my organization, members of that account won’t be able to assume the role because they aren’t part of ou-netsec.

Though only members of the network security team may assume the role, it’s still possible for any principals with IAM permissions to modify it. As next steps, I could apply a Service Control Policy (SCP) that protects the role from modification and prevents other roles in the account from modifying VPCs. For more information, see How to use service control policies to set permission guardrails in the AWS Security Blog.

Summary

AWS offers tools to control access for individual principals, accounts, OUs, or entire organizations—this helps you manage permissions at the appropriate scale for your business. You can now use the aws:PrincipalOrgPaths condition key to control access to your resources based on OUs configured in AWS Organizations. For more information about these global condition keys and policy examples, read the IAM documentation.

If you have feedback about this blog post, submit comments in the Comments section below. If you have questions about this blog post, start a new thread on the Amazon Identity and Access Management forum.

Want more AWS Security news? Follow us on Twitter.

Michael Switzer, Senior Product Manager AWS Identity

Michael Switzer

Mike Switzer is the product manager for the Identity and Access Management service at AWS. He enjoys working directly with customers to identify solutions to their challenges, and using data-driven decision making to drive his work. Outside of work, Mike is an avid cyclist and outdoorsperson. Mike holds a master’s degree in computational mathematics from the University of Washington.

Your AWS re:Invent 2019 guide to AWS Identity sessions, workshops, and chalk talks

Post Syndicated from Michael Chan original https://aws.amazon.com/blogs/security/aws-reinvent-2019-guide-to-aws-identity-sessions-workshops-chalk-talks/

re:Invent attendees

AWS re:Invent 2019 is coming fast! You’ll soon need to prioritize your sessions. Here’s a list of AWS Identity sessions, workshops, and chalk talks at AWS re:Invent 2019. If you haven’t registered yet for re:Invent, here’s a template you can provide to your manager to help justify your trip.

AWS Identity Leadership Keynote

SEC207-L – Leadership session: AWS identity (Breakout session)
Digital identity is one of the fastest growing and fastest changing parts of the cloud. Zero-trust networks, GDPR concerns, and new IoT opportunities have been dominating cloud news coverage. In this session, learn about significant industry changes that will affect the way AWS approaches identity for both workforce and consumer customers. We announce new features, discuss our participation in open standards and industry groups, and explain how we’re making identity, access control, and resource management easier for you every day.

AWS Identity Management for your Workforce

FSI310 – The journey to least privilege: IAM for Financial Services (Chalk talk)
Enhancements to AWS Identity and Access Management and related services have made it safer and easier than ever to grant developers direct access to AWS. In this session, we share a new approach to automating identity and access management in AWS based on recent engagements with global Financial Services customers. Then, we dive deep to answer your questions about how CI/CD tools and techniques can be used to enforce separation of duties, curtail human review of policy code, and delegate access to IAM while reducing the risk of unintended privilege escalation.

MGT407-R – Automating security management processes with AWS IAM and AWS CloudFormation (Builders session)
Security is a critical element for highly regulated industries like healthcare. Infrastructure as code provides several options to automate security controls, whether it is implementing rules and guardrails or managing changes to policies in an automated yet auditable way. Learn how to implement a process to automate creation, permission changes, and exception management with AWS Service Catalog, AWS CloudFormation, and AWS IAM policies, fostering efficient collaborations between security stakeholders across teams. (Note that this session is repeated once more during the week and denoted with a suffix of “-R1.”)

WIN312-R – Active Directory on AWS to support Windows workloads (Breakout session)
Want to learn your options for running Microsoft Active Directory on AWS? When moving Microsoft workloads to AWS, it’s important to consider how to deploy Microsoft Active Directory to support group policy management, authentication, and authorization. In this session, we discuss options for deploying Microsoft Active Directory to AWS, including AWS Directory Service for Microsoft Active Directory and deploying Active Directory to Windows on Amazon Elastic Compute Cloud (Amazon EC2). We cover such topics as integrating your on-premises Microsoft Active Directory environment to the cloud and leveraging SaaS applications, such as Office 365, with AWS Single Sign-On. (Note that this session is repeated once more during the week and denoted with a suffix of “-R1.”)

WIN405-R – Active Directory design patterns on AWS (Builders session)
Want to learn about your options for running Microsoft Active Directory on AWS? When you move Microsoft workloads to AWS, it’s important to consider how to deploy Active Directory in support of name resolution, authentication, and authorization. In this session, we discuss options for deploying Microsoft Active Directory to AWS, including AWS Managed Microsoft Active Directory and deploying Active Directory to Windows on Amazon EC2. The discussion includes such topics as how to integrate your on-premises Active Directory environment to the cloud using Amazon Route 53 Resolver. (Note that this session is repeated once more during the week and denoted with a suffix of “-R1.”)

AWS Identity Management for your Customers

SEC219-R — Build the next great app with Amazon Cognito (Chalk talk)
Are you planning to build the next great app? Are you planning to include features like AI-driven responses, a friendly user experience, and a lightning fast response time? There’s just one thing in your way: Identity. Before your users can use your app, you first have to know who they are. In this talk, we walk through how Amazon Cognito can help you deliver a unified identity management and authentication experience and help you mediate access to AWS services. We then discuss Amazon Cognito features, best practices, architectures, and how you can use Amazon Cognito to build your app today. (Note that this session is repeated once more during the week and denoted with a suffix of “-R1.”)

SEC403-R — Serverless identity management, authentication, and authorization (Workshop)
In this workshop, you learn how to build a serverless microservices application demonstrating end-to-end authentication and authorization using Amazon Cognito, Amazon API Gateway, AWS Lambda, and all things AWS Identity and Access Management (IAM). You have the opportunity to build an end-to-end functional app with a secure identity provider showcasing user authentication patterns. To participate, you need a laptop, an active AWS Account, an AWS IAM administrator, and familiarity with core AWS services. (Note that this session is repeated once more during the week and denoted with a suffix of “-R1.”)

