Tag Archives: cybersecurity

The Software-Defined Car

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/06/the-software-defined-car.html

Developers are starting to talk about the software-defined car.

For decades, features have accumulated like cruft in new vehicles: a box here to control the antilock brakes, a module there to run the cruise control radar, and so on. Now engineers and designers are rationalizing the way they go about building new models, taking advantage of much more powerful hardware to consolidate all those discrete functions into a small number of domain controllers.

The behavior of new cars is increasingly defined by software, too. This is merely the progression of a trend that began at the end of the 1970s with the introduction of the first electronic engine control units; today, code controls a car’s engine and transmission (or its electric motors and battery pack), the steering, brakes, suspension, interior and exterior lighting, and more, depending on how new (and how expensive) it is. And those systems are being leveraged for convenience or safety features like adaptive cruise control, lane keeping, remote parking, and so on.

And security?

Another advantage of the move away from legacy designs is that digital security can be baked in from the start rather than patched onto components (like a car’s central area network) that were never designed with the Internet in mind. “If you design it from scratch, it’s security by design, everything is in by design; you have it there. But keep in mind that, of course, the more software there is in the car, the more risk is there for vulnerabilities, no question about this,” Anhalt said.

“At the same time, they’re a great software system. They’re highly secure. They’re much more secure than a hardware system with a little bit of software. It depends how the whole thing has been designed. And there are so many regulations and EU standards that have been released in the last year, year and a half, that force OEMs to comply with these standards and get security inside,” she said.

I suppose it could end up that way. It could also be a much bigger attack surface, with a lot more hacking possibilities.

Announcing the AWS Blueprint for Ransomware Defense

Post Syndicated from Jeremy Ware original https://aws.amazon.com/blogs/security/announcing-the-aws-blueprint-for-ransomware-defense/

In this post, Amazon Web Services (AWS) introduces the AWS Blueprint for Ransomware Defense, a new resource that both enterprise and public sector organizations can use to implement preventative measures to protect data from ransomware events. The AWS Blueprint for Ransomware Defense provides a mapping of AWS services and features as they align to aspects of the Center for Internet Security (CIS) Critical Security Controls (CIS Controls). This information can be used to help customers assess and protect their data from ransomware events.

The following is background on ransomware, CIS, and the initiatives that led to the publication of this new blueprint.

The Ransomware Task Force

In April of 2021, the U.S. government launched the Ransomware Task Force (RTF), which has the mission of uniting key stakeholders across industry, government, and civil society to create new solutions, break down silos, and find effective new methods of countering the ransomware threat. The RTF has since launched several progress reports with specific recommendations, including the development of the RTF Blueprint for Ransomware Defense, which provides a framework with practical steps to mitigate, respond to, and recover from ransomware. AWS is a member of the RTF, and we have taken action to create our own AWS Blueprint for Ransomware Defense that maps actionable and foundational security controls to AWS services and features that customers can use to implement those controls. The AWS Blueprint for Ransomware Defense is based on the CIS Controls framework.

Center for Internet Security

The Center for Internet Security (CIS) is a community-driven nonprofit, globally recognized for establishing best practices for securing IT systems and data. To help establish foundational defense mechanisms, a subset of the CIS Critical Security Controls (CIS Controls) have been identified as important first steps in the implementation of a robust program to prevent, respond to, and recover from ransomware events. This list of controls was established to provide safeguards against the most impactful and well-known internet security issues. The controls have been further prioritized into three implementation groups (IGs), to help guide their implementation. IG1, considered “essential cyber hygiene,” provides foundational safeguards. IG2 builds on IG1 by including the controls in IG1 plus a number of additional considerations. Finally, IG3 includes the controls in IG1 and IG2, with an additional layer of controls that protect against more sophisticated security issues.

CIS recommends that organizations use the CIS IG1 controls as basic preventative steps against ransomware events. We’ve produced a mapping of AWS services that can help you implement aspects of these controls in your AWS environment. Ransomware is a complex event, and the best course of action to mitigate risk is to apply a thoughtful strategy of defense in depth. The mitigations and controls outlined in this mapping document are general security best practices, but are a non-exhaustive list.

Because data is often vital to the operation of mission-critical services, ransomware can severely disrupt business processes and applications that depend on this data. For this reason, many organizations are looking for effective security controls that will improve their security posture against these types of events. We hope you find the information in the AWS Blueprint for Ransomware Defense helpful and incorporate it as a tool to provide additional layers of security to help keep your data safe.

Let us know if you have any feedback through the AWS Security Contact Us page. Please reach out if there is anything we can do to add to the usefulness of the blueprint or if you have any additional questions on security and compliance. You can find more information from the IST (Institute for Security and Technology) describing ransomware and how to protect yourself on the IST website.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Jeremy Wave

Jeremy Ware

Jeremy is a Security Specialist Solutions Architect focused on Identity and Access Management. Jeremy and his team enable AWS customers to implement sophisticated, scalable, and secure IAM architecture and Authentication workflows to solve business challenges. With a background in Security Engineering, Jeremy has spent many years working to raise the Security Maturity gap at numerous global enterprises. Outside of work, Jeremy loves to explore the mountainous outdoors, and participate in sports such as snowboarding, wakeboarding, and dirt bike riding.

Author

Megan O’Neil

Megan is a Principal Security Specialist Solutions Architect focused on Threat Detection and Incident Response. Megan and her team enable AWS customers to implement sophisticated, scalable, and secure solutions that solve their business challenges. Outside of work, Megan loves to explore Colorado, including mountain biking, skiing, and hiking.

Luis Pastor

Luis Pastor

Luis is a Senior Security Solutions Architect focused on infrastructure security at AWS. Before AWS, he worked with both large and boutique system integrators, helping clients in an array of industries to improve their security posture and reach and maintain compliance in hybrid environments. Luis enjoys keeping active, cooking, and eating spicy food—especially Mexican cuisine.

Stronger together: Highlights from RSA Conference 2023

Post Syndicated from Anne Grahn original https://aws.amazon.com/blogs/security/stronger-together-highlights-from-rsa-conference-2023/

Golden Gate bridge

RSA Conference 2023 brought thousands of cybersecurity professionals to the Moscone Center in San Francisco, California from April 24 through 27.

The keynote lineup was eclectic, with more than 30 presentations across two stages featuring speakers ranging from renowned theoretical physicist and futurist Dr. Michio Kaku to Grammy-winning musician Chris Stapleton. Topics aligned with this year’s conference theme, “Stronger Together,” and focused on actions that can be taken by everyone, from the C-suite to those of us on the front lines of security, to strengthen collaboration, establish new best practices, and make our defenses more diverse and effective.

With over 400 sessions and 500 exhibitors discussing the latest trends and technologies, it’s impossible to recap every highlight. Now that the dust has settled and we’ve had time to reflect, here’s a glimpse of what caught our attention.

Noteworthy announcements

Hundreds of companies — including Amazon Web Services (AWS) — made new product and service announcements during the conference.

We announced three new capabilities for our Amazon GuardDuty threat detection service to help customers secure container, database, and serverless workloads. These include GuardDuty Elastic Kubernetes Service (EKS) Runtime Monitoring, GuardDuty RDS Protection for data stored in Amazon Aurora, and GuardDuty Lambda Protection for serverless applications. The new capabilities are designed to provide actionable, contextual, and timely security findings with resource-specific details.

