Tag Archives: api gateway

Protecting APIs from abuse using sequence learning and variable order Markov chains

Post Syndicated from Peter Foster original https://blog.cloudflare.com/protecting-apis-from-abuse-using-sequence-learning-and-variable-order-markov

Consider the case of a malicious actor attempting to inject, scrape, harvest, or exfiltrate data via an API. Such malicious activities are often characterized by the particular order in which the actor initiates requests to API endpoints. Moreover, the malicious activity is often not readily detectable using volumetric techniques alone, because the actor may intentionally execute API requests slowly, in an attempt to thwart volumetric abuse protection. To reliably prevent such malicious activity, we therefore need to consider the sequential order of API requests. We use the term sequential abuse to refer to malicious API request behavior. Our fundamental goal thus involves distinguishing malicious from benign API request sequences.

In this blog post, you’ll learn about how we address the challenge of helping customers protect their APIs against sequential abuse. To this end, we’ll unmask the statistical machine learning (ML) techniques currently underpinning our Sequence Analytics product. We’ll build on the high-level introduction to Sequence Analytics provided in a previous blog post.

API sessions

Introduced in the previous blog post, let’s consider the idea of a time-ordered series of HTTP API requests initiated by a specific user. These occur as the user interacts with a service, such as while browsing a website or using a mobile app. We refer to the user’s time-ordered series of API requests as a session. Choosing a familiar example, the session for a customer interacting with a banking service might look like:

Time Order Method Path Description
1 POST /api/v1/auth Authenticates a user
2 GET /api/v1/accounts/{account_id} Displays account balance, where account_id is an account belonging to the user
3 POST /api/v1/transferFunds Containing a request body detailing an account to transfer funds from, an account to transfer funds to, and an amount of money to transfer

One of our aims is to enable our customers to secure their APIs by automatically suggesting rules applicable to our Sequence Mitigation product for enforcing desired sequential behavior. If we enforce the expected behavior, we can prevent unwanted sequential behavior. In our example, desired sequential behavior might entail that /api/v1/auth must always precede /api/v1/accounts/{account_id}.

One important challenge we had to address is that the number of possible sessions grows rapidly as the session length increases. To see why, we can consider the alternative ways in which a user might interact with the example banking service: The user may, for example, execute multiple transfers, and/or check the balance of multiple accounts, in any order. Assuming that there are 3 possible endpoints, the following graph illustrates possible sessions when the user interacts with the banking service:


Because of this large number of possible sessions, suggesting mitigation rules requires that we address the challenge of summarizing sequential behavior from past session data as an intermediate step. We’ll refer to a series of consecutive endpoints in a session (for example /api/v1/accounts/{account_id} → /api/v1/transferFunds) in our example as a sequence. Specifically, a challenge we needed to address is that the sequential behavior relevant for creating rules isn’t necessarily apparent from volume alone: Consider for example that /api/transferFunds might nearly always be preceded by /api/v1/accounts/{account_id}, but also that the sequence /api/v1/transferFunds → /api/v1/accounts/{account_id} might occur relatively rarely, compared to the sequence /api/v1/auth → /api/v1/accounts/{account_id}. It is therefore conceivable that if we were to summarize based on volume alone, we might potentially deem the sequence /api/v1/accounts/{account_id} → /api/v1/transferFunds as unimportant, when in fact we ought to surface it as a potential rule. 

Learning important sequences from API sessions

A widely-applied modeling approach applicable to sequential data is the Markov chain, in which the probability of each endpoint in our session data depends only on a fixed number of preceding endpoints. First, we’ll show how standard Markov chains can be applied to our session data, while pointing out some of their limitations. Second, we’ll show how we use a less well-known, but powerful, type of Markov chain to determine important sequences.

For illustrative purposes, let’s assume that there are 3 possible endpoints in our session data. We’ll represent these endpoints using the letters a, b and c:

  • a: /api/v1/auth

  • b: /api/v1/accounts/{account_id}

  • c: /api/v1/transferFunds

In its simplest form, a Markov chain is nothing more than a table which tells us the probability of the next letter, given knowledge of the immediately preceding letter. If we were to model past session data using the simplest kind of Markov chain, we might end up with a table like this one:

Known preceding endpoint in the session Estimated probability of next endpoint in the session
a b c
a 0.10 (1555) 0.89 (13718) 0.01 (169)
b 0.03 (9618) 0.63 (205084) 0.35 (113382)
c 0.02 (3340) 0.67 (109896) 0.31 (51553)

Table 1

Table 1 lists the parameters of the Markov chain, namely the estimated probabilities of observing a, b or c as the next endpoint in a session, given knowledge of the immediately preceding endpoint in the session. For example, the 3rd row cell with value 0.67 means that given knowledge of immediately preceding endpoint c, the estimated probability of observing b as the next endpoint in a session is 67%, regardless of whether c was preceded by any endpoints. Thus, each entry in the table corresponds to a sequence of two endpoints. The values in brackets are the number of times we saw each two-endpoint sequence in past session data and are used to compute the probabilities in the table. For example, the value 0.01 is the result of evaluating the fraction 169 / (1555+13718+169). This method of estimating probabilities is known as maximum likelihood estimation.

To determine important sequences, we rely on credible intervals for estimating probabilities instead of maximum likelihood estimation. Instead of producing a single point estimate (as described above), credible intervals represent a plausible range of probabilities. This range reflects the amount of data available, i.e. the total number of sequence occurrences in each row. More data produces narrower credible intervals (reflecting a greater degree of certainty) and conversely less data produces wider credible intervals (reflecting a lesser degree of certainty). Based on the values in brackets in the table above, we thus might obtain the following credible intervals (entries in boldface will be explained further on):

Known preceding endpoint in the session Estimated probability of next endpoint in the session
a b c
a 0.09-0.11 (1555) 0.88-0.89 (13718) 0.01-0.01 (169)
b 0.03-0.03 (9618) 0.62-0.63 (205084) 0.34-0.35 (113382)
c 0.02-0.02 (3340) 0.66-0.67 (109896) 0.31-0.32 (51553)

Table 2

For brevity, we won’t demonstrate here how to work out the credible intervals by hand (they involve evaluating the quantile function of a beta distribution). Notwithstanding, the revised table indicates how more data causes credible intervals to shrink: note the first row with a total of 15442 occurrences in comparison to the second row with a total of 328084 occurrences.

To determine important sequences, we use slightly more complex Markov chains than those described above. As an intermediate step, let’s first consider the case where each table entry corresponds to a sequence of 3 endpoints (instead of 2 as above), exemplified by the following table:

Known preceding endpoints in the session Estimated probability of next endpoint in the session
a b c
aa 0.09-0.13 (173) 0.86-0.90 (1367) 0.00-0.02 (13)
ba 0.09-0.11 (940) 0.88-0.90 (8552) 0.01-0.01 (109)
ca 0.09-0.12 (357) 0.87-0.90 (2945) 0.01-0.02 (35)
ab 0.02-0.02 (272) 0.56-0.58 (7823) 0.40-0.42 (5604)
bb 0.03-0.03 (6067) 0.60-0.60 (122796) 0.37-0.37 (75801)
cb 0.03-0.03 (3279) 0.68-0.68 (74449) 0.29-0.29 (31960)
ac 0.01-0.09 (6) 0.77-0.91 (144) 0.06-0.19 (19)
bc 0.02-0.02 (2326) 0.77-0.77 (87215) 0.21-0.21 (23612)
cc 0.02-0.02 (1008) 0.43-0.44 (22527) 0.54-0.55 (27919)

Table 3

Table 3 again lists the estimated probabilities of observing a, b or c as the next endpoint in a session, but given knowledge of 2 immediately preceding endpoints in the session (instead of 1 immediately preceding endpoint as before). That is, the 3rd row cell with interval 0.09-0.13 means that given knowledge of immediately preceding endpoints ca, the probability of observing a as the next endpoint has a credible interval spanning 9% and 13%, regardless of whether ca was preceded by any endpoints. In parlance, we say that the above table represents a Markov chain of order 2. This is because the entries in the table represent probabilities of observing the next endpoint, given knowledge of 2 immediately preceding endpoints as context.

As a special case, the Markov chain of order 0 simply represents the distribution over endpoints in a session. We can tabulate the probabilities as follows, in relation to a single row corresponding to an ‘empty context’:

Known preceding endpoints in the session Estimated probability of next endpoint in the session
a b c
0.03-0.03 (15466) 0.64-0.65 (328732) 0.32-0.33 (165117)

Table 4

Note that the probabilities in Table 4 do not solely represent the case where there were no preceding endpoints in the session. Rather, the probabilities are for the occurrence of endpoints in the session, for the general case where we have no knowledge of the preceding endpoints and regardless of how many endpoints previously occurred.    

Returning to our task of identifying important sequences, one possible approach might be to simply use a Markov chain of some fixed order N. For example, if we were to apply a threshold of 0.85 to the lower bounds of credible intervals in Table 3, we’d retain 3 sequences in total. On the other hand, this approach comes with two noteworthy limitations:

  1. We need a way to select a suitable value for the model order N

  2. Since the model order remains fixed, identified sequences all have the same length N+1.

Variable order Markov chains

Variable order Markov chains (VOMCs) are a more powerful extension of the described fixed-order Markov chains which address the preceding limitations. VOMCs make use of the fact that for some chosen value of the Markov chain of fixed order N, the probability table might include statistically redundant information: Let’s compare Tables 3 and 2 above and consider in Table 3 the rows in boldface corresponding to contexts aa, ba, ca (these 3 contexts all share a as their suffix).

For all the 3 possible next endpoints a, b, c, these rows specify credible intervals which overlap with their respective estimates in Table 2 corresponding to context a (also indicated in boldface). We can interpret these overlapping intervals as representing no discernible difference between probability estimates, given knowledge of a as the preceding endpoint. With no discernible effect of what preceded a on the probability of the next endpoint, we can consider these 3 rows in Table 3 redundant: We may ‘collapse’ them by replacing them with the row in Table 2 corresponding to context a.

The result of revising Table 3 as described looks as follows (with the new row indicated in boldface):

Known preceding endpoints in the session Estimated probability of next endpoint in the session
a b c
a 0.09-0.11 (1555) 0.88-0.89 (13718) 0.01-0.01 (169)
ab 0.02-0.02 (272) 0.56-0.58 (7823) 0.40-0.42 (5604)
ac 0.03-0.03 (6067) 0.60-0.60 (122796) 0.37-0.37 (75801)
bb 0.03-0.03 (3279) 0.68-0.68 (74449) 0.29-0.29 (31960)
bc 0.01-0.09 (6) 0.77-0.91 (144) 0.06-0.19 (19)
cb 0.02-0.02 (2326) 0.77-0.77 (87215) 0.21-0.21 (23612)
cc 0.02-0.02 (1008) 0.43-0.44 (22527) 0.54-0.55 (27919)

Table 5

Table 5 represents a VOMC, because the context length varies: In the example, we have context lengths 1 and 2. It follows that entries in the table represent sequences of length varying between 2 and 3 endpoints, depending on context length. Generalizing the described approach of collapsing contexts leads to the following algorithm sketch for learning a VOMC in an offline setting:

(1) Define the table T containing the estimated probability of the next endpoint in a session, given alternatively 0, 1, 2, …, N_max preceding endpoints in the session. That is, form a single table by concatenating the rows corresponding to Markov chains of fixed orders 0, 1, 2, …, N_max.

(2) is_modified := true 

(3) DO WHILE is_modified

(4) D := all contexts in T which are not suffixes of at least 1 other context in T

(5) is_modified = false

(6) FOR ctx IN C

(7) IF length(ctx) > 0

(8) parent_ctx := the context obtained by deleting the leftmost endpoint in ctx

(9) IF is_collapsible(ctx, parent_ctx)

(10) Modify T by discarding ctx

(11) is_modified = true

In the pseudo-code, length(ctx) is the length of context ctx. On line 9, is_collapsible() involves comparing credible intervals for the contexts ctx and parent_ctx in the manner described for generating Table 5: is_collapsible() evaluates to true, if and only if we observe that all credible intervals overlap, when comparing contexts ctx and parent_ctx separately for each of the possible next endpoints. The maximum sequence length is N_max+1, where N_max is some constant. On line 4, we say that context q is a suffix of another context p if we can form p by prepending zero or more endpoints to q. (According to this definition, the ‘empty context’ mentioned above for the order 0 model is a suffix of all contexts in T.) The above algorithm sketch is a variant of the ideas first introduced by Rissanen [1], Ron et al. [2].

Finally, we take the entries in the resulting table T as our important sequences. Thus, the result of applying VOMCs is a set of sequences that we deem important. For Sequence Analytics however, we believe that it is additionally useful to rank sequences. We do this by computing a ‘precedence score’ between 0.0 and 1.0, which is the number of occurrences of the sequence divided by the number of occurrences of the last endpoint in the sequence. Thus, precedence scores close to 1.0 indicate that a given endpoint is nearly always preceded by the remaining endpoints in the sequence. In this way, manual inspection of the highest-scoring sequences is a semi-automated heuristic for creating precedence rules in our Sequence Mitigation product.

Learning sequences at scale

The preceding represents a very high-level overview of the statistical ML techniques that we use in Sequence Analytics. In practice, we have devised an efficient algorithm which does not require an upfront training step, but rather updates the model continuously as the data arrive and generates a frequently-updating summary of important sequences. This approach allows us to overcome additional challenges around memory cost not touched on in this blog post. Most significantly, a straightforward implementation of the algorithm sketch above would still result in the number of table rows (contexts) exploding with increasing maximum sequence length. A further challenge we had to address is how to ensure that our system is able to deal with high-volume APIs, without adversely impacting CPU load. We use a horizontally scalable adaptive sampling strategy upfront, such that more aggressive sampling is applied to high-volume APIs. Our algorithm then consumes the sampled streams of API requests. After a customer onboards, sequences are assembled and learned over time, so that the current summary of important sequences represents a sliding window with a look-back interval of approximately 24 hours. Sequence Analytics further stores sequences in Clickhouse and exposes them via a GraphQL API and via the Cloudflare dashboard. Customers who would like to enforce sequence rules can do so using Sequence Mitigation. Sequence Mitigation is what is responsible for ensuring that rules are shared and matched in distributed fashion on Cloudflare’s global network — another exciting topic for a future blog post!

What’s next

Now that you have a better understanding of how we surface important API request sequences, stay tuned for a future blog post in this series, where we’ll describe how we find the anomalous API request sequences that customers may want to stop. For now, API Gateway customers can get started in two ways: with Sequence Analytics to explore important API request sequences and with Sequence Mitigation to enforce sequences of API requests. Enterprise customers that haven’t purchased API Gateway can get started by enabling the API Gateway trial inside the Cloudflare Dashboard or contacting their account manager.

Securing Cloudflare with Cloudflare: a Zero Trust journey

Post Syndicated from Derek Pitts original https://blog.cloudflare.com/securing-cloudflare-with-cloudflare-zero-trust


Cloudflare is committed to providing our customers with industry-leading network security solutions. At the same time, we recognize that establishing robust security measures involves identifying potential threats by using processes that may involve scrutinizing sensitive or personal data, which in turn can pose a risk to privacy. As a result, we work hard to balance privacy and security by building privacy-first security solutions that we offer to our customers and use for our own network.

In this post, we’ll walk through how we deployed Cloudflare products like Access and our Zero Trust Agent in a privacy-focused way for employees who use the Cloudflare network. Even though global legal regimes generally afford employees a lower level of privacy protection on corporate networks, we work hard to make sure our employees understand their privacy choices because Cloudflare has a strong culture and history of respecting and furthering user privacy on the Internet. We’ve found that many of our customers feel similarly about ensuring that they are protecting privacy while also securing their networks.

So how do we balance our commitment to privacy with ensuring the security of our internal corporate environment using Cloudflare products and services? We start with the basics: We only retain the minimum amount of data needed, we de-identify personal data where we can, we communicate transparently with employees about the security measures we have in place on corporate systems and their privacy choices, and we retain necessary information for the shortest time period needed.

How we secure Cloudflare using Cloudflare

We take a comprehensive approach to securing our globally distributed hybrid workforce with both organizational controls and technological solutions. Our organizational approach includes a number of measures, such as a company-wide Acceptable Use Policy, employee privacy notices tailored by jurisdiction, required annual and new-hire privacy and security trainings, role-based access controls (RBAC), and least privilege principles. These organizational controls allow us to communicate expectations for both the company and the employees that we can implement with technological controls and that we enforce through logging and other mechanisms.

Our technological controls are rooted in Zero Trust best practices and start with a focus on our Cloudflare One services to secure our workforce as described below.

Securing access to applications

Cloudflare secures access to self-hosted and SaaS applications for our workforce, whether remote or in-office, using our own Zero Trust Network Access (ZTNA) service, Cloudflare Access, to verify identity, enforce multi-factor authentication with security keys, and evaluate device posture using the Zero Trust client for every request. This approach evolved over several years and has enabled Cloudflare to more effectively protect our growing workforce.

Defending against cyber threats

Cloudflare leverages Cloudflare Magic WAN to secure our office networks and the Cloudflare Zero Trust agent to secure our workforce. We use both of these technologies as an onramp to our own Secure Web Gateway (also known as Gateway) to secure our workforce from a rise in online threats.

As we have evolved our hybrid work and office configurations, our security teams have benefited from additional controls and visibility for forward-proxied Internet traffic, including:

  • Granular HTTP controls: Our security teams inspect HTTPS traffic to block access to specific websites identified as malicious by our security team, conduct antivirus scanning, and apply identity-aware browsing policies.
  • Selectively isolating Internet browsing: With remote browser isolated (RBI) sessions, all web code is run on Cloudflare’s network far from local devices, insulating users from any untrusted and malicious content. Today, Cloudflare isolates social media, news outlets, personal email, and other potentially risky Internet categories, and we have set up feedback loops for our employees to help us fine-tune these categories.
  • Geography-based logging: Seeing where outbound requests originate helps our security teams understand the geographic distribution of our workforce, including our presence in high-risk areas.
  • Data Loss Prevention: To keep sensitive data inside our corporate network, this tool allows us to identify data we’ve flagged as sensitive in outbound HTTP/S traffic and prevent it from leaving the network.
  • Cloud Access Security Broker: This tool allows us to monitor our SaaS apps for misconfigurations and sensitive data that is potentially exposed or shared too broadly.