SEC409-R — Fine-grained access control for serverless apps (Builders session)
In this small-group, hands-on builders session, you take a guided tour of how to build enterprise-grade serverless web applications with fine-grained, directory-based access controls. We show how to take a regular Express.js app, move it to AWS Lambda, add authentication using Amazon Cognito with SAML federation, and implement fine-grained authorization based on an external identity provider’s group membership (e.g., LDAP/AD). Services used: Amazon Cognito, AWS Lambda, Amazon API Gateway, Amazon DynamoDB, AWS CDK, and AWS Amplify. Prerequisites: Proficiency in basic JavaScript/TypeScript. Basic experience with AWS is recommended but not mandatory. (Note that this session is repeated twice more during the week and denoted with a suffix of “-R1” and “-R2.”)

MOB304 – Implement auth and authorization flows in your iOS apps (Workshop)
Learn how to leverage social-provider identity federation (log in with Google, Amazon, Facebook, etc.) as well as easily set up custom authentication flows configured and deployed by the AWS Amplify CLI. You do this hands-on by building and deploying a modern iOS app using AWS Amplify and serverless services. This workshop is suitable for all, even if you’re not a cloud expert. Please bring your own Mac with XCode already installed.

MOB315-R – Breaking down the OAuth flow (Chalk talk)
Are you lost when reading about OAuth implicit grants vs. code grants? Are you always struggling to understand the difference between Amazon Cognito user pools and Amazon Cognito federated identities? And how your corporate Active Directory fits into that picture? During this chalk talk, we demystify identity federation and whiteboard the main flows, allowing you to understand how to leverage these services to bring identity federation to your web or mobile applications. (Note that this session is repeated twice more during the week and denoted with a suffix of “-R1” and “-R2.”)

AWS Access Management

SEC209-R — Getting started with AWS identity (Breakout session)
The number, range, and breadth of AWS services are large, but the set of techniques that you, as a builder in the cloud, will use to secure them is not. Your cloud journey starts with this breakout session, in which we get you up to speed quickly on the practical fundamentals to do identity and authorization right in AWS. (Note that this session is repeated once more during the week and denoted with a suffix of “-R1.”)

SEC217-R – Delegate permissions management using permissions boundaries (Builders session)
The new permissions boundaries feature in AWS IAM addresses how to delegate permissions management to many users. If you have developers who need to be able to create roles for Lambda functions or system administrators who need to be able to create AWS IAM roles and users, or if you find yourself in a similar scenario, permissions boundaries might be a solution for you. (Note that this session is repeated multiple times during the week and denoted with a suffix of “-R1,” “-R2,” and “-R3.”)

SEC326-R — AWS identity-dynamic permissions using employee attributes (Chalk talk)
To access AWS resources, you can configure your IdP in AWS to be your corporate directory, letting your users federate into AWS for single sign-on access to AWS accounts using their corporate credentials. Along with employee credentials, your directory also stores employee attributes such as cost center, department and email address. Now, you can rely on the employee attributes to create fine-grained permissions in AWS. Permissions can then be automatically applied based on attributes when employees change departments or new employees are added in AWS. (Note that this session is repeated once more during the week and denoted with a suffix of “-R1.”)

SEC402-R — AWS identity: Permission boundaries & delegation (Workshop)
A permissions boundary is an AWS IAM feature that makes it easier to delegate permissions management to trusted employees. These employees can now configure IAM permissions to help scale permissions management and move workloads to AWS faster. For example, developers can create IAM roles for AWS Lambda functions and Amazon EC2 instances without exceeding certain permissions boundaries. In this workshop, using a sample application that we provide, practice delegating IAM permissions management so that developers can create roles without being able to either escalate their permissions or impact the resources of other teams. All attendees need a laptop and familiarity with core AWS services. (Note that this session is repeated once more during the week and denoted with a suffix of “-R1.”)

SEC405-R — Access management in 4D (Breakout session)
In this session, we take “who can access what under which conditions” and deeply explore “under which conditions.” We demonstrate patterns that allow you to implement advanced access-management workflows such as two-person rule, just-in-time privilege elevation, real-time adaptive permissions, and more using advanced combinations of AWS identity services, a range of environmental and contextual information sources, and automated and human-based approval workflows. We keep things fun, engaging, and practical using a lively mix of demos and code that you can take home and implement in your own environment. (Note that this session is repeated once more during the week and denoted with a suffix of “-R1.”)

SEC409-R — Fine-grained access control for serverless apps (Builders session)
In this small-group, hands-on builders session, you take a guided tour of how to build enterprise-grade serverless web applications with fine-grained, directory-based access controls. We show how to take a regular Express.js app, move it to AWS Lambda, add authentication using Amazon Cognito with SAML federation, and implement fine-grained authorization based on an external identity provider’s group membership (e.g., LDAP/AD). Services used: Amazon Cognito, AWS Lambda, Amazon API Gateway, Amazon DynamoDB, AWS CDK, and AWS Amplify. Prerequisites: Proficiency in basic JavaScript/TypeScript. Basic experience with AWS is recommended but not mandatory. (Note that this session is repeated twice more during the week and denoted with a suffix of “-R1” and “-R2.”)

Governance of Multi-account Environments

SEC325-R — Architecting security & governance across your landing zone (Breakout session)
A key element of your AWS environment is having a framework to provide resource isolation, separation of duties, and clear billing separation (i.e., a landing zone). In this session, we discuss updates to multi-account strategy best practices for establishing your landing zone, new guidance for building organizational unit structures, and a historical context. We cover security patterns, such as identity federation, cross-account roles, consolidated logging, and account governance. We wrap up with considerations on using AWS Landing Zone, AWS Control Tower, or AWS Organizations. We encourage you to attend all the landing zone sessions. Search for “landing zone” in the session catalog. (Note that this session is repeated once more during the week and denoted with a suffix of “-R1.”)

