Tag Archives: Rust

Securing Elections

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/securing_electi_1.html

Elections serve two purposes. The first, and obvious, purpose is to accurately choose the winner. But the second is equally important: to convince the loser. To the extent that an election system is not transparently and auditably accurate, it fails in that second purpose. Our election systems are failing, and we need to fix them.

Today, we conduct our elections on computers. Our registration lists are in computer databases. We vote on computerized voting machines. And our tabulation and reporting is done on computers. We do this for a lot of good reasons, but a side effect is that elections now have all the insecurities inherent in computers. The only way to reliably protect elections from both malice and accident is to use something that is not hackable or unreliable at scale; the best way to do that is to back up as much of the system as possible with paper.

Recently, there have been two graphic demonstrations of how bad our computerized voting system is. In 2007, the states of California and Ohio conducted audits of their electronic voting machines. Expert review teams found exploitable vulnerabilities in almost every component they examined. The researchers were able to undetectably alter vote tallies, erase audit logs, and load malware on to the systems. Some of their attacks could be implemented by a single individual with no greater access than a normal poll worker; others could be done remotely.

Last year, the Defcon hackers’ conference sponsored a Voting Village. Organizers collected 25 pieces of voting equipment, including voting machines and electronic poll books. By the end of the weekend, conference attendees had found ways to compromise every piece of test equipment: to load malicious software, compromise vote tallies and audit logs, or cause equipment to fail.

It’s important to understand that these were not well-funded nation-state attackers. These were not even academics who had been studying the problem for weeks. These were bored hackers, with no experience with voting machines, playing around between parties one weekend.

It shouldn’t be any surprise that voting equipment, including voting machines, voter registration databases, and vote tabulation systems, are that hackable. They’re computers — often ancient computers running operating systems no longer supported by the manufacturers — and they don’t have any magical security technology that the rest of the industry isn’t privy to. If anything, they’re less secure than the computers we generally use, because their manufacturers hide any flaws behind the proprietary nature of their equipment.

We’re not just worried about altering the vote. Sometimes causing widespread failures, or even just sowing mistrust in the system, is enough. And an election whose results are not trusted or believed is a failed election.

Voting systems have another requirement that makes security even harder to achieve: the requirement for a secret ballot. Because we have to securely separate the election-roll system that determines who can vote from the system that collects and tabulates the votes, we can’t use the security systems available to banking and other high-value applications.

We can securely bank online, but can’t securely vote online. If we could do away with anonymity — if everyone could check that their vote was counted correctly — then it would be easy to secure the vote. But that would lead to other problems. Before the US had the secret ballot, voter coercion and vote-buying were widespread.

We can’t, so we need to accept that our voting systems are insecure. We need an election system that is resilient to the threats. And for many parts of the system, that means paper.

Let’s start with the voter rolls. We know they’ve already been targeted. In 2016, someone changed the party affiliation of hundreds of voters before the Republican primary. That’s just one possibility. A well-executed attack that deletes, for example, one in five voters at random — or changes their addresses — would cause chaos on election day.

Yes, we need to shore up the security of these systems. We need better computer, network, and database security for the various state voter organizations. We also need to better secure the voter registration websites, with better design and better internet security. We need better security for the companies that build and sell all this equipment.

Multiple, unchangeable backups are essential. A record of every addition, deletion, and change needs to be stored on a separate system, on write-only media like a DVD. Copies of that DVD, or — even better — a paper printout of the voter rolls, should be available at every polling place on election day. We need to be ready for anything.

Next, the voting machines themselves. Security researchers agree that the gold standard is a voter-verified paper ballot. The easiest (and cheapest) way to achieve this is through optical-scan voting. Voters mark paper ballots by hand; they are fed into a machine and counted automatically. That paper ballot is saved, and serves as a final true record in a recount in case of problems. Touch-screen machines that print a paper ballot to drop in a ballot box can also work for voters with disabilities, as long as the ballot can be easily read and verified by the voter.

Finally, the tabulation and reporting systems. Here again we need more security in the process, but we must always use those paper ballots as checks on the computers. A manual, post-election, risk-limiting audit varies the number of ballots examined according to the margin of victory. Conducting this audit after every election, before the results are certified, gives us confidence that the election outcome is correct, even if the voting machines and tabulation computers have been tampered with. Additionally, we need better coordination and communications when incidents occur.

It’s vital to agree on these procedures and policies before an election. Before the fact, when anyone can win and no one knows whose votes might be changed, it’s easy to agree on strong security. But after the vote, someone is the presumptive winner — and then everything changes. Half of the country wants the result to stand, and half wants it reversed. At that point, it’s too late to agree on anything.

The politicians running in the election shouldn’t have to argue their challenges in court. Getting elections right is in the interest of all citizens. Many countries have independent election commissions that are charged with conducting elections and ensuring their security. We don’t do that in the US.

Instead, we have representatives from each of our two parties in the room, keeping an eye on each other. That provided acceptable security against 20th-century threats, but is totally inadequate to secure our elections in the 21st century. And the belief that the diversity of voting systems in the US provides a measure of security is a dangerous myth, because few districts can be decisive and there are so few voting-machine vendors.

We can do better. In 2017, the Department of Homeland Security declared elections to be critical infrastructure, allowing the department to focus on securing them. On 23 March, Congress allocated $380m to states to upgrade election security.

These are good starts, but don’t go nearly far enough. The constitution delegates elections to the states but allows Congress to “make or alter such Regulations”. In 1845, Congress set a nationwide election day. Today, we need it to set uniform and strict election standards.

This essay originally appeared in the Guardian.

IsoHunt Founder Returns With New Search Tool

Post Syndicated from Ernesto original https://torrentfreak.com/isohunt-founder-returns-with-new-search-tool-180419/

Of all the major torrent sites that dominated the Internet at the beginning of this decade, only a few remain.

One of the sites that fell prey to ever-increasing pressure from the entertainment industry was isoHunt.

Founded by the Canadian entrepreneur Gary Fung, the site was one of the early pioneers in the world of torrents, paving the way for many others. However, this spotlight also caught the attention of the major movie studios.

After a lengthy legal battle isoHunt’s founder eventually shut down the site late 2013. This happened after Fung signed a settlement agreement with Hollywood for no less than $110 million, on paper at least.

Launching a new torrent search engine was never really an option, but Fung decided not to let his expertise go to waste. He focused his time and efforts on a new search project instead, which was unveiled to the public this week.

The new app called “WonderSwipe” has just been added to Apple’s iOS store. It’s a mobile search app that ties into Google’s backend, but with a different user interface. While it has nothing to do with file-sharing, we decided to reach out to isoHunt’s founder to find out more.

Fung tells us that he got the idea for the app because he was frustrated with Google’s default search options on the mobile platform.

“I find myself barely do any search on the smartphone, most of the time waiting until I get to my desktop. I ask why?” Fung tells us.

One of the main issues he identified is the fact that swiping is not an option. Instead, people end up browsing through dozens of mobile browser tabs. So, Fung took Google’s infrastructure and search power, making it swipeable.

“From a UI design perspective, I find swiping through photos on the first iPhone one of the most extraordinary advances in computing. It’s so easy that babies would be doing it before they even learn how to flip open a book!

“Bringing that ease of use to the central way of conducting mobile search and research is the initial eureka I had in starting work on WonderSwipe,” Fung adds.

That was roughly three years ago, and a few hours ago WonderSwipe finally made its way into the App store. Android users will have to wait for now, but the application will eventually be available on that platform as well.

In addition to swiping through search results, the app also promises faster article loading and browsing, a reader mode with condensed search results, and a hands-free mode with automated browsing where summaries are read out loud.

WonderwSwipe


Of course, WonderSwipe is nothing like isoHunt ever was, apart from the fact that Google is a search engine that also links to torrents, indirectly.

This similarity was also brought up during the lawsuit with the MPAA, when Fung’s legal team likened isoHunt to Google in court. However, the Canadian entrepreneur doesn’t expect that Hollywood will have an issue with WonderSwipe in particular.

“isoHunt was similar to Google in how it worked as a search engine, but not in scope. Torrents are a small subset of all the webpages Google indexes,” Fung says.

“WonderSwipe’s aim is to find answers in all webpages, powered by Google search results. It presents results in extracted text and summaries with no connection to BitTorrent clients. As such, WonderSwipe can be bigger than isoHunt has ever been.”

Ironically, in recent years Hollywood has often criticized Google for linking to pirated content in its search results. These results will also be available through WonderSwipe.

However, Fung says that any copyright issues with WonderSwipe will have to be dealt with on the search engine level, by Google.

“If there are links to pirated content, tell search engines so they can take them down!” he says.

WonderSwipe is totally free and Fung tells us that he plans to monetize it with in-app purchases for pro features, and non-intrusive advertising that won’t slow down swiping or search results. More details on the future plans for the app are available here.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Introducing Microsoft Azure Sphere

Post Syndicated from corbet original https://lwn.net/Articles/751994/rss

Microsoft has issued a
press release
describing the security dangers involved with the
Internet of things (“a weaponized stove, baby monitors that spy, the
contents of your refrigerator being held for ransom
“) and introducing
“Microsoft Azure Sphere” as a combination of hardware and software to
address the problem. “Unlike the RTOSes common to MCUs today, our
defense-in-depth IoT OS offers multiple layers of security. It combines
security innovations pioneered in Windows, a security monitor, and a custom
Linux kernel to create a highly-secured software environment and a
trustworthy platform for new IoT experiences.