Protecting inboxes with cloud email security

Additionally, we have deployed our Cloud Email Security solution to protect our workforce from increased phishing and business email compromise attacks that we have not only seen directed against our employees, but that are plaguing organizations globally. One key feature we use is email link isolation, which uses RBI and email security functionality to open potentially suspicious links in an isolated browser. This allows us to be slightly more relaxed with blocking suspicious links without compromising security. This is a big win for productivity for our employees and the security team, as both sets of employees aren’t having to deal with large volumes of false positives.

More details on our implementation can be found in our Securing Cloudflare with Cloudflare One case study.

How we respect privacy

The very nature of these powerful security technologies Cloudflare has created and deployed underscores the responsibility we have to use privacy-first principles in handling this data, and to recognize that the data should be respected and protected at all times.

The journey to respecting privacy starts with the products themselves. We develop products that have privacy controls built in at their foundation. To achieve this, our product teams work closely with Cloudflare’s product and privacy counsels to practice privacy by design. A great example of this collaboration is the ability to manage personally identifiable information (PII) in the Secure Web Gateway logs. You can choose to exclude PII from Gateway logs entirely or redact PII from the logs and gain granular control over access to PII with the Zero Trust PII Role.

In addition to building privacy-first security products, we are also committed to communicating transparently with Cloudflare employees about how these security products work and what they can – and can’t – see about traffic on our internal systems. This empowers employees to see themselves as part of the security solution, rather than set up an “us vs. them” mentality around employee use of company systems.

For example, while our employee privacy policies and our Acceptable Use Policy provide broad notice to our employees about what happens to data when they use the company’s systems, we thought it was important to provide even more detail. As a result, our security team collaborated with our privacy team to create an internal wiki page that plainly explains the data our security tools collect and why. We also describe the privacy choices available to our employees. This is particularly important for the “bring your own device” (BYOD) employees who have opted for the convenience of using their personal mobile device for work. BYOD employees must install endpoint management (provided by a third party) and Cloudflare’s Zero trust client on their devices if they want to access Cloudflare systems. We described clearly to our employees what this means about what traffic on their devices can be seen by Cloudflare teams, and we explained how they can take steps to protect their privacy when they are using their devices for purely personal purposes.

For the teams that develop for and support our Zero Trust services, we ensure that data is available only on a strict, need-to-know basis and is restricted to Cloudflare team members that require access as an essential part of their job. The set of people with access are required to take training that reminds them of their responsibility to respect this data and provides them with best practices for handling sensitive data. Additionally, to ensure we have full auditability, we log all the queries run against this database and by whom they are run.

Cloudflare has also made it easy for our employees to express any concerns they may have about how their data is handled or what it is used for. We have mechanisms in place that allow employees to ask questions or express concerns about the use of Zero Trust Security on Cloudflare’s network.

In addition, we make it easy for employees to reach out directly to the leaders responsible for these tools. All of these efforts have helped our employees better understand what information we collect and why. This has helped to expand our strong foundation for security and privacy at Cloudflare.

Encouraging privacy-first security for all

We believe firmly that great security is critical for ensuring data privacy, and that privacy and security can co-exist harmoniously. We also know that it is possible to secure a corporate network in a way that respects the employees using those systems.

For anyone looking to secure a corporate network, we encourage focusing on network security products and solutions that build in personal data protections, like our Zero Trust suite of products. If you are curious to explore how to implement these Cloudflare services in your own organizations, request a consultation here.

We also urge organizations to make sure they communicate clearly with their users. In addition to making sure company policies are transparent and accessible, it is important to help employees understand their privacy choices. Under the laws of almost every jurisdiction globally, individuals have a lower level of privacy on a company device or a company’s systems than they do on their own personal accounts or devices, so it’s important to communicate clearly to help employees understand the difference. If an organization has privacy champions, works councils, or other employee representation groups, it is critical to communicate early and often with these groups to help employees understand what controls they can exercise over their data.

Protecting APIs with JWT Validation

Post Syndicated from John Cosgrove original https://blog.cloudflare.com/protecting-apis-with-jwt-validation


Today, we are happy to announce that Cloudflare customers can protect their APIs from broken authentication attacks by validating incoming JSON Web Tokens (JWTs) with API Gateway. Developers and their security teams need to control who can communicate with their APIs. Using API Gateway’s JWT Validation, Cloudflare customers can ensure that their Identity Provider previously validated the user sending the request, and that the user’s authentication tokens have not expired or been tampered with.

What’s new in this release?

After our beta release in early 2023, we continued to gather feedback from customers on what they needed from JWT validation in API Gateway. We uncovered four main feature requests and shipped updates in this GA release to address them all:

Old, Beta limitation New, GA release capability
Only supported validating the raw JWT Support for the Bearer token format
Only supported one JWKS configuration Create up to four different JWKS configs to support different environments per zone
Only supported validating JWTs sent in HTTP headers Validate JWTs if they are sent in a cookie, not just an HTTP header
JWT validation ran on all requests to the entire zone Exclude any number of managed endpoints in a JWT validation rule

What is the threat?

Broken authentication is the #1 threat on the OWASP Top 10 and the #2 threat on the OWASP API Top 10. We’ve written before about how flaws in API authentication and authorization at Optus led to a threat actor offering 10 million user records for sale, and government agencies have warned about these exact API attacks.

According to Gartner®1, “attacks and data breaches involving poorly secured application programming interfaces (APIs) are occurring frequently.” Getting authentication correct for your API users can be challenging, but there are best practices you can employ to cover your bases. JSON Web Token Validation in API Gateway fulfills one of these best practices by enforcing a positive security model for your authenticated API users.

A primer on authentication and authorization

Authentication establishes identity. Imagine you’re collaborating with multiple colleagues and writing a document in Google Docs. When you’re all authors of the document, you have the same privileges, and you can overwrite each other’s text. You can all see each other’s name next to your respective cursor while you’re typing. You’re all authenticated to Google Docs, so Docs can show all the users on a document who everyone is.

Authorization establishes ownership or permissions to objects. Imagine you’re collaborating with your colleague in Docs again, but this time they’ve written a document ahead of time and simply wish for you to review it and add comments without changing the document. As the owner of the document, your colleague sets an authorization policy to only allow you ‘comment’ access. As such, you cannot change their writing at all, but you can still view the document and leave comments.

While the words themselves might sound similar, the differences between them are hugely important for security. It’s not enough to simply check that a user logging in has the correct login credentials (authentication). If you never check their permissions (authorization), they would be free to overwrite, add, or delete other users’ content. When this happens for APIs, OWASP calls it a Broken Object Level Authorization attack.

A primer on API access tokens

Users authenticate to services in many different ways on the web today. Let’s take a look at the history of authentication with username and password authentication, API key authentication, and JWT authentication before we mention how JWTs can help stop API attacks.

In the early days, the web used HTTP Basic Authentication, where browsers transmitted username and password pairs as an HTTP header, posing significant security risks and making credentials visible to any observer when the application failed to adopt SSL/TLS certificates. Basic authentication also complicated API access, requiring hard-coded credentials and potentially giving broad authorization policies to a single user.

The introduction of API access keys improved security by detaching authentication from user credentials and instead sending secret text strings along with requests. This approach allowed for more nuanced access control by key instead of by user ID, though API keys still faced risks from man-in-the-middle attacks and problematic storage of secrets in source code.

JSON Web Tokens (JWTs) address these issues by removing the need to send long-lived secrets on every request, introducing cryptographically verifiable, auto-expiring, short-lived sessions. Think of a JWT like a tamper-evident seal on a bottle of medication. Along with the seal, medication also has an expiration date printed on it. Users notice when the seal is tampered with or missing altogether, and when the medication expires.

These attributes enhance security any time a JWT is used instead of a long-lived shared secret. JWTs are not an end-all-be-all solution, but they do represent an evolution in authentication technology and are widely used for authentication and authorization on the Internet today.

What’s the structure of a JWT?

JWTs are composed of three fields separated by periods. The first field is a header, the second a payload, and the third a signature:

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJNeURlbW9JRFAiLCJzdWIiOiJqb2huZG9lIiwiYXVkIjoiTXlBcHAiLCJpYXQiOjE3MDg5ODU2MDEsImV4cCI6MTcwODk4NjIwMSwiY2xhc3MiOiJhZG1pbiJ9.v0nywcQemlEU4A18QD9UTgJLyH4ZPXppuW-n0iOmtj4x-hWJuExlMKeNS-vMZt4K6n0pDCFIAKo7_VZqACx4gILXObXMU4MEleFoKKd0f58KscNrC3BQqs3Gnq-vb5Ut9CmcvevQ5h9cBCI4XhpP2_LkYcZiuoSd3zAm2W_0LNZuFXp1wo8swDoKETYmtrdTjuF-IlVjLDAxNsWm2e7T5A8HmCnAWRItEPedm_8XVJAOemx_KqIH5w6zHY1U-M6PJkHK6D2gDU5eiN35A4FCrC5bQ1-0HSTtJkLIed2-1mRO1oANWHpscvpNLQBWQLLiIZ_evbcq_tnwh1X1sA3uxQ

If we base64 decode the first two sections, we arrive at the following structure (comments added for clarity):

{
  "alg": "RS256",     // JWT signature algorithm
  "typ": "JWT"        // JWT type
}

{
  "iss": "MyDemoIDP", // Which identity provider issued this JWT
  "sub": "johndoe",   // Which user this JWT identifies
  "aud": "MyApp",     // Which app this JWT is destined for
  "iat": 1708985601,  // When this JWT was issued
  "exp": 1709986201,  // When this JWT expires
  "class": "admin"    // Extra, customer-defined metadata
}

We can then use the algorithm mentioned in the header (RS256) as well as the Identity Provider’s public key (example below) to check the last segment in the JWT, the signature (code not shown).

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA3exXmNOELAnrtejo3jb2
S6p+GFR5FFlO0AqC4lA4HjNX9stgxX8tcbzv1yl5CT6VWl4kpnBweJzdBsNOauPz
uiCFQ0PtTfS0wDZm3inRPR1bTvJEuqsRTbsCxw/nRLU2+Dvu0zF41Wo4OkAbuKGS
3FwfdKOY/rX5tzjhnTe7uhWTarJG3nVnwmuD03INeNI+fbTgbUrOaVFT06Ussb9L
NNe6BHGQjs6NfG037Jk36dGY1Yiy/rutj6nJ7WkEK5ktQgWrvMMoXW9TfpYHi6sC
mnSEdaxNS8jtFodqpURUaLDIdTOGGgpUZsvzv3jDMYo5IxQK+6y+HUV8eRyDYd/o
rQIDAQAB
-----END PUBLIC KEY-----

The signature is what makes a JWT special. The token issuer, taking into account the claims, generates a signature based on a private secret or a public/private key pair. The public key can be published online, allowing anyone to check if a JWT was legitimately issued by an organization.

Proper authentication and authorization stop API attacks

No developer wants to release an insecure application, and no security team wants their developers to skip secure coding practices, but we know both happen. In the Enterprise Strategy Group report “Securing the API Attack Surface”2, a survey found that 39% of developers skip security processes due to the faster development cycles of continuous integration and continuous delivery (CI/CD). The same survey found more than half (57%) of responding organizations faced multiple security incidents related to insecure APIs in the last 12 months, and 35% of responding organizations faced at least one incident within the last year.

Along with its accompanying database, permissions, and user roles, your origin application is the ultimate security backstop of your API. However, Cloudflare can assist in keeping attacks away from your origin when you configure API Gateway with the correct context. Let’s examine three different API attacks and how to protect against them.

Missing or broken authentication

The ability for a user to send or receive data to an API and entirely bypass authentication falls into ‘broken authentication’. It’s easy to think of the expected use cases your users will take with your application. You may assume that just because a user logs in and your application is written so that users can only access their own data in their dashboard, that all users are logged in and would only access their own data. This assumption fails to account for a user making an HTTP request outside your application requesting or modifying another user’s data and there being nothing in the way to stop your API from replying. In the worst case, a lack of authorization policy checks can enable an API client to change data without an authentication token at all!

Ensuring that incoming requests have an authentication token attached to them and dropping the requests that don’t is a great way to stop the simplest API attacks.

Expired token reuse

Maybe your application already uses JWTs for user authentication. Your application decodes the JWT and looks for user claims for group membership, and you validate the claims before allowing customers access to your API. But are you checking the JWT expiration time?

Imagine a user pays for your service, but they secretly know they will soon downgrade to a free account. If the user’s tier is stored within the JWT and the application or gateway doesn’t validate the expiration time of the JWT, the user could save an old JWT and replay it to continue their access to their paid benefits. Validating JWT expiration time can prevent this type of replay attack.

Broken Function Level Authorization attacks: Tampering with claims

Let’s say you’re using JWTs for authentication, validating the claims inside them, and also validating expiration time. But do you verify the JWT signature? Practically every JWT is signed by its issuer such that API admins and security teams that know the issuer’s signing key can verify that the JWT hasn’t been tampered with. Without the API Gateway or application checking the JWT signature, a malicious user could change their JWT claims, elevating their privileges to assume an administrator role in an application by starting with a normal, non-privileged user account.

JWT Validation from API Gateway safeguards your API from broken authentication and authorization attacks by checking that JWT signatures are intact, expiry times haven’t yet passed, and that authentication tokens are present to begin with.

Don’t other Cloudflare products do this?

Other Cloudflare products also use JWTs. Cloudflare Access is part of our suite of Zero Trust products, and is meant to tie into your Identity Provider. As a best practice, customers should validate the JWT that Access creates and sends to the origin.

Conversely, JWT Validation for API Gateway is a security layer compatible with any API without changing the setup, management, or expectation of the existing user flow. API Gateway’s JWT Validation is meant to validate pre-existing JWTs that may be used by any number of services at your API origin. You really need both: Access for your internal users or employees and API Gateway for your external users.

In addition, some customers use a custom Cloudflare Worker to validate JWTs, which is a great use case for the Workers platform. However, for straightforward use cases customers may find the JWT Validation experience of API Gateway easier to interact with and manage over the lifecycle of their application. If you are validating JWTs with a Worker and today’s release of JWT Validation isn’t yet at feature parity for your custom Worker, let your account representative know. We’re interested in expanding our capabilities to meet your requirements.

What’s next?

In a future release, we will go beyond checking pre-existing JWTs, and customers will be able to generate and enforce authorization policies entirely within API Gateway. We’ll also upgrade our on-demand developer portal creation with the ability to issue keys and authentication tokens to your development team directly, streamlining API management with Cloudflare.

In addition, stay tuned for future API Gateway feature launches where we’ll use our knowledge of API traffic norms to automatically suggest security policies that highlight and stop Broken Object/Function Level Authorization attacks outside the JWT Validation use case.

Existing API Gateway customers can try the new feature now. Enterprise customers without API Gateway should sign up for the trial to try the latest from API Gateway.

1Gartner, “API Security: What You Need to Do to Protect Your APIs”, Analyst(s) Mark O’Neill, Dionisio Zumerle, Jeremy D’Hoinne, January 13, 2023
2Enterprise Strategy Group, “Securing the API Attack Surface”, Analyst, Melinda Marks, May 2023

Introducing Cloudflare’s 2024 API security and management report

Post Syndicated from John Cosgrove http://blog.cloudflare.com/author/john-cosgrove/ original https://blog.cloudflare.com/2024-api-security-report


You may know Cloudflare as the company powering nearly 20% of the web. But powering and protecting websites and static content is only a fraction of what we do. In fact, well over half of the dynamic traffic on our network consists not of web pages, but of Application Programming Interface (API) traffic — the plumbing that makes technology work. This blog introduces and is a supplement to the API Security Report for 2024 where we detail exactly how we’re protecting our customers, and what it means for the future of API security. Unlike other industry API reports, our report isn’t based on user surveys — but instead, based on real traffic data.

If there’s only one thing you take away from our report this year, it’s this: many organizations lack accurate API inventories, even when they believe they can correctly identify API traffic. Cloudflare helps organizations discover all of their public-facing APIs using two approaches. First, customers configure our API discovery tool to monitor for identifying tokens present in their known API traffic. We then use a machine learning model that scans not just these known API calls, but all HTTP requests, identifying API traffic that may be going unaccounted for. The difference between these approaches is striking: we found 30.7% more API endpoints through machine learning-based discovery than the self-reported approach, suggesting that nearly a third of APIs are “Shadow APIs” — and may not be properly inventoried and secured.

Read on for extras and highlights from our inaugural API security report. In the full report, you’ll find updated statistics about the threats we see and prevent, along with our predictions for 2024. We predict that a lack of API security focus at organizations will lead to increased complexity and loss of control, and increased access to generative AI will lead to more API risk. We also anticipate an increase in API business logic attacks in 2024. Lastly, all of the above risks will necessitate growing governance around API security.

Hidden attack surfaces

How are web pages and APIs different? APIs are a quick and easy way for applications to retrieve data in the background, or ask that work be done from other applications. For example, anyone can write a weather app without being a meteorologist: a developer can write the structure of the page or mobile application and ask a weather API for the forecast using the user’s location. Critically, most end users don’t know that the data was provided by the weather API and not the app’s owner.

While APIs are the critical plumbing of the Internet, they’re also ripe for abuse. For example, flaws in API authentication and authorization at Optus led to a threat actor offering 10 million user records for sale, and government agencies have warned about these exact API attacks. Developers in an organization will often create Internet-facing APIs, used by their own applications to function more efficiently, but it’s on the security team to protect these new public interfaces. If the process of documenting APIs and bringing them to the attention of the security team isn’t clear, they become Shadow APIs — operating in production but without the organization’s knowledge. This is where the security challenge begins to emerge.

To help customers solve this problem, we shipped API Discovery. When we introduced our latest release, we mentioned how few organizations have accurate API inventories. Security teams sometimes are forced to adopt an “email and ask” approach to build an inventory, and in doing so responses are immediately stale upon the next application release when APIs change. Better is to track API changes by code base changes, keeping up with new releases. However, this still has a drawback of only inventorying actively maintained code. Legacy applications may not see new releases, despite receiving production traffic.