Artificial intelligence

It was hard to find a single keynote, session, or conversation that didn’t touch on the impact of artificial intelligence (AI).

In “AI: Law, Policy and Common Sense Suggestions on How to Stay Out of Trouble,” privacy and gaming attorney Behnam Dayanim highlighted ambiguity around the definition of AI. Referencing a quote from University of Washington School of Law’s Ryan Calo, Dayanim pointed out that AI may be best described as “…a set of techniques aimed at approximating some aspect of cognition,” and should therefore be thought of differently than a discrete “thing” or industry sector.

Dayanim noted examples of skepticism around the benefits of AI. A recent Monmouth University poll, for example, found that 73% of Americans believe AI will make jobs less available and harm the economy, and a surprising 55% believe AI may one day threaten humanity’s existence.

Equally skeptical, he noted, is a joint statement made by the Federal Trade Commission (FTC) and three other federal agencies during the conference reminding the public that enforcement authority applies to AI. The statement takes a pessimistic view, saying that AI is “…often advertised as providing insights and breakthroughs, increasing efficiencies and cost-savings, and modernizing existing practices,” but has the potential to produce negative outcomes.

Dayanim covered existing and upcoming legal frameworks around the world that are aimed at addressing AI-related risks related to intellectual property (IP), misinformation, and bias, and how organizations can design AI governance mechanisms to promote fairness, competence, transparency, and accountability.

Many other discussions focused on the immense potential of AI to automate and improve security practices. RSA Security CEO Rohit Ghai explored the intersection of progress in AI with human identity in his keynote. “Access management and identity management are now table stakes features”, he said. In the AI era, we need an identity security solution that will secure the entire identity lifecycle—not just access. To be successful, he believes, the next generation of identity technology needs to be powered by AI, open and integrated at the data layer, and pursue a security-first approach. “Without good AI,” he said, “zero trust has zero chance.”

Mark Ryland, director at the Office of the CISO at AWS, spoke with Infosecurity about improving threat detection with generative AI.

“We’re very focused on meaningful data and minimizing false positives. And the only way to do that effectively is with machine learning (ML), so that’s been a core part of our security services,” he noted.

We recently announced several new innovations—including Amazon Bedrock, the Amazon Titan foundation model, the general availability of Amazon Elastic Compute Cloud (Amazon EC2) Trn1n instances powered by AWS Trainium, Amazon EC2 Inf2 instances powered by AWS Inferentia2, and the general availability of Amazon CodeWhisperer—that will make it practical for customers to use generative AI in their businesses.

“Machine learning and artificial intelligence will add a critical layer of automation to cloud security. AI/ML will help augment developers’ workstreams, helping them create more reliable code and drive continuous security improvement. — CJ Moses, CISO and VP of security engineering at AWS

The human element

Dozens of sessions focused on the human element of security, with topics ranging from the psychology of DevSecOps to the NIST Phish Scale. In “How to Create a Breach-Deterrent Culture of Cybersecurity, from Board Down,” Andrzej Cetnarski, founder, chairman, and CEO of Cyber Nation Central and Marcus Sachs, deputy director for research at Auburn University, made a data-driven case for CEOs, boards, and business leaders to set a tone of security in their organizations, so they can address “cyber insecure behaviors that lead to social engineering” and keep up with the pace of cybercrime.

Lisa Plaggemier, executive director of the National Cybersecurity Alliance, and Jenny Brinkley, director of Amazon Security, stressed the importance of compelling security awareness training in “Engagement Through Entertainment: How To Make Security Behaviors Stick.” Education is critical to building a strong security posture, but as Plaggemier and Brinkley pointed out, we’re “living through an epidemic of boringness” in cybersecurity training.

According to a recent report, just 28% of employees say security awareness training is engaging, and only 36% say they pay full attention during such training.

Citing a United Airlines preflight safety video and Amazon’s Protect and Connect public service announcement (PSA) as examples, they emphasized the need to make emotional connections with users through humor and unexpected elements in order to create memorable training that drives behavioral change.

Plaggemeier and Brinkley detailed five actionable steps for security teams to improve their awareness training:

  • Brainstorm with staff throughout the company (not just the security people)
  • Find ideas and inspiration from everywhere else (TV episodes, movies… anywhere but existing security training)
  • Be relatable, and include insights that are relevant to your company and teams
  • Start small; you don’t need a large budget to add interest to your training
  • Don’t let naysayers deter you — change often prompts resistance
“You’ve got to make people care. And so you’ve got to find out what their personal motivators are, and how to develop the type of content that can make them care to click through the training and…remember things as they’re walking through an office.” — Jenny Brinkley, director of Amazon Security

Cloud security

Cloud security was another popular topic. In “Architecting Security for Regulated Workloads in Hybrid Cloud,” Mark Buckwell, cloud security architect at IBM, discussed the architectural thinking practices—including zero trust—required to integrate security and compliance into regulated workloads in a hybrid cloud environment.

Mitiga co-founder and CTO Ofer Maor told real-world stories of SaaS attacks and incident response in “It’s Getting Real & Hitting the Fan 2023 Edition.”

Maor highlighted common tactics focused on identity theft, including MFA push fatigue, phishing, business email compromise, and adversary-in-the middle attacks. After detailing techniques that are used to establish persistence in SaaS environments and deliver ransomware, Maor emphasized the importance of forensic investigation and threat hunting to gaining the knowledge needed to reduce the impact of SaaS security incidents.

Sarah Currey, security practice manager, and Anna McAbee, senior solutions architect at AWS, provided complementary guidance in “Top 10 Ways to Evolve Cloud Native Incident Response Maturity.” Currey and McAbee highlighted best practices for addressing incident response (IR) challenges in the cloud — no matter who your provider is:

  1. Define roles and responsibilities in your IR plan
  2. Train staff on AWS (or your provider)
  3. Develop cloud incident response playbooks
  4. Develop account structure and tagging strategy
  5. Run simulations (red team, purple team, tabletop)
  6. Prepare access
  7. Select and set up logs
  8. Enable managed detection services in all available AWS Regions
  9. Determine containment strategy for resource types
  10. Develop cloud forensics capabilities

Speaking to BizTech, Clarke Rodgers, director of enterprise strategy at AWS, noted that tools and services such as Amazon GuardDuty and AWS Key Management Service (AWS KMS) are available to help advance security in the cloud. When organizations take advantage of these services and use partners to augment security programs, they can gain the confidence they need to take more risks, and accelerate digital transformation and product development.

Security takes a village

There are more highlights than we can mention on a variety of other topics, including post-quantum cryptography, data privacy, and diversity, equity, and inclusion. We’ve barely scratched the surface of RSA Conference 2023. If there is one key takeaway, it is that no single organization or individual can address cybersecurity challenges alone. By working together and sharing best practices as an industry, we can develop more effective security solutions and stay ahead of emerging threats.