SEC341-R — Set permission guardrails for multiple accounts in AWS Organizations (Chalk talk)
AWS Organizations provides central governance and management for multiple accounts. Central security administrators use service control policies (SCPs) with Organizations to establish controls that all AWS Identity and Access Management (IAM) principals (users and roles) adhere to. For example, you can use SCPs to restrict access to specific AWS Regions or prevent your IAM principals from deleting common resources, such as an IAM role used by your central administrators. You can also define exceptions to your governance controls, restricting service actions for all IAM entities (users, roles, and root) in the account except a specific administrator role. (Note that this session is repeated once more during the week and denoted with a suffix of “-R1.”)

MGT302-R – Enable AWS adoption at scale with automation and governance (Breakout session)
Enterprises are taking advantage of AWS so they can move quickly while maintaining governance control over costs, security, and compliance. In this session, we discuss how AWS Control Tower, AWS Service Catalog, AWS Organizations, and AWS CloudFormation simplifies compliance and makes ongoing governance easier. You learn how to set up and govern your multi-account AWS environment or landing zone through automation, blueprints, and guardrails. Finally, you learn how to launch governed and secure resources on AWS through a DevOps CI/CD pipeline. (Note that this session is repeated once more during the week and denoted with a suffix of “-R1.”)

MGT307-R – Governance at scale: AWS Control Tower, AWS Organizations, and more (Chalk talk)
As you move to an organization-wide multi-account, multi-region strategy for your AWS environment, new questions emerge. How do I control budgets across many accounts, workloads, and users in a large organization? How do I automate account provisioning and maintain good security when hundreds of users and business units are requesting cloud resources? How can I ensure the organization is adhering to security and governance requirements? Bring all your questions about using AWS Landing Zones, AWS Control Tower, AWS Organizations, AWS Config, and more to build an AWS environment with governance
control built in. (Note that this session is repeated multiple times during the week and denoted with a suffix of “-R1,” “-R2,” and “-R3.”)

Want more AWS Security news? Follow us on Twitter.

Michael Chan

Michael is a Developer Advocate for AWS Identity and Access Management. Prior to this, he was a Professional Services Consultant who assisted customers with their journey to AWS. He enjoys understanding customer problems and working backwards to provide practical solutions.

Learn about AWS Services & Solutions – September AWS Online Tech Talks

Post Syndicated from Jenny Hang original https://aws.amazon.com/blogs/aws/learn-about-aws-services-solutions-september-aws-online-tech-talks/

Learn about AWS Services & Solutions – September AWS Online Tech Talks

AWS Tech Talks

Join us this September to learn about AWS services and solutions. The AWS Online Tech Talks are live, online presentations that cover a broad range of topics at varying technical levels. These tech talks, led by AWS solutions architects and engineers, feature technical deep dives, live demonstrations, customer examples, and Q&A with AWS experts. Register Now!

Note – All sessions are free and in Pacific Time.

Tech talks this month:

 

Compute:

September 23, 2019 | 11:00 AM – 12:00 PM PTBuild Your Hybrid Cloud Architecture with AWS – Learn about the extensive range of services AWS offers to help you build a hybrid cloud architecture best suited for your use case.

September 26, 2019 | 1:00 PM – 2:00 PM PTSelf-Hosted WordPress: It’s Easier Than You Think – Learn how you can easily build a fault-tolerant WordPress site using Amazon Lightsail.

October 3, 2019 | 11:00 AM – 12:00 PM PTLower Costs by Right Sizing Your Instance with Amazon EC2 T3 General Purpose Burstable Instances – Get an overview of T3 instances, understand what workloads are ideal for them, and understand how the T3 credit system works so that you can lower your EC2 instance costs today.

 

Containers:

September 26, 2019 | 11:00 AM – 12:00 PM PTDevelop a Web App Using Amazon ECS and AWS Cloud Development Kit (CDK) – Learn how to build your first app using CDK and AWS container services.

 

Data Lakes & Analytics:

September 26, 2019 | 9:00 AM – 10:00 AM PTBest Practices for Provisioning Amazon MSK Clusters and Using Popular Apache Kafka-Compatible Tooling – Learn best practices on running Apache Kafka production workloads at a lower cost on Amazon MSK.

 

Databases:

September 25, 2019 | 1:00 PM – 2:00 PM PTWhat’s New in Amazon DocumentDB (with MongoDB compatibility) – Learn what’s new in Amazon DocumentDB, a fully managed MongoDB compatible database service designed from the ground up to be fast, scalable, and highly available.

October 3, 2019 | 9:00 AM – 10:00 AM PTBest Practices for Enterprise-Class Security, High-Availability, and Scalability with Amazon ElastiCache – Learn about new enterprise-friendly Amazon ElastiCache enhancements like customer managed key and online scaling up or down to make your critical workloads more secure, scalable and available.

 

DevOps:

October 1, 2019 | 9:00 AM – 10:00 AM PT – CI/CD for Containers: A Way Forward for Your DevOps Pipeline – Learn how to build CI/CD pipelines using AWS services to get the most out of the agility afforded by containers.

 

Enterprise & Hybrid:

September 24, 2019 | 1:00 PM – 2:30 PM PT Virtual Workshop: How to Monitor and Manage Your AWS Costs – Learn how to visualize and manage your AWS cost and usage in this virtual hands-on workshop.

October 2, 2019 | 1:00 PM – 2:00 PM PT – Accelerate Cloud Adoption and Reduce Operational Risk with AWS Managed Services – Learn how AMS accelerates your migration to AWS, reduces your operating costs, improves security and compliance, and enables you to focus on your differentiating business priorities.

 

IoT:

September 25, 2019 | 9:00 AM – 10:00 AM PTComplex Monitoring for Industrial with AWS IoT Data Services – Learn how to solve your complex event monitoring challenges with AWS IoT Data Services.