Cloudflare’s approach to API management involves creating a comprehensive, accurate API inventory using a blend of machine learning-based API discovery and network traffic inspection. This is integral to our API Gateway product, where customers can manage their Internet-facing endpoints and monitor API health. The API Gateway also allows customers to identify their API traffic using session identifiers (typically a header or cookie), which aids in specifically identifying API traffic for the discovery process.

As noted earlier, our analysis reveals that even knowledgeable customers often overlook significant portions of their API traffic. By comparing session-based API discovery (using API sessions to pinpoint traffic) with our machine learning-based API discovery (analyzing all incoming traffic), we found that the latter uncovers on average 30.7% more endpoints! Without broad traffic analysis, you may be missing almost a third of your API inventory.

If you aren’t a Cloudflare customer, you can still get started building an API inventory. APIs are typically cataloged in a standardized format called OpenAPI, and many development tools can build OpenAPI formatted schema files. If you have a file with that format, you can start to build an API inventory yourself by collecting these schemas. Here is an example of how you can pull the endpoints out of a schema file, assuming your have an OpenAPI v3 formatted file named my_schema.json:

import json
import csv
from io import StringIO

# Load the OpenAPI schema from a file
with open("my_schema.json", "r") as file:
    schema = json.load(file)

# Prepare CSV output
output = StringIO()
writer = csv.writer(output)

# Write CSV header
writer.writerow(["Server", "Path", "Method"])

# Extract and write data to CSV
servers = schema.get("servers", [])
for server in servers:
    url = server['url']
    for path, methods in schema['paths'].items():
        for method in methods.keys():
            writer.writerow([url, path, method])

# Get and print CSV string
csv_output = output.getvalue().strip()
print(csv_output)

Unless you have been generating OpenAPI schemas and tracking API inventory from the beginning of your application’s development process, you’re probably missing some endpoints across your production application API inventory.

Precise rate limits minimize attack potential

When it comes to stopping abuse, most practitioners’ thoughts first come to rate limiting. Implementing limits on your API is a valuable tool to keep abuse in check and prevent accidental overload of the origin. But how do you know if you’ve chosen the correct rate limiting approach? Approaches can vary, but they generally come down to the error code chosen, and the basis for the limit value itself.

For some APIs, practitioners configure rate limiting errors to respond with an HTTP 403 (forbidden), while others will respond with HTTP 429 (too many requests). Using HTTP 403 sounds innocent enough until you realize that other security tools are also responding with 403 codes. When you’re under attack, it can be hard to decipher which tools are responsible for which errors / blocking.

Alternatively, if you utilize HTTP 429 for your rate limits, attackers will instantly know that they’ve been rate limited and can “surf” right under the limit without being detected. This can be OK if you’re only limiting requests to ensure your back-end stays alive, but it can tip your cards to attackers. In addition, attackers can “scale out” to more API clients to effectively request above the rate limit.

There are pros and cons to both approaches, but we find that by far most APIs respond with HTTP 429 out of all the 4xx and 5xx error messages (almost 52%).

What about the logic of the rate limit rule itself, not just the response code? Implementing request limits on IP addresses can be tempting, but we recommend you base the limit on a session ID as a best practice and only fall back to IP address (or IP + JA3 fingerprint) when session IDs aren’t available. Setting rate limits on user sessions instead of IPs will reliably identify your real users and minimize false positives due to shared IP space. Cloudflare’s Advanced Rate Limiting and API Gateway’s volumetric abuse protection make it easy to enforce these limits by profiling session traffic on each API endpoint and giving one-click solutions to set up the per-endpoint rate limits.

To find values for your rate limits, Cloudflare API Gateway computes session request statistics for you. We suggest a limit by looking at the distribution of requests per session across all sessions to your API as identified by the customer-configured API session identifier. We then compute statistical p-levels — which describe the request rates for different cohorts of traffic — for p50, p90, and p99 on this distribution and use the variance of the distribution to come up with a recommended threshold for every single endpoint in your API inventory. The recommendation might not match the p-levels, which is an important distinction and a reason not to use p-levels alone. Along with the recommendation, API Gateway informs users of our confidence in the recommendation. Generally, the more API sessions we’re able to collect, the more confident we’ll be in the recommendation.

Activating a rate limit is as easy as clicking the ‘create rule’ link, and API Gateway will automatically bring your session identifier over to the advanced rate limit rule creation page, ensuring your rules have pinpoint accuracy to defend against attacks and minimize false positives compared to traditional, overly broad limits.

APIs are also victim to web application attacks

APIs aren’t immune from normal OWASP Top 10 style attacks like SQL injection. The body of API requests can also find its way as a database input just like a web page form input or URL argument. It’s important to ensure that you have a web application firewall (WAF) also protecting your API traffic to defend against these styles of attacks.

In fact, when we looked at Cloudflare’s WAF managed rules, injection attacks were the second most common threat vector Cloudflare saw carried out on APIs. The most common threat was HTTP Anomaly. Examples of HTTP anomalies include malformed method names, null byte characters in headers, non-standard ports or content length of zero with a POST request. Here are the stats on the other top threats we saw against APIs:

Absent from the chart is broken authentication and authorization. Broken authentication and authorization occur when an API fails to check whether the entity sending requests for information to an API actually has the permission to request that data or not. It can also happen when attacks try to forge credentials and insert less restricted permissions into their existing (valid) credentials that have more restricted permissions. OWASP categorizes these attacks in a few different ways, but the main categories are Broken Object Level Authorization (BOLA) and Broken Function Level Authorization (BFLA) attacks.

The root cause of a successful BOLA / BFLA attack lies in an origin API not checking proper ownership of database records against the identity requesting those records. Tracking these specific attacks can be difficult, as the permission structure may be simply absent, inadequate, or improperly implemented. Can you see the chicken-and-egg problem here? It would be easy to stop these attacks if we knew the proper permission structure, but if we or our customers knew the proper permission structure or could guarantee its enforcement, the attacks would be unsuccessful to begin with. Stay tuned for future API Gateway feature launches where we’ll use our knowledge of API traffic norms to automatically suggest security policies that highlight and stop BOLA / BFLA attacks.

Here are four ways to plug authentication loopholes that may exist for your APIs, even if you don’t have a fine-grained authorization policy available:

  1. First, enforce authentication on each publicly accessible API unless there’s a business approved exception. Look to technologies like mTLS and JSON Web Tokens.
  2. Limit the speed of API requests to your servers to slow down potential attackers.
  3. Block abnormal volumes of sensitive data outflow.
  4. Block attackers from skipping legitimate sequences of API requests.

APIs are surprisingly human driven, not machine driven anymore

If you’ve been around technology since the pre-smartphone days when fewer people were habitually online, it can be tempting to think of APIs as only used for machine-to-machine communication in something like an overnight batch job process. However, the truth couldn’t be more different. As we’ve discussed, many web and mobile applications are powered by APIs, which facilitate everything from authentication to transactions to serving media files. As people use these applications, there is a corresponding increase in API traffic volume.

We can illustrate this by looking at the API traffic patterns observed during holidays, when people gather around friends and family and spend more time socializing in person and less time online. We’ve annotated the following Worldwide API traffic graph with common holidays and promotions. Notice how traffic peaks around Black Friday and Cyber Monday around the +10% level when people shop online, but then traffic drops off for the festivities of Christmas and New Years days.

This pattern closely resembles what we observe in regular HTTP traffic. It’s clear that APIs are no longer just the realm of automated processes but are intricately linked with human behaviors and social trends.

Recommendations

There is no silver bullet for holistic API security. For the best effect, Cloudflare recommends four strategies for increasing API security posture:

  1. Combine API application development, visibility, performance, and security with a unified control plane that can keep an up-to-date API inventory.
  2. Use security tools that utilize machine learning technologies to free up human resources and reduce costs.
  3. Adopt a positive security model for your APIs (see below for an explanation on positive and negative security models).
  4. Measure and improve your organization’s API maturity level over time (also see below for an explanation of an API maturity level).

What do we mean by a ‘positive’ or ‘negative’ security model? In a negative model, security tools look for known signs of attack and take action to stop those attacks. In a positive model, security tools look for known good requests and only let those through, blocking all else. APIs are often so structured that positive security models make sense for the highest levels of security. You can also combine security models, such as using a WAF in a negative model sense, and using API Schema Validation in a positive model sense.

Here’s a quick way to gauge your organization’s API security maturity level over time: Novice organizations will get started by assembling their first API inventory, no matter how incomplete. More mature organizations will strive for API inventory accuracy and automatic updates. The most mature organizations will actively enforce security checks in a positive security model on their APIs, enforcing API schema, valid authentication, and checking behavior for signs of abuse.

Predictions

In closing, our top four predictions for 2024 and beyond:

Increased loss of control and complexity: we surveyed practitioners in the API Security and Management field and 73% responded that security requirements interfere with their productivity and innovation. Coupled with increasingly sprawling applications and inaccurate inventories, API risks and complexity will rise.

Easier access to AI leading to more API risks: the rise in generative AI brings potential risks, including AI models’ APIs being vulnerable to attack, but also developers shipping buggy, AI-written code. Forrester predicts that, in 2024, without proper guardrails, “at least three data breaches will be publicly blamed on insecure AI-generated code – either due to security flaws in the generated code itself or vulnerabilities in AI-suggested dependencies.”

Increase in business logic-based fraud attacks: professional fraudsters run their operations just like a business, and they have costs like any other. We anticipate attackers will run fraud bots efficiently against APIs even more than in previous years.

Growing governance: The first version of PCI DSS that directly addresses API security will go into effect in March 2024. Check your industry’s specific requirements with your audit department to be ready for requirements as they come into effect.

If you’re interested in the full report, you can download the 2024 API Security Report here, which includes full detail on our recommendations.

Cloudflare API Gateway is our API security solution, and it is available for all Enterprise customers. If you aren’t subscribed to API Gateway, click here to view your initial API Discovery results and start a trial in the Cloudflare dashboard. To learn how to use API Gateway to secure your traffic, click here to view our development docs and here for our getting started guide.

How to implement client certificate revocation list checks at scale with API Gateway

Post Syndicated from Arthur Mnev original https://aws.amazon.com/blogs/security/how-to-implement-client-certificate-revocation-list-checks-at-scale-with-api-gateway/

ityAs you design your Amazon API Gateway applications to rely on mutual certificate authentication (mTLS), you need to consider how your application will verify the revocation status of a client certificate. In your design, you should account for the performance and availability of your verification mechanism to make sure that your application endpoints perform reliably.

In this blog post, I demonstrate an architecture that will help you on your journey to implement custom revocation checks against your certificate revocation list (CRL) for API Gateway. You will also learn advanced Amazon Simple Storage Service (Amazon S3) and AWS Lambda techniques to achieve higher performance and scalability.

Choosing the right certificate verification method

One of your first considerations is whether to use a CRL or the Online Certificate Status Protocol (OCSP), if your certificate authority (CA) offers this option. For an in-depth analysis of these two options, see my earlier blog post, Choosing the right certificate revocation method in ACM Private CA. In that post, I demonstrated that OCSP is a good choice when your application can tolerate high latency or a failure for certificate verification due to TLS service-to-OCSP connectivity. When you rely on mutual TLS authentication in a high-rate transactional environment, increased latency or OCSP reachability failures may affect your application. We strongly recommend that you validate the revocation status of your mutual TLS certificates. Verifying your client certificate status against the CRL is the correct approach for certificate verification if you require reliability and lower, predictable latency. A potential exception to this approach is the use case of AWS Certificate Manager Private Certificate Authority (AWS Private CA) with an OCSP responder hosted on AWS CloudFront.

With an AWS Private CA OCSP responder hosted on CloudFront, you can reduce the risks of network and latency challenges by relying on communication between AWS native services. While this post focuses on the solution that targets CRLs originating from any CA, if you use AWS Private CA with an OCSP responder, you should consider generating an OCSP request in your Lambda authorizer.

Mutual authentication with API Gateway

API Gateway mutual TLS authentication (mTLS) requires you to define a root of trust that will contain your certificate authority public key. During the mutual TLS authentication process, API Gateway performs the undifferentiated heavy lifting by offloading the certificate authentication and negotiation process. During the authentication process, API Gateway validates that your certificate is trusted, has valid dates, and uses a supported algorithm. Additionally, you can refer to the API Gateway documentation and related blog post for details about the mutual TLS authentication process on API Gateway.

Implementing mTLS certificate verification for API Gateway

In the remainder of this blog post, I’ll describe the architecture for a scalable implementation of a client certificate verification mechanism against a CRL on your API Gateway.

The certificate CRL verification process presented here relies on a custom Lambda authorizer that validates the certificate revocation status against the CRL. The Lambda authorizer caches CRL data to optimize the query time for subsequent requests and allows you to define custom business logic that could go beyond CRL verification. For example, you could include other, just-in-time authorization decisions as a part of your evaluation logic.

Implementation mechanisms

This section describes the implementation mechanisms that help you create a high-performing extension to the API Gateway mutual TLS authentication process.

Data repository for your certificate revocation list

API Gateway mutual TLS configuration uses Amazon S3 as a repository for your root of trust. The design for this sample implementation extends the use of S3 buckets to store your CRL and the public key for the certificate authority that signed the CRL.

We strongly recommend that you maintain an updated CRL and verify its signature before data processing. This process is automatic if you use AWS Private CA, because AWS Private CA will update your CRL automatically on revocation. AWS Private CA also allows you to retrieve the CA’s public key by using an API call.

Certificate validation

My sample implementation architecture uses the API Gateway Lambda authorizer to validate the serial number of the client certificate used in the mutual TLS authentication session against the list of serial numbers present in the CRL you publish to the S3 bucket. In the process, the API Gateway custom authorizer will read the client certificate serial number, read and validate the CRL’s digital signature, search for the client’s certificate serial number within the CRL, and return the authorization policy based on the findings.

Optimizing for performance

The mechanisms that enable a predictable, low-latency performance are CRL preprocessing and caching. Your CRL is an ASN.1 data structure that requires a relatively high computing time for processing. Preprocessing your CRL into a simple-to-parse data structure reduces the computational cost you would otherwise incur for every validation; caching the CRL will help you reduce the validation latency and improve predictability further.

Performance optimizations

The process of parsing and validating CRLs is computationally expensive. In the case of large CRL files, parsing the CRL in the Lambda authorizer on every request can result in high latency and timeouts. To improve latency and reduce compute costs, this solution optimizes for performance by preprocessing the CRL and implementing function-level caching.

Preprocessing and generation of a cached CRL file

The first optimization happens when S3 receives a new CRL object. As shown in Figure 1, the S3 PutObject event invokes a preprocessing Lambda that validates the signature of your uploaded CRL and decodes its ASN.1 format. The output of the preprocessing Lambda function is the list of the revoked certificate serial numbers from the CRL, in a data structure that is simpler to read by your programming language of choice, and that won’t require extensive parsing by your Lambda authorizer. The asynchronous approach mitigates the impact of CRL processing on your API Gateway workload.

Figure 1: Sample implementation flow of the pre-processing component

Figure 1: Sample implementation flow of the pre-processing component

Client certificate lookup in a CRL

The optimization happens as part of your Lambda authorizer that retrieves the preprocessed CRL data generated from the first step and searches through the data structure for your client certificate serial number. If the Lambda authorizer finds your client’s certificate serial number in the CRL, the authorization request fails, and the Lambda authorizer generates a “Deny” policy. Searching through a read-optimized data structure prepared by your preprocessing step is the second optimization that reduces the lookup time and the compute requirements.

Function-level caching

Because of the preprocessing, the Lambda authorizer code no longer needs to perform the expensive operation of decoding the ASN.1 data structures of the original CRL; however, network transfer latency will remain and may impact your application.

To improve performance, and as a third optimization, the Lambda service retains the runtime environment for a recently-run function for a non-deterministic period of time. If the function is invoked again during this time period, the Lambda function doesn’t have to initialize and can start running immediately. This is called a warm start. Function-level caching takes advantage of this warm start to hold the CRL data structure in memory persistently between function invocations so the Lambda function doesn’t have to download the preprocessed CRL data structure from S3 on every request.

The duration of the Lambda container’s warm state depends on multiple factors, such as usage patterns and parallel requests processed by your function. If, in your case, API use is infrequent or its usage pattern is spiky, pre-provisioned concurrency is another technique that can further reduce your Lambda startup times and the duration of your warm cache. Although provisioned concurrency does have additional costs, I recommend you evaluate its benefits for your specific environment. You can also check out the blog dedicated to this topic, Scheduling AWS Lambda Provisioned Concurrency for recurring peak usage.

To validate that the Lambda authorizer has the latest copy of the CRL data structure, the S3 ETag value is used to determine if the object has changed. The preprocessed CRL object’s ETag value is stored as a Lambda global variable, so its value is retained between invocations in the same runtime environment. When API Gateway invokes the Lambda authorizer, the function checks for existing global preprocessed CRL data structure and ETag variables. The process will only retrieve a read-optimized CRL when the ETag is absent, or its value differs from the ETag of the preprocessed CRL object in S3.

Figure 2 demonstrates this process flow.

Figure 2: Sample implementation flow for the Lambda authorizer component

Figure 2: Sample implementation flow for the Lambda authorizer component

In summary, you will have a Lambda container with a persistent in-memory lookup data structure for your CRL by doing the following:

  • Asynchronously start your preprocessing workflow by using the S3 PutObject event so you can generate and store your preprocessed CRL data structure in a separate S3 object.
  • Read the preprocessed CRL from S3 and its ETag value and store both values in global variables.
  • Compare the value of the ETag stored in your global variables to the current ETag value of the preprocessed CRL S3 object, to reduce unnecessary downloads if the current ETag value of your S3 object is the same as the previous value.
  • We recommend that you avoid using built-in API Gateway Lambda authorizer result caching, because the status of your certificate might change, and your authorization decision would rest on out-of-date verification results.
  • Consider setting a reserved concurrency for your CRL verification function so that API Gateway can invoke your function even if the overall capacity for your account in your AWS Region is exhausted.

The sample implementation flow diagram in Figure 3 demonstrates the overall architecture of the solution.