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Anne Grahn

Anne Grahn

Anne is a Senior Worldwide Security GTM Specialist at AWS based in Chicago. She has more than a decade of experience in the security industry, and focuses on effectively communicating cybersecurity risk. She maintains a Certified Information Systems Security Professional (CISSP) certification.

Danielle Ruderman

Danielle Ruderman

Danielle is a Senior Manager for the AWS Worldwide Security Specialist Organization, where she leads a team that enables global CISOs and security leaders to better secure their cloud environments. Danielle is passionate about improving security by building company security culture that starts with employee engagement.

AWS completes the 2023 Cyber Essentials Plus certification and NHS Data Security and Protection Toolkit assessment

Post Syndicated from Tariro Dongo original https://aws.amazon.com/blogs/security/aws-completes-the-2023-cyber-essentials-plus-certification-and-nhs-data-security-and-protection-toolkit-assessment/

Amazon Web Services (AWS) is pleased to announce the successful completion of the United Kingdom Cyber Essentials Plus certification and the National Health Service Data Security and Protection Toolkit (NHS DSPT) assessment. The Cyber Essentials Plus certificate and NHS DSPT assessment are valid for one year until March 28, 2024, and June 30, 2024, respectively.

Cyber Essentials Plus is a UK Government-backed, industry-supported certification scheme intended to help organizations demonstrate organizational cyber security against common cyber attacks. An independent third-party auditor certified by the Information Assurance for Small and Medium Enterprises (IASME) completed the audit. The scope of our Cyber Essentials Plus certificate covers AWS Europe (London), AWS Europe (Ireland), and AWS Europe (Frankfurt) Regions.

The NHS DSPT is a self-assessment that organizations use to measure their performance against data security and information governance requirements. The UK Department of Health and Social Care sets these requirements.

When customers move to the AWS Cloud, AWS is responsible for protecting the global infrastructure that runs our services offered in the AWS Cloud. AWS customers are the data controllers for patient health and care data, and are responsible for anything they put in the cloud or connect to the cloud. For more information, see the AWS Shared Security Responsibility Model.

AWS status is available on the AWS Cyber Essentials Plus compliance page, the NHS DSPT portal, and through AWS Artifact. AWS Artifact is a self-service portal for on-demand access to AWS compliance reports. Sign in to AWS Artifact in the AWS Management Console, or learn more at Getting Started with AWS Artifact.

As always, we value your feedback and questions. Reach out to the AWS Compliance team through the Contact Us page. If you have feedback about this post, submit a comment in the Comments section below. To learn more about our other compliance and security programs, see AWS Compliance Programs.

Want more AWS Security news? Follow us on Twitter.

Tariro Dongo

Tariro Dongo

Tariro is a Security Assurance Program Manager at AWS, based in London. Tari is responsible for third-party and customer audits, attestations, certifications, and assessments across EMEA. Previously, Tari worked in security assurance and technology risk in the big four and financial services industry over the last 12 years.

Jennifer Park

Jennifer Park

Jennifer is a Security Assurance Program Manager at AWS, based in New York. She is responsible for third-party and customer audits, attestations and certifications across EMEA. Jennifer graduated from Boston College and has just under one year experience in Security Assurance.

PIPEDREAM Malware against Industrial Control Systems

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/05/pipedream-malware-against-industrial-control-systems.html

Another nation-state malware, Russian in origin:

In the early stages of the war in Ukraine in 2022, PIPEDREAM, a known malware was quietly on the brink of wiping out a handful of critical U.S. electric and liquid natural gas sites. PIPEDREAM is an attack toolkit with unmatched and unprecedented capabilities developed for use against industrial control systems (ICSs).

The malware was built to manipulate the network communication protocols used by programmable logic controllers (PLCs) leveraged by two critical producers of PLCs for ICSs within the critical infrastructure sector, Schneider Electric and OMRON.

CISA advisory. Wired article.

Security Risks of AI

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/04/security-risks-of-ai.html

Stanford and Georgetown have a new report on the security risks of AI—particularly adversarial machine learning—based on a workshop they held on the topic.

Jim Dempsey, one of the workshop organizers, wrote a blog post on the report:

As a first step, our report recommends the inclusion of AI security concerns within the cybersecurity programs of developers and users. The understanding of how to secure AI systems, we concluded, lags far behind their widespread adoption. Many AI products are deployed without institutions fully understanding the security risks they pose. Organizations building or deploying AI models should incorporate AI concerns into their cybersecurity functions using a risk management framework that addresses security throughout the AI system life cycle. It will be necessary to grapple with the ways in which AI vulnerabilities are different from traditional cybersecurity bugs, but the starting point is to assume that AI security is a subset of cybersecurity and to begin applying vulnerability management practices to AI-based features. (Andy Grotto and I have vigorously argued against siloing AI security in its own governance and policy vertical.)

Our report also recommends more collaboration between cybersecurity practitioners, machine learning engineers, and adversarial machine learning researchers. Assessing AI vulnerabilities requires technical expertise that is distinct from the skill set of cybersecurity practitioners, and organizations should be cautioned against repurposing existing security teams without additional training and resources. We also note that AI security researchers and practitioners should consult with those addressing AI bias. AI fairness researchers have extensively studied how poor data, design choices, and risk decisions can produce biased outcomes. Since AI vulnerabilities may be more analogous to algorithmic bias than they are to traditional software vulnerabilities, it is important to cultivate greater engagement between the two communities.

Another major recommendation calls for establishing some form of information sharing among AI developers and users. Right now, even if vulnerabilities are identified or malicious attacks are observed, this information is rarely transmitted to others, whether peer organizations, other companies in the supply chain, end users, or government or civil society observers. Bureaucratic, policy, and cultural barriers currently inhibit such sharing. This means that a compromise will likely remain mostly unnoticed until long after attackers have successfully exploited vulnerabilities. To avoid this outcome, we recommend that organizations developing AI models monitor for potential attacks on AI systems, create—formally or informally—a trusted forum for incident information sharing on a protected basis, and improve transparency.

North Korea Hacking Cryptocurrency Sites with 3CX Exploit

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/04/north-korea-hacking-cryptocurrency-sites-with-3cx-exploit.html

News:

Researchers at Russian cybersecurity firm Kaspersky today revealed that they identified a small number of cryptocurrency-focused firms as at least some of the victims of the 3CX software supply-chain attack that’s unfolded over the past week. Kaspersky declined to name any of those victim companies, but it notes that they’re based in “western Asia.”

Security firms CrowdStrike and SentinelOne last week pinned the operation on North Korean hackers, who compromised 3CX installer software that’s used by 600,000 organizations worldwide, according to the vendor. Despite the potentially massive breadth of that attack, which SentinelOne dubbed “Smooth Operator,” Kaspersky has now found that the hackers combed through the victims infected with its corrupted software to ultimately target fewer than 10 machines­—at least as far as Kaspersky could observe so far—­and that they seemed to be focusing on cryptocurrency firms with “surgical precision.”

The National Intelligence Center of Spain and AWS collaborate to promote public sector cybersecurity

Post Syndicated from Borja Larrumbide original https://aws.amazon.com/blogs/security/the-national-intelligence-center-of-spain-and-aws-collaborate-to-promote-public-sector-cybersecurity/

Spanish version »

The National Intelligence Center and National Cryptological Center (CNI-CCN)—attached to the Spanish Ministry of Defense—and Amazon Web Services (AWS) have signed a strategic collaboration agreement to jointly promote cybersecurity and innovation in the public sector through AWS Cloud technology.