Russia’s Encryption War: 1.8m Google & Amazon IPs Blocked to Silence Telegram

Post Syndicated from Andy original https://torrentfreak.com/russias-encryption-war-1-8m-google-amazon-ips-blocked-to-silence-telegram-180417/

The rules in Russia are clear. Entities operating an encrypted messaging service need to register with the authorities. They also need to hand over their encryption keys so that if law enforcement sees fit, users can be spied on.

Free cross-platform messaging app Telegram isn’t playing ball. An impressive 200,000,000 people used the software in March (including a growing number for piracy purposes) and founder Pavel Durov says he will not compromise their security, despite losing a lawsuit against the Federal Security Service which compels him to do so.

“Telegram doesn’t have shareholders or advertisers to report to. We don’t do deals with marketers, data miners or government agencies. Since the day we launched in August 2013 we haven’t disclosed a single byte of our users’ private data to third parties,” Durov said.

“Above all, we at Telegram believe in people. We believe that humans are inherently intelligent and benevolent beings that deserve to be trusted; trusted with freedom to share their thoughts, freedom to communicate privately, freedom to create tools. This philosophy defines everything we do.”

But by not handing over its keys, Telegram is in trouble with Russia. The FSB says it needs access to Telegram messages to combat terrorism so, in response to its non-compliance, telecoms watchdog Rozcomnadzor filed a lawsuit to degrade Telegram via web-blocking. Last Friday, that process ended in the state’s favor.

After an 18-minute hearing, a Moscow court gave the go-ahead for Telegram to be banned in Russia. The hearing was scheduled just the day before, giving Telegram little time to prepare. In protest, its lawyers didn’t even turn up to argue the company’s position.

Instead, Durov took to his VKontakte account to announce that Telegram would take counter-measures.

“Telegram will use built-in methods to bypass blocks, which do not require actions from users, but 100% availability of the service without a VPN is not guaranteed,” Durov wrote.

Telegram can appeal the blocking decision but Russian authorities aren’t waiting around for a response. They are clearly prepared to match Durov’s efforts, no matter what the cost.

In instructions sent out yesterday nationwide, Rozomnadzor ordered ISPs to block Telegram. The response was immediate and massive. Telegram was using both Amazon and Google to provide service to its users so, within hours, huge numbers of IP addresses belonging to both companies were targeted.

Initially, 655,352 Amazon IP addresses were placed on Russia’s nationwide blacklist. It was later reported that a further 131,000 IP addresses were added to that total. But the Russians were just getting started.

Servers.ru reports that a further 1,048,574 IP addresses belonging to Google were also targeted Monday. Rozcomnadzor said the court ruling against Telegram compelled it to take whatever action is needed to take Telegram down but with at least 1,834,996 addresses now confirmed blocked, it remains unclear what effect it’s had on the service.

Friday’s court ruling states that restrictions against Telegram can be lifted provided that the service hands over its encryption keys to the FSB. However, Durov responded by insisting that “confidentiality is not for sale, and human rights should not be compromised because of fear or greed.”

But of course, money is still part of the Telegram equation. While its business model in terms of privacy stands in stark contrast to that of Facebook, Telegram is also involved in the world’s biggest initial coin offering (ICO). According to media reports, it has raised $1.7 billion in pre-sales thus far.

This week’s action against Telegram is the latest in Russia’s war on ‘unauthorized’ encryption.

At the end of March, authorities suggested that around 15 million IP addresses (13.5 million belonging to Amazon) could be blocked to target chat software Zello. While those measures were averted, a further 500 domains belonging to Google were caught in the dragnet.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Let’s stop talking about password strength

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/04/lets-stop-talking-about-password.html

Picture from EFF — CC-BY license

Near the top of most security recommendations is to use “strong passwords”. We need to stop doing this.

Yes, weak passwords can be a problem. If a website gets hacked, weak passwords are easier to crack. It’s not that this is wrong advice.

On the other hand, it’s not particularly good advice, either. It’s far down the list of important advice that people need to remember. “Weak passwords” are nowhere near the risk of “password reuse”. When your Facebook or email account gets hacked, it’s because you used the same password across many websites, not because you used a weak password.

Important websites, where the strength of your password matters, already take care of the problem. They use strong, salted hashes on the backend to protect the password. On the frontend, they force passwords to be a certain length and a certain complexity. Maybe the better advice is to not trust any website that doesn’t enforce stronger passwords (minimum of 8 characters consisting of both letters and non-letters).

To some extent, this “strong password” advice has become obsolete. A decade ago, websites had poor protection (MD5 hashes) and no enforcement of complexity, so it was up to the user to choose strong passwords. Now that important websites have changed their behavior, such as using bcrypt, there is less onus on the user.

But the real issue here is that “strong password” advice reflects the evil, authoritarian impulses of the infosec community. Instead of measuring insecurity in terms of costs vs. benefits, risks vs. rewards, we insist that it’s an issue of moral weakness. We pretend that flaws happen because people are greedy, lazy, and ignorant. We pretend that security is its own goal, a benefit we should achieve, rather than a cost we must endure.

We like giving moral advice because it’s easy: just be “stronger”. Discussing “password reuse” is more complicated, forcing us discuss password managers, writing down passwords on paper, that it’s okay to reuse passwords for crappy websites you don’t care about, and so on.

What I’m trying to say is that the moral weakness here is us. Rather then give pertinent advice we give lazy advice. We give the advice that victim shames them for being weak while pretending that we are strong.

So stop telling people to use strong passwords. It’s crass advice on your part and largely unhelpful for your audience, distracting them from the more important things.

uTorrent Flagged as ‘Threat’ by Microsoft and Anti-Virus Vendors

Post Syndicated from Ernesto original https://torrentfreak.com/utorrent-flagged-as-threat-by-microsoft-and-anti-virus-vendors-180312/

Installed on dozens of millions of devices, uTorrent is the go-to torrent client for people all around the world.

While the software usually runs without hassle, many users started to experience problems recently. Several anti-virus tools, including Windows Defender, suddenly labeled the torrent client as dangerous.

Microsoft categorizes the affected clients as “Potentially Unwanted Software,” as can be seen below. The company has had a dedicated Utorrent page for a while, labeling it as a severe threat. This week, however, alarm bells started to go off on a broader scale.

uTorrent threat

It’s unclear what exactly triggered the recent warning. According to VirusTotal, a handful of anti-virus companies label uTorrent as problematic. ESET-NOD32 lists “Web Companion” as the trigger, which likely points to Lavasoft’s Ad-Aware software, which is sometimes bundled with uTorrent.

uTorrent parent company BitTorrent Inc. is aware of the problems but believes they’re false positives triggered by one of their recent releases.

“We believe that this passive flag changed to active just hours ago with the Windows patch Tuesday update, when a small percent of users started getting an explicit block,” the company told us.

“We had three uTorrent executables being served from our site. Two were going to 95% of our users and were not part of the Windows block. The third, which was going to 5% of users, was part of the Windows block. We stopped shipping that and confirmed we are no longer seeing any blocks.”

The issue doesn’t appear to be restricted to new installs only. Several users have reported that their uTorrent application was suddenly quarantined as unwanted software, possibly after an automatic update.

We rechecked the VirusTotal result with the most current uTorrent release, and this is still flagged by six anti-virus vendors.

VirusTotal results

But that’s not all. The uTorrent download page itself also triggers a warning from MalwareBytes’ real-time protection module, which brands the website itself as malicious.

Interestingly, when trying to install uTorrent, Windows lists Lavasoft Software Canada as the verified publisher. While Lavasoft’s “Ad-Aware WebCompanion” is regularly bundled with uTorrent as an ‘offer,’ we didn’t get that option when we last tried, nor was it installed.

After we installed it during an initial test yesterday, we did notice that WebCompanion was installed around the same time. However, we have been unable to replicate this result.

BitTorrent Inc. stresses that any of the offers users get during the install process are optional, Google-compliant, and in accordance with the Clean Software Alliance (CSA) standards.

Whatever is causing the red flags at Microsoft and the other companies remains a mystery for now, also for BitTorrent Inc.

“Based on our best assessment to date, we’ve found no reason why we would be blocked – especially on some builds and not others which are basically identical,” BitTorrent says.

“We are continuing to reach out, though, and hope to have more information,” the company adds.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Using AWS Lambda and Amazon Comprehend for sentiment analysis

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/using-aws-lambda-and-amazon-comprehend-for-sentiment-analysis/

This post courtesy of Giedrius Praspaliauskas, AWS Solutions Architect

Even with best IVR systems, customers get frustrated. What if you knew that 10 callers in your Amazon Connect contact flow were likely to say “Agent!” in frustration in the next 30 seconds? Would you like to get to them before that happens? What if your bot was smart enough to admit, “I’m sorry this isn’t helping. Let me find someone for you.”?

In this post, I show you how to use AWS Lambda and Amazon Comprehend for sentiment analysis to make your Amazon Lex bots in Amazon Connect more sympathetic.