Figure 3: Sample implementation flow for the overall CRL verification architecture

Figure 3: Sample implementation flow for the overall CRL verification architecture

The workflow for the solution overall is as follows:

  1. An administrator publishes a CRL and its signing CA’s certificate to their non-public S3 bucket, which is accessible by the Lambda authorizer and preprocessor roles.
  2. An S3 event invokes the Lambda preprocessor to run upon CRL upload. The function retrieves the CRL from S3, validates its signature against the issuing certificate, and parses the CRL.
  3. The preprocessor Lambda stores the results in an S3 bucket with a name in the form <crlname>.cache.json.
  4. A TLS client requests an mTLS connection and supplies its certificate.
  5. API Gateway completes mTLS negotiation and invokes the Lambda authorizer.
  6. The Lambda authorizer function parses the client’s mTLS certificate, retrieves the cached CRL object, and searches the object for the serial number of the client’s certificate.
  7. The authorizer function returns a deny policy if the certificate is revoked or in error.
  8. API Gateway, if authorized, proceeds with the integrated function or denies the client’s request.

Conclusion

In this post, I presented a design for validating your API Gateway mutual TLS client certificates against a CRL, with support for extra-large certificate revocation files. This approach will help you align with the best security practices for validating client certificates and use advanced S3 access and Lambda caching techniques to minimize time and latency for validation.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on the AWS Security, Identity, and Compliance re:Post or contact AWS Support.

Arthur Mnev

Arthur is a Senior Specialist Security Architect for AWS Industries. He spends his day working with customers and designing innovative approaches to help customers move forward with their initiatives, improve their security posture, and reduce security risks in their cloud journeys. Outside of work, Arthur enjoys being a father, skiing, scuba diving, and Krav Maga.

Rafael Cassolato de Meneses

Rafael Cassolato de Meneses

Rafael Cassolato is a Solutions Architect with 20+ years in IT, holding bachelor’s and master’s degrees in Computer Science and 10 AWS certifications. Specializing in migration and modernization, Rafael helps strategic AWS customers achieve their business goals and solve technical challenges by leveraging AWS’s cloud platform.

Protecting GraphQL APIs from malicious queries

Post Syndicated from John Cosgrove original http://blog.cloudflare.com/protecting-graphql-apis-from-malicious-queries/

Protecting GraphQL APIs from malicious queries

Protecting GraphQL APIs from malicious queries

Starting today, Cloudflare’s API Gateway can protect GraphQL APIs against malicious requests that may cause a denial of service to the origin. In particular, API Gateway will now protect against two of the most common GraphQL abuse vectors: deeply nested queries and queries that request more information than they should.

Typical RESTful HTTP APIs contain tens or hundreds of endpoints. GraphQL APIs differ by typically only providing a single endpoint for clients to communicate with and offering highly flexible queries that can return variable amounts of data. While GraphQL’s power and usefulness rests on the flexibility to query an API about only the specific data you need, that same flexibility adds an increased risk of abuse. Abusive requests to a single GraphQL API can place disproportional load on the origin, abuse the N+1 problem, or exploit a recursive relationship between data dimensions. In order to add GraphQL security features to API Gateway, we needed to obtain visibility inside the requests so that we could apply different security settings based on request parameters. To achieve that visibility, we built our own GraphQL query parser. Read on to learn about how we built the parser and the security features it enabled.

The power of GraphQL

Unlike a REST API, where the API’s users are limited to what data they can query and change on a per-endpoint basis, a GraphQL API offers users the ability to query and change any data they wish with an open-ended, yet structured request to a single endpoint. This open-endedness makes GraphQL APIs very powerful. Each user can query for a completely custom set of data and receive their custom response in a single HTTP request. Here are two example queries and their responses. These requests are typically sent via HTTP POST methods to an endpoint at /graphql.

# A query asking for multiple nested subfields of the "hero" object. This query has a depth level of 2.
{
  hero {
    name
    friends {
      name
    }
  }
}

# The corresponding response.
{
  "data": {
    "hero": {
      "name": "R2-D2",
      "friends": [
        {
          "name": "Luke Skywalker"
        },
        {
          "name": "Han Solo"
        },
        {
          "name": "Leia Organa"
        }
      ]
    }
  }
}

# A query asking for just one subfield on the same "hero" object. This query has a depth level of 1.
{
  hero {
    name
  }
}

# The corresponding response.
{
  "data": {
    "hero": {
      "name": "R2-D2"
    }
  }
}

These custom queries give GraphQL endpoints more flexibility than conventional REST endpoints. But this flexibility also means GraphQL APIs can be subject to very different load or security risks based on the requests that they are receiving. For example, an attacker can request the exact same, valid data as a benevolent user would, but exploit the data’s self-referencing structure and ask that an origin return hundreds of thousands of rows replicated over and over again. Let’s consider an example, in which we operate a petitioning platform where our data model contains petitions and signers objects. With GraphQL, an attacker can, in a single request, query for a single petition, then for all people who signed that petition, then for all petitions each of those people have signed, then for all people that signed any of those petitions, then for all petitions that… you see where this is going!

query {
 petition(ID: 123) {
   signers {
     nodes {
       petitions {
         nodes {
           signers {
             nodes {
               petitions {
                 nodes {
                    ...
                 }
               }
             }
           }
         }
       }
     }
   }
 }
}

A rate limit won’t protect against such an attack because the entire query fits into a single request.

So how can we secure GraphQL APIs? There is little agreement in the industry around what makes a GraphQL endpoint secure. For some, this means rejecting invalid queries. Normally, an invalid query refers to a query that would fail to compile by a GraphQL server and not cause any substantial load on the origin, but would still add noise and error logs and reduce operational visibility. For others, this means creating complexity-based rate limits or perhaps flagging broken object-level authorization. Still others want deeper visibility into query behavior and an ability to validate queries against a predefined schema.

When creating new features in API Gateway, we often start by providing deeper visibility for customers into their traffic behavior related to the feature in question. This way we create value from the large amount of data we see in the Cloudflare network, and can have conversations with customers where we ask: “Now that you have these data insights, what actions would you like to take with them?”. This process puts us in a good position to build a second, more actionable iteration of the feature.

We decided to follow the same process with GraphQL protection, with parsing GraphQL requests and gathering data as our first goal.

Parsing GraphQL quickly

As a starting point, we wanted to collect request query size and depth attributes. These attributes offer a surprising amount of insight into the query – if the query is requesting a single field at depth level 15, is it really innocuous or is it exploiting some recursive data relationship? if the query is asking for hundreds of fields at depth level 3, why wouldn’t it just ask for the entire object at level 2 instead?

To do this, we needed to parse queries without adding latency to incoming requests. We evaluated multiple open source GraphQL parsers and quickly realized that their performance would put us at the risk of adding hundreds of microseconds of latency to the request duration. Our goal was to have a p95 parsing time of under 50 microseconds. Additionally, the infrastructure we were planning to use to ship this functionality has a strict no-heap-allocation policy – this means that any memory allocated by a parser to process a request has to be amortized by being reused when parsing any subsequent requests. Parsing GraphQL in a no-allocation manner is not a fundamental technical requirement for us over the long-term, but it was a necessity if we wanted to build something quickly with confidence that the proof of concept will meet our performance expectations.

Meeting the latency and memory allocation constraints meant that we had to write a parser of our own. Building an entire abstract syntax tree of unpredictable structure requires allocating memory on the heap, and that’s what made conventional parsers unfit for our requirements. What if instead of building a tree, we processed the query in a streaming fashion, token by token? We realized that if we were to write our own GraphQL lexer that produces a list of GraphQL tokens (“comment”, “string”, “variable name”, “opening parenthesis”, etc.), we could use a number of heuristics to infer the query depth and size without actually building a tree or fully validating the query. Using this approach meant that we could deliver the new feature fast, both in engineering time and wall clock time – and, most importantly, visualize data insights for our customers.

To start, we needed to prepare GraphQL queries for parsing. Most of the time, GraphQL queries are delivered as HTTP POST requests with application/json or application/graphql Content-Type. Requests with application/graphql content type are easy to work with – they contain the raw query you can just parse. However, JSON-encoded queries present a challenge since JSON objects contain escaped characters – normally, any deserialization library will allocate new memory into which the raw string is copied with escape sequences removed, but we committed to allocating no memory, remember? So to parse GraphQL queries encoded in JSON fields, we used serde RawValue to locate the JSON field in which the escaped query was placed and then iterated over the constituent bytes one-by-one, feeding them into our tokenizer and removing escape sequences on the fly.

Once we had our query input ready, we built a simple Rust program that converts raw GraphQL input into a list of lexical tokens according to the GraphQL grammar. Tokenization is the first step in any parser – our insight was that this step was all we needed for what we wanted to achieve in the MVP.

mutation CreateMessage($input: MessageInput) {
    createMessage(input: $input) {
        id
    }
}

For example, the mutation operation above gets converted into the following list of tokens:

name
name
punctuator (
punctuator $
name
punctuator :
name
punctuator )
punctuator {
name
punctuator (
name
punctuator :
punctuator $
name
punctuator )
punctuator {
name
punctuator }
punctuator }

With this list of tokens available to us, we built our validation engine and added the ability to calculate query depth and size. Again, everything is done one-the-fly in a single pass. A limitation of this approach is that we can’t parse 100% of the requests – there are some syntactic features of GraphQL that we have to fail open on; however, a major advantage of this approach is its performance – in our initial trial run against a stream of 10s of thousands of requests per second, we achieved a p95 parsing time of 25 microseconds. This is a good starting point to collect some data and to prototype our first GraphQL security features.

Getting started

Today, any API Gateway customer can use the Cloudflare GraphQL API to retrieve information about depth and size of GraphQL queries we see for them on the edge.

As an example, we’ve run the analysis below visualizing over 400,000 data points for query sizes and depths for a production domain utilizing API Gateway.

First let’s look at query sizes in our sample:

Protecting GraphQL APIs from malicious queries

It looks like queries almost never request more than 60 fields. Let’s also look at query depths:

Protecting GraphQL APIs from malicious queries

It looks like queries are never more than seven levels deep.

These two insights can be converted into security rules: we added three new Wirefilter fields that API Gateway customers can use to protect their GraphQL endpoints:

1. cf.api_gateway.graphql.query_size
2. cf.api_gateway.graphql.query_depth
3. cf.api_gateway.graphql.parsed_successfully

For now, we recommend the use of cf.api_gateway.graphql.parsed_successfully in all rules. Rules created with the use of this field will be backwards compatible with future GraphQL protection releases.

If a customer feels that there is nothing out of the ordinary with the traffic sample and that it represents a meaningful amount of normal usage, they can manually create and deploy the following custom rule to log all queries that were parsed by Cloudflare and that look like outliers:

cf.api_gateway.graphql.parsed_successfully and
(cf.api_gateway.graphql.query_depth > 7 or 
cf.api_gateway.graphql.query_size > 60)

Learn more and run your own analysis with our documentation.

What’s next?

We are already receiving feedback from our first customers and are planning out the next iteration of this feature. These are the features we will build next:

  • Integrating GraphQL security with complexity-based rate limiting such that we automatically calculate query cost and let customers rate limit eyeballs based on the total query execution cost the eyeballs use during their entire session.
  • Allowing customers to configure specifically which endpoints GraphQL security features run on.
  • Creating data insights on the relationship between query complexity and the time it takes the customer origin to respond to the query.
  • Creating automatic GraphQL threshold recommendations based on historical trends.

If you’re an Enterprise customer that hasn't purchased API Gateway and you’re interested in protecting your GraphQL APIs today, you can get started by enabling the API Gateway trial inside the Cloudflare Dashboard or by contacting your account manager. Check out our documentation on the feature to get started once you have access.

Everything you might have missed during Security Week 2023

Post Syndicated from Reid Tatoris original https://blog.cloudflare.com/security-week-2023-wrap-up/

Everything you might have missed during Security Week 2023

Everything you might have missed during Security Week 2023

Security Week 2023 is officially in the books. In our welcome post last Saturday, I talked about Cloudflare’s years-long evolution from protecting websites, to protecting applications, to protecting people. Our goal this week was to help our customers solve a broader range of problems, reduce external points of vulnerability, and make their jobs easier.

We announced 34 new tools and integrations that will do just that. Combined, these announcement will help you do five key things faster and easier:

  1. Making it easier to deploy and manage Zero Trust everywhere
  2. Reducing the number of third parties customers must use
  3. Leverage machine learning to let humans focus on critical thinking
  4. Opening up more proprietary Cloudflare threat intelligence to our customers
  5. Making it harder for humans to make mistakes

And to help you respond to the most current attacks in real time, we reported on how we’re seeing scammers use the Silicon Valley Bank news to phish new victims, and what you can do to protect yourself.

In case you missed any of the announcements, take a look at the summary and navigation guide below.

Monday

Blog Summary
Top phished brands and new phishing and brand protections Today we have released insights from our global network on the top 50 brands used in phishing attacks coupled with the tools customers need to stay safer. Our new phishing and brand protection capabilities, part of Security Center, let customers better preserve brand trust by detecting and even blocking “confusable” and lookalike domains involved in phishing campaigns.
How to stay safe from phishing Phishing attacks come in all sorts of ways to fool people. Email is definitely the most common, but there are others. Following up on our Top 50 brands in phishing attacks post, here are some tips to help you catch these scams before you fall for them.
Locking down your JavaScript: positive blocking with Page Shield policies Page Shield now ensures only vetted and secure JavaScript is being executed by browsers to stop unwanted or malicious JavaScript from loading to keep end user data safer.
Cloudflare Aegis: dedicated IPs for Zero Trust migration With Aegis, customers can now get dedicated IPs from Cloudflare we use to send them traffic. This allows customers to lock down services and applications at an IP level and build a protected environment that is application, protocol, and even IP-aware.
Mutual TLS now available for Workers mTLS support for Workers allows for communication with resources that enforce an mTLS connection. mTLS provides greater security for those building on Workers so they can identify and authenticate both the client and the server helps protect sensitive data.
Using Cloudflare Access with CNI We have introduced an innovative new approach to secure hosted applications via Cloudflare Access without the need for any installed software or custom code on application servers.

Tuesday

Blog Summary
No hassle migration from Zscaler to Cloudflare One with The Descaler Program Cloudflare is excited to launch the Descaler Program, a frictionless path to migrate existing Zscaler customers to Cloudflare One. With this announcement, Cloudflare is making it even easier for enterprise customers to make the switch to a faster, simpler, and more agile foundation for security and network transformation.
The state of application security in 2023 For Security Week 2023, we are providing updated insights and trends related to mitigated traffic, bot and API traffic, and account takeover attacks.
Adding Zero Trust signals to Sumo Logic for better security insights Today we’re excited to announce the expansion of support for automated normalization and correlation of Zero Trust logs for Logpush in Sumo Logic’s Cloud SIEM. Joint customers will reduce alert fatigue and accelerate the triage process by converging security and network data into high-fidelity insights.
Cloudflare One DLP integrates with Microsoft Information Protection labels Cloudflare One now offers Data Loss Prevention (DLP) detections for Microsoft Purview Information Protection labels. This extends the power of Microsoft’s labels to any of your corporate traffic in just a few clicks.
Scan and secure Atlassian with Cloudflare CASB We are unveiling two new integrations for Cloudflare CASB: one for Atlassian Confluence and the other for Atlassian Jira. Security teams can begin scanning for Atlassian- and Confluence-specific security issues that may be leaving sensitive corporate data at risk.
Zero Trust security with Ping Identity and Cloudflare Access Cloudflare Access and Ping Identity offer a powerful solution for organizations looking to implement Zero Trust security controls to protect their applications and data. Cloudflare is now offering full integration support, so Ping Identity customers can easily integrate their identity management solutions with Cloudflare Access to provide a comprehensive security solution for their applications

Wednesday

Blog Summary
Announcing Cloudflare Fraud Detection We are excited to announce Cloudflare Fraud Detection that will provide precise, easy to use tools that can be deployed in seconds to detect and categorize fraud such as fake account creation or card testing and fraudulent transactions. Fraud Detection will be in early access later this year, those interested can sign up here.
Automatically discovering API endpoints and generating schemas using machine learning Customers can use these new features to enforce a positive security model on their API endpoints even if they have little-to-no information about their existing APIs today.
Detecting API abuse automatically using sequence analysis With our new Cloudflare Sequence Analytics for APIs, organizations can view the most important sequences of API requests to their endpoints to better understand potential abuse and where to apply protections first.
Using the power of Cloudflare’s global network to detect malicious domains using machine learning Read our post on how we keep users and organizations safer with machine learning models that detect attackers attempting to evade detection with DNS tunneling and domain generation algorithms.
Announcing WAF Attack Score Lite and Security Analytics for business customers We are making the machine learning empowered WAF and Security analytics view available to our Business plan customers, to help detect and stop attacks before they are known.
Analyze any URL safely using the Cloudflare Radar URL Scanner We have made Cloudflare Radar’s newest free tool available, URL Scanner, providing an under-the-hood look at any webpage to make the Internet more transparent and secure for all.

Thursday

Blog Summary
Post-quantum crypto should be free, so we’re including it for free, forever One of our core beliefs is that privacy is a human right. To achieve that right, we are announcing that our implementations of post-quantum cryptography will be available to everyone, free of charge, forever.
No, AI did not break post-quantum cryptography The recent news reports of AI cracking post-quantum cryptography are greatly exaggerated. In this blog, we take a deep dive into the world of side-channel attacks and how AI has been used for more than a decade already to aid it.
Super Bot Fight Mode is now configurable We are making Super Bot Fight Mode even more configurable with new flexibility to allow legitimate, automated traffic to access their site.
How Cloudflare and IBM partner to help build a better Internet IBM and Cloudflare continue to partner together to help customers meet the unique security, performance, resiliency and compliance needs of their customers through the addition of exciting new product and service offerings.
Protect your key server with Keyless SSL and Cloudflare Tunnel integration Customers will now be able to use our Cloudflare Tunnels product to send traffic to the key server through a secure channel, without publicly exposing it to the rest of the Internet.