 

Machine Learning:

September 23, 2019 | 9:00 AM – 10:00 AM PTTraining Machine Learning Models Faster – Learn how to train machine learning models quickly and with a single click using Amazon SageMaker.

September 30, 2019 | 11:00 AM – 12:00 PM PTUsing Containers for Deep Learning Workflows – Learn how containers can help address challenges in deploying deep learning environments.

October 3, 2019 | 1:00 PM – 2:30 PM PTVirtual Workshop: Getting Hands-On with Machine Learning and Ready to Race in the AWS DeepRacer League – Join DeClercq Wentzel, Senior Product Manager for AWS DeepRacer, for a presentation on the basics of machine learning and how to build a reinforcement learning model that you can use to join the AWS DeepRacer League.

 

AWS Marketplace:

September 30, 2019 | 9:00 AM – 10:00 AM PTAdvancing Software Procurement in a Containerized World – Learn how to deploy applications faster with third-party container products.

 

Migration:

September 24, 2019 | 11:00 AM – 12:00 PM PTApplication Migrations Using AWS Server Migration Service (SMS) – Learn how to use AWS Server Migration Service (SMS) for automating application migration and scheduling continuous replication, from your on-premises data centers or Microsoft Azure to AWS.

 

Networking & Content Delivery:

September 25, 2019 | 11:00 AM – 12:00 PM PTBuilding Highly Available and Performant Applications using AWS Global Accelerator – Learn how to build highly available and performant architectures for your applications with AWS Global Accelerator, now with source IP preservation.

September 30, 2019 | 1:00 PM – 2:00 PM PTAWS Office Hours: Amazon CloudFront – Just getting started with Amazon CloudFront and [email protected]? Get answers directly from our experts during AWS Office Hours.

 

Robotics:

October 1, 2019 | 11:00 AM – 12:00 PM PTRobots and STEM: AWS RoboMaker and AWS Educate Unite! – Come join members of the AWS RoboMaker and AWS Educate teams as we provide an overview of our education initiatives and walk you through the newly launched RoboMaker Badge.

 

Security, Identity & Compliance:

October 1, 2019 | 1:00 PM – 2:00 PM PTDeep Dive on Running Active Directory on AWS – Learn how to deploy Active Directory on AWS and start migrating your windows workloads.

 

Serverless:

October 2, 2019 | 9:00 AM – 10:00 AM PTDeep Dive on Amazon EventBridge – Learn how to optimize event-driven applications, and use rules and policies to route, transform, and control access to these events that react to data from SaaS apps.

 

Storage:

September 24, 2019 | 9:00 AM – 10:00 AM PTOptimize Your Amazon S3 Data Lake with S3 Storage Classes and Management Tools – Learn how to use the Amazon S3 Storage Classes and management tools to better manage your data lake at scale and to optimize storage costs and resources.

October 2, 2019 | 11:00 AM – 12:00 PM PTThe Great Migration to Cloud Storage: Choosing the Right Storage Solution for Your Workload – Learn more about AWS storage services and identify which service is the right fit for your business.

 

 

AWS re:Invent Security Recap: Launches, Enhancements, and Takeaways

Post Syndicated from Stephen Schmidt original https://aws.amazon.com/blogs/security/aws-reinvent-security-recap-launches-enhancements-and-takeaways/

For more from Steve, follow him on Twitter

Customers continue to tell me that our AWS re:Invent conference is a winner. It’s a place where they can learn, meet their peers, and rediscover the art of the possible. Of course, there is always an air of anticipation around what new AWS service releases will be announced. This time around, we went even bigger than we ever have before. There were over 50,000 people in attendance, spread across the Las Vegas strip, with over 2,000 breakout sessions, and jam packed hands-on learning opportunities with multiple day hackathons, workshops, and bootcamps.

A big part of all this activity included sharing knowledge about the latest AWS Security, Identity and Compliance services and features, as well as announcing new technology that we’re excited to be adopted so quickly across so many use-cases.

Here are the top Security, Identity and Compliance releases from re:invent 2018:

Keynotes: All that’s new

New AWS offerings provide more prescriptive guidance

The AWS re:Invent keynotes from Andy Jassy, Werner Vogels, and Peter DeSantis, as well as my own leadership session, featured the following new releases and service enhancements. We continue to strive to make architecting easier for developers, as well as our partners and our customers, so they stay secure as they build and innovate in the cloud.