Setting up a Lambda function for sentiment analysis

There are multiple natural language and text processing frameworks or services available to use with Lambda, including but not limited to Amazon Comprehend, TextBlob, Pattern, and NLTK. Pick one based on the nature of your system:  the type of interaction, languages supported, and so on. For this post, I picked Amazon Comprehend, which uses natural language processing (NLP) to extract insights and relationships in text.

The walkthrough in this post is just an example. In a full-scale implementation, you would likely implement a more nuanced approach. For example, you could keep the overall sentiment score through the conversation and act only when it reaches a certain threshold. It is worth noting that this Lambda function is not called for missed utterances, so there may be a gap between what is being analyzed and what was actually said.

The Lambda function is straightforward. It analyses the input transcript field of the Amazon Lex event. Based on the overall sentiment value, it generates a response message with next step instructions. When the sentiment is neutral, positive, or mixed, the response leaves it to Amazon Lex to decide what the next steps should be. It adds to the response overall sentiment value as an additional session attribute, along with slots’ values received as an input.

When the overall sentiment is negative, the function returns the dialog action, pointing to an escalation intent (specified in the environment variable ESCALATION_INTENT_NAME) or returns the fulfillment closure action with a failure state when the intent is not specified. In addition to actions or intents, the function returns a message, or prompt, to be provided to the customer before taking the next step. Based on the returned action, Amazon Connect can select the appropriate next step in a contact flow.

For this walkthrough, you create a Lambda function using the AWS Management Console:

  1. Open the Lambda console.
  2. Choose Create Function.
  3. Choose Author from scratch (no blueprint).
  4. For Runtime, choose Python 3.6.
  5. For Role, choose Create a custom role. The custom execution role allows the function to detect sentiments, create a log group, stream log events, and store the log events.
  6. Enter the following values:
    • For Role Description, enter Lambda execution role permissions.
    • For IAM Role, choose Create an IAM role.
    • For Role Name, enter LexSentimentAnalysisLambdaRole.
    • For Policy, use the following policy:
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "logs:CreateLogGroup",
                "logs:CreateLogStream",
                "logs:PutLogEvents"
            ],
            "Resource": "arn:aws:logs:*:*:*"
        },
        {
            "Action": [
                "comprehend:DetectDominantLanguage",
                "comprehend:DetectSentiment"
            ],
            "Effect": "Allow",
            "Resource": "*"
        }
    ]
}
    1. Choose Create function.
    2. Copy/paste the following code to the editor window
import os, boto3

ESCALATION_INTENT_MESSAGE="Seems that you are having troubles with our service. Would you like to be transferred to the associate?"
FULFILMENT_CLOSURE_MESSAGE="Seems that you are having troubles with our service. Let me transfer you to the associate."

escalation_intent_name = os.getenv('ESACALATION_INTENT_NAME', None)

client = boto3.client('comprehend')

def lambda_handler(event, context):
    sentiment=client.detect_sentiment(Text=event['inputTranscript'],LanguageCode='en')['Sentiment']
    if sentiment=='NEGATIVE':
        if escalation_intent_name:
            result = {
                "sessionAttributes": {
                    "sentiment": sentiment
                    },
                    "dialogAction": {
                        "type": "ConfirmIntent", 
                        "message": {
                            "contentType": "PlainText", 
                            "content": ESCALATION_INTENT_MESSAGE
                        }, 
                    "intentName": escalation_intent_name
                    }
            }
        else:
            result = {
                "sessionAttributes": {
                    "sentiment": sentiment
                },
                "dialogAction": {
                    "type": "Close",
                    "fulfillmentState": "Failed",
                    "message": {
                            "contentType": "PlainText",
                            "content": FULFILMENT_CLOSURE_MESSAGE
                    }
                }
            }

    else:
        result ={
            "sessionAttributes": {
                "sentiment": sentiment
            },
            "dialogAction": {
                "type": "Delegate",
                "slots" : event["currentIntent"]["slots"]
            }
        }
    return result
  1. Below the code editor specify the environment variable ESCALATION_INTENT_NAME with a value of Escalate.

  1. Click on Save in the top right of the console.

Now you can test your function.

  1. Click Test at the top of the console.
  2. Configure a new test event using the following test event JSON:
{
  "messageVersion": "1.0",
  "invocationSource": "DialogCodeHook",
  "userId": "1234567890",
  "sessionAttributes": {},
  "bot": {
    "name": "BookSomething",
    "alias": "None",
    "version": "$LATEST"
  },
  "outputDialogMode": "Text",
  "currentIntent": {
    "name": "BookSomething",
    "slots": {
      "slot1": "None",
      "slot2": "None"
    },
    "confirmationStatus": "None"
  },
  "inputTranscript": "I want something"
}
  1. Click Create
  2. Click Test on the console

This message should return a response from Lambda with a sentiment session attribute of NEUTRAL.

However, if you change the input to “This is garbage!”, Lambda changes the dialog action to the escalation intent specified in the environment variable ESCALATION_INTENT_NAME.

Setting up Amazon Lex

Now that you have your Lambda function running, it is time to create the Amazon Lex bot. Use the BookTrip sample bot and call it BookSomething. The IAM role is automatically created on your behalf. Indicate that this bot is not subject to the COPPA, and choose Create. A few minutes later, the bot is ready.

Make the following changes to the default configuration of the bot:

  1. Add an intent with no associated slots. Name it Escalate.
  2. Specify the Lambda function for initialization and validation in the existing two intents (“BookCar” and “BookHotel”), at the same time giving Amazon Lex permission to invoke it.
  3. Leave the other configuration settings as they are and save the intents.

You are ready to build and publish this bot. Set a new alias, BookSomethingWithSentimentAnalysis. When the build finishes, test it.

As you see, sentiment analysis works!

Setting up Amazon Connect

Next, provision an Amazon Connect instance.

After the instance is created, you need to integrate the Amazon Lex bot created in the previous step. For more information, see the Amazon Lex section in the Configuring Your Amazon Connect Instance topic.  You may also want to look at the excellent post by Randall Hunt, New – Amazon Connect and Amazon Lex Integration.

Create a new contact flow, “Sentiment analysis walkthrough”:

  1. Log in into the Amazon Connect instance.
  2. Choose Create contact flow, Create transfer to agent flow.
  3. Add a Get customer input block, open the icon in the top left corner, and specify your Amazon Lex bot and its intents.
  4. Select the Text to speech audio prompt type and enter text for Amazon Connect to play at the beginning of the dialog.
  5. Choose Amazon Lex, enter your Amazon Lex bot name and the alias.
  6. Specify the intents to be used as dialog branches that a customer can choose: BookHotel, BookTrip, or Escalate.
  7. Add two Play prompt blocks and connect them to the customer input block.
    • If booking hotel or car intent is returned from the bot flow, play the corresponding prompt (“OK, will book it for you”) and initiate booking (in this walkthrough, just hang up after the prompt).
    • However, if escalation intent is returned (caused by the sentiment analysis results in the bot), play the prompt (“OK, transferring to an agent”) and initiate the transfer.
  8. Save and publish the contact flow.

As a result, you have a contact flow with a single customer input step and a text-to-speech prompt that uses the Amazon Lex bot. You expect one of the three intents returned:

Edit the phone number to associate the contact flow that you just created. It is now ready for testing. Call the phone number and check how your contact flow works.

Cleanup

Don’t forget to delete all the resources created during this walkthrough to avoid incurring any more costs:

  • Amazon Connect instance
  • Amazon Lex bot
  • Lambda function
  • IAM role LexSentimentAnalysisLambdaRole

Summary

In this walkthrough, you implemented sentiment analysis with a Lambda function. The function can be integrated into Amazon Lex and, as a result, into Amazon Connect. This approach gives you the flexibility to analyze user input and then act. You may find the following potential use cases of this approach to be of interest:

  • Extend the Lambda function to identify “hot” topics in the user input even if the sentiment is not negative and take action proactively. For example, switch to an escalation intent if a user mentioned “where is my order,” which may signal potential frustration.
  • Use Amazon Connect Streams to provide agent sentiment analysis results along with call transfer. Enable service tailored towards particular customer needs and sentiments.
  • Route calls to agents based on both skill set and sentiment.
  • Prioritize calls based on sentiment using multiple Amazon Connect queues instead of transferring directly to an agent.
  • Monitor quality and flag for review contact flows that result in high overall negative sentiment.
  • Implement sentiment and AI/ML based call analysis, such as a real-time recommendation engine. For more details, see Machine Learning on AWS.

If you have questions or suggestions, please comment below.

The Digital Security Exchange Is Live

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/the_digital_sec.html

Last year I wrote about the Digital Security Exchange. The project is live:

The DSX works to strengthen the digital resilience of U.S. civil society groups by improving their understanding and mitigation of online threats.

We do this by pairing civil society and social sector organizations with credible and trustworthy digital security experts and trainers who can help them keep their data and networks safe from exposure, exploitation, and attack. We are committed to working with community-based organizations, legal and journalistic organizations, civil rights advocates, local and national organizers, and public and high-profile figures who are working to advance social, racial, political, and economic justice in our communities and our world.

If you are either an organization who needs help, or an expert who can provide help, visit their website.