Under the umbrella of this alliance, the CNI-CCN will benefit from the help of AWS in defining the security roadmap of public administrations with different maturity levels and help the CNI-CCN comply with their security requirements and the National Security Scheme.

In addition, CNI-CCN and AWS will collaborate in various areas of cloud security. First, they will work together on cybersecurity training and awareness-raising focused on government institutions, through education, training, and certification programs for professionals who are experts in technology and security. Second, both organizations will collaborate in creating security guidelines for the use of cloud technology, incorporating the shared security model in the AWS cloud and contributing their experience and knowledge to help organizations with the challenges they face. Third, CNI-CCN and AWS will take part in joint events that demonstrate best practices for the deployment and secure use of the cloud, both for public and private sector organizations. Finally, AWS will support cybersecurity operations centers that are responsible for surveillance, early warning, and response to security incidents in public administrations.

Today, AWS has achieved certification in the National Security Scheme (ENS) High category and has been the first cloud provider to accredit several security services in the CNI-CCN’s STIC Products and Services catalog (CPSTIC), meaning that its infrastructure meets the highest levels of security and compliance for state agencies and public organizations in Spain. All of this gives Spanish organizations, including startups, large companies, and the public sector, access to AWS infrastructure that allows them to make use of advanced technologies such as data analysis, artificial intelligence, databases, Internet of Things (IoT), machine learning, and mobile or serverless services, to promote innovation.

In addition, the new cloud infrastructure of AWS in Spain, the AWS Europe (Spain) Region, allows customers who have data residency requirements to store their content in Spain, with the assurance that they maintain full control over the location of their data. This is a critical element for those who have data residency requirements. The launch of the AWS Europe (Spain) Region provides customers building applications that comply with General Data Protection Regulation (GDPR) access to another secure AWS Region in the European Union (EU) that helps meet the highest levels of security, compliance, and data protection. AWS is also Esquema Nacional de Seguridad (ENS) High certified, meaning its infrastructure meets the highest levels of security and compliance for government agencies and public organizations in Spain.
 


El Centro Nacional de Inteligencia de España y AWS colaboran para promover la ciberseguridad en el sector público

El Centro Nacional de Inteligencia y Centro Criptológico Nacional (CNI-CCN)–adscrito al Ministerio de Defensa de España- y Amazon Web Services (AWS) han firmado un acuerdo de colaboración estratégica para impulsar de forma conjunta la ciberseguridad y la innovación del sector público a través de la tecnología en la Nube de AWS.

Bajo el paraguas de esta alianza, el CNI-CCN se beneficiará de la ayuda de AWS en definir la hoja de ruta de seguridad de las administraciones públicas, con distintos niveles de madurez y ayudar al CNI-CCN en el cumplimiento de sus requisitos de seguridad y el Esquema Nacional de Seguridad.

Además, CNI-CCN y AWS colaborarán en diversos ámbitos en materia de seguridad en la nube. En primer lugar, trabajarán conjuntamente en formación y concienciación en ciberseguridad enfocadas a instituciones gubernamentales, a través de programas de educación, capacitación y certificación de profesionales expertos en tecnología y seguridad. En segundo lugar, ambas organizaciones colaborarán en la creación de guías de seguridad para el uso de tecnología en la nube, incorporando el modelo de seguridad compartida en la nube de AWS y aportando su experiencia y conocimiento para ayudar a las organizaciones con los desafíos a los que se enfrentan. En tercer lugar, CNI-CCN y AWS participarán en eventos conjuntos que demuestren las mejores prácticas de despliegue y uso seguro de la nube, tanto para organizaciones del sector público como privado. Finalmente, AWS apoyará a los centros de operaciones de ciberseguridad encargados de la vigilancia, alerta temprana y respuesta a incidentes de seguridad en las administraciones públicas.

Hoy AWS cuenta con la certificación del Esquema Nacional de Seguridad (ENS) categoría Alta y ha sido el primer proveedor de la nube en acreditar varios servicios de seguridad en el catálogo de Productos y Servicios STIC (CPSTIC) del CNI-CCN, los cual significa que su infraestructura cumple con los más altos niveles de seguridad y cumplimiento para agencias estatales y organizaciones públicas en España. Todo ello concede a las organizaciones españolas, incluyendo a startups, grandes empresas, así como al sector público, acceso a infraestructura de AWS que les permita hacer uso de tecnologías avanzadas como análisis de datos, inteligencia artificial, bases de datos, Internet de las Cosas (IoT), aprendizaje automático, y servicios móviles o serverless, para impulsar la innovación.

Además, la nueva infraestructura de nube de AWS en España, la Región AWS Europa (España) permite a los clientes almacenar su contenido en España, con la seguridad de que mantienen el control total sobre la localización de sus datos. Esto es un elemento crítico para quienes tienen requisitos de residencia de datos. Los clientes que desarrollan aplicaciones en cumplimiento con el Reglamento General de Protección de Datos (RGPD) tendrán acceso a otra región de infraestructura segura de AWS en la Unión Europea (UE), respetando los más altos estándares de seguridad, cumplimiento normativo y protección de datos. Hoy AWS también cuenta con la certificación del Esquema Nacional de Seguridad (ENS) categoría Alta, lo cual significa que su infraestructura cumple con los más altos niveles de seguridad y cumplimiento para agencias estatales y organizaciones públicas en España.

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Borja Larrumbide

Borja Larrumbide

Borja is a Security Assurance Manager for AWS in Spain and Portugal. He received a bachelor’s degree in Computer Science from Boston University (USA). Since then, he has worked in companies such as Microsoft and BBVA, where he has performed in different roles and sectors. Borja is a seasoned security assurance practitioner with many years of experience engaging key stakeholders at national and international levels. His areas of interest include security, privacy, risk management, and compliance.

Executive Webinar: Confronting Security Fears to Control Cyber Risk, Part Three

Post Syndicated from Rapid7 original https://blog.rapid7.com/2023/03/29/executive-webinar-confronting-security-fears-to-control-cyber-risk-part-three/

Executive Webinar: Confronting Security Fears to Control Cyber Risk, Part Three

In the final installment of our webinar “Confronting Security Fears to Control Cyber Risk,” Jason Hart, Rapid7’s Chief Technology Officer, EMEA, discusses how adopting a cyber target operating model can eliminate cybersecurity silos and increase the effectiveness of your cybersecurity program. If you haven’t already, watch parts one and two before delving into this final segment.

Part One: Cybersecurity Simplicity focused on how to encourage everyone associated with your organization to develop a cybersecurity mindset. To accomplish this, Hart recommends that CISOs decentralize cybersecurity to instill accountability and ownership across the entire business.

Part Two: Cybersecurity Elasticity focused on why organisations must develop the ability to adapt while being able to quickly revert to their original structure after times of great stress and impact.

In the presentation, Hart details how executives can create a Protection Level Agreement (PLA) between the security department and senior leadership team, ensuring everyone works to a common timeline and goals. Measuring success and identifying weaknesses in a PLA is also key. Cybersecurity tools that automate reporting on a wide variety of KPIs can help security teams communicate effectiveness to leadership.