  • We launched several prescriptive security services to assist developers and customers in understanding and managing their security and compliance postures in real time. My favorite new service is AWS Security Hub, which helps you centrally manage your security and compliance controls. With Security Hub, you now have a single place that aggregates, organizes, and prioritizes your security alerts, or findings, from multiple AWS services, such as Amazon GuardDuty, Amazon Inspector, and Amazon Macie, as well as from AWS Partner solutions. Findings are visually summarized on integrated dashboards with actionable graphs and tables. You can also continuously monitor your environment using automated compliance checks based on the AWS best practices and industry standards your organization follows. Get started with AWS Security Hub with just a few clicks in the Management Console and once enabled, Security Hub will begin aggregating and prioritizing findings. You can enable Security Hub on a single account with one click in the AWS Security Hub console or a single API call.
  • Another prescriptive service we launched is called AWS Control Tower. One of the first things customers think about when moving to the cloud is how to set up a landing zone for their data. AWS Control Tower removes the guesswork, automating the set-up of an AWS landing zone that is secure, well-architected and supports multiple accounts. AWS Control Tower does this by using a set of blueprints that embody AWS best practices. Guardrails, both mandatory and recommended, are available for high-level, rule-based governance, allowing you to have the right operational control over your accounts. An integrated dashboard enables you to keep a watchful eye over the accounts provisioned, the guardrails that are enabled, and your overall compliance status. Sign up for the Control Tower preview, here.
  • The third prescriptive service, called AWS Lake Formation, will reduce your data lake build time from months to days. Prior to AWS Lake Formation, setting up a data lake involved numerous granular tasks. Creating a data lake with Lake Formation is as simple as defining where your data resides and what data access and security policies you want to apply. Lake Formation then collects and catalogs data from databases and object storage, moves the data into your new Amazon S3 data lake, cleans and classifies data using machine learning algorithms, and secures access to your sensitive data. Get started with a preview of AWS Lake Formation, here.
  • Next up, IoT Greengrass enables enhanced security through hardware root of trusted private key storage on hardware secure elements including Trusted Platform Modules (TPMs) and Hardware Security Modules (HSMs). Storing your private key on a hardware secure element adds hardware root of trust level-security to existing AWS IoT Greengrass security features that include X.509 certificates for TLS mutual authentication and encryption of data both in transit and at rest. You can also use the hardware secure element to protect secrets that you deploy to your AWS IoT Greengrass device using AWS IoT Greengrass Secrets Manager. To try these security enhancements for yourself, check out https://aws.amazon.com/greengrass/.
  • You can now use the AWS Key Management Service (KMS) custom key store feature to gain more control over your KMS keys. Previously, KMS offered the ability to store keys in shared HSMs managed by KMS. However, we heard from customers that their needs were more nuanced. In particular, they needed to manage keys in single-tenant HSMs under their exclusive control. With KMS custom key store, you can configure your own CloudHSM cluster and authorize KMS to use it as a dedicated key store for your keys. Then, when you create keys in KMS, you can choose to generate the key material in your CloudHSM cluster. Get started with KMS custom key store by following the steps in this blog post.
  • We’re excited to announce the release of ATO on AWS to help customers and partners speed up the FedRAMP approval process (which has traditionally taken SaaS providers up to 2 years to complete). We’ve already had customers, such as Smartsheet, complete the process in less than 90 days with ATO on AWS. Customers will have access to training, tools, pre-built CloudFormation templates, control implementation details, and pre-built artifacts. Additionally, customers are able to access direct engagement and guidance from AWS compliance specialists and support from expert AWS consulting and technology partners who are a part of our Security Automation and Orchestration (SAO) initiative, including GitHub, Yubico, RedHat, Splunk, Allgress, Puppet, Trend Micro, Telos, CloudCheckr, Saint, Center for Internet Security (CIS), OKTA, Barracuda, Anitian, Kratos, and Coalfire. To get started with ATO on AWS, contact the AWS partner team at [email protected].
  • Finally, I announced our first conference dedicated to cloud security, identity and compliance: AWS re:Inforce. The inaugural AWS re:Inforce, a hands-on gathering of like-minded security professionals, will take place in Boston, MA on June 25th and 26th, 2019 at the Boston Convention and Exhibition Center. The cost for a full conference pass will be $1,099. I’m hoping to see you all there. Sign up here to be notified of when registration opens.

Key re:Invent Takeaways

AWS is here to help you build

  1. Customers want to innovate, and cloud needs to securely enable this. Companies need to able to innovate to meet rapidly evolving consumer demands. This means they need cloud security capabilities they can rely on to meet their specific security requirements, while allowing them to continue to meet and exceed customer expectations. AWS Lake Formation, AWS Control Tower, and AWS Security Hub aggregate and automate otherwise manual processes involved with setting up a secure and compliant cloud environment, giving customers greater flexibility to innovate, create, and manage their businesses.
  2. Cloud Security is as much art as it is science. Getting to what you really need to know about your security posture can be a challenge. At AWS, we’ve found that the sweet spot lies in services and features that enable you to continuously gain greater depth of knowledge into your security posture, while automating mission critical tasks that relieve you from having to constantly monitor your infrastructure. This manifests itself in having an end-to-end automated remediation workflow. I spent some time covering this in my re:Invent session, and will continue to advocate using a combination of services, such as AWS Lambda, WAF, S3, AWS CloudTrail, and AWS Config to proactively identify, mitigate, and remediate threats that may arise as your infrastructure evolves.
  3. Remove human access to data. I’ve set a goal at AWS to reduce human access to data by 80%. While that number may sound lofty, it’s purposeful, because the only way to achieve this is through automation. There have been a number of security incidents in the news across industries, ranging from inappropriate access to personal information in healthcare, to credential stuffing in financial services. The way to protect against such incidents? Automate key security measures and minimize your attack surface by enabling access control and credential management with services like AWS IAM and AWS Secrets Manager. Additional gains can be found by leveraging threat intelligence through continuous monitoring of incidents via services such as Amazon GuardDuty, Amazon Inspector, and Amazon Macie (intelligence from these services will now be available in AWS Security Hub).
  4. Get your leadership on board with your security plan. We offer 500+ security services and features; however, new services and technology can’t be wholly responsible for implementing reliable security measures. Security teams need to set expectations with leadership early, aligning on a number of critical protocols, including how to restrict and monitor human access to data, patching and log retention duration, credential lifespan, blast radius reduction, embedded encryption throughout AWS architecture, and canaries and invariants for security functionality. It’s also important to set security Key Performance Indicators (KPIs) to continuously track. At AWS, we monitor the number of AppSec reviews, how many security checks we can automate, third-party compliance audits, metrics on internal time spent, and conformity with Service Level Agreements (SLAs). While the needs of your business may vary, we find baseline KPIs to be consistent measures of security assurance that can be easily communicated to leadership.