Note: I am on their advisory committee.

Securing messages published to Amazon SNS with AWS PrivateLink

Post Syndicated from Otavio Ferreira original https://aws.amazon.com/blogs/security/securing-messages-published-to-amazon-sns-with-aws-privatelink/

Amazon Simple Notification Service (SNS) now supports VPC Endpoints (VPCE) via AWS PrivateLink. You can use VPC Endpoints to privately publish messages to SNS topics, from an Amazon Virtual Private Cloud (VPC), without traversing the public internet. When you use AWS PrivateLink, you don’t need to set up an Internet Gateway (IGW), Network Address Translation (NAT) device, or Virtual Private Network (VPN) connection. You don’t need to use public IP addresses, either.

VPC Endpoints doesn’t require code changes and can bring additional security to Pub/Sub Messaging use cases that rely on SNS. VPC Endpoints helps promote data privacy and is aligned with assurance programs, including the Health Insurance Portability and Accountability Act (HIPAA), FedRAMP, and others discussed below.

VPC Endpoints for SNS in action

Here’s how VPC Endpoints for SNS works. The following example is based on a banking system that processes mortgage applications. This banking system, which has been deployed to a VPC, publishes each mortgage application to an SNS topic. The SNS topic then fans out the mortgage application message to two subscribing AWS Lambda functions:

  • Save-Mortgage-Application stores the application in an Amazon DynamoDB table. As the mortgage application contains personally identifiable information (PII), the message must not traverse the public internet.
  • Save-Credit-Report checks the applicant’s credit history against an external Credit Reporting Agency (CRA), then stores the final credit report in an Amazon S3 bucket.

The following diagram depicts the underlying architecture for this banking system:
 
Diagram depicting the architecture for the example banking system
 
To protect applicants’ data, the financial institution responsible for developing this banking system needed a mechanism to prevent PII data from traversing the internet when publishing mortgage applications from their VPC to the SNS topic. Therefore, they created a VPC endpoint to enable their publisher Amazon EC2 instance to privately connect to the SNS API. As shown in the diagram, when the VPC endpoint is created, an Elastic Network Interface (ENI) is automatically placed in the same VPC subnet as the publisher EC2 instance. This ENI exposes a private IP address that is used as the entry point for traffic destined to SNS. This ensures that traffic between the VPC and SNS doesn’t leave the Amazon network.

Set up VPC Endpoints for SNS

The process for creating a VPC endpoint to privately connect to SNS doesn’t require code changes: access the VPC Management Console, navigate to the Endpoints section, and create a new Endpoint. Three attributes are required:

  • The SNS service name.
  • The VPC and Availability Zones (AZs) from which you’ll publish your messages.
  • The Security Group (SG) to be associated with the endpoint network interface. The Security Group controls the traffic to the endpoint network interface from resources in your VPC. If you don’t specify a Security Group, the default Security Group for your VPC will be associated.

Help ensure your security and compliance

SNS can support messaging use cases in regulated market segments, such as healthcare provider systems subject to the Health Insurance Portability and Accountability Act (HIPAA) and financial systems subject to the Payment Card Industry Data Security Standard (PCI DSS), and is also in-scope with the following Assurance Programs:

The SNS API is served through HTTP Secure (HTTPS), and encrypts all messages in transit with Transport Layer Security (TLS) certificates issued by Amazon Trust Services (ATS). The certificates verify the identity of the SNS API server when encrypted connections are established. The certificates help establish proof that your SNS API client (SDK, CLI) is communicating securely with the SNS API server. A Certificate Authority (CA) issues the certificate to a specific domain. Hence, when a domain presents a certificate that’s issued by a trusted CA, the SNS API client knows it’s safe to make the connection.

Summary

VPC Endpoints can increase the security of your pub/sub messaging use cases by allowing you to publish messages to SNS topics, from instances in your VPC, without traversing the internet. Setting up VPC Endpoints for SNS doesn’t require any code changes because the SNS API address remains the same.

VPC Endpoints for SNS is now available in all AWS Regions where AWS PrivateLink is available. For information on pricing and regional availability, visit the VPC pricing page.
For more information and on-boarding, see Publishing to Amazon SNS Topics from Amazon Virtual Private Cloud in the SNS documentation.

If you have comments about this post, submit them in the Comments section below. If you have questions about anything in this post, start a new thread on the Amazon SNS forum or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Publisher Gets Carte Blanche to Seize New Sci-Hub Domains

Post Syndicated from Ernesto original https://torrentfreak.com/publisher-gets-carte-blanche-to-seize-new-sci-hub-domains-180410/

While Sci-Hub is loved by thousands of researchers and academics around the world, copyright holders are doing everything in their power to wipe if off the web.

Following a $15 million defeat against Elsevier last June, the American Chemical Society (ACS) won a default judgment of $4.8 million in copyright damages a few months later.

The publisher was further granted a broad injunction, requiring various third-party services to stop providing access to the site. This includes domain registries, hosting companies and search engines.

Soon after the order was signed, several of Sci-Hub’s domain names became unreachable as domain registries and Cloudflare complied with the court order. Still, Sci-Hub remained available all this time, with help from several newly registered domain names.

Frustrated by Sci-Hub’s resilience, ACS recently went back to court asking for an amended injunction. The publisher requested the authority to seize any and all Sci-Hub domain names, also those that will be registered in the future.

“Plaintiff has been forced to engage in a game of ‘whac-a-mole’ whereby new ‘sci-hub’ domain names emerge,” ACS informed the court.

“Further complicating matters, some registries, registrars, and Internet service providers have refused to disable newer Sci-Hub domain names that were not specifically identified in the Complaint or the injunction”

Soon after the request was submitted, US District Court Judge Leonie Brinkema agreed to the amended language.

The amended injunction now requires search engines, hosting companies, domain registrars, and other service or software providers, to cease facilitating access to Sci-Hub. This includes, but is not limited to, the following domain names.

‘sci-hub.ac, scihub.biz, sci-hub.bz, sci-hub.cc, sci-hub.cf, sci-hub.cn, sci-hub.ga, sci-hub.gq, scihub.hk, sci-hub.is, sci-hub.la, sci-hub.name, sci-hub.nu, sci-hub.nz, sci-hub.onion, scihub22266oqcxt.onion, sci-hub.tw, and sci-hub.ws.’

From the injunction

The new injunction makes ACS’ enforcement efforts much more effective. It effectively means that third-party services can no longer refuse to comply because a Sci-Hub domain is not listed in the complaint or injunction.

This already appears to have had some effect, as several domain names including sci-hub.la and sci-hub.tv became inaccessible soon after the paperwork was signed. Still, it is unlikely that it will help to shut down the site completely.

Several service providers are not receptive to US Court orders. One example is Iceland’s domain registry ISNIC and indeed, at the time of writing, Sci-Hub.is is still widely available.

Seizing .onion domain names, which are used on the Tor network, may also prove to be a challenge. After all, there is no central registration organization involved.

For now, Sci-Hub founder and operator Alexandra Elbakyan appears determined to keep the site online, whatever it takes. While it may be a hassle for users to find the latest working domain names, the new court order is not the end of the “whac-a-mole” just yet.

A copy of the amended injunction is available here (pdf).

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

American Public Television Embraces the Cloud — And the Future

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/american-public-television-embraces-the-cloud-and-the-future/

American Public Television website

American Public Television was like many organizations that have been around for a while. They were entrenched using an older technology — in their case, tape storage and distribution — that once met their needs but was limiting their productivity and preventing them from effectively collaborating with their many media partners. APT’s VP of Technology knew that he needed to move into the future and embrace cloud storage to keep APT ahead of the game.
Since 1961, American Public Television (APT) has been a leading distributor of groundbreaking, high-quality, top-rated programming to the nation’s public television stations. Gerry Field is the Vice President of Technology at APT and is responsible for delivering their extensive program catalog to 350+ public television stations nationwide.

In the time since Gerry  joined APT in 2007, the industry has been in digital overdrive. During that time APT has continued to acquire and distribute the best in public television programming to their technically diverse subscribers.

This created two challenges for Gerry. First, new technology and format proliferation were driving dramatic increases in digital storage. Second, many of APT’s subscribers struggled to keep up with the rapidly changing industry. While some subscribers had state-of-the-art satellite systems to receive programming, others had to wait for the post office to drop off programs recorded on tape weeks earlier. With no slowdown on the horizon of innovation in the industry, Gerry knew that his storage and distribution systems would reach a crossroads in no time at all.

American Public Television logo

Living the tape paradigm

The digital media industry is only a few years removed from its film, and later videotape, roots. Tape was the input and the output of the industry for many years. As a consequence, the tools and workflows used by the industry were built and designed to work with tape. Over time, the “file” slowly replaced the tape as the object to be captured, edited, stored and distributed. Trouble was, many of the systems and more importantly workflows were based on processing tape, and these have proven to be hard to change.

At APT, Gerry realized the limits of the tape paradigm and began looking for technologies and solutions that enabled workflows based on file and object based storage and distribution.

Thinking file based storage and distribution

For data (digital media) storage, APT, like everyone else, started by installing onsite storage servers. As the amount of digital data grew, more storage was added. In addition, APT was expanding its distribution footprint by creating or partnering with distribution channels such as CreateTV and APT Worldwide. This dramatically increased the number of programming formats and the amount of data that had to be stored. As a consequence, updating, maintaining, and managing the APT storage systems was becoming a major challenge and a major resource hog.