Operationalising Cybersecurity

Part Three: Cybersecurity Tranquility offers practical and actionable advice on how to implement a target operating model that aligns with your business, reduces risks and enables a positive security culture.

In the presentation, Hart outlines a twelve step process to operationalise security:

  1. Understand what an operating model is and map out key dependencies for scope, risk, PLA, and KPIs.
  2. Document your current operating model.
  3. Undertake mapping of scope and categorize business functions by impact.
  4. Implement KPIs to track the effectiveness of your current operating model.
  5. Use data from KPIs aligned to business functions to show the effectiveness of the current operating model.
  6. Implement PLAs to align the business, process and technology to drive change.
  7. Present monthly PLAs to stakeholders and business functions to measure effectiveness from current operating model to target operating model.
  8. Enable automation of KPI data aligned to core foundations to feed into PLA.
  9. Identify process and accountability challenges using PLAs underpinned by KPI data.
  10. Use the PLA to explain and show the effectiveness of cybersecurity investment.
  11. Apply the same process to the next business function.
  12. Target operating model starts to form part of the business process.

Related assets:

Executive Webinar: Confronting Security Fears to Control Cyber Risk, Part Two

Post Syndicated from Rapid7 original https://blog.rapid7.com/2023/03/14/executive-webinar-confronting-security-fears-to-control-cyber-risk-part-two/

Executive Webinar: Confronting Security Fears to Control Cyber Risk, Part Two

Part two of Confronting Security Fears to Control Cyber Risk was presented live on March 9th for EMEA and will be delivered on March 16th for APAC. The 40-minute session focuses on the importance of developing cybersecurity elasticity.

In the session, Jason Hart, Rapid7’s Chief Technology Officer, EMEA, will discuss how organisations can develop the ability to adapt while being able to quickly revert to their original structure after times of great stress and impact. To do so, organisations must first address some common cybersecurity challenges:

  • Alignment of ownership and accountability: Cybersecurity should be decentralised across the business–not just an IT security function
  • Scope on where to focus: Not all risks are equal and risk can compound based on business needs and transformation
  • Translation: The requirement to translate cybersecurity needs and requirements across the whole of a organisation

To accomplish these goals, Hart recommends focusing on:

  • Culture: Enable a culture that makes cybersecurity part of the business process and creates a culture of ownership and accountability
  • Measurement: Translating cybersecurity data to allow all organisational stakeholders and personas to understand the context and need
  • Direction: The creation of a Northstar “AKA” Cybersecurity Strategy that is clearly communicated and that has clearly defined objectives and outcomes

For many organizations, that strategy comes in the form of a Protection Level Agreement (PLA).

Cybersecurity Elasticity

A PLA is an agreement between two or more parties, where one is the business (stakeholders), and the others are protection provider(s) (Product Management, IT, 3rd Party Development). Both parties should be equally involved in creating and implementing the PLA, ensuring that expectations are realistic, needs are met, and all parties are bought in to the agreement.

In this session, Hart will detail how executives can create a PLA between the security department and senior leadership team, ensuring everyone works to a common timeline and goals. A well-designed PLA ensures teams are focused and efficient in responding to cybersecurity events. So, clearly defining who owns and is accountable for PLA responsibilities is essential.

Measuring success and identifying weaknesses in a PLA is also key. Cybersecurity tools that automate reporting on a wide variety of KPIs can help security teams communicate effectiveness to leadership.

To learn more, register here:

Confronting Security Fears to Control Cyber Risk: Part Two

REGISTER NOW

Cybersecurity Simplicity

Earlier this month, Rapid7 presented part one of a webinar called “Confronting Security Fears to Control Cyber Risk”. The webinar, available on demand, focused on cybersecurity simplicity and why everyone associated with your organization must develop a cybersecurity mindset. To do so, CISOs must decentralize cybersecurity and instil accountability and ownership across a business. If you haven’t already seen it, you can watch it below:

Related assets:

Confronting Security Fears to Control Cyber Risks Presentation
Part 1 slides
Part 2 slides

Target Operating Model KPIs

Implementing Protection Level Agreements

EMEA Executive Round Table

Insight VM Free Trial

Confronting Security Fears to Control Cyber Risk: Part Two

REGISTER NOW

New National Cybersecurity Strategy

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/03/new-national-cybersecurity-strategy.html

Last week, the Biden administration released a new National Cybersecurity Strategy (summary here). There is lots of good commentary out there. It’s basically a smart strategy, but the hard parts are always the implementation details. It’s one thing to say that we need to secure our cloud infrastructure, and another to detail what the means technically, who pays for it, and who verifies that it’s been done.

One of the provisions getting the most attention is a move to shift liability to software vendors, something I’ve been advocating for since at least 2003.

Slashdot thread.

Executive Webinar: Confronting Security Fears to Control Cyber Risk

Post Syndicated from Rapid7 original https://blog.rapid7.com/2023/02/28/executive-webinar-confronting-security-fears-to-control-cyber-risk/

Executive Webinar: Confronting Security Fears to Control Cyber Risk

Last week, Rapid7 presented part one of a webinar called “Confronting Security Fears to Control Cyber Risk”. The webinar, which is available on demand, focused on cybersecurity simplicity and why everyone associated with your organization must develop a cybersecurity mindset. To do so, CISOs must decentralize cybersecurity and instil accountability and ownership across a business.

In the session, which you can view below, Jason Hart, Rapid7’s Chief Technology Officer, EMEA, shared his experiences to help executives enhance their cyber mission and vision statements to create a positive cybersecurity culture that permeates the business.

Cybersecurity effectiveness

Historically, cybersecurity was seen as a very technical discipline, and as a result, it was siloed as a department. Today, cybersecurity has become a responsibility of the entire organization, and as a result, mindsets within organizations need to change to reflect this shift.

Additionally, many organizations have good ideas and intentions when it comes to cybersecurity, but poor execution results in under-utilized security stacks. Stakeholders and other executives assume CISOs know what they are doing and trust them to get on with it. Meanwhile, CISOs, coming from a very technical background, need more business transformation experience and communicate their vision. This must change to encourage cybersecurity effectiveness.

“As an industry, we have an amazing ability to overcomplicate cybersecurity,” Hart said. “With this presentation, I want to enable organizations to execute an effective cyber security target operating model that reduces risk.”

Operating model for cybersecurity

Organizations need an operating model that works with its technology platform to decentralize cybersecurity. The operating model should translate the technical aspects of cybersecurity into something more digestible for stakeholders.

It is critical that the operating model takes a top-down approach. To be effective, accountability for security measures should be led by teams at the top. It doesn’t stop there, however. Roles and responsibilities must be defined across the entire organization – every single individual needs to be part of the cybersecurity process. A successful operating model for cybersecurity empowers everyone within the business to think about security. By involving every individual, organizations can increase their cybersecurity effectiveness and share accountability across the business.