Final Thoughts

Queen’s famous lyric, “I want it all, I want it all, and I want it now,” accurately captures the sentiment at re:Invent this year. Security will always be job zero for us, and we continue to iterate on behalf of customers so they can securely build, experiment and create … right now! AWS is trusted by many of the world’s most risk-sensitive organizations precisely because we have demonstrated this unwavering commitment to putting security above all. Still, I believe we are in the early days of innovation and adoption of the cloud, and I look forward to seeing both the gains and use cases that come out of our latest batch of tools and services.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Steve Schmidt

Steve is Vice President and Chief Information Security Officer for AWS. His duties include leading product design, management, and engineering development efforts focused on bringing the competitive, economic, and security benefits of cloud computing to business and government customers. Prior to AWS, he had an extensive career at the Federal Bureau of Investigation, where he served as a senior executive and section chief. He currently holds five patents in the field of cloud security architecture. Follow Steve on Twitter

Innovating on Authentication Standards

Post Syndicated from mikesefanov original https://yahooeng.tumblr.com/post/175238642656

yahoodevelopers:

By George Fletcher and Lovlesh Chhabra

When Yahoo and AOL came together a year ago as a part of the new Verizon subsidiary Oath,  we took on the challenge of unifying their identity platforms based on current identity standards. Identity standards have been a critical part of the Internet ecosystem over the last 20+ years. From single-sign-on and identity federation with SAML; to the newer identity protocols including OpenID Connect, OAuth2, JOSE, and SCIM (to name a few); to the explorations of “self-sovereign identity” based on distributed ledger technologies; standards have played a key role in providing a secure identity layer for the Internet.

As we navigated this journey, we ran across a number of different use cases where there was either no standard or no best practice available for our varied and complicated needs. Instead of creating entirely new standards to solve our problems, we found it more productive to use existing standards in new ways.

One such use case arose when we realized that we needed to migrate the identity stored in mobile apps from the legacy identity provider to the new Oath identity platform. For most browser (mobile or desktop) use cases, this doesn’t present a huge problem; some DNS magic and HTTP redirects and the user will sign in at the correct endpoint. Also it’s expected for users accessing services via their browser to have to sign in now and then.

However, for mobile applications it’s a completely different story. The normal user pattern for mobile apps is for the user to sign in (via OpenID Connect or OAuth2) and for the app to then be issued long-lived tokens (well, the refresh token is long lived) and the user never has to sign in again on the device (entering a password on the device is NOT a good experience for the user).

So the issue is, how do we allow the mobile app to move from one
identity provider to another without the user having to re-enter their
credentials? The solution came from researching what standards currently
exist that might addres this use case (see figure “Standards Landscape”
below) and finding the OAuth 2.0 Token Exchange draft specification (https://tools.ietf.org/html/draft-ietf-oauth-token-exchange-13).

image

The Token Exchange draft allows for a given token to be exchanged for new tokens in a different domain. This could be used to manage the “audience” of a token that needs to be passed among a set of microservices to accomplish a task on behalf of the user, as an example. For the use case at hand, we created a specific implementation of the Token Exchange specification (a profile) to allow the refresh token from the originating Identity Provider (IDP) to be exchanged for new tokens from the consolidated IDP. By profiling this draft standard we were able to create a much better user experience for our consumers and do so without inventing proprietary mechanisms.

During this identity technical consolidation we also had to address how to support sharing signed-in users across mobile applications written by the same company (technically, signed with the same vendor signing key). Specifically, how can a signed-in user to Yahoo Mail not have to re-sign in when they start using the Yahoo Sports app? The current best practice for this is captured in OAuth 2.0 for Natives Apps (RFC 8252). However, the flow described by this specification requires that the mobile device system browser hold the user’s authenticated sessions. This has some drawbacks such as users clearing their cookies, or using private browsing mode, or even worse, requiring the IDPs to support multiple users signed in at the same time (not something most IDPs support).

While, RFC 8252 provides a mechanism for single-sign-on (SSO) across mobile apps provided by any vendor, we wanted a better solution for apps provided by Oath. So we looked at how could we enable mobile apps signed by the vendor to share the signed-in state in a more “back channel” way. One important fact is that mobile apps cryptographically signed by the same vender can securely share data via the device keychain on iOS and Account Manager on Android.

Using this as a starting point we defined a new OAuth2 scope, device_sso, whose purpose is to require the Authorization Server (AS) to return a unique “secret” assigned to that specific device. The precedent for using a scope to define specification behaviour is OpenID Connect itself, which defines the “openid” scope as the trigger for the OpenID Provider (an OAuth2 AS) to implement the OpenID Connect specification. The device_secret is returned to a mobile app when the OAuth2 code is exchanged for tokens and then stored by the mobile app in the device keychain and with the id_token identifying the user who signed in.

At this point, a second mobile app signed by the same vendor can look in the keychain and find the id_token, ask the user if they want to use that identity with the new app, and then use a profile of the token exchange spec to obtain tokens for the second mobile app based on the id_token and the device_secret. The full sequence of steps looks like this:

image

As a result of our identity consolidation work over the past year, we derived a set of principles identity architects should find useful for addressing use cases that don’t have a known specification or best practice. Moreover, these are applicable in many contexts outside of identity standards:

  1. Spend time researching the existing set of standards and draft standards. As the diagram shows, there are a lot of standards out there already, so understanding them is critical.
  2. Don’t invent something new if you can just profile or combine already existing specifications.
  3. Make sure you understand the spirit and intent of the existing specifications.
  4. For those cases where an extension is required, make sure to extend the specification based on its spirit and intent.
  5. Ask the community for clarity regarding any existing specification or draft.
  6. Contribute back to the community via blog posts, best practice documents, or a new specification.

As we learned during the consolidation of our Yahoo and AOL identity platforms, and as demonstrated in our examples, there is no need to resort to proprietary solutions for use cases that at first look do not appear to have a standards-based solution. Instead, it’s much better to follow these principles, avoid the NIH (not-invented-here) syndrome, and invest the time to build solutions on standards.

AWS Online Tech Talks – June 2018

Post Syndicated from Devin Watson original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-june-2018/

AWS Online Tech Talks – June 2018

Join us this month to learn about AWS services and solutions. New this month, we have a fireside chat with the GM of Amazon WorkSpaces and our 2nd episode of the “How to re:Invent” series. We’ll also cover best practices, deep dives, use cases and more! Join us and register today!