APT Online

Knowing that his in-house storage system was only going to cost more time and money, Gerry decided it was time to look at cloud storage. But that wasn’t the only reason he looked at the cloud. While most people consider cloud storage as just a place to back up and archive files, Gerry was envisioning how the ubiquity of the cloud could help solve his distribution challenges. The trouble was the price of cloud storage from vendors like Amazon S3 and Microsoft Azure was a non-starter, especially for a non-profit. Then Gerry came across Backblaze. B2 Cloud Storage service met all of his performance requirements, and at $0.005/GB/month for storage and $0.01/GB for downloads it was nearly 75% less than S3 or Azure.

Gerry did the math and found that he could economically incorporate B2 Cloud Storage into his IT portfolio, using it for both program submission and for active storage and archiving of the APT programs. In addition, B2 now gives him the foundation necessary to receive and distribute programming content over the Internet. This is especially useful for organizations that can’t conveniently access satellite distribution systems. Not to mention downloading from the cloud is much faster than sending a tape through the mail.

Adding B2 Cloud Storage to their infrastructure has helped American Public Television address two key challenges. First, they now have “unlimited” storage in the cloud without having to add any hardware. In addition, with B2, they only pay for the storage they use. That means they don’t have to buy storage upfront trying to match the maximum amount of storage they’ll ever need. Second, by using B2 as a distribution source for their programming APT subscribers, especially the smaller and remote ones, can get content faster and more reliably without having to perform costly upgrades to their infrastructure.

The road ahead

As APT gets used to their file based infrastructure and workflow, there are a number of cost saving and income generating ideas they are pondering which are now worth considering. Here are a few:

Program Submissions — New content can be uploaded from anywhere using a web browser, an Internet connection, and a login. For example, a producer in Cambodia can upload their film to B2. From there the film is downloaded to an in-house system where it is processed and transcoded using compute. The finished film is added to the APT catalog and added to B2. Once there, the program is instantly available for subscribers to order and download.

“The affordability and performance of Backblaze B2 is what allowed us to make the B2 cloud part of the APT data storage and distribution strategy into the future.” — Gerry Field

Easier Previews — At any time, work in process or finished programs can be made available for download from the B2 cloud. One place this could be useful is where a subscriber needs to review a program to comply with local policies and practices before airing. In the old system, each “one-off” was a time consuming manual process.

Instant Subscriptions — There are many organizations such as schools and businesses that want to use just one episode of a desired show. With an e-commerce based website, current or even archived programming kept in B2 could be available to download or stream for a minimal charge.

At APT there were multiple technologies needed to make their file-based infrastructure work, but as Gerry notes, having an affordable, trustworthy, cloud storage service like B2 is one of the critical building blocks needed to make everything work together.

The post American Public Television Embraces the Cloud — And the Future appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Rotate Amazon RDS database credentials automatically with AWS Secrets Manager

Post Syndicated from Apurv Awasthi original https://aws.amazon.com/blogs/security/rotate-amazon-rds-database-credentials-automatically-with-aws-secrets-manager/

Recently, we launched AWS Secrets Manager, a service that makes it easier to rotate, manage, and retrieve database credentials, API keys, and other secrets throughout their lifecycle. You can configure Secrets Manager to rotate secrets automatically, which can help you meet your security and compliance needs. Secrets Manager offers built-in integrations for MySQL, PostgreSQL, and Amazon Aurora on Amazon RDS, and can rotate credentials for these databases natively. You can control access to your secrets by using fine-grained AWS Identity and Access Management (IAM) policies. To retrieve secrets, employees replace plaintext secrets with a call to Secrets Manager APIs, eliminating the need to hard-code secrets in source code or update configuration files and redeploy code when secrets are rotated.

In this post, I introduce the key features of Secrets Manager. I then show you how to store a database credential for a MySQL database hosted on Amazon RDS and how your applications can access this secret. Finally, I show you how to configure Secrets Manager to rotate this secret automatically.

Key features of Secrets Manager

These features include the ability to:

  • Rotate secrets safely. You can configure Secrets Manager to rotate secrets automatically without disrupting your applications. Secrets Manager offers built-in integrations for rotating credentials for Amazon RDS databases for MySQL, PostgreSQL, and Amazon Aurora. You can extend Secrets Manager to meet your custom rotation requirements by creating an AWS Lambda function to rotate other types of secrets. For example, you can create an AWS Lambda function to rotate OAuth tokens used in a mobile application. Users and applications retrieve the secret from Secrets Manager, eliminating the need to email secrets to developers or update and redeploy applications after AWS Secrets Manager rotates a secret.
  • Secure and manage secrets centrally. You can store, view, and manage all your secrets. By default, Secrets Manager encrypts these secrets with encryption keys that you own and control. Using fine-grained IAM policies, you can control access to secrets. For example, you can require developers to provide a second factor of authentication when they attempt to retrieve a production database credential. You can also tag secrets to help you discover, organize, and control access to secrets used throughout your organization.
  • Monitor and audit easily. Secrets Manager integrates with AWS logging and monitoring services to enable you to meet your security and compliance requirements. For example, you can audit AWS CloudTrail logs to see when Secrets Manager rotated a secret or configure AWS CloudWatch Events to alert you when an administrator deletes a secret.
  • Pay as you go. Pay for the secrets you store in Secrets Manager and for the use of these secrets; there are no long-term contracts or licensing fees.

Get started with Secrets Manager

Now that you’re familiar with the key features, I’ll show you how to store the credential for a MySQL database hosted on Amazon RDS. To demonstrate how to retrieve and use the secret, I use a python application running on Amazon EC2 that requires this database credential to access the MySQL instance. Finally, I show how to configure Secrets Manager to rotate this database credential automatically. Let’s get started.

Phase 1: Store a secret in Secrets Manager

  1. Open the Secrets Manager console and select Store a new secret.
     
    Secrets Manager console interface
     
  2. I select Credentials for RDS database because I’m storing credentials for a MySQL database hosted on Amazon RDS. For this example, I store the credentials for the database superuser. I start by securing the superuser because it’s the most powerful database credential and has full access over the database.
     
    Store a new secret interface with Credentials for RDS database selected
     

    Note: For this example, you need permissions to store secrets in Secrets Manager. To grant these permissions, you can use the AWSSecretsManagerReadWriteAccess managed policy. Read the AWS Secrets Manager Documentation for more information about the minimum IAM permissions required to store a secret.

  3. Next, I review the encryption setting and choose to use the default encryption settings. Secrets Manager will encrypt this secret using the Secrets Manager DefaultEncryptionKeyDefaultEncryptionKey in this account. Alternatively, I can choose to encrypt using a customer master key (CMK) that I have stored in AWS KMS.
     
    Select the encryption key interface
     
  4. Next, I view the list of Amazon RDS instances in my account and select the database this credential accesses. For this example, I select the DB instance mysql-rds-database, and then I select Next.
     
    Select the RDS database interface
     
  5. In this step, I specify values for Secret Name and Description. For this example, I use Applications/MyApp/MySQL-RDS-Database as the name and enter a description of this secret, and then select Next.
     
    Secret Name and description interface
     
  6. For the next step, I keep the default setting Disable automatic rotation because my secret is used by my application running on Amazon EC2. I’ll enable rotation after I’ve updated my application (see Phase 2 below) to use Secrets Manager APIs to retrieve secrets. I then select Next.

    Note: If you’re storing a secret that you’re not using in your application, select Enable automatic rotation. See our AWS Secrets Manager getting started guide on rotation for details.

     
    Configure automatic rotation interface
     

  7. Review the information on the next screen and, if everything looks correct, select Store. We’ve now successfully stored a secret in Secrets Manager.
  8. Next, I select See sample code.
     
    The See sample code button
     
  9. Take note of the code samples provided. I will use this code to update my application to retrieve the secret using Secrets Manager APIs.
     
    Python sample code
     

Phase 2: Update an application to retrieve secret from Secrets Manager

Now that I have stored the secret in Secrets Manager, I update my application to retrieve the database credential from Secrets Manager instead of hard coding this information in a configuration file or source code. For this example, I show how to configure a python application to retrieve this secret from Secrets Manager.