Additionally, the operating model should include tools to measure outcomes and effectiveness, so organizations can understand which processes are working. This ensures technology is fully utilized to deliver the best possible outcomes and ROI. You can watch part one of our presentation below that discusses these points in greater detail:

Related assets:

Cybersecurity elasticity

Part two of Confronting Security Fears to Control Cyber Risk will be presented live on March 9th for EMEA and March 16th for APAC.

In this session, you’ll learn why modern organizations need to develop the ability to adapt while being able to quickly revert to their original structure after times of great stress and impact. Hart will also detail how executives can create a Protection Level Agreement (PLA) with the security department, ensuring everyone works to a common timeline and goals.

Confronting Security Fears to Control Cyber Risk: Part Two

SAVE YOUR SEAT

What Will It Take?

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/02/what-will-it-take.html

What will it take for policy makers to take cybersecurity seriously? Not minimal-change seriously. Not here-and-there seriously. But really seriously. What will it take for policy makers to take cybersecurity seriously enough to enact substantive legislative changes that would address the problems? It’s not enough for the average person to be afraid of cyberattacks. They need to know that there are engineering fixes—and that’s something we can provide.

For decades, I have been waiting for the “big enough” incident that would finally do it. In 2015, Chinese military hackers hacked the Office of Personal Management and made off with the highly personal information of about 22 million Americans who had security clearances. In 2016, the Mirai botnet leveraged millions of Internet-of-Things devices with default admin passwords to launch a denial-of-service attack that disabled major Internet platforms and services in both North America and Europe. In 2017, hackers—years later we learned that it was the Chinese military—hacked the credit bureau Equifax and stole the personal information of 147 million Americans. In recent years, ransomware attacks have knocked hospitals offline, and many articles have been written about Russia inside the U.S. power grid. And last year, the Russian SVR hacked thousands of sensitive networks inside civilian critical infrastructure worldwide in what we’re now calling Sunburst (and used to call SolarWinds).

Those are all major incidents to security people, but think about them from the perspective of the average person. Even the most spectacular failures don’t affect 99.9% of the country. Why should anyone care if the Chinese have his or her credit records? Or if the Russians are stealing data from some government network? Few of us have been directly affected by ransomware, and a temporary Internet outage is just temporary.

Cybersecurity has never been a campaign issue. It isn’t a topic that shows up in political debates. (There was one question in a 2016 Clinton–Trump debate, but the response was predictably unsubstantive.) This just isn’t an issue that most people prioritize, or even have an opinion on.

So, what will it take? Many of my colleagues believe that it will have to be something with extreme emotional intensity—sensational, vivid, salient—that results in large-scale loss of life or property damage. A successful attack that actually poisons a water supply, as someone tried to do in January by raising the levels of lye at a Florida water-treatment plant. (That one was caught early.) Or an attack that disables Internet-connected cars at speed, something that was demonstrated by researchers in 2014. Or an attack on the power grid, similar to what Russia did to the Ukraine in 2015 and 2016. Will it take gas tanks exploding and planes falling out of the sky for the average person to read about the casualties and think “that could have been me”?

Here’s the real problem. For the average nonexpert—and in this category I include every lawmaker—to push for change, they not only need to believe that the present situation is intolerable, they also need to believe that an alternative is possible. Real legislative change requires a belief that the never-ending stream of hacks and attacks is not inevitable, that we can do better. And that will require creating working examples of secure, dependable, resilient systems.

Providing alternatives is how engineers help facilitate social change. We could never have eliminated sales of tungsten-filament household light bulbs if fluorescent and LED replacements hadn’t become available. Reducing the use of fossil fuel for electricity generation requires working wind turbines and cost-effective solar cells.

We need to demonstrate that it’s possible to build systems that can defend themselves against hackers, criminals, and national intelligence agencies; secure Internet-of-Things systems; and systems that can reestablish security after a breach. We need to prove that hacks aren’t inevitable, and that our vulnerability is a choice. Only then can someone decide to choose differently. When people die in a cyberattack and everyone asks “What can be done?” we need to have something to tell them.

We don’t yet have the technology to build a truly safe, secure, and resilient Internet and the computers that connect to it. Yes, we have lots of security technologies. We have older secure systems—anyone still remember Apollo’s DomainOS and MULTICS?—that lost out in a market that didn’t reward security. We have newer research ideas and products that aren’t successful because the market still doesn’t reward security. We have even newer research ideas that won’t be deployed, again, because the market still prefers convenience over security.

What I am proposing is something more holistic, an engineering research task on a par with the Internet itself. The Internet was designed and built to answer this question: Can we build a reliable network out of unreliable parts in an unreliable world? It turned out the answer was yes, and the Internet was the result. I am asking a similar research question: Can we build a secure network out of insecure parts in an insecure world? The answer isn’t obviously yes, but it isn’t obviously no, either.

While any successful demonstration will include many of the security technologies we know and wish would see wider use, it’s much more than that. Creating a secure Internet ecosystem goes beyond old-school engineering to encompass the social sciences. It will include significant economic, institutional, and psychological considerations that just weren’t present in the first few decades of Internet research.

Cybersecurity isn’t going to get better until the economic incentives change, and that’s not going to change until the political incentives change. The political incentives won’t change until there is political liability that comes from voter demands. Those demands aren’t going to be solely the results of insecurity. They will also be the result of believing that there’s a better alternative. It is our task to research, design, build, test, and field that better alternative—even though the market couldn’t care less right now.

This essay originally appeared in the May/June 2021 issue of IEEE Security & Privacy. I forgot to publish it here.

Attacking Machine Learning Systems

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/02/attacking-machine-learning-systems.html

The field of machine learning (ML) security—and corresponding adversarial ML—is rapidly advancing as researchers develop sophisticated techniques to perturb, disrupt, or steal the ML model or data. It’s a heady time; because we know so little about the security of these systems, there are many opportunities for new researchers to publish in this field. In many ways, this circumstance reminds me of the cryptanalysis field in the 1990. And there is a lesson in that similarity: the complex mathematical attacks make for good academic papers, but we mustn’t lose sight of the fact that insecure software will be the likely attack vector for most ML systems.

We are amazed by real-world demonstrations of adversarial attacks on ML systems, such as a 3D-printed object that looks like a turtle but is recognized (from any orientation) by the ML system as a gun. Or adding a few stickers that look like smudges to a stop sign so that it is recognized by a state-of-the-art system as a 45 mi/h speed limit sign. But what if, instead, somebody hacked into the system and just switched the labels for “gun” and “turtle” or swapped “stop” and “45 mi/h”? Systems can only match images with human-provided labels, so the software would never notice the switch. That is far easier and will remain a problem even if systems are developed that are robust to those adversarial attacks.

At their core, modern ML systems have complex mathematical models that use training data to become competent at a task. And while there are new risks inherent in the ML model, all of that complexity still runs in software. Training data are still stored in memory somewhere. And all of that is on a computer, on a network, and attached to the Internet. Like everything else, these systems will be hacked through vulnerabilities in those more conventional parts of the system.

This shouldn’t come as a surprise to anyone who has been working with Internet security. Cryptography has similar vulnerabilities. There is a robust field of cryptanalysis: the mathematics of code breaking. Over the last few decades, we in the academic world have developed a variety of cryptanalytic techniques. We have broken ciphers we previously thought secure. This research has, in turn, informed the design of cryptographic algorithms. The classified world of the NSA and its foreign counterparts have been doing the same thing for far longer. But aside from some special cases and unique circumstances, that’s not how encryption systems are exploited in practice. Outside of academic papers, cryptosystems are largely bypassed because everything around the cryptography is much less secure.