Friday

Blog Summary
Stop Brand Impersonation with Cloudflare DMARC Management Brand impersonation continues to be a big problem globally. Setting SPF, DKIM and DMARC policies is a great way to reduce that risk, and protect your domains from being used in spoofing emails. But maintaining a correct SPF configuration can be very costly and time consuming, and that’s why we’re launching Cloudflare DMARC Management.
How we built DMARC Management using Cloudflare Workers At Cloudflare, we use the Workers platform and our product stack to build new services. Read how we made the new DMARC Management solution entirely on top of our APIs.
Cloudflare partners with KnowBe4 to equip organizations with real-time security coaching to avoid phishing attacks Cloudflare’s cloud email security solution now integrates with KnowBe4, allowing mutual customers to offer real-time coaching to employees when a phishing campaign is detected by Cloudflare.
Introducing custom pages for Cloudflare Access We are excited to announce new options to customize user experience in Access, including customizable pages including login, blocks and the application launcher.
Cloudflare Access is the fastest Zero Trust proxy Cloudflare Access is 75% faster than Netskope and 50% faster than Zscaler, and our network is faster than other providers in 48% of last mile networks.

Saturday

Blog Summary
One-click ISO 27001 certified deployment of Regional Services in the EU Cloudflare announces one-click ISO certified region, a super easy way for customers to limit where traffic is serviced to ISO 27001 certified data centers inside the European Union.
Account level Security Analytics and Security Events: better visibility and control over all account zones at once All WAF customers will benefit fromAccount Security Analytics and Events. This allows organizations to new eyes on your account in Cloudflare dashboard to give holistic visibility. No matter how many zones you manage, they are all there!
Wildcard and multi-hostname support in Cloudflare Access We are thrilled to announce the full support of wildcard and multi-hostname application definitions in Cloudflare Access. Until now, Access had limitations that restricted it to a single hostname or a limited set of wildcards

Watch our Security Week sessions on Cloudflare TV

Watch all of the Cloudflare TV segments here.

What’s next?

While that’s it for Security Week 2023, you all know by now that Innovation weeks never end for Cloudflare. Stay tuned for a week full of new developer tools coming soon, and a week dedicated to making the Internet faster later in the year.

Automatically discovering API endpoints and generating schemas using machine learning

Post Syndicated from John Cosgrove original https://blog.cloudflare.com/ml-api-discovery-and-schema-learning/

Automatically discovering API endpoints and generating schemas using machine learning

Automatically discovering API endpoints and generating schemas using machine learning

Cloudflare now automatically discovers all API endpoints and learns API schemas for all of our API Gateway customers. Customers can use these new features to enforce a positive security model on their API endpoints even if they have little-to-no information about their existing APIs today.

The first step in securing your APIs is knowing your API hostnames and endpoints. We often hear that customers are forced to start their API cataloging and management efforts with something along the lines of “we email around a spreadsheet and ask developers to list all their endpoints”.

Can you imagine the problems with this approach? Maybe you have seen them first hand. The “email and ask” approach creates a point-in-time inventory that is likely to change with the next code release. It relies on tribal knowledge that may disappear with people leaving the organization. Last but not least, it is susceptible to human error.

Even if you had an accurate API inventory collected by group effort, validating that API was being used as intended by enforcing an API schema would require even more collective knowledge to build that schema. Now, API Gateway’s new API Discovery and Schema Learning features combine to automatically protect APIs across the Cloudflare global network and remove the need for manual API discovery and schema building.

API Gateway discovers and protects APIs

API Gateway discovers APIs through a feature called API Discovery. Previously, API Discovery used customer-specific session identifiers (HTTP headers or cookies) to identify API endpoints and display their analytics to our customers.

Doing discovery in this way worked, but it presented three drawbacks:

  1. Customers had to know which header or cookie they used in order to delineate sessions. While session identifiers are common, finding the proper token to use can take time.
  2. Needing a session identifier for API Discovery precluded us from monitoring and reporting on completely unauthenticated APIs. Customers today still want visibility into session-less traffic to ensure all API endpoints are documented and that abuse is at a minimum.
  3. Once the session identifier was input into the dashboard, customers had to wait up to 24 hours for the Discovery process to complete. Nobody likes to wait.

While this approach had drawbacks, we knew we could quickly deliver value to customers by starting with a session-based product. As we gained customers and passed more traffic through the system, we knew our new labeled data would be extremely useful to further build out our product. If we could train a machine learning model with our existing API metadata and the new labeled data, we would no longer need a session identifier to pinpoint which endpoints were for APIs. So we decided to build this new approach.

We took what we learned from the session identifier-based data and built a machine learning model to uncover all API traffic to a domain, regardless of session identifier. With our new Machine Learning-based API Discovery, Cloudflare continually discovers all API traffic routed through our network without any prerequisite customer input. With this release, API Gateway customers will be able to get started with API Discovery faster than ever, and they’ll uncover unauthenticated APIs that they could not discover before.

Session identifiers are still important to API Gateway, as they form the basis of our volumetric abuse prevention rate limits as well as our Sequence Analytics. See more about how the new approach performs in the “How it works” section below.

API Protection starting from nothing

Now that you’ve found new APIs using API Discovery, how do you protect them? To defend against attacks, API developers must know exactly how they expect their APIs to be used. Luckily, developers can programmatically generate an API schema file which codifies acceptable input to an API and upload that into API Gateway’s Schema Validation.

However, we already talked about how many customers can’t find their APIs as fast as their developers build them. When they do find APIs, it’s very difficult to accurately build a unique OpenAPI schema for each of potentially hundreds of API endpoints, given that security teams seldom see more than the HTTP request method and path in their logs.

When we looked at API Gateway’s usage patterns, we saw that customers would discover APIs but almost never enforce a schema. When we ask them ‘why not?’ the answer was simple: “Even when I know an API exists, it takes so much time to track down who owns each API so that they can provide a schema. I have trouble prioritizing those tasks higher than other must-do security items.” The lack of time and expertise was the biggest gap in our customers enabling protections.

So we decided to close that gap. We found that the same learning process we used to discover API endpoints could then be applied to endpoints once they were discovered in order to automatically learn a schema. Using this method we can now generate an OpenAPI formatted schema for every single endpoint we discover, in real time. We call this new feature Schema Learning. Customers can then upload that Cloudflare-generated schema into Schema Validation to enforce a positive security model.

Automatically discovering API endpoints and generating schemas using machine learning

How it works

Machine learning-based API discovery

With RESTful APIs, requests are made up of different HTTP methods and paths. Take for example the Cloudflare API. You’ll notice a common trend with the paths that might make requests to this API stand out amongst requests to this blog: API requests all start with /client/v4 and continue with the service name, a unique identifier, and sometimes service feature names and further identifiers.

How could we easily identify API requests? At first glance, these requests seem easy to programmatically discover with a heuristic like “path starts with /client”, but the core of our new Discovery contains a machine-learned model that powers a classifier that scores HTTP transactions. If API paths are so structured, why does one need machine-learning for this and can’t one just use some simple heuristic?

The answer boils down to the question: what actually constitutes an API request and how does it differ from a non-API request? Let’s look at two examples.

Like the Cloudflare API, many of our customers’ APIs follow patterns such as prefixing the path of their API request with an “api” identifier and a version, for example:  /api/v2/user/7f577081-7003-451e-9abe-eb2e8a0f103d.

So just looking for “api” or a version in the path is already a pretty good heuristic that tells us this is very likely part of an API, but it is unfortunately not always as easy.

Let’s consider two further examples, /users/7f577081-7003-451e-9abe-eb2e8a0f103d.jpg and /users/7f577081-7003-451e-9abe-eb2e8a0f103d, both just differ in a .jpg extension. The first path could just be a static resource like the thumbnail of a user. The second path does not give us a lot of clues just from the path alone.

Manually crafting such heuristics quickly becomes difficult. While humans are great at finding patterns, building heuristics is challenging considering the scale of the data that Cloudflare sees each day. As such, we use machine learning to automatically derive these heuristics such that we know that they are reproducible and adhere to a certain accuracy.

Input to the training are features of HTTP request/response samples such as the content-type or file extension that we collected through the session identifiers-based Discovery mentioned earlier. Unfortunately, not everything that we have in this data is clearly an API. Additionally, we also need samples that represent non-API traffic. As such, we started out with the session-identifier Discovery data, manually cleaned it up and derived further samples of non-API traffic. We took great care in trying to not overfit the model to the data. That is, we want that the model generalizes beyond the training data.

Automatically discovering API endpoints and generating schemas using machine learning

To train the model, we’ve used the CatBoost library for which we already have a good chunk of expertise as it also powers our Bot Management ML-models. In a simplification, one can regard the resulting model as a flow chart that tells us which conditions we should check after another, for example: if the path contains “api” then also check if there is no file extension and so forth. At the end of this flowchart is a score that tells us the likelihood that a HTTP transaction belongs to an API.

Given the trained model, we can thus input features of HTTP request/responses that run through the Cloudflare network and calculate the likelihood that this HTTP transaction belongs to an API or not. Feature extraction and model scoring is done in Rust and takes only a couple of microseconds on our global network. Since Discovery sources data from our powerful data pipeline, it is not actually necessary to score each transaction. We can reduce the load on our servers by only scoring those transactions that we know will end up in our data pipeline to begin with thus saving CPU time and allowing the feature to be cost effective.

With the classification results in our data pipeline, we can use the same API Discovery mechanism that we’ve been using for the session identifier-based discovery. This existing system works great and allows us to reuse code efficiently. It also aided us when comparing our results with the session identifier-based Discovery, as the systems are directly comparable.

For API Discovery results to be useful, Discovery’s first task is to simplify the unique paths we see into variables. We’ve talked about this before. It is not trivial to deduce the various different identifier schemes that we see across the global network, especially when sites use custom identifiers beyond a straightforward GUID or integer format. API Discovery aptly normalizes paths containing variables with the help of a few different variable classifiers and supervised learning.

Only after normalizing paths are the Discovery results ready for our users to use in a straightforward fashion.

The results: hundreds of found endpoints per customer

So, how does ML Discovery compare to the session identifier-based Discovery which relies on headers or cookies to tag API traffic?

Our expectation is that it detects a very similar set of endpoints. However, in our data we knew there would be two gaps. First, we sometimes see that customers are not able to cleanly dissect only API traffic using session identifiers. When this happens, Discovery surfaces non-API traffic. Second, since we required session identifiers in the first version of API Discovery, endpoints that are not part of a session (e.g. login endpoints or unauthenticated endpoints) were conceptually not discoverable.

The following graph shows a histogram of the number of endpoints detected on customer domains for both discovery variants.

Automatically discovering API endpoints and generating schemas using machine learning

From a bird’s eye perspective, the results look very similar, which is a good indicator that ML Discovery performs as it is supposed to. There are some differences already visible in this plot, which is also expected since we’ll also discover endpoints that are conceptually not discoverable with just a session identifier. In fact, if we take a closer look at a domain-by-domain comparison we see that there is no change for roughly ~46% of the domains. The next graph compares the difference (by percent of endpoints) between session-based and ML-based discovery:

Automatically discovering API endpoints and generating schemas using machine learning

For ~15% of the domains, we see an increase in endpoints between 1 and 50, and for ~9%, we see a similar reduction. For ~28% of the domains, we find more than 50 additional endpoints.

These results highlight that ML Discovery is able to surface additional endpoints that have previously been flying under the radar, and thus expands the set tools API Gateway offers to help bring order to your API landscape.

On-the-fly API protection through API schema learning

With API Discovery taken care of, how can a practitioner protect the newly discovered endpoints? We already looked at the API request metadata, so now let’s look at the API request body. The compilation of all expected formats for all API endpoints of an API is known as an API schema. API Gateway’s Schema Validation is a great way to protect against OWASP Top 10 API attacks, ensuring the body, path, and query string of a request contains the expected information for that API endpoint in an expected format. But what if you don’t know the expected format?

Even if the schema of a specific API is not known to a customer, the clients using this API will have been programmed to mostly send requests that conform to this unknown schema (or they would not be able to successfully query the endpoint). Schema Learning makes use of this fact and will look at successful requests to this API to reconstruct the input schema automatically for the customer. As an example, an API might expect the user-ID parameter in a request to have the form id12345-a. Even if this expectation is not explicitly stated, clients that want to have a successful interaction with the API will send user-IDs in this format.

Schema Learning first identifies all recent successful requests to an API-endpoint, and then parses the different input parameters for each request according to their position and type. After parsing all requests, Schema Learning looks at the different input values for each position and identifies which characteristics they have in common. After verifying that all observed requests share these commonalities, Schema Learning creates an input schema that restricts input to comply with these commonalities and that can directly be used for Schema Validation.

To allow for more accurate input schemas, Schema Learning identifies when a parameter can receive different types of input. Let’s say you wanted to write an OpenAPIv3 schema file and manually observe in a small sample of requests that a query parameter is a unix timestamp. You write an API schema that forces that query parameter to be an integer greater than the start of last year’s unix epoch. If your API also allowed that parameter in ISO 8601 format, your new rule would create false positives when the differently formatted (yet valid) parameter hit the API. Schema Learning automatically does all this heavy lifting for you and catches what manual inspection can’t.

To prevent false positives, Schema Learning performs a statistical test on the distribution of these values and only writes the schema when the distribution is bounded with high confidence.

So how well does it work? Below are some statistics about the parameter types and values we see:

Automatically discovering API endpoints and generating schemas using machine learning

Parameter learning classifies slightly more than half of all parameters as strings, followed by integers which make up almost a third. The remaining 17% are made up of arrays, booleans, and number (float) parameters, while object parameters are seen more rarely in the path and query.

Automatically discovering API endpoints and generating schemas using machine learning

The number of parameters in the path is usually very low, with 94% of all endpoints seeing at most one parameter in their path.

Automatically discovering API endpoints and generating schemas using machine learning

For the query, we do see a lot more parameters, sometimes reaching 50 different parameters for one endpoint!

Parameter learning is able to estimate numeric constraints with 99.9% confidence for the majority of parameters observed. These constraints can either be a maximum/minimum on the value, length, or size of the parameter, or a limited set of unique values that a parameter has to take.

Protect your APIs in minutes

Starting today, all API Gateway customers can now discover and protect APIs in just a few clicks, even if you’re starting with no previous information. In the Cloudflare dash, click into API Gateway and on to the Discovery tab to observe your discovered endpoints. These endpoints will be immediately available with no action required from you. Then, add relevant endpoints from Discovery into Endpoint Management. Schema Learning runs automatically for all endpoints added to Endpoint Management. After 24 hours, export your learned schema and upload it into Schema Validation.

Pro, Biz, and Enterprise customers that haven’t purchased API Gateway can get started by enabling the API Gateway trial inside the Cloudflare Dashboard or contacting their account manager.

What’s next

We plan to enhance Schema Learning by supporting more learned parameters in more formats, like POST body parameters with both JSON and URL-encoded formats as well as header and cookie schemas. In the future, Schema Learning will also notify customers when it detects changes in the identified API schema and present a refreshed schema.

We’d like to hear your feedback on these new features. Please direct your feedback to your account team so that we can prioritize the right areas of improvement. We look forward to hearing from you!

Detecting API abuse automatically using sequence analysis

Post Syndicated from John Cosgrove original https://blog.cloudflare.com/api-sequence-analytics/

Detecting API abuse automatically using sequence analysis

Detecting API abuse automatically using sequence analysis

Today, we’re announcing Cloudflare Sequence Analytics for APIs. Using Sequence Analytics, Customers subscribed to API Gateway can view the most important sequences of API requests to their endpoints. This new feature helps customers to apply protection to the most important endpoints first.

What is a sequence? It is simply a time-ordered list of HTTP API requests made by a specific visitor as they browse a website, use a mobile app, or interact with a B2B partner via API. For example, a portion of a sequence made during a bank funds transfer could look like:

Order Method Path Description
1 GET /api/v1/users/{user_id}/accounts user_id is the active user
2 GET /api/v1/accounts/{account_id}/balance account_id is one of the user’s accounts
3 GET /api/v1/accounts/{account_id}/balance account_id is a different account belonging to the user
4 POST /api/v1/transferFunds Containing a request body detailing an account to transfer funds from, an account to transfer funds to, and an amount of money to transfer

Why is it important to pay attention to sequences for API security? If the above API received requests for POST /api/v1/transferFunds without any of the prior requests, it would seem suspicious. Think about it: how would the API client know what the relevant account IDs are without listing them for the user? How would the API client know how much money is available to transfer? While this example may be obvious, the sheer number of API requests to any given production API can make it hard for human analysts to spot suspicious usage.

In security, one approach to defending against an untold number of threats that are impossible to screen by a team of humans is to create a positive security model. Instead of trying to block everything that could potentially be a threat, you allow all known good or benign traffic and block everything else by default.

Customers could already create positive security models with API Gateway in two main areas: volumetric abuse protection and schema validation. Sequences will form the third pillar of a positive security model for API traffic. API Gateway will be able to enforce the precedence of endpoints in any given API sequence. By establishing precedence within an API sequence, API Gateway will log or block any traffic that doesn’t match expectations, reducing abusive traffic.

Detecting abuse by sequence

When attackers attempt to exfiltrate data in an abusive way, they rarely follow the patterns of expected API traffic. Attacks often use special software to ‘fuzz’ the API, sending several requests with different request parameters hoping to find unexpected responses from the API indicating opportunities to exfiltrate data. Attackers can also manually send requests to APIs that attempt to trick the API in performing unauthorized actions, like granting an attacker elevated privileges or access to data through a Broken Object Level Authentication attack. Protecting APIs with rate limits is a common best practice; however, in both of the above examples attackers may deliberately execute request sequences slowly, in an attempt to thwart volumetric abuse detection.

Think of the sequence of requests above again, but this time imagine an attacker copying the legitimate funds transfer request and modifying the request payload in an attempt to trick the system:

Order Method Path Description
1 GET /api/v1/users/{user_id}/accounts user_id is the active user
2 GET /api/v1/accounts/{account_id}/balance account_id is one of the user’s accounts
3 GET /api/v1/accounts/{account_id}/balance account_id is a different account belonging to the user
4 POST /api/v1/transferFunds Containing a request body detailing an account to transfer funds from, an account to transfer funds to, and an amount of money to transfer
… attacker copies the request to a debugging tool like Postman …
5 POST /api/v1/transferFunds Attacker has modified the POST body to try and trick the API
6 POST /api/v1/transferFunds A further modified POST body to try and trick the API
7 POST /api/v1/transferFunds Another, further modified POST body to try and trick the API

If the customer knew beforehand that the funds transfer endpoint was critical to protect and only occurred once during a sequence, they could write a rule to ensure that it was never called twice in a row and a GET /balance always preceded a POST /transferFunds. But without prior knowledge of which endpoint sequences are critical to protect, how would the customer know which rules to define? A low rate limit is too risky, since an API user might legitimately have a few funds transfer requests to perform in a short amount of time. In the present reality there are few tools to prevent this type of abuse, and most customers are left with reactive efforts to clean up abuse with their application teams and fraud departments after it’s happened.