  1. I connect to my Amazon EC2 instance via Secure Shell (SSH).
  2. Previously, I configured my application to retrieve the database user name and password from the configuration file. Below is the source code for my application.
    import MySQLdb
    import config

    def no_secrets_manager_sample()

    # Get the user name, password, and database connection information from a config file.
    database = config.database
    user_name = config.user_name
    password = config.password

    # Use the user name, password, and database connection information to connect to the database
    db = MySQLdb.connect(database.endpoint, user_name, password, database.db_name, database.port)

  3. I use the sample code from Phase 1 above and update my application to retrieve the user name and password from Secrets Manager. This code sets up the client and retrieves and decrypts the secret Applications/MyApp/MySQL-RDS-Database. I’ve added comments to the code to make the code easier to understand.
    # Use the code snippet provided by Secrets Manager.
    import boto3
    from botocore.exceptions import ClientError

    def get_secret():
    #Define the secret you want to retrieve
    secret_name = "Applications/MyApp/MySQL-RDS-Database"
    #Define the Secrets mManager end-point your code should use.
    endpoint_url = "https://secretsmanager.us-east-1.amazonaws.com"
    region_name = "us-east-1"

    #Setup the client
    session = boto3.session.Session()
    client = session.client(
    service_name='secretsmanager',
    region_name=region_name,
    endpoint_url=endpoint_url
    )

    #Use the client to retrieve the secret
    try:
    get_secret_value_response = client.get_secret_value(
    SecretId=secret_name
    )
    #Error handling to make it easier for your code to tolerate faults
    except ClientError as e:
    if e.response['Error']['Code'] == 'ResourceNotFoundException':
    print("The requested secret " + secret_name + " was not found")
    elif e.response['Error']['Code'] == 'InvalidRequestException':
    print("The request was invalid due to:", e)
    elif e.response['Error']['Code'] == 'InvalidParameterException':
    print("The request had invalid params:", e)
    else:
    # Decrypted secret using the associated KMS CMK
    # Depending on whether the secret was a string or binary, one of these fields will be populated
    if 'SecretString' in get_secret_value_response:
    secret = get_secret_value_response['SecretString']
    else:
    binary_secret_data = get_secret_value_response['SecretBinary']

    # Your code goes here.

  4. Applications require permissions to access Secrets Manager. My application runs on Amazon EC2 and uses an IAM role to obtain access to AWS services. I will attach the following policy to my IAM role. This policy uses the GetSecretValue action to grant my application permissions to read secret from Secrets Manager. This policy also uses the resource element to limit my application to read only the Applications/MyApp/MySQL-RDS-Database secret from Secrets Manager. You can visit the AWS Secrets Manager Documentation to understand the minimum IAM permissions required to retrieve a secret.
    {
    "Version": "2012-10-17",
    "Statement": {
    "Sid": "RetrieveDbCredentialFromSecretsManager",
    "Effect": "Allow",
    "Action": "secretsmanager:GetSecretValue",
    "Resource": "arn:aws:secretsmanager:::secret:Applications/MyApp/MySQL-RDS-Database"
    }
    }

Phase 3: Enable Rotation for Your Secret

Rotating secrets periodically is a security best practice because it reduces the risk of misuse of secrets. Secrets Manager makes it easy to follow this security best practice and offers built-in integrations for rotating credentials for MySQL, PostgreSQL, and Amazon Aurora databases hosted on Amazon RDS. When you enable rotation, Secrets Manager creates a Lambda function and attaches an IAM role to this function to execute rotations on a schedule you define.

Note: Configuring rotation is a privileged action that requires several IAM permissions and you should only grant this access to trusted individuals. To grant these permissions, you can use the AWS IAMFullAccess managed policy.

Next, I show you how to configure Secrets Manager to rotate the secret Applications/MyApp/MySQL-RDS-Database automatically.

  1. From the Secrets Manager console, I go to the list of secrets and choose the secret I created in the first step Applications/MyApp/MySQL-RDS-Database.
     
    List of secrets in the Secrets Manager console
     
  2. I scroll to Rotation configuration, and then select Edit rotation.
     
    Rotation configuration interface
     
  3. To enable rotation, I select Enable automatic rotation. I then choose how frequently I want Secrets Manager to rotate this secret. For this example, I set the rotation interval to 60 days.
     
    Edit rotation configuration interface
     
  4. Next, Secrets Manager requires permissions to rotate this secret on your behalf. Because I’m storing the superuser database credential, Secrets Manager can use this credential to perform rotations. Therefore, I select Use the secret that I provided in step 1, and then select Next.
     
    Select which secret to use in the Edit rotation configuration interface
     
  5. The banner on the next screen confirms that I have successfully configured rotation and the first rotation is in progress, which enables you to verify that rotation is functioning as expected. Secrets Manager will rotate this credential automatically every 60 days.
     
    Confirmation banner message
     

Summary

I introduced AWS Secrets Manager, explained the key benefits, and showed you how to help meet your compliance requirements by configuring AWS Secrets Manager to rotate database credentials automatically on your behalf. Secrets Manager helps you protect access to your applications, services, and IT resources without the upfront investment and on-going maintenance costs of operating your own secrets management infrastructure. To get started, visit the Secrets Manager console. To learn more, visit Secrets Manager documentation.

If you have comments about this post, submit them in the Comments section below. If you have questions about anything in this post, start a new thread on the Secrets Manager forum.

Want more AWS Security news? Follow us on Twitter.

Linux kernel lockdown and UEFI Secure Boot

Post Syndicated from Matthew Garrett original https://mjg59.dreamwidth.org/50577.html

David Howells recently published the latest version of his kernel lockdown patchset. This is intended to strengthen the boundary between root and the kernel by imposing additional restrictions that prevent root from modifying the kernel at runtime. It’s not the first feature of this sort – /dev/mem no longer allows you to overwrite arbitrary kernel memory, and you can configure the kernel so only signed modules can be loaded. But the present state of things is that these security features can be easily circumvented (by using kexec to modify the kernel security policy, for instance).

Why do you want lockdown? If you’ve got a setup where you know that your system is booting a trustworthy kernel (you’re running a system that does cryptographic verification of its boot chain, or you built and installed the kernel yourself, for instance) then you can trust the kernel to keep secrets safe from even root. But if root is able to modify the running kernel, that guarantee goes away. As a result, it makes sense to extend the security policy from the boot environment up to the running kernel – it’s really just an extension of configuring the kernel to require signed modules.

The patchset itself isn’t hugely conceptually controversial, although there’s disagreement over the precise form of certain restrictions. But one patch has, because it associates whether or not lockdown is enabled with whether or not UEFI Secure Boot is enabled. There’s some backstory that’s important here.

Most kernel features get turned on or off by either build-time configuration or by passing arguments to the kernel at boot time. There’s two ways that this patchset allows a bootloader to tell the kernel to enable lockdown mode – it can either pass the lockdown argument on the kernel command line, or it can set the secure_boot flag in the bootparams structure that’s passed to the kernel. If you’re running in an environment where you’re able to verify the kernel before booting it (either through cryptographic validation of the kernel, or knowing that there’s a secret tied to the TPM that will prevent the system booting if the kernel’s been tampered with), you can turn on lockdown.

There’s a catch on UEFI systems, though – you can build the kernel so that it looks like an EFI executable, and then run it directly from the firmware. The firmware doesn’t know about Linux, so can’t populate the bootparam structure, and there’s no mechanism to enforce command lines so we can’t rely on that either. The controversial patch simply adds a kernel configuration option that automatically enables lockdown when UEFI secure boot is enabled and otherwise leaves it up to the user to choose whether or not to turn it on.

Why do we want lockdown enabled when booting via UEFI secure boot? UEFI secure boot is designed to prevent the booting of any bootloaders that the owner of the system doesn’t consider trustworthy[1]. But a bootloader is only software – the only thing that distinguishes it from, say, Firefox is that Firefox is running in user mode and has no direct access to the hardware. The kernel does have direct access to the hardware, and so there’s no meaningful distinction between what grub can do and what the kernel can do. If you can run arbitrary code in the kernel then you can use the kernel to boot anything you want, which defeats the point of UEFI Secure Boot. Linux distributions don’t want their kernels to be used to be used as part of an attack chain against other distributions or operating systems, so they enable lockdown (or equivalent functionality) for kernels booted this way.

So why not enable it everywhere? There’s a couple of reasons. The first is that some of the features may break things people need – for instance, some strange embedded apps communicate with PCI devices by mmap()ing resources directly from sysfs[2]. This is blocked by lockdown, which would break them. Distributions would then have to ship an additional kernel that had lockdown disabled (it’s not possible to just have a command line argument that disables it, because an attacker could simply pass that), and users would have to disable secure boot to boot that anyway. It’s easier to just tie the two together.

The second is that it presents a promise of security that isn’t really there if your system didn’t verify the kernel. If an attacker can replace your bootloader or kernel then the ability to modify your kernel at runtime is less interesting – they can just wait for the next reboot. Appearing to give users safety assurances that are much less strong than they seem to be isn’t good for keeping users safe.

So, what about people whose work is impacted by lockdown? Right now there’s two ways to get stuff blocked by lockdown unblocked: either disable secure boot[3] (which will disable it until you enable secure boot again) or press alt-sysrq-x (which will disable it until the next boot). Discussion has suggested that having an additional secure variable that disables lockdown without disabling secure boot validation might be helpful, and it’s not difficult to implement that so it’ll probably happen.

Overall: the patchset isn’t controversial, just the way it’s integrated with UEFI secure boot. The reason it’s integrated with UEFI secure boot is because that’s the policy most distributions want, since the alternative is to enable it everywhere even when it doesn’t provide real benefits but does provide additional support overhead. You can use it even if you’re not using UEFI secure boot. We should have just called it securelevel.