Note – All sessions are free and in Pacific Time.

Tech talks featured this month:

 

Analytics & Big Data

June 18, 2018 | 11:00 AM – 11:45 AM PTGet Started with Real-Time Streaming Data in Under 5 Minutes – Learn how to use Amazon Kinesis to capture, store, and analyze streaming data in real-time including IoT device data, VPC flow logs, and clickstream data.
June 20, 2018 | 11:00 AM – 11:45 AM PT – Insights For Everyone – Deploying Data across your Organization – Learn how to deploy data at scale using AWS Analytics and QuickSight’s new reader role and usage based pricing.

 

AWS re:Invent
June 13, 2018 | 05:00 PM – 05:30 PM PTEpisode 2: AWS re:Invent Breakout Content Secret Sauce – Hear from one of our own AWS content experts as we dive deep into the re:Invent content strategy and how we maintain a high bar.
Compute

June 25, 2018 | 01:00 PM – 01:45 PM PTAccelerating Containerized Workloads with Amazon EC2 Spot Instances – Learn how to efficiently deploy containerized workloads and easily manage clusters at any scale at a fraction of the cost with Spot Instances.

June 26, 2018 | 01:00 PM – 01:45 PM PTEnsuring Your Windows Server Workloads Are Well-Architected – Get the benefits, best practices and tools on running your Microsoft Workloads on AWS leveraging a well-architected approach.

 

Containers
June 25, 2018 | 09:00 AM – 09:45 AM PTRunning Kubernetes on AWS – Learn about the basics of running Kubernetes on AWS including how setup masters, networking, security, and add auto-scaling to your cluster.

 

Databases

June 18, 2018 | 01:00 PM – 01:45 PM PTOracle to Amazon Aurora Migration, Step by Step – Learn how to migrate your Oracle database to Amazon Aurora.
DevOps

June 20, 2018 | 09:00 AM – 09:45 AM PTSet Up a CI/CD Pipeline for Deploying Containers Using the AWS Developer Tools – Learn how to set up a CI/CD pipeline for deploying containers using the AWS Developer Tools.

 

Enterprise & Hybrid
June 18, 2018 | 09:00 AM – 09:45 AM PTDe-risking Enterprise Migration with AWS Managed Services – Learn how enterprise customers are de-risking cloud adoption with AWS Managed Services.

June 19, 2018 | 11:00 AM – 11:45 AM PTLaunch AWS Faster using Automated Landing Zones – Learn how the AWS Landing Zone can automate the set up of best practice baselines when setting up new

 

AWS Environments

June 21, 2018 | 11:00 AM – 11:45 AM PTLeading Your Team Through a Cloud Transformation – Learn how you can help lead your organization through a cloud transformation.

June 21, 2018 | 01:00 PM – 01:45 PM PTEnabling New Retail Customer Experiences with Big Data – Learn how AWS can help retailers realize actual value from their big data and deliver on differentiated retail customer experiences.

June 28, 2018 | 01:00 PM – 01:45 PM PTFireside Chat: End User Collaboration on AWS – Learn how End User Compute services can help you deliver access to desktops and applications anywhere, anytime, using any device.
IoT

June 27, 2018 | 11:00 AM – 11:45 AM PTAWS IoT in the Connected Home – Learn how to use AWS IoT to build innovative Connected Home products.

 

Machine Learning

June 19, 2018 | 09:00 AM – 09:45 AM PTIntegrating Amazon SageMaker into your Enterprise – Learn how to integrate Amazon SageMaker and other AWS Services within an Enterprise environment.

June 21, 2018 | 09:00 AM – 09:45 AM PTBuilding Text Analytics Applications on AWS using Amazon Comprehend – Learn how you can unlock the value of your unstructured data with NLP-based text analytics.

 

Management Tools

June 20, 2018 | 01:00 PM – 01:45 PM PTOptimizing Application Performance and Costs with Auto Scaling – Learn how selecting the right scaling option can help optimize application performance and costs.

 

Mobile
June 25, 2018 | 11:00 AM – 11:45 AM PTDrive User Engagement with Amazon Pinpoint – Learn how Amazon Pinpoint simplifies and streamlines effective user engagement.

 

Security, Identity & Compliance

June 26, 2018 | 09:00 AM – 09:45 AM PTUnderstanding AWS Secrets Manager – Learn how AWS Secrets Manager helps you rotate and manage access to secrets centrally.
June 28, 2018 | 09:00 AM – 09:45 AM PTUsing Amazon Inspector to Discover Potential Security Issues – See how Amazon Inspector can be used to discover security issues of your instances.

 

Serverless

June 19, 2018 | 01:00 PM – 01:45 PM PTProductionize Serverless Application Building and Deployments with AWS SAM – Learn expert tips and techniques for building and deploying serverless applications at scale with AWS SAM.

 

Storage

June 26, 2018 | 11:00 AM – 11:45 AM PTDeep Dive: Hybrid Cloud Storage with AWS Storage Gateway – Learn how you can reduce your on-premises infrastructure by using the AWS Storage Gateway to connecting your applications to the scalable and reliable AWS storage services.
June 27, 2018 | 01:00 PM – 01:45 PM PTChanging the Game: Extending Compute Capabilities to the Edge – Discover how to change the game for IIoT and edge analytics applications with AWS Snowball Edge plus enhanced Compute instances.
June 28, 2018 | 11:00 AM – 11:45 AM PTBig Data and Analytics Workloads on Amazon EFS – Get best practices and deployment advice for running big data and analytics workloads on Amazon EFS.

Detecting Lies through Mouse Movements

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/detecting_lies_.html

Interesting research: “The detection of faked identity using unexpected questions and mouse dynamics,” by Merulin Monaro, Luciano Gamberini, and Guiseppe Sartori.