Ultimately, we believe that providing our customers with the ability to define positive security models on API request sequences requires a three-pronged approach:

  1. Sequence Analytics: Determining which sequences of API requests occurred and when, as well as summarizing the data into readily understandable form.
  2. Sequence Abuse Detection: Identifying which sequences of API requests are likely of benign or malicious origin.
  3. Sequence Mitigation: Identifying relevant rules on sequences of API requests for deciding which traffic to allow or block.

Challenges of sequence creation

Sequence Analytics presents some difficult technical challenges, because sessions may be long-lived and may consist of many requests. As a result, it is not sufficient to define sequences by session identifier alone. Instead, it was necessary for us to develop a solution capable of automatically identifying multiple sequences which occur within a given session. Additionally, since important sequences are not necessarily characterized by volume alone and the set of possible sequences is large, it was necessary to develop a solution capable of identifying important sequences, as opposed to simply surfacing frequent sequences.

To help illustrate these challenges for the example of api.cloudflare.com, we can group API requests by session and plot the number of distinct sequences versus sequence length:

Detecting API abuse automatically using sequence analysis

The plot is based on a one hour snapshot comprising approximately 88,000 sessions and 300 million API requests, with 302 distinct API endpoints. We process the data by applying a fixed-length sliding window to each session, then we count the total number of different fixed-length sequences (‘n-grams’) that we observe as a result of applying the sliding window. The plot displays results for a window size (‘n-gram length’) varying between 1 and 10 requests. Based on the plot, we observe a large number of possible sequences which grows with sequence length: As we increase the sliding window size, we see an increasingly large amount of different sequences in the sample. The smooth trend can be explained by the fact that we apply a sliding window (sessions may themselves contain many sequences) in combination with many long sessions relative to the sequence length.

Given the large number of possible sequences, trying to find abusive sequences is a ‘needles in a haystack’ situation.

Introducing Sequence Analytics

Here is a screenshot from the API Gateway dashboard highlighting Sequence Analytics:

Detecting API abuse automatically using sequence analysis

Let’s break down the new functionality seen in the screenshot.

API Gateway intelligently determines sequences of requests made by your API consumers using the methods described earlier in this article. API Gateway scores sequences by a metric we call Correlation Score. Sequence Analytics displays the top 20 sequences by highest correlation score, and we refer to these as your most important sequences. High-importance sequences contain API requests which are likely to occur together in order.

You should inspect each of your sequences to understand their correlation scores. High correlation score sequences may consist of rarely used endpoints (potentially anomalous user behavior) as well as commonly used endpoints (likely benign user behavior). Since the endpoints found in these sequences commonly occur together, they represent true usage patterns of your API. You should apply all possible API Gateway protections to these endpoints (rate limiting suggestions, Schema Validation, JWT Validation, and mTLS) and check their specific endpoint order with your development team.

We know customers want to explicitly set allowable behavior on their APIs beyond the active protections offered by API Gateway today. Coming soon, we’re releasing sequence precedence rules and enabling the ability to block requests based on those rules. The new sequence precedence rules will allow customers to specify the exact order of allowable API requests, bringing yet another way of establishing a positive security model to protect your API against unknown threats.

How to get started

All API Gateway customers now have access to Sequence Analytics. Navigate to a zone in the Cloudflare dashboard, then click the Security tab > API Gateway tab > Sequences tab. You’ll see the most important sequences that your API consumers request.

Pro, Biz, and Enterprise customers that haven’t purchased API Gateway can get started by enabling the API Gateway trial inside the Cloudflare Dashboard or contacting their account manager.

What’s next

Sequence-based detection is a powerful and unique capability that unlocks many new opportunities to identify and stop attacks. As we fine-tune the methods of identifying these sequences and shipping them to our global network, we will release custom sequence matching and real-time mitigation features at a future date. We will also ensure you have the actionable intelligence to take back to your team on who the API users were that attempted to request sequences that don’t match your policy.

Welcome to Security Week 2023

Post Syndicated from Reid Tatoris original https://blog.cloudflare.com/welcome-to-security-week-2023/

Welcome to Security Week 2023

Welcome to Security Week 2023

Last month I had the chance to attend a dinner with 56 CISOs and CSOs across a range of banking, gaming, ecommerce, and retail companies. We rotated between tables of eight people and talked about the biggest challenges those in the group were facing, and what they were most worried about around the corner. We talk to customers every day at Cloudflare, but this was a unique opportunity to listen to customers (and non-customers) talk to each other. It was a fascinating evening and a few things stood out.

The common thread that dominated the discussions was “how do I convince my business and product teams to do the things I want them to”. Surprisingly little time was spent on specific technical challenges. No one brought up a concern about recent advanced mage cart skimmers, or about protecting their new GraphQL APIs, or how to secure two different cloud vendors at once, or about the size of DDoS attacks consistently getting larger. Over and over again the conversation came back to struggles with getting humans to do the secure thing, or to not do the insecure thing.

This instantly brought to mind a major phishing attack that Cloudflare was able to thwart last August. The attack was extremely sophisticated, using targeted text messages and an extremely professional impersonation of our Okta login page. Cloudflare did have individual employees fall for the phishing messages, because we are made up of a team of humans who are human. But we were able to thwart the attack through our own use of Cloudflare One products, and physical security keys issued to every employee that are required to access all our applications. The attacker was able to obtain compromised username and password credentials, but they could not get past the hard key requirement to log in. In 2023 phishing attacks are only getting more frequent.

Today’s security challenges are often a case of having the right tools deployed to prevent people from making mistakes. Last year when we kicked off Security Week, we talked about making a shift from protecting websites, to protecting applications. Today, the shift is from protecting applications, to protecting employees, and making sure they are protected everywhere. Just a few weeks ago, the White House released a new national cybersecurity strategy directing all agencies to “implement multi-factor authentication, gain visibility into their entire attack surface, manage authorization and access, and adopt cloud security tools”. Over the next six days you’ll read more than 30 announcements that will make it as easy as possible to do just that.

Welcome to Security Week 2023.

“The more tools you use the less secure you are”

This was a direct quote from the CISO of a large online gaming platform. Adding more vendors might seem like you are adding layers of security, but you do also open up avenues for risk. First, every third party you add by definition adds another potential vulnerability. The recent LastPass breach is a perfect example. Attackers gained access to a cloud storage service, which gave them information they used in a secondary attack to phish an employee. Second, more tools means more complexity. More systems to log into, more dashboards to check. If information is spread across multiple systems you are more likely to miss important changes. Third, the more tools you use, the less likely it is that anyone is able to master them all. If you need the person who knows the application security tool, and the person who knows the SIEM, and the person who knows the access tool to coordinate on every potential vulnerability, things will get lost in translation. Complexity is the enemy of security. Fourth, adding more tools can add a false sense of security. Simply adding a new tool can give the impression you’ve added defense in depth. But that tool only adds protection if it works, if it’s configured properly, and if people actually use it.

This week, you will hear about all of the initiatives we’ve been working on to help you solve this problem. We will announce multiple integrations that make it easier for you to deploy and manage Zero Trust anywhere, across multiple platforms, but all within the Cloudflare dashboard. We’re also extending our proven detection capabilities into new areas that will help you solve problems you couldn’t solve before, and thus allow you to get rid of additional vendors. And we’ll announce a brand new migration tool that makes it dead simple to move from those other vendors to Cloudflare.

Leverage machine learning to let humans focus on critical thinking

We all hear machine learning thrown around as a buzzword too often, but it boils down to this: computers are really good at finding patterns. When we train them on what a good pattern looks like, they can spot them really well, and spot the outliers. Humans are great at finding patterns too. But it takes us a long time, and any time we spend finding patterns distracts us from the thing that even the best AI or ML model still can’t do: critical thinking. By using machine learning to find these good and bad patterns, you can optimize the time of your most valuable people. Rather than searching for exceptions, they can focus on only those exceptions, and use their wisdom to make the hard decisions about what to do next.

Cloudflare has used machine learning to catch DDoS attacks, malicious bots, and malicious web traffic. We were able to do this differently from others because we built a unique network where we run all of our code at every single data center, on every single machine. Since we have a massive global network that is close to end users, we can run machine learning close to those users, unlike competitors who have to use centralized data centers. The result is a machine learning pipeline that runs inference in a few microseconds. That unique speed is an advantage for our customers, one we now use to run inference more than 40 million times every second.

This week, we have an entire day focused on how we are using that machine learning pipeline to build new models that will allow you to find new patterns, like fraud and API endpoints.

Our intelligence is your intelligence

In June we announced Cloudforce One, the first step in our threat operations team dedicated to turning the intelligence we gather from handling nearly 20% of Internet traffic into actionable insights. Since that launch, we’ve heard customers ask us to do more with those insights and give them easy buttons and products to take the appropriate action on their behalf. This week you’ll read multiple announcements on new ways that you can view and take action on unique Cloudflare threat intelligence. We’ll also be announcing multiple new reporting views, like being able to view more data at an account level so you can have one single lens into security trends across your entire organization.

Make it harder for humans to make mistakes

Each product, development, or business team wants to use their own tools, and wants to move as quickly as possible. For good reason! Any security that comes after the fact, and creates additional work for those teams, will be difficult to get internal buy on for. Which can lead to situations like the recent T-mobile hack where an API that was not intended to be public was exposed, discovered, and exploited. You need to meet teams where they are by making the tools they already use more secure, and preventing them from making mistakes, rather than giving them additional tasks.

In addition to making it easier to deploy our Application Security and Zero Trust products to a wider scope, you’ll also read about how we are adding new features that prevent humans from making the mistakes they always do. You’ll hear about how you can make it impossible to click on a phishing link by automatically blocking the domains that host them, prevent data from leaving regions it should never leave, give your users security alerts directly in the tools they already use, and automatically detect shadow APIs without making your developers change their development process. All of this without having to convince internal teams to make any changes to their behavior.

If you’re reading this and any part of your job involves securing an organization, I think that by the end of the week we’ll have made your job easier. With the new tools and integrations we release, you’ll be able to protect more of your infrastructure from a wider range of threats, but reduce the number of third parties you rely on. More importantly, you’ll be able to reduce the number of mistakes that the incredible humans you work with can make. I hope that helps you rest a bit easier!

Reduce risk by implementing HttpOnly cookie authentication in Amazon API Gateway

Post Syndicated from Marc Borntraeger original https://aws.amazon.com/blogs/security/reduce-risk-by-implementing-httponly-cookie-authentication-in-amazon-api-gateway/

Some web applications need to protect their authentication tokens or session IDs from cross-site scripting (XSS). It’s an Open Web Application Security Project (OWASP) best practice for session management to store secrets in the browsers’ cookie store with the HttpOnly attribute enabled. When cookies have the HttpOnly attribute set, the browser will prevent client-side JavaScript code from accessing the value. This reduces the risk of secrets being compromised.

In this blog post, you’ll learn how to store access tokens and authenticate with HttpOnly cookies in your own workloads when using Amazon API Gateway as the client-facing endpoint. The tutorial in this post will show you a solution to store OAuth2 access tokens in the browser cookie store, and verify user authentication through Amazon API Gateway. This post describes how to use Amazon Cognito to issue OAuth2 access tokens, but the solution is not limited to OAuth2. You can use other kinds of tokens or session IDs.

The solution consists of two decoupled parts:

  1. OAuth2 flow
  2. Authentication check

Note: This tutorial takes you through detailed step-by-step instructions to deploy an example solution. If you prefer to deploy the solution with a script, see the api-gw-http-only-cookie-auth GitHub repository.

Prerequisites

No costs should incur when you deploy the application from this tutorial because the services you’re going to use are included in the AWS Free Tier. However, be aware that small charges may apply if you have other workloads running in your AWS account and exceed the free tier. Make sure to clean up your resources from this tutorial after deployment.

Solution architecture

This solution uses Amazon Cognito, Amazon API Gateway, and AWS Lambda to build a solution that persists OAuth2 access tokens in the browser cookie store. Figure 1 illustrates the solution architecture for the OAuth2 flow.

Figure 1: OAuth2 flow solution architecture

Figure 1: OAuth2 flow solution architecture

  1. A user authenticates by using Amazon Cognito.
  2. Amazon Cognito has an OAuth2 redirect URI pointing to your API Gateway endpoint and invokes the integrated Lambda function oAuth2Callback.
  3. The oAuth2Callback Lambda function makes a request to the Amazon Cognito token endpoint with the OAuth2 authorization code to get the access token.
  4. The Lambda function returns a response with the Set-Cookie header, instructing the web browser to persist the access token as an HttpOnly cookie. The browser will automatically interpret the Set-Cookie header, because it’s a web standard. HttpOnly cookies can’t be accessed through JavaScript—they can only be set through the Set-Cookie header.

After the OAuth2 flow, you are set up to issue and store access tokens. Next, you need to verify that users are authenticated before they are allowed to access your protected backend. Figure 2 illustrates how the authentication check is handled.

Figure 2: Authentication check solution architecture

Figure 2: Authentication check solution architecture

  1. A user requests a protected backend resource. The browser automatically attaches HttpOnly cookies to every request, as defined in the web standard.
  2. The Lambda function oAuth2Authorizer acts as the Lambda authorizer for HTTP APIs. It validates whether requests are authenticated. If requests include the proper access token in the request cookie header, then it allows the request.
  3. API Gateway only passes through requests that are authenticated.

Amazon Cognito is not involved in the authentication check, because the Lambda function can validate the OAuth2 access tokens by using a JSON Web Token (JWT) validation check.

1. Deploying the OAuth2 flow

In this section, you’ll deploy the first part of the solution, which is the OAuth2 flow. The OAuth2 flow is responsible for issuing and persisting OAuth2 access tokens in the browser’s cookie store.

1.1. Create a mock protected backend

As shown in in Figure 2, you need to protect a backend. For the purposes of this post, you create a mock backend by creating a simple Lambda function with a default response.

To create the Lambda function

  1. In the Lambda console, choose Create function.

    Note: Make sure to select your desired AWS Region.

  2. Choose Author from scratch as the option to create the function.
  3. In the Basic information section as shown in , enter or select the following values:
  4. Choose Create function.
    Figure 3: Configuring the getProtectedResource Lambda function

    Figure 3: Configuring the getProtectedResource Lambda function

The default Lambda function code returns a simple Hello from Lambda message, which is sufficient to demonstrate the concept of this solution.

1.2. Create an HTTP API in Amazon API Gateway

Next, you create an HTTP API by using API Gateway. Either an HTTP API or a REST API will work. In this example, choose HTTP API because it’s offered at a lower price point (for this tutorial you will stay within the free tier).

To create the API Gateway API

  1. In the API Gateway console, under HTTP API, choose Build.
  2. On the Create and configure integrations page, as shown in Figure 4, choose Add integration, then enter or select the following values:
    • Select Lambda.
    • For Lambda function, select the getProtectedResource Lambda function that you created in the previous section.
    • For API name, enter a name. In this example, I used MyApp.
    • Choose Next.
    Figure 4: Configuring API Gateway integrations and API name

    Figure 4: Configuring API Gateway integrations and API name

  3. On the Configure routes page, as shown in Figure 5, enter or select the following values:
    • For Method, select GET.
    • For Resource path, enter / (a single forward slash).
    • For Integration target, select the getProtectedResource Lambda function.
    • Choose Next.
    Figure 5: Configuring API Gateway routes

    Figure 5: Configuring API Gateway routes

  4. On the Configure stages page, keep all the default options, and choose Next.
  5. On the Review and create page, choose Create.
  6. Note down the value of Invoke URL, as shown in Figure 6.
    Figure 6: Note down the invoke URL

    Figure 6: Note down the invoke URL

Now it’s time to test your API Gateway API. Paste the value of Invoke URL into your browser. You’ll see the following message from your Lambda function: Hello from Lambda.

1.3. Use Amazon Cognito

You’ll use Amazon Cognito user pools to create and maintain a user directory, and add sign-up and sign-in to your web application.

To create an Amazon Cognito user pool

  1. In the Amazon Cognito console, choose Create user pool.
  2. On the Authentication providers page, as shown in Figure 7, for Cognito user pool sign-in options, select Email, then choose Next.
    Figure 7: Configuring authentication providers

    Figure 7: Configuring authentication providers

  3. In the Multi-factor authentication pane of the Configure Security requirements page, as shown in Figure 8, choose your MFA enforcement. For this example, choose No MFA to make it simpler for you to test your solution. However, in production for data sensitive workloads you should choose Require MFA – Recommended. Choose Next.
    Figure 8: Configuring MFA

    Figure 8: Configuring MFA

  4. On the Configure sign-up experience page, keep all the default options and choose Next.
  5. On the Configure message delivery page, as shown in Figure 9, choose your email provider. For this example, choose Send email with Cognito to make it simple to test your solution. In production workloads, you should choose Send email with Amazon SES – Recommended. Choose Next.
    Figure 9: Configuring email

    Figure 9: Configuring email

  6. In the User pool name section of the Integrate your app page, as shown in Figure 10, enter or select the following values:
    1. For User pool name, enter a name. In this example, I used MyUserPool.
      Figure 10: Configuring user pool name

      Figure 10: Configuring user pool name

    2. In the Hosted authentication pages section, as shown in Figure 11, select Use the Cognito Hosted UI.
      Figure 11: Configuring hosted authentication pages

      Figure 11: Configuring hosted authentication pages

    3. In the Domain section, as shown in Figure 12, for Domain type, choose Use a Cognito domain. For Cognito domain, enter a domain name. Note that domains in Cognito must be unique. Make sure to enter a unique name, for example by appending random numbers at the end of your domain name. For this example, I used https://http-only-cookie-secured-app.
      Figure 12: Configuring an Amazon Cognito domain

      Figure 12: Configuring an Amazon Cognito domain

    4. In the Initial app client section, as shown in Figure 13, enter or select the following values:
      • For App type, keep the default setting Public client.
      • For App client name, enter a friendly name. In this example, I used MyAppClient.
      • For Client secret, keep the default setting Don’t generate a client secret.
      • For Allowed callback URLs, enter <API_GW_INVOKE_URL>/oauth2/callback, replacing <API_GW_INVOKE_URL> with the invoke URL you noted down from API Gateway in the previous section.
        Figure 13: Configuring the initial app client

        Figure 13: Configuring the initial app client

    5. Choose Next.
  7. Choose Create user pool.

Next, you need to retrieve some Amazon Cognito information for later use.