[1] Of course, if the owner of a system isn’t allowed to make that determination themselves, the same technology is restricting the freedom of the user. This is abhorrent, and sadly it’s the default situation in many devices outside the PC ecosystem – most of them not using UEFI. But almost any security solution that aims to prevent malicious software from running can also be used to prevent any software from running, and the problem here is the people unwilling to provide that policy to users rather than the security features.
[2] This is how X.org used to work until the advent of kernel modesetting
[3] If your vendor doesn’t provide a firmware option for this, run sudo mokutil –disable-validation

comment count unavailable comments

AWS Certificate Manager Launches Private Certificate Authority

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/aws-certificate-manager-launches-private-certificate-authority/

Today we’re launching a new feature for AWS Certificate Manager (ACM), Private Certificate Authority (CA). This new service allows ACM to act as a private subordinate CA. Previously, if a customer wanted to use private certificates, they needed specialized infrastructure and security expertise that could be expensive to maintain and operate. ACM Private CA builds on ACM’s existing certificate capabilities to help you easily and securely manage the lifecycle of your private certificates with pay as you go pricing. This enables developers to provision certificates in just a few simple API calls while administrators have a central CA management console and fine grained access control through granular IAM policies. ACM Private CA keys are stored securely in AWS managed hardware security modules (HSMs) that adhere to FIPS 140-2 Level 3 security standards. ACM Private CA automatically maintains certificate revocation lists (CRLs) in Amazon Simple Storage Service (S3) and lets administrators generate audit reports of certificate creation with the API or console. This service is packed full of features so let’s jump in and provision a CA.

Provisioning a Private Certificate Authority (CA)

First, I’ll navigate to the ACM console in my region and select the new Private CAs section in the sidebar. From there I’ll click Get Started to start the CA wizard. For now, I only have the option to provision a subordinate CA so we’ll select that and use my super secure desktop as the root CA and click Next. This isn’t what I would do in a production setting but it will work for testing out our private CA.

Now, I’ll configure the CA with some common details. The most important thing here is the Common Name which I’ll set as secure.internal to represent my internal domain.

Now I need to choose my key algorithm. You should choose the best algorithm for your needs but know that ACM has a limitation today that it can only manage certificates that chain up to to RSA CAs. For now, I’ll go with RSA 2048 bit and click Next.

In this next screen, I’m able to configure my certificate revocation list (CRL). CRLs are essential for notifying clients in the case that a certificate has been compromised before certificate expiration. ACM will maintain the revocation list for me and I have the option of routing my S3 bucket to a custome domain. In this case I’ll create a new S3 bucket to store my CRL in and click Next.

Finally, I’ll review all the details to make sure I didn’t make any typos and click Confirm and create.

A few seconds later and I’m greeted with a fancy screen saying I successfully provisioned a certificate authority. Hooray! I’m not done yet though. I still need to activate my CA by creating a certificate signing request (CSR) and signing that with my root CA. I’ll click Get started to begin that process.

Now I’ll copy the CSR or download it to a server or desktop that has access to my root CA (or potentially another subordinate – so long as it chains to a trusted root for my clients).

Now I can use a tool like openssl to sign my cert and generate the certificate chain.


$openssl ca -config openssl_root.cnf -extensions v3_intermediate_ca -days 3650 -notext -md sha256 -in csr/CSR.pem -out certs/subordinate_cert.pem
Using configuration from openssl_root.cnf
Enter pass phrase for /Users/randhunt/dev/amzn/ca/private/root_private_key.pem:
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
stateOrProvinceName   :ASN.1 12:'Washington'
localityName          :ASN.1 12:'Seattle'
organizationName      :ASN.1 12:'Amazon'
organizationalUnitName:ASN.1 12:'Engineering'
commonName            :ASN.1 12:'secure.internal'
Certificate is to be certified until Mar 31 06:05:30 2028 GMT (3650 days)
Sign the certificate? [y/n]:y


1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

After that I’ll copy my subordinate_cert.pem and certificate chain back into the console. and click Next.

Finally, I’ll review all the information and click Confirm and import. I should see a screen like the one below that shows my CA has been activated successfully.

Now that I have a private CA we can provision private certificates by hopping back to the ACM console and creating a new certificate. After clicking create a new certificate I’ll select the radio button Request a private certificate then I’ll click Request a certificate.

From there it’s just similar to provisioning a normal certificate in ACM.

Now I have a private certificate that I can bind to my ELBs, CloudFront Distributions, API Gateways, and more. I can also export the certificate for use on embedded devices or outside of ACM managed environments.

Available Now
ACM Private CA is a service in and of itself and it is packed full of features that won’t fit into a blog post. I strongly encourage the interested readers to go through the developer guide and familiarize themselves with certificate based security. ACM Private CA is available in in US East (N. Virginia), US East (Ohio), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), EU (Frankfurt) and EU (Ireland). Private CAs cost $400 per month (prorated) for each private CA. You are not charged for certificates created and maintained in ACM but you are charged for certificates where you have access to the private key (exported or created outside of ACM). The pricing per certificate is tiered starting at $0.75 per certificate for the first 1000 certificates and going down to $0.001 per certificate after 10,000 certificates.

I’m excited to see administrators and developers take advantage of this new service. As always please let us know what you think of this service on Twitter or in the comments below.

Randall

MPAA Aims to Prevent Piracy Leaks With New Security Program

Post Syndicated from Andy original https://torrentfreak.com/mpaa-aims-to-prevent-piracy-leaks-with-new-security-program-180403/

When movies and TV shows leak onto the Internet in advance of their intended release dates, it’s generally a time of celebration for pirates.

Grabbing a workprint or DVD screener of an Oscar nominee or a yet to be aired on TV show makes the Internet bubble with excitement. But for the studios and companies behind the products, it presents their worst nightmare.

Despite all the takedown efforts known to man, once content appears, there’s no putting the genie back into the bottle.

With this in mind, the solution doesn’t lie with reactionary efforts such as Internet disconnections, site-blocking and similar measures, but better hygiene while content is still in production or being prepared for distribution. It’s something the MPAA hopes to address with a brand new program designed to bring the security of third-party vendors up to scratch.

The Trusted Partner Network (TPN) is the brainchild of the MPAA and the Content Delivery & Security Association (CDSA), a worldwide forum advocating the innovative and responsible delivery and storage of entertainment content.

TPN is being touted as a global industry-wide film and television content protection initiative which will help companies prevent leaks, breaches, and hacks of their customers’ movies and television shows prior to their intended release.

“Content is now created by a growing ecosystem of third-party vendors, who collaborate with varying degrees of security,” TPN explains.

“This has escalated the security threat to the entertainment industry’s most prized asset, its content. The TPN program seeks to raise security awareness, preparedness, and capabilities within our industry.”

The TPN will establish a “single benchmark of minimum security preparedness” for vendors whose details will be available via centralized and global “trusted partner” database. The TPN will replace security assessments programs already in place at the MPAA and CDSA.

While content owners and vendors are still able to conduct their own security assessments on an “as-needed” basis, the aim is for the TPN to reduce the number of assessments carried out while assisting in identifying vulnerabilities. The pool of “trusted partners” is designed to help all involved understand and meet the challenges of leaks, whether that’s movie, TV show, or associated content.

While joining the TPN program is voluntary, there’s a strong suggestion that becoming involved in the program is in vendors’ best interests. Being able to carry the TPN logo will be an asset to doing business with others involved in the scheme, it’s suggested.

Once in, vendors will need to hire a TPN-approved assessor to carry out an initial audit of their supply chain and best practices, which in turn will need to be guided by the MPAA’s existing content security guidelines.

“Vendors will hire a Qualified Assessor from the TPN database and will schedule their assessment and manage the process via the secure online platform,” TPN says, noting that vendors will cover their own costs unless an assessment is carried out at the request of a content owner.

The TPN explains that members of the scheme aren’t passed or failed in respect of their security preparedness. However, there’s an expectation they will be expected to come up to scratch and prove that with a subsequent positive report from a TPN approved assessor. Assessors themselves will also be assessed via the TPN Qualified Assessor Program.

By imposing MPAA best practices upon partner companies, it’s hoped that some if not all of the major leaks that have plagued the industry over the past several years will be prevented in future. Whether that’s the usual DVD screener leaks, workprints, scripts or other content, it’s believed the TPN should be able to help in some way, although the former might be a more difficult nut to crack.

There’s no doubting that the problem TPN aims to address is serious. In 2017 alone, hackers and other individuals obtained and then leaked episodes of Orange is the New Black, unreleased ABC content, an episode of Game of Thrones sourced from India and scripts from the same show. Even blundering efforts managed to make their mark.

“Creating the films and television shows enjoyed by audiences around the world increasingly requires a network of specialized vendors and technicians,” says MPAA chairman and CEO Charles Rivkin.

“That’s why maintaining high security standards for all third-party operations — from script to screen — is such an important part of preventing the theft of creative works and ultimately protects jobs and the health of our vibrant creative economy.”

According to TPN, the first class of TPN Assessors was recruited and tested last month while beta-testing of key vendors will begin in April. The full program will roll out in June 2018.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Node.js 8.10 runtime now available in AWS Lambda

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/node-js-8-10-runtime-now-available-in-aws-lambda/

This post courtesy of Ed Lima, AWS Solutions Architect

We are excited to announce that you can now develop your AWS Lambda functions using the Node.js 8.10 runtime, which is the current Long Term Support (LTS) version of Node.js. Start using this new version today by specifying a runtime parameter value of nodejs8.10 when creating or updating functions.