Abstract: The detection of faked identities is a major problem in security. Current memory-detection techniques cannot be used as they require prior knowledge of the respondent’s true identity. Here, we report a novel technique for detecting faked identities based on the use of unexpected questions that may be used to check the respondent identity without any prior autobiographical information. While truth-tellers respond automatically to unexpected questions, liars have to “build” and verify their responses. This lack of automaticity is reflected in the mouse movements used to record the responses as well as in the number of errors. Responses to unexpected questions are compared to responses to expected and control questions (i.e., questions to which a liar also must respond truthfully). Parameters that encode mouse movement were analyzed using machine learning classifiers and the results indicate that the mouse trajectories and errors on unexpected questions efficiently distinguish liars from truth-tellers. Furthermore, we showed that liars may be identified also when they are responding truthfully. Unexpected questions combined with the analysis of mouse movement may efficiently spot participants with faked identities without the need for any prior information on the examinee.

Boing Boing post.

[$] What’s coming in OpenLDAP 2.5

Post Syndicated from corbet original https://lwn.net/Articles/755207/rss

If pressed, I will admit to thinking that, if
NIS
was good enough for Charles Babbage, it’s
good enough for me. I am therefore not a huge fan of
LDAP
; I feel I can detect in it the heavy hand of the ITU,
which seems to
wish to apply X.500 to
everything. Nevertheless, for secure, distributed, multi-platform identity
management it’s quite hard to beat. If you decide to run an LDAP server
on Unix, one of the major free implementations is slapd, the core
engine of the OpenLDAP project.
Howard Chu is the chief architect of the project,
and spoke at FLOSS 2018 about the upcoming 2.5 release. Any rumors
that he might have passed the time while the room filled up by giving
a short but nicely rendered fiddle recital are completely true.

masscan, macOS, and firewall

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/05/masscan-macos-and-firewall.html

One of the more useful features of masscan is the “–banners” check, which connects to the TCP port, sends some request, and gets a basic response back. However, since masscan has it’s own TCP stack, it’ll interfere with the operating system’s TCP stack if they are sharing the same IPv4 address. The operating system will reply with a RST packet before the TCP connection can be established.

The way to fix this is to use the built-in packet-filtering firewall to block those packets in the operating-system TCP/IP stack. The masscan program still sees everything before the packet-filter, but the operating system can’t see anything after the packet-filter.

Note that we are talking about the “packet-filter” firewall feature here. Remember that macOS, like most operating systems these days, has two separate firewalls: an application firewall and a packet-filter firewall. The application firewall is the one you see in System Settings labeled “Firewall”, and it controls things based upon the application’s identity rather than by which ports it uses. This is normally “on” by default. The packet-filter is normally “off” by default and is of little use to normal users.

Also note that macOS changed packet-filters around version 10.10.5 (“Yosemite”, October 2014). The older one is known as “ipfw“, which was the default firewall for FreeBSD (much of macOS is based on FreeBSD). The replacement is known as PF, which comes from OpenBSD. Whereas you used to use the old “ipfw” command on the command line, you now use the “pfctl” command, as well as the “/etc/pf.conf” configuration file.

What we need to filter is the source port of the packets that masscan will send, so that when replies are received, they won’t reach the operating-system stack, and just go to masscan instead. To do this, we need find a range of ports that won’t conflict with the operating system. Namely, when the operating system creates outgoing connections, it randomly chooses a source port within a certain range. We want to use masscan to use source ports in a different range.

To figure out the range macOS uses, we run the following command:

sysctl net.inet.ip.portrange.first net.inet.ip.portrange.last

On my laptop, which is probably the default for macOS, I get the following range. Sniffing with Wireshark confirms this is the range used for source ports for outgoing connections.

net.inet.ip.portrange.first: 49152
net.inet.ip.portrange.last: 65535

So this means I shouldn’t use source ports anywhere in the range 49152 to 65535. On my laptop, I’ve decided to use for masscan the ports 40000 to 41023. The range masscan uses must be a power of 2, so here I’m using 1024 (two to the tenth power).

To configure masscan, I can either type the parameter “–source-port 40000-41023” every time I run the program, or I can add the following line to /etc/masscan/masscan.conf. Remember that by default, masscan will look in that configuration file for any configuration parameters, so you don’t have to keep retyping them on the command line.

source-port = 40000-41023

Next, I need to add the following firewall rule to the bottom of /etc/pf.conf:

block in proto tcp from any to any port 40000 >< 41024

However, we aren’t done yet. By default, the packet-filter firewall is off on some versions of macOS. Therefore, every time you reboot your computer, you need to enable it. The simple way to do this is on the command line run:

pfctl -e

Or, if that doesn’t work, try:

pfctl -E

If the firewall is already running, then you’ll need to load the file explicitly (or reboot):

pfctl -f /etc/pf.conf

You can check to see if the rule is active:

pfctl -s rules

Maliciously Changing Someone’s Address

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/maliciously_cha.html

Someone changed the address of UPS corporate headquarters to his own apartment in Chicago. The company discovered it three months later.

The problem, of course, is that there isn’t any authentication of change-of-address submissions:

According to the Postal Service, nearly 37 million change-of-address requests ­ known as PS Form 3575 ­ were submitted in 2017. The form, which can be filled out in person or online, includes a warning below the signature line that “anyone submitting false or inaccurate information” could be subject to fines and imprisonment.

To cut down on possible fraud, post offices send a validation letter to both an old and new address when a change is filed. The letter includes a toll-free number to call to report anything suspicious.

Each year, only a tiny fraction of the requests are ever referred to postal inspectors for investigation. A spokeswoman for the U.S. Postal Inspection Service could not provide a specific number to the Tribune, but officials have previously said that the number of change-of-address investigations in a given year totals 1,000 or fewer typically.

While fraud involving change-of-address forms has long been linked to identity thieves, the targets are usually unsuspecting individuals, not massive corporations.