I wrote this in my book, Data and Goliath:

The problem is that encryption is just a bunch of math, and math has no agency. To turn that encryption math into something that can actually provide some security for you, it has to be written in computer code. And that code needs to run on a computer: one with hardware, an operating system, and other software. And that computer needs to be operated by a person and be on a network. All of those things will invariably introduce vulnerabilities that undermine the perfection of the mathematics…

This remains true even for pretty weak cryptography. It is much easier to find an exploitable software vulnerability than it is to find a cryptographic weakness. Even cryptographic algorithms that we in the academic community regard as “broken”—meaning there are attacks that are more efficient than brute force—are usable in the real world because the difficulty of breaking the mathematics repeatedly and at scale is much greater than the difficulty of breaking the computer system that the math is running on.

ML systems are similar. Systems that are vulnerable to model stealing through the careful construction of queries are more vulnerable to model stealing by hacking into the computers they’re stored in. Systems that are vulnerable to model inversion—this is where attackers recover the training data through carefully constructed queries—are much more vulnerable to attacks that take advantage of unpatched vulnerabilities.

But while security is only as strong as the weakest link, this doesn’t mean we can ignore either cryptography or ML security. Here, our experience with cryptography can serve as a guide. Cryptographic attacks have different characteristics than software and network attacks, something largely shared with ML attacks. Cryptographic attacks can be passive. That is, attackers who can recover the plaintext from nothing other than the ciphertext can eavesdrop on the communications channel, collect all of the encrypted traffic, and decrypt it on their own systems at their own pace, perhaps in a giant server farm in Utah. This is bulk surveillance and can easily operate on this massive scale.

On the other hand, computer hacking has to be conducted one target computer at a time. Sure, you can develop tools that can be used again and again. But you still need the time and expertise to deploy those tools against your targets, and you have to do so individually. This means that any attacker has to prioritize. So while the NSA has the expertise necessary to hack into everyone’s computer, it doesn’t have the budget to do so. Most of us are simply too low on its priorities list to ever get hacked. And that’s the real point of strong cryptography: it forces attackers like the NSA to prioritize.

This analogy only goes so far. ML is not anywhere near as mathematically sound as cryptography. Right now, it is a sloppy misunderstood mess: hack after hack, kludge after kludge, built on top of each other with some data dependency thrown in. Directly attacking an ML system with a model inversion attack or a perturbation attack isn’t as passive as eavesdropping on an encrypted communications channel, but it’s using the ML system as intended, albeit for unintended purposes. It’s much safer than actively hacking the network and the computer that the ML system is running on. And while it doesn’t scale as well as cryptanalytic attacks can—and there likely will be a far greater variety of ML systems than encryption algorithms—it has the potential to scale better than one-at-a-time computer hacking does. So here again, good ML security denies attackers all of those attack vectors.

We’re still in the early days of studying ML security, and we don’t yet know the contours of ML security techniques. There are really smart people working on this and making impressive progress, and it’ll be years before we fully understand it. Attacks come easy, and defensive techniques are regularly broken soon after they’re made public. It was the same with cryptography in the 1990s, but eventually the science settled down as people better understood the interplay between attack and defense. So while Google, Amazon, Microsoft, and Tesla have all faced adversarial ML attacks on their production systems in the last three years, that’s not going to be the norm going forward.

All of this also means that our security for ML systems depends largely on the same conventional computer security techniques we’ve been using for decades. This includes writing vulnerability-free software, designing user interfaces that help resist social engineering, and building computer networks that aren’t full of holes. It’s the same risk-mitigation techniques that we’ve been living with for decades. That we’re still mediocre at it is cause for concern, with regard to both ML systems and computing in general.

I love cryptography and cryptanalysis. I love the elegance of the mathematics and the thrill of discovering a flaw—or even of reading and understanding a flaw that someone else discovered—in the mathematics. It feels like security in its purest form. Similarly, I am starting to love adversarial ML and ML security, and its tricks and techniques, for the same reasons.

I am not advocating that we stop developing new adversarial ML attacks. It teaches us about the systems being attacked and how they actually work. They are, in a sense, mechanisms for algorithmic understandability. Building secure ML systems is important research and something we in the security community should continue to do.

There is no such thing as a pure ML system. Every ML system is a hybrid of ML software and traditional software. And while ML systems bring new risks that we haven’t previously encountered, we need to recognize that the majority of attacks against these systems aren’t going to target the ML part. Security is only as strong as the weakest link. As bad as ML security is right now, it will improve as the science improves. And from then on, as in cryptography, the weakest link will be in the software surrounding the ML system.

This essay originally appeared in the May 2020 issue of IEEE Computer. I forgot to reprint it here.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer Malware

Post Syndicated from Rapid7 original https://blog.rapid7.com/2023/01/31/rapid7-observes-use-of-microsoft-onenote-to-spread-redline-infostealer-malware/

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer Malware

Author: Thomas Elkins
Contributors: Andrew Iwamaye, Matt Green, James Dunne, and Hernan Diaz

Rapid7 routinely conducts research into the wide range of techniques that threat actors use to conduct malicious activity. One objective of this research is to discover new techniques being used in the wild, so we can develop new detection and response capabilities.

Recently, we (Rapid7) observed malicious actors using OneNote files to deliver malicious code. We identified a specific technique that used OneNote files containing batch scripts, which upon execution started an instance of a renamed PowerShell process to decrypt and execute a base64 encoded binary. The base64 encoded binary subsequently decrypted a final payload, which we have identified to be either Redline Infostealer or AsyncRat.

This blog post walks through analysis of a OneNote file that delivered a Redline Infostealer payload.

Analysis of OneNote File

The attack vector began when a user was sent a OneNote file via a phishing email. Once the OneNote file was opened, the user was presented with the option to “Double Click to View File” as seen in Figure 1.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 1 – OneNote file "Remittance" displaying the button “Double Click to View File”

We determined that the button “Double Click to View File” was moveable. Hidden underneath the button, we observed five shortcuts to a batch script, nudm1.bat. The hidden placement of the shortcuts ensured that the user double-clicked on one of the shortcuts when interacting with the “Double Click to View File” button.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 2 – Copy of Batch script nudm1.bat revealed after moving “Double Click to View File” button

Once the user double clicked the button “Double Click to View File”, the batch script nudm1.bat executed in the background without the user’s knowledge.