Supporting async/await

The Lambda programming model for Node.js 8.10 now supports defining a function handler using the async/await pattern.

Asynchronous or non-blocking calls are an inherent and important part of applications, as user and human interfaces are asynchronous by nature. If you decide to have a coffee with a friend, you usually order the coffee then start or continue a conversation with your friend while the coffee is getting ready. You don’t wait for the coffee to be ready before you start talking. These activities are asynchronous, because you can start one and then move to the next without waiting for completion. Otherwise, you’d delay (or block) the start of the next activity.

Asynchronous calls used to be handled in Node.js using callbacks. That presented problems when they were nested within other callbacks in multiple levels, making the code difficult to maintain and understand.

Promises were implemented to try to solve issues caused by “callback hell.” They allow asynchronous operations to call their own methods and handle what happens when a call is successful or when it fails. As your requirements become more complicated, even promises become harder to work with and may still end up complicating your code.

Async/await is the new way of handling asynchronous operations in Node.js, and makes for simpler, easier, and cleaner code for non-blocking calls. It still uses promises but a callback is returned directly from the asynchronous function, just as if it were a synchronous blocking function.

Take for instance the following Lambda function to get the current account settings, using the Node.js 6.10 runtime:

let AWS = require('aws-sdk');
let lambda = new AWS.Lambda();

exports.handler = (event, context, callback) => {
    let getAccountSettingsPromise = lambda.getAccountSettings().promise();
    getAccountSettingsPromise.then(
        (data) => {
            callback(null, data);
        },
        (err) => {
            console.log(err);
            callback(err);
        }
    );
};

With the new Node.js 8.10 runtime, there are new handler types that can be declared with the “async” keyword or can return a promise directly.

This is how the same function looks like using async/await with Node.js 8.10:

let AWS = require('aws-sdk');
let lambda = new AWS.Lambda();

exports.handler = async (event) => {
    return await lambda.getAccountSettings().promise() ;
};

Alternatively, you could have the handler return a promise directly:

let AWS = require('aws-sdk');
let lambda = new AWS.Lambda();

exports.handler = (event) => {
    return new Promise((resolve, reject) => {
        lambda.getAccountSettings(event)
        .then((data) => {
            resolve data;
        })
        .catch(reject);
     });
};

The new handler types are alternatives to the callback pattern, which is still fully supported.

All three functions return the same results. However, in the new runtime with async/await, all callbacks in the code are gone, which makes it easier to read. This is especially true for those less familiar with promises.

{
    "AccountLimit":{
        "TotalCodeSize":80530636800,
        "CodeSizeUnzipped":262144000,
        "CodeSizeZipped":52428800, 
        "ConcurrentExecutions":1000,
        "UnreservedConcurrentExecutions":1000
    },
    "AccountUsage":{
        "TotalCodeSize":52234461,
        "FunctionCount":53
    }
}

Another great advantage of async/await is better error handling. You can use a try/catch block inside the scope of an async function. Even though the function awaits an asynchronous operation, any errors end up in the catch block.

You can improve your previous Node.js 8.10 function with this trusted try/catch error handling pattern:

let AWS = require('aws-sdk');
let lambda = new AWS.Lambda();
let data;

exports.handler = async (event) => {
    try {
        data = await lambda.getAccountSettings().promise();
    }
    catch (err) {
        console.log(err);
        return err;
    }
    return data;
};

While you now have a similar number of lines in both runtimes, the code is cleaner and more readable with async/await. It makes the asynchronous calls look more synchronous. However, it is important to notice that the code is still executed the same way as if it were using a callback or promise-based API.

Backward compatibility

You may port your existing Node.js 4.3 and 6.10 functions over to Node.js 8.10 by updating the runtime. Node.js 8.10 does include numerous breaking changes from previous Node versions.

Make sure to review the API changes between Node.js 4.3, 6.10, and Node.js 8.10 to see if there are other changes that might affect your code. We recommend testing that your Lambda function passes internal validation for its behavior when upgrading to the new runtime version.

You can use Lambda versions/aliases to safely test that your function runs as expected on Node 8.10, before routing production traffic to it.

New node features

You can now get better performance when compared to the previous LTS version 6.x (up to 20%). The new V8 6.0 engine comes with Turbofan and the Ignition pipeline, which leads to lower memory consumption and faster startup time across Node.js applications.

HTTP/2, which is subject to future changes, allows developers to use the new protocol to speed application development and undo many of HTTP/1.1 workarounds to make applications faster, simpler, and more powerful.

For more information, see the AWS Lambda Developer Guide.

Hope you enjoy and… go build with Node.js 8.10!

Why the crypto-backdoor side is morally corrupt

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/04/why-crypto-backdoor-side-is-morally.html

Crypto-backdoors for law enforcement is a reasonable position, but the side that argues for it adds things that are either outright lies or morally corrupt. Every year, the amount of digital evidence law enforcement has to solve crimes increases, yet they outrageously lie, claiming they are “going dark”, losing access to evidence. A weirder claim is that  those who oppose crypto-backdoors are nonetheless ethically required to make them work. This is morally corrupt.

That’s the point of this Lawfare post, which claims:

What I am saying is that those arguing that we should reject third-party access out of hand haven’t carried their research burden. … There are two reasons why I think there hasn’t been enough research to establish the no-third-party access position. First, research in this area is “taboo” among security researchers. … the second reason why I believe more research needs to be done: the fact that prominent non-government experts are publicly willing to try to build secure third-party-access solutions should make the information-security community question the consensus view. 

This is nonsense. It’s like claiming we haven’t cured the common cold because researchers haven’t spent enough effort at it. When researchers claim they’ve tried 10,000 ways to make something work, it’s like insisting they haven’t done enough because they haven’t tried 10,001 times.
Certainly, half the community doesn’t want to make such things work. Any solution for the “legitimate” law enforcement of the United States means a solution for illegitimate states like China and Russia which would use the feature to oppress their own people. Even if I believe it’s a net benefit to the United States, I would never attempt such research because of China and Russia.
But computer scientists notoriously ignore ethics in pursuit of developing technology. That describes the other half of the crypto community who would gladly work on the problem. The reason they haven’t come up with solutions is because the problem is hard, really hard.
The second reason the above argument is wrong: it says we should believe a solution is possible because some outsiders are willing to try. But as Yoda says, do or do not, there is no try. Our opinions on the difficulty of the problem don’t change simply because people are trying. Our opinions change when people are succeeding. People are always trying the impossible, that’s not evidence it’s possible.
The paper cherry picks things, like Intel CPU features, to make it seem like they are making forward progress. No. Intel’s SGX extensions are there for other reasons. Sure, it’s a new development, and new developments may change our opinion on the feasibility of law enforcement backdoors. But nowhere in talking about this new development have they actually proposes a solution to the backdoor problem. New developments happen all the time, and the pro-backdoor side is going to seize upon each and every one to claim that this, finally, solves the backdoor problem, without showing exactly how it solves the problem.

The Lawfare post does make one good argument, that there is no such thing as “absolute security”, and thus the argument is stupid that “crypto-backdoors would be less than absolute security”. Too often in the cybersecurity community we reject solutions that don’t provide “absolute security” while failing to acknowledge that “absolute security” is impossible.
But that’s not really what’s going on here. Cryptographers aren’t certain we’ve achieved even “adequate security” with current crypto regimes like SSL/TLS/HTTPS. Every few years we find horrible flaws in the old versions and have to develop new versions. If you steal somebody’s iPhone today, it’s so secure you can’t decrypt anything on it. But then if you hold it for 5 years, somebody will eventually figure out a hole and then you’ll be able to decrypt it — a hole that won’t affect Apple’s newer phones.
The reason we think we can’t get crypto-backdoors correct is simply because we can’t get crypto completely correct. It’s implausible that we can get the backdoors working securely when we still have so much trouble getting encryption working correctly in the first place.
Thus, we aren’t talking about “insignificantly less security”, we are talking about going from “barely adequate security” to “inadequate security”. Negotiating keys between you and a website is hard enough without simultaneously having to juggle keys with law enforcement organizations.

And finally, even if cryptographers do everything correctly law enforcement themselves haven’t proven themselves reliable. The NSA exposed its exploits (like the infamous ETERNALBLUE), and OPM lost all its security clearance records. If they can’t keep those secrets, it’s unreasonable to believe they can hold onto backdoor secrets. One of the problems cryptographers are expected to solve is partly this, to make it work in a such way that makes it unlikely law enforcement will lose its secrets.

Summary

This argument by the pro-backdoor side, that we in the crypto-community should do more to solve backdoors, it simply wrong. We’ve spent a lot of effort at this already. Many continue to work on this problem — the reason you haven’t heard much from them is because they haven’t had much success. It’s like blaming doctors for not doing more to work on interrogation drugs (truth serums). Sure, a lot of doctors won’t work on this because it’s distasteful, but at the same time, there are many drug companies who would love to profit by them. The reason they don’t exist is not because they aren’t spending enough money researching them, it’s because there is no plausible solution in sight.
Crypto-backdoors designed for law-enforcement will significantly harm your security. This may change in the future, but that’s the state of crypto today. You should trust the crypto experts on this, not lawyers.