To note down Amazon Cognito information

  1. In the Amazon Cognito console, choose the user pool you created in the previous steps.
  2. Under User pool overview, make note of the User pool ID value.
  3. On the App integration tab, under Cognito Domain, make note of the Domain value.
  4. Under App client list, make note of the Client ID value.
  5. Under App client list, choose the app client name you created in the previous steps.
  6. Under Hosted UI, make note of the Allowed callback URLs value.

Next, create the user that you will use in a later section of this post to run your test.

To create a user

  1. In the Amazon Cognito console, choose the user pool you created in the previous steps.
  2. Under Users, choose Create user.
  3. For Email address, enter [email protected]. For this tutorial, you don’t need to send out actual emails, so the email address does not need to actually exist.
  4. Choose Mark email address as verified.
  5. For password, enter a password you can remember (or even better: use a password generator).
  6. Remember the email and password for later use.
  7. Choose Create user.

1.4. Create the Lambda function oAuth2Callback

Next, you create the Lambda function oAuth2Callback, which is responsible for issuing and persisting the OAuth2 access tokens.

To create the Lambda function oAuth2Callback

  1. In the Lambda console, choose Create function.

    Note: Make sure to select your desired Region.

  2. For Function name, enter oAuth2Callback.
  3. For Runtime, select Node.js 16.x.
  4. For Architecture, select arm64.
  5. Choose Create function.

After you create the Lambda function, you need to add the code. Create a new folder on your local machine and open it with your preferred integrated development environment (IDE). Add the package.json and index.js files, as shown in the following examples.

package.json

{
  "name": "oAuth2Callback",
  "version": "0.0.1",
  "dependencies": {
    "axios": "^0.27.2",
    "qs": "^6.11.0"
  }
}

In a terminal at the root of your created folder, run the following command.

$ npm install

In the index.js example code that follows, be sure to replace the placeholders with your values.

index.js

const qs = require("qs");
const axios = require("axios").default;
exports.handler = async function (event) {
  const code = event.queryStringParameters?.code;
  if (code == null) {
    return {
      statusCode: 400,
      body: "code query param required",
    };
  }
  const data = {
    grant_type: "authorization_code",
    client_id: "<your client ID from Cognito>",
    // The redirect has already happened, but you still need to pass the URI for validation, so a valid oAuth2 access token can be generated
    redirect_uri: encodeURI("<your callback URL from Cognito>"),
    code: code,
  };
  // Every Cognito instance has its own token endpoints. For more information check the documentation: https://docs.aws.amazon.com/cognito/latest/developerguide/token-endpoint.html
  const res = await axios.post(
    "<your App Client Cognito domain>/oauth2/token",
    qs.stringify(data),
    {
      headers: {
        "Content-Type": "application/x-www-form-urlencoded",
      },
    }
  );
  return {
    statusCode: 302,
    // These headers are returned as part of the response to the browser.
    headers: {
      // The Location header tells the browser it should redirect to the root of the URL
      Location: "/",
      // The Set-Cookie header tells the browser to persist the access token in the cookie store
      "Set-Cookie": `accessToken=${res.data.access_token}; Secure; HttpOnly; SameSite=Lax; Path=/`,
    },
  };
};

Along with the HttpOnly attribute, you pass along two additional cookie attributes:

  • Secure – Indicates that cookies are only sent by the browser to the server when a request is made with the https: scheme.
  • SameSite – Controls whether or not a cookie is sent with cross-site requests, providing protection against cross-site request forgery attacks. You set the value to Lax because you want the cookie to be set when the user is forwarded from Amazon Cognito to your web application (which runs under a different URL).

For more information, see Using HTTP cookies on the MDN Web Docs site.

Afterwards, upload the code to the oAuth2Callback Lambda function as described in Upload a Lambda Function in the AWS Toolkit for VS Code User Guide.

1.5. Configure an OAuth2 callback route in API Gateway

Now, you configure API Gateway to use your new Lambda function through a Lambda proxy integration.

To configure API Gateway to use your Lambda function

  1. In the API Gateway console, under APIs, choose your API name. For me, the name is MyApp.
  2. Under Develop, choose Routes.
  3. Choose Create.
  4. Enter or select the following values:
    • For method, select GET.
    • For path, enter /oauth2/callback.
  5. Choose Create.
  6. Choose GET under /oauth2/callback, and then choose Attach integration.
  7. Choose Create and attach an integration.
    • For Integration type, choose Lambda function.
    • For Lambda function, choose oAuth2Callback from the last step.
  8. Choose Create.

Your route configuration in API Gateway should now look like Figure 14.

Figure 14: Routes for API Gateway

Figure 14: Routes for API Gateway

2. Testing the OAuth2 flow

Now that you have the components in place, you can test your OAuth2 flow. You test the OAuth2 flow by invoking the login on your browser.

To test the OAuth2 flow

  1. In the Amazon Cognito console, choose your user pool name. For me, the name is MyUserPool.
  2. Under the navigation tabs, choose App integration.
  3. Under App client list, choose your app client name. For me, the name is MyAppClient.
  4. Choose View Hosted UI.
  5. In the newly opened browser tab, open your developer tools, so you can inspect the network requests.
  6. Log in with the email address and password you set in the previous section. Change your password, if you’re asked to do so. You can also choose the same password as you set in the previous section.
  7. You should see your Hello from Lambda message.

To test that the cookie was accurately set

  1. Check your browser network tab in the browser developer settings. You’ll see the /oauth2/callback request, as shown in Figure 15.
    Figure 15: Callback network request

    Figure 15: Callback network request

    The response headers should include a set-cookie header, as you specified in your Lambda function. With the set-cookie header, your OAuth2 access token is set as an HttpOnly cookie in the browser, and access is prohibited from any client-side code.

  2. Alternatively, you can inspect the cookie in the browser cookie storage, as shown in Figure 16.

  3. If you want to retry the authentication, navigate in your browser to your Amazon Cognito domain that you chose in the previous section and clear all site data in the browser developer tools. Do the same with your API Gateway invoke URL. Now you can restart the test with a clean state.

3. Deploying the authentication check

In this section, you’ll deploy the second part of your application: the authentication check. The authentication check makes it so that only authenticated users can access your protected backend. The authentication check works with the HttpOnly cookie, which is stored in the user’s cookie store.

3.1. Create the Lambda function oAuth2Authorizer

This Lambda function checks that requests are authenticated.

To create the Lambda function

  1. In the Lambda console, choose Create function.

    Note: Make sure to select your desired Region.

  2. For Function name, enter oAuth2Authorizer.
  3. For Runtime, select Node.js 16.x.
  4. For Architecture, select arm64.
  5. Choose Create function.

After you create the Lambda function, you need to add the code. Create a new folder on your local machine and open it with your preferred IDE. Add the package.json and index.js files as shown in the following examples.

package.json

{
  "name": "oAuth2Authorizer",
  "version": "0.0.1",
  "dependencies": {
    "aws-jwt-verify": "^3.1.0"
  }
}

In a terminal at the root of your created folder, run the following command.

$ npm install

In the index.js example code, be sure to replace the placeholders with your values.

index.js

const { CognitoJwtVerifier } = require("aws-jwt-verify");
function getAccessTokenFromCookies(cookiesArray) {
  // cookieStr contains the full cookie definition string: "accessToken=abc"
  for (const cookieStr of cookiesArray) {
    const cookieArr = cookieStr.split("accessToken=");
    // After splitting you should get an array with 2 entries: ["", "abc"] - Or only 1 entry in case it was a different cookie string: ["test=test"]
    if (cookieArr[1] != null) {
      return cookieArr[1]; // Returning only the value of the access token without cookie name
    }
  }
  return null;
}
// Create the verifier outside the Lambda handler (= during cold start),
// so the cache can be reused for subsequent invocations. Then, only during the
// first invocation, will the verifier actually need to fetch the JWKS.
const verifier = CognitoJwtVerifier.create({
  userPoolId: "<your user pool ID from Cognito>",
  tokenUse: "access",
  clientId: "<your client ID from Cognito>",
});
exports.handler = async (event) => {
  if (event.cookies == null) {
    console.log("No cookies found");
    return {
      isAuthorized: false,
    };
  }
  // Cookies array looks something like this: ["accessToken=abc", "otherCookie=Random Value"]
  const accessToken = getAccessTokenFromCookies(event.cookies);
  if (accessToken == null) {
    console.log("Access token not found in cookies");
    return {
      isAuthorized: false,
    };
  }
  try {
    await verifier.verify(accessToken);
    return {
      isAuthorized: true,
    };
  } catch (e) {
    console.error(e);
    return {
      isAuthorized: false,
    };
  }
};

After you add the package.json and index.js files, upload the code to the oAuth2Authorizer Lambda function as described in Upload a Lambda Function in the AWS Toolkit for VS Code User Guide.

3.2. Configure the Lambda authorizer in API Gateway

Next, you configure your authorizer Lambda function to protect your backend. This way you control access to your HTTP API.

To configure the authorizer Lambda function

  1. In the API Gateway console, under APIs, choose your API name. For me, the name is MyApp.
  2. Under Develop, choose Routes.
  3. Under / (a single forward slash) GET, choose Attach authorization.
  4. Choose Create and attach an authorizer.
  5. Choose Lambda.
  6. Enter or select the following values:
    • For Name, enter oAuth2Authorizer.
    • For Lambda function, choose oAuth2Authorizer.
    • Clear Authorizer caching. For this tutorial, you disable authorizer caching to make testing simpler. See the section Bonus: Enabling authorizer caching for more information about enabling caching to increase performance.
    • Under Identity sources, choose Remove.

      Note: Identity sources are ignored for your Lambda authorizer. These are only used for caching.

    • Choose Create and attach.
  7. Under Develop, choose Routes to inspect all routes.

Now your API Gateway route /oauth2/callback should be configured as shown in Figure 17.

Figure 17: API Gateway route configuration

Figure 17: API Gateway route configuration

4. Testing the OAuth2 authorizer

You did it! From your last test, you should still be authenticated. So, if you open the API Gateway Invoke URL in your browser, you’ll be greeted from your protected backend.

In case you are not authenticated anymore, you’ll have to follow the steps again from the section Testing the OAuth2 flow to authenticate.

When you inspect the HTTP request that your browser makes in the developer tools as shown in Figure 18, you can see that authentication works because the HttpOnly cookie is automatically attached to every request.

Figure 18: Browser requests include HttpOnly cookies

Figure 18: Browser requests include HttpOnly cookies

To verify that your authorizer Lambda function works correctly, paste the same Invoke URL you noted previously in an incognito window. Incognito windows do not share the cookie store with your browser session, so you see a {"message":"Forbidden"} error message with HTTP response code 403 – Forbidden.

Cleanup

Delete all unwanted resources to avoid incurring costs.

To delete the Amazon Cognito domain and user pool

  1. In the Amazon Cognito console, choose your user pool name. For me, the name is MyUserPool.
  2. Under the navigation tabs, choose App integration.
  3. Under Domain, choose Actions, then choose Delete Cognito domain.
  4. Confirm by entering your custom Amazon Cognito domain, and choose Delete.
  5. Choose Delete user pool.
  6. Confirm by entering your user pool name (in my case, MyUserPool), and then choose Delete.

To delete your API Gateway resource

  1. In the API Gateway console, select your API name. For me, the name is MyApp.
  2. Under Actions, choose Delete and confirm your deletion.

To delete the AWS Lambda functions

  1. In the Lambda console, select all three of the Lambda functions you created.
  2. Under Actions, choose Delete and confirm your deletion.

Bonus: Enabling authorizer caching

As mentioned earlier, you can enable authorizer caching to help improve your performance. When caching is enabled for an authorizer, API Gateway uses the authorizer’s identity sources as the cache key. If a client specifies the same parameters in identity sources within the configured Time to Live (TTL), then API Gateway uses the cached authorizer result, rather than invoking your Lambda function.

To enable caching, your authorizer must have at least one identity source. To cache by the cookie request header, you specify $request.header.cookie as the identity source. Be aware that caching will be affected if you pass along additional HttpOnly cookies apart from the access token.

For more information, see Working with AWS Lambda authorizers for HTTP APIs in the Amazon API Gateway Developer Guide.

Conclusion

In this blog post, you learned how to implement authentication by using HttpOnly cookies. You used Amazon API Gateway and AWS Lambda to persist and validate the HttpOnly cookies, and you used Amazon Cognito to issue OAuth2 access tokens. If you want to try an automated deployment of this solution with a script, see the api-gw-http-only-cookie-auth GitHub repository.

The application of this solution to protect your secrets from potential cross-site scripting (XSS) attacks is not limited to OAuth2. You can protect other kinds of tokens, sessions, or tracking IDs with HttpOnly cookies.

In this solution, you used NodeJS for your Lambda functions to implement authentication. But HttpOnly cookies are widely supported by many programing frameworks. You can find more implementation options on the OWASP Secure Cookie Attribute page.

Although this blog post gives you a tutorial on how to implement HttpOnly cookie authentication in API Gateway, it may not meet all your security and functional requirements. Make sure to check your business requirements and talk to your stakeholders before you adopt techniques from this blog post.

Furthermore, it’s a good idea to continuously test your web application, so that cookies are only set with your approved security attributes. For more information, see the OWASP Testing for Cookies Attributes page.

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on the Amazon API Gateway re:Post or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Marc Borntraeger

Marc Borntraeger

Marc is a Solutions Architect in healthcare, based in Zurich, Switzerland. He helps security-sensitive customers such as hospitals to re-innovate themselves with AWS.

API Endpoint Management and Metrics are now GA

Post Syndicated from Jin-Hee Lee original https://blog.cloudflare.com/api-management-metrics/

API Endpoint Management and Metrics are now GA

API Endpoint Management and Metrics are now GA

The Internet is an endless flow of conversations between computers. These conversations, the  constant exchange of information from one computer to another, are what allow us to interact with the Internet as we know it. Application Programming Interfaces (APIs) are the vital channels that carry these conversations, and their usage is quickly growing: in fact, more than half of the traffic handled by Cloudflare is for APIs, and this is increasing twice as fast as traditional web traffic.

In March, we announced that we’re expanding our API Shield into a full API Gateway to make it easy for our customers to protect and manage those conversations. We already offer several features that allow you to secure your endpoints, but there’s more to endpoints than their security. It can be difficult to keep track of many endpoints over time and understand how they’re performing. Customers deserve to see what’s going on with their API-driven domains and have the ability to manage their endpoints.

Today, we’re excited to announce that the ability to save, update, and monitor the performance of all your API endpoints is now generally available to API Shield customers. This includes key performance metrics like latency, error rate, and response size that give you insights into the overall health of your API endpoints.

API Endpoint Management and Metrics are now GA

A Refresher on APIs

The bar for what we expect an application to do for us has risen tremendously over the past few years. When we open a browser, app, or IoT device, we expect to be able to connect to data instantly, compare dozens of flights within seconds, choose a menu item from a food delivery app, or see the weather for ten locations at once.

How are applications able to provide this kind of dynamic engagement for their users? They rely on APIs, which provide access to data and services—either from the application developer or from another company. APIs are fundamental in how computers (or services) talk to each other and exchange information.

You can think of an API as a waiter: say a customer orders a delicious bowl of Mac n Cheese. The waiter accepts this order from the customer, communicates the request to the chef in a format the chef can understand, and then delivers the Mac n Cheese back to the customer (assuming the chef has the ingredients in stock). The waiter is the crucial channel of communication, which is exactly what the API does.

API Endpoint Management and Metrics are now GA

Managing API Endpoints

The first step in managing APIs is to get a complete list of all the endpoints exposed to the internet. API Discovery automatically does this for any traffic flowing through Cloudflare. Undiscovered APIs can’t be monitored by security teams (since they don’t know about them) and they’re thus less likely to have proper security policies and best practices applied. However, customers have told us they also want the ability to manually add and manage APIs that are not yet deployed, or they want to ignore certain endpoints (for example those in the process of deprecation). Now, API Shield customers can choose to save endpoints found by Discovery or manually add endpoints to API Shield.

But security vulnerabilities aren’t the only risk or area of concern with APIs – they can be painfully slow or connections can be unsuccessful. We heard questions from our customers such as: what are my most popular endpoints? Is this endpoint significantly slower than it was yesterday? Are any endpoints returning errors that may indicate a problem with the application?

That’s why we built Performance Metrics into API Shield, which allows our customers to quickly answer these questions themselves with real-time data.

Prioritizing Performance

API Endpoint Management and Metrics are now GA

Once you’ve discovered, saved, or removed endpoints, you want to know what’s going well and what’s not. To end-users, a huge part of what defines the experience as “going well” is good performance. Poor performance can lead to a frustrating experience: when you’re shopping online and press a button to check out, you don’t want to wait around for minutes for the page to load. And you certainly never want to see a dreaded error symbol telling you that you can’t get what you came for.

Exposing performance metrics of API endpoints puts concrete numerical data into your developers’ hands to tell you how things are going. When things are going poorly, these dashboard metrics will point out exactly which aspect of performance is causing concern: maybe you expected to see a spike in requests, but find out that request count is normal and latency is just higher than usual.

Empowering our customers to make data-driven decisions to better manage their APIs ends up being a win for our customers and our customers’ customers, who expect to seamlessly engage with the domain’s APIs and get exactly what they came for.