Analysis of Batch Script

In a controlled environment, we analyzed the batch script nudm1.bat and observed variables storing values.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 3 – Beginning contents of nudm1.bat

Near the middle of the script, we observed a large section of base64 encoded data, suggesting at some point, the data would be decoded by the batch script.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 4 – Base64 encoded data contained within nudm1.bat

At the bottom of the batch script, we observed the declared variables being concatenated. To easily determine what the script was doing, we placed echo commands in front of the concatenations. The addition of the echo commands allowed for the batch script to deobfuscate itself for us upon execution.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 5 – echo command placed in front of concatenated variables

We executed the batch file and piped the deobfuscated result to a text file. The text file contained a PowerShell script that was executed with a renamed PowerShell binary, nudm1.bat.exe.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 6 – Output after using echo reveals PowerShell script

We determined the script performed the following:

  • Base64 decoded the data stored after :: within nudm1.bat, shown in Figure 4

  • AES Decrypted the base64 decoded data using the base64 Key 4O2hMB9pMchU0WZqwOxI/4wg3/QsmYElktiAnwD4Lqw= and base64 IV of TFfxPAVmUJXw1j++dcSfsQ==

  • Decompressed the decrypted contents using gunzip

  • Reflectively loaded the decrypted and decompressed contents into memory

Using CyberChef, we replicated the identified decryption method to obtain a decrypted executable file.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 7 – AES decryption via Cyberchef reveals MZ header

We determined the decrypted file was a 32-bit .NET executable and analyzed the executable using dnSpy.

Analysis of .NET 32-bit Executable

In dnSpy we observed the original file name was tmpFBF7. We also observed that the file contained a resource named payload.exe.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 8 – dnSpy reveals name of original program tmpFBF7 and a payload.exe resource

We navigated to the entry point of the file and observed base64 encoded strings. The base64 encoded strings were passed through a function SRwvjAcHapOsRJfNBFxi. The function SRwvjAcHapOsRJfNBFxi utilized AES decryption to decrypt data passed as argument.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 9 – AES Decrypt Function SRwvjAcHapOsRJfNBFxi

As seen in Figure 9, the function SRwvjAcHapOsRJfNBFxi took in 3 arguments: input, key and iv.

We replicated the decryption process from the function SRwvjAcHapOsRJfNBFxi using CyberChef to decrypt the values of the base64 encoded strings. Figure 9 shows an example of the decryption process of the base64 encoded string vYhBhJfROLULmQk1P9jbiqyIcg6RWlONx2FLYpdRzZA= from line 30 of Figure 7 to reveal a decoded and decrypted string of CheckRemoteDebuggerPresent.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 10 – Using Cyberchef to replicate decryption of function SRwvjAcHapOsRJfNBFxi

Repeating the decryption of the other base64 encoded strings revealed some anti-analysis and anti-AV checks performed by the executable:

  • IsDebuggerPresent CheckRemoteDuggerPresent AmsiScanBuffer

Other base64 encoded strings include:

  • EtwEventWrite /c choice /c y /n /d y /t 1 & attrib -h -s

After passing the anti-analysis and anti-AV checks, the executable called upon the payload.exe resource in line 94 of the code. We determined that the payload.exe resource was saved into the variable @string.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 11 – @string storing payload.exe

On line 113, the variable @string was passed into a new function, aBTlNnlczOuWxksGYYqb, as well as the AES decryption function SRwvjAcHapOsRJfNBFxi.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 12 – @string being passed through function hDMeRrMMQVtybxerYkHW

The function aBTlNnlczOuWxksGYYqb decompressed content passed to it using Gunzip.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 13 – Function aBTlNnlczOuWxksGYYqb decompresses content using Gzip

Using CyberChef, we decrypted and decompressed the payload.exe resource to obtain another 32-bit .NET executable, which we named payload2.bin. Using Yara, we scanned payload2.bin and determined it was related to the Redline Infostealer malware family.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 14 – Yara Signature identifying payload2.bin as Redline Infostealer

We also analyzed payload2.bin in dnSpy.

Analysis of Redline Infostealer

We observed that the original final name of payload2.bin was Footstools and that a class labeled Arguments contained the variables IP and Key. The variable IP stored a base64 encoded value GTwMCik+IV89NmBYISBRLSU7PlMZEiYJKwVVUg==.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 15 – Global variable IP set as Base64 encoded string

The variable Key stored a UTF8 value of Those.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 16 – Global variable Key set with value Those

We identified that the variable IP was called into a function, WriteLine(), which passed the variables IP and Key into a String.Decrypt function as arguments.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer Malware Figure 17 – String.Decrypt being passed arguments IP and Key

The function String.Decrypt was a simple function that XOR’ed input data with the value of Key.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 18 – StringDecrypt utilizing XOR decryption

Using Cyberchef, we replicated the String.Decrypt function for the ‘IP’ variable by XORing the base64 value shown in Figure 13 with the value of Key shown in Figure 16 to obtain the decrypted value for the IP variable, 172.245.45[.]213:3235.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 19 – Using XOR in Cyberchef to reveal value of argument IP

Redline Info Stealer has the capability to steal credentials related to Cryptocurrency wallets, Discord data, as well as web browser data including cached cookies. Figure 19 shows functionality in Redline Infostealer that searches for known Cryptocurrency wallets.

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer MalwareFigure 20 – Redline Infostealer parsing for known Cryptocurrency wallet locations

Rapid7 Protection

Rapid7 has existing rules that detect the behavior observed within customers environments using our Insight Agent including:

Suspicious Process – Renamed PowerShell

OneNote Embedded File Parser

Rapid7 has also developed a OneNote file parser and detection artifact for Velociraptor. This artifact can be used to detect or extract malicious payloads like the one discussed in this post.
https://docs.velociraptor.app/exchange/artifacts/pages/onenote/

Rapid7 Observes Use of Microsoft OneNote to Spread Redline Infostealer Malware

IOCs

Filename – SHA1 HASH
Rem Adv.one – 61F9DBE256052D6315361119C7B7330880899D4C
Nudm1.bat – ADCE7CA8C1860E513FB70BCC384237DAE4BC9D26
tmpFBF7.tmp – F6F1C1AB9743E267AC5E998336AF917632D2F8ED
Footstools.exe – 6c404f19ec17609ad3ab375b613ea429e802f063
IP Address – 172.245.45[.]213

MITRE Attack Techniques

TA0002 – Execution

TA0005 – Defense Evasion

TA0006 – Credential Access

TA0007 – Discovery

TA0009 – Collection

TA0011 – Command and Control

Mitigations

Block .one attachments at the network perimeter or with an antiphishing solution if .one files are not business-critical
User awareness training
If possible, implement signatures to search for PowerShell scripts containing reverse strings such as gnirtS46esaBmorF
Watch out for OneNote as the parent process of cmd.exe executing a .bat file

NIST Is Updating Its Cybersecurity Framework

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/01/nist-is-updating-its-cybersecurity-framework.html

NIST is planning a significant update of its Cybersecurity Framework. At this point, it’s asking for feedback and comments to its concept paper.

  1. Do the proposed changes reflect the current cybersecurity landscape (standards, risks, and technologies)?
  2. Are the proposed changes sufficient and appropriate? Are there other elements that should be considered under each area?
  3. Do the proposed changes support different use cases in various sectors, types, and sizes of organizations (and with varied capabilities, resources, and technologies)?
  4. Are there additional changes not covered here that should be considered?
  5. For those using CSF 1.1, would the proposed changes affect continued adoption of the Framework, and how so?
  6. For those not using the Framework, would the proposed changes affect the potential use of the Framework?

The NIST Cybersecurity Framework has turned out to be an excellent resource. If you use it at all, please help with version 2.0.