Management and Performance Metrics in the Dashboard

So, what’s available today? Log onto your Cloudflare dashboard, go to the domain-level Security tab, and open up the API Shield page. Here, you’ll see the Endpoint Management tab, which shows you all the API endpoints that you’ve saved, alongside placeholders for metrics that will soon be gathered.

API Endpoint Management and Metrics are now GA

Here you can easily delete endpoints you no longer want to track, or click manually add additional endpoints. You can also export schemas for each host to share internally or externally.

API Endpoint Management and Metrics are now GA

Once you’ve saved the endpoints that you want to keep tabs on, Cloudflare will start collecting data on its performance and make it available to you as soon as possible.

In Endpoint Management, you can see a few summary metrics in the collapsed view of each endpoint, including recommended rate limits, average latency, and error rate. It can be difficult to tell whether things are going well or not just from seeing a value alone, so we added sparklines that show relative performance, comparing an endpoint’s current metrics with its usual or previous data.

API Endpoint Management and Metrics are now GA

If you want to view further details about a given endpoint, you can expand it for additional metrics such as response size and errors separated by 4xx and 5xx. The expanded view also allows you to view all metrics at a single timestamp by hovering over the charts.

API Endpoint Management and Metrics are now GA

For each saved endpoint, customers can see the following metrics:

  • Request count: total number of requests to the endpoint over time.
  • Rate limiting recommendation per 10 minutes, which is guided by the request count.
  • Latency: average origin response time, in milliseconds (ms). How long does it take from the moment a visitor makes a request to the moment the visitor gets a response back from the origin?
  • Error rate vs. overall traffic: grouped by 4xx, 5xx, and their sum.
  • Response size: average size of the response (in bytes) returned to the request.

You can toggle between viewing these metrics on a 24-hour period or a 7-day period, depending on the scale on which you’d like to view your data. And in the expanded view, we provide a percentage difference between the averages of the current vs. the previous period. For example, say I’m viewing my metrics on a 24-hour timeline. My average latency yesterday was 10 ms, and my average latency today is 30 ms, so the dashboard shows a 200% increase. We also use anomaly detection to bring attention to endpoints that have concerning performance changes.

API Endpoint Management and Metrics are now GA

Additional improvements to Discovery and Schema Validation

As part of making endpoint management GA, we’re also adding two additional enhancements to API Shield.

First, API Discovery now accepts cookies — in addition to authorization headers — to discover endpoints and suggest rate limiting thresholds. Previously, you could only identify an API session with HTTP headers, which didn’t allow customers to protect endpoints that use cookies as session identifiers. Now these endpoints can be protected as well. Simply go to the API Shield tab in the dashboard, choose edit session identifiers, and either change the type, or click Add additional identifier.

API Endpoint Management and Metrics are now GA

Second, we added the ability to validate the body of requests via Schema Validation for all customers. Schema Validation allows you to provide an OpenAPI schema (a template for your API traffic) and have Cloudflare block non-conformant requests as they arrive at our edge. Previously, you provided specific headers, cookies, and other features to validate. Now that we can validate the body of requests, you can use Schema Validation to confirm every element of a request matches what is expected. If a request contains strange information in the payload, we’ll notice. Note: customers who have already uploaded schemas will need to re-upload to take advantage of body validation.

Take a look at our developer documentation for more details on both of these features.

Get started

Endpoint Management, performance metrics, schema exporting, discovery via cookies, and schema body validation are all available now for all API Shield customers. To use them, log into the Cloudflare dashboard, click on Security in the navigation bar, and choose API Shield. Once API Shield is enabled, you’ll be able to start discovering endpoints immediately. You can also use all features through our API.

If you aren’t yet protecting a website with Cloudflare, it only takes a few minutes to sign up.

Implement step-up authentication with Amazon Cognito, Part 2: Deploy and test the solution

Post Syndicated from Salman Moghal original https://aws.amazon.com/blogs/security/implement-step-up-authentication-with-amazon-cognito-part-2-deploy-and-test-the-solution/

This solution consists of two parts. In the previous blog post Implement step-up authentication with Amazon Cognito, Part 1: Solution overview, you learned about the architecture and design of a step-up authentication solution that uses AWS services such as Amazon API Gateway, Amazon Cognito, Amazon DynamoDB, and AWS Lambda to protect privileged API operations. In this post, you will use a reference implementation to deploy and test the step-up authentication solution in your AWS account.

Solution deployment

The step-up authentication solution discussed in Part 1 uses a reference implementation that you can use for demonstration and learning purposes. You can also review the implementation code in the step-up-auth GitHub repository. The reference implementation includes a web application that you can use in the following sections to test the step-up implementation. Additionally, the implementation contains a sample privileged API action /transfer and a non-privileged API action /info, and two step-up authentication solution API operations /initiate-auth, and /respond-to-challenge. The web application invokes these API operations to demonstrate how to perform step-up authentication.

Deployment prerequisites

The following are prerequisites for deployment:

  1. The Node.js runtime and the node package manager (npm) are installed on your machine. You can use a package manager for your platform to install these. Note that the reference implementation code was tested using Node.js v16 LTS.
  2. The AWS Cloud Development Kit (AWS CDK) is installed in your environment.
  3. The AWS Command Line Interface (AWS CLI) is installed in your environment.
  4. You must have AWS credentials files that contain a profile with your account secret key and access key to perform the deployment. Make sure that your account has enough privileges to create, update, or delete the following resources:
  5. A two-factor authentication (2FA) mobile application, such as Google Authenticator, is installed on your mobile device.

Deploy the step-up solution

You can deploy the solution by using the AWS CDK, which will create a working reference implementation of the step-up authentication solution.

To deploy the solution

  1. Build the necessary resources by using the build.sh script in the deployment folder. Run the build script from a terminal window, using the following command:
    cd deployment && ./build.sh
  2. Deploy the solution by using the deploy.sh script that is present in the deployment folder, using the following command. Be sure to replace the required environment variables with your own values.
    export AWS_REGION=<your AWS Region of choice, for example us-east-2>
    export AWS_ACCOUNT=<your account number>
    export AWS_PROFILE=<a valid profile in .aws/credentials that contains the secret/access key to your account>
    export NODE_ENV=development
    export ENV_PREFIX=dev

    The account you specify in the AWS_ACCOUNT environment variable is used to bootstrap the AWS CDK deployment. Set AWS_PROFILE to point to your profile. Make sure that your account has sufficient privileges, as described in the prerequisites.

    The NODE_ENV environment variable can be set to development or production. This variable controls the log output that the Lambda functions generate. The ENV_PREFIX environment variable allows you to prefix all resources with a tag, which enables a multi-tenant deployment of this solution.

  3. Still in the deployment folder, deploy the stack by using the following command:
    ./deploy.sh
  4. Make note of the CloudFront distribution URL that follows Sample Web App URL, as shown in Figure 1. In the next section, you will use this CloudFront distribution URL to load the sample web app in a web browser and test the step-up solution
    Figure 1: The output of the deployment process

    Figure 1: The output of the deployment process

After the deployment script deploy.sh completes successfully, the AWS CDK creates the following resources in your account:

  • An Amazon Cognito user pool that is used as a user registry.
  • An Amazon API Gateway API that contains three resources:
    • A protected resource that requires step-up authentication.
    • An initiate-auth resource to start the step-up challenge response.
    • A respond-to-challenge resource to complete the step-up challenge.
  • An API Gateway Lambda authorizer that is used to protect API actions.
  • The following Amazon DynamoDB tables:
    • A setting table that holds the configuration mapping of the API operations that require elevated privileges.
    • A session table that holds temporary, user-initiated step-up sessions and their current status.
  • A React web UI that demonstrates how to invoke a privileged API action and go through step-up authentication.

Test the step-up solution

In order to test the step-up solution, you’ll use the sample web application that you deployed in the previous section. Here’s an overview of the actions you’ll perform to test the flow:

  1. In the AWS Management Console, create items in the setting DynamoDB table that point to privileged API actions. After the solution deployment, the setting DynamoDB table is called step-up-auth-setting-<ENV_PREFIX>. For more information about ENV_PREFIX variable usage in a multi-tenant environment, see Deploy the step-up solution earlier in this post.

    As discussed, in the Data design section in Part 1 of this series, the Lambda authorizer treats all API invocations as non-privileged (that is, they don’t require step-up authentication) unless there is a matching entry for the API action in the setting table. Additionally, you can switch a privileged API action to a non-privileged API action by simply changing the stepUpState attribute in the setting table. Create an item in the DynamoDB table for the sample /transfer API action and for the sample /info API action. The /transfer API action will require step-up authentication, whereas the /info API action will be a non-privileged invocation that does not require step-up authentication. Note that there is no need to define a non-privileged API action in the table; it is there for illustration purposes only.

  2. If you haven’t already, install Google Authenticator or a similar two-factor authentication (2FA) application on your mobile device.
  3. Using the sample web application, register a new user in Amazon Cognito.
  4. Log in to the sample web application by using the registered new user.
  5. Configure the preferred multi-factor authentication (MFA) settings for the logged in user in the application. This step is necessary so that Amazon Cognito can challenge the user with a one-time password (OTP).
  6. Using the sample web application, invoke the sample /transfer privileged API action that requires step-up authentication.
  7. The Lambda authorizer will intercept the API request and return a 401 Unauthorized response status code that the sample web application will handle. The application will perform step-up authentication by prompting you to provide additional security credentials, specifically the OTP. To complete the step-up authentication, enter the OTP, which is sent through short service message (SMS) or by using an authenticator mobile app.
  8. Invoke the sample /transfer privileged API action again in the sample web application, and verify that the API invocation is successful.

The following instructions assume that you’ve installed a 2FA mobile application, such as Google Authenticator, on your mobile device. You will configure the 2FA application in the following steps and use the OTP from this mobile application when prompted to enter the step-up challenge. You can configure Amazon Cognito to send you an SMS with the OTP. However, you must be aware of the Amazon Cognito throttling limits. See the Additional considerations section in Part 1 of this series. Read these limits carefully, especially if you set the user’s preferred MFA setting to SMS.

To test the step-up authentication solution

  1. Open the Amazon DynamoDB console and log in to your AWS account.
  2. On the left nav pane, under Tables, choose Explore items. In the right pane, choose the table named step-up-auth-setting* and choose Create item, as shown in Figure 2.
    Figure 2: Choose the step-up-auth-setting* table and choose Create item button

    Figure 2: Choose the step-up-auth-setting* table and choose Create item button

  3. In the Edit item screen as shown in Figure 3, ensure that JSON is selected, and the Attributes button for View DynamoDB JSON is off.
    Figure 3: Edit an item in the table - select JSON and turn off View DynamoDB JSON button

    Figure 3: Edit an item in the table – select JSON and turn off View DynamoDB JSON button

  4. To create an entry for the /info API action, copy the following JSON text:
    {
       "id": "/info",
       "lastUpdateTimestamp": "2021-08-23T08:25:29.023Z",
       "stepUpState": "STEP_UP_NOT_REQUIRED",
       "createTimestamp": "2021-08-23T08:25:29.023Z"
    }
  5. Paste the copied JSON text for the /info API action in the Attributes text area, as shown in Figure 4, and choose Create item.
    Figure 4: Create an entry for the /info API action

    Figure 4: Create an entry for the /info API action

  6. To create an entry for the /transfer API action, copy the following JSON text:
    {
       "id": "/transfer",
       "lastUpdateTimestamp": "2021-08-23T08:22:12.436Z",
       "stepUpState": "STEP_UP_REQUIRED",
       "createTimestamp": "2021-08-23T08:22:12.436Z"
    }
  7. Paste the copied JSON text for the /transfer API action in the Attributes text area, as shown in Figure 4, and choose Create item.
    Figure 5: Create an entry for the /transfer API action

    Figure 5: Create an entry for the /transfer API action

  8. Open your web browser and load the CloudFront URL that you made note of in step 4 of the Deploy the step-up solution procedure.
  9. On the login screen of the sample web application, enter the information for a new user. Make sure that the email address and phone numbers are valid. Choose Register. You will be prompted to enter a verification code. Check your email for the verification code, and enter it at the sample web application prompt.
  10. You will be sent back to the login screen. Log in as the user that you just registered. You will see the welcome screen, as shown in Figure 6.
    Figure 6: Welcome screen of the sample web application

    Figure 6: Welcome screen of the sample web application

  11. In the left nav pane choose Setting, choose the Configure button to the right of Software Token, as shown in Figure 7. Use your mobile device camera to capture the QR code on the screen in your 2FA application, for example Google Authenticator.
    Figure 7: Configure Software Token screen with QR code

    Figure 7: Configure Software Token screen with QR code

  12. Enter the temporary code from the 2FA application into the web application and choose Submit. You will see the message Software Token successfully configured!
  13. Still in the Setting menu, next to Select Preferred MFA, choose Software Token. You will see the message User preferred MFA set to Software Token, as shown in Figure 8.
    Figure 8: Completed Software Token setup

    Figure 8: Completed Software Token setup

  14. In the left nav pane choose StepUp Auth. In the right pane, choose Invoke Transfer API. You should see Response: 401 authorization challenge, as shown in Figure 9.
    Figure 9: The step-up API invocation returns an authorization challenge

    Figure 9: The step-up API invocation returns an authorization challenge

  15. On your mobile device, open the 2FA application, copy the OTP code from the 2FA application, and enter the code into the Enter OTP field, as shown in Figure 9. Choose Submit.
  16. This sends the OTP to the respond-to-challenge endpoint. After the OTP is verified, the endpoint will return a success or failure message. Figure 10 shows a successful OTP verification. You are prompted to invoke the /transfer privileged API action again.
    Figure 10: The OTP prompt during step-up API invocation

    Figure 10: The OTP prompt during step-up API invocation

  17. Invoke the transfer API action again by choosing Invoke Transfer API. You should see a success message as shown in Figure 11.
    Figure 11: A successful step-up API invocation

    Figure 11: A successful step-up API invocation

    Congratulations! You’ve successfully performed step-up authentication.

Conclusion

In the previous post in this series, Implement step-up authentication with Amazon Cognito, Part 1: Solution overview, you learned about the architecture and implementation details for the step-up authentication solution. In this blog post, you learned how to deploy and test the step-up authentication solution in your AWS account. You deployed the solution by using scripts from the step-up-auth GitHub repository that use the AWS CDK to create resources in your account for Amazon Cognito, Amazon API Gateway, a Lambda authorizer, and Amazon DynamoDB. Finally, you tested the end-to-end solution on a sample web application by invoking a privileged API action that required step-up authentication. Using the 2FA application, you were able to pass in an OTP to complete the step-up authentication and subsequently successfully invoke the privileged API action.

For more information about AWS Cognito user pools and the new console experience, watch the video Amazon Cognito User Pools New Console Walkthrough on the AWS channel on YouTube. And for more information about how to protect your API actions with fine-grained access controls, see the blog post Building fine-grained authorization using Amazon Cognito, API Gateway, and IAM.

If you have feedback about this post, submit comments in the Comments section below. If you have any questions about this post, start a thread on the Amazon Cognito forum.

Want more AWS Security news? Follow us on Twitter.

Salman Moghal

Salman Moghal

Salman is a Principal Consultant in AWS Professional Services, based in Toronto, Canada. He helps customers in architecting, developing, and reengineering data-driven applications at scale, with a sharp focus on security.

Thomas Ross

Thomas Ross

Thomas is a Software Engineering student at Carleton University. He worked at AWS as a Professional Services Intern and a Software Development Engineer Intern in Amazon Aurora. He has an interest in almost anything related to technology, especially systems at high scale, security, distributed systems, and databases.

Ozair Sheikh

Ozair Sheikh

Ozair is a senior product leader for Sponsored Display in Amazon ads, based in Toronto, Canada. He helps advertisers and Ad Tech API Partners build campaign management solutions to reach customers across the purchase journey. He has over 10 years of experience in API management and security, with an obsession for delivering highly secure API products.

Mahmoud Matouk

Mahmoud Matouk

Mahmoud is a Principal Solutions Architect with the Amazon Cognito team. He helps AWS customers build secure and innovative solutions for various identity and access management scenarios.

Implement step-up authentication with Amazon Cognito, Part 1: Solution overview

Post Syndicated from Salman Moghal original https://aws.amazon.com/blogs/security/implement-step-up-authentication-with-amazon-cognito-part-1-solution-overview/

In this blog post, you’ll learn how to protect privileged business transactions that are exposed as APIs by using multi-factor authentication (MFA) or security challenges. These challenges have two components: what you know (such as passwords), and what you have (such as a one-time password token). By using these multi-factor security controls, you can implement step-up authentication to obtain a higher level of security when you perform critical transactions. In this post, we show you how you can use AWS services such as Amazon API Gateway, Amazon Cognito, Amazon DynamoDB, and AWS Lambda functions to implement step-up authentication by using a simple rule-based security model for your API resources.

Previously, identity and access management solutions have attempted to deliver step-up authentication by retrofitting their runtimes with stateful server-side management, which doesn’t scale in the modern-day stateless cloud-centered application architecture. We’ll show you how to use a pluggable, stateless authentication implementation that integrates into your existing infrastructure without compromising your security or performance. The Amazon API Gateway Lambda authorizer is a pluggable serverless function that acts as an intermediary step before an API action is invoked. This Lambda authorizer, coupled with a small SDK library that runs in the authorizer, will provide step-up authentication.

This solution consists of two blog posts. This is Part 1, where you’ll learn about the step-up authentication solution architecture and design. In the next post, Implement step-up authentication with Amazon Cognito, Part 2: Deploy and test the solution, you’ll learn how to use a reference implementation to test the step-up authentication solution.

Prerequisites

The reference architecture in this post uses a purpose-built step-up authorization workflow engine, which uses a custom SDK. The custom SDK uses the DynamoDB service as a persistent layer. This workflow engine is generic and can be used across any API serving layers, such as API Gateway or Elastic Load Balancing (ELB) Application Load Balancer, as long as the API serving layers can intercept API requests to perform additional actions. The step-up workflow engine also relies on an identity provider that is capable of issuing an OAuth 2.0 access token.

There are three parts to the step-up authentication solution:

  1. An API serving layer with the capability to apply custom logic before applying business logic.
  2. An OAuth 2.0–capable identity provider system.
  3. A purpose-built step-up workflow engine.

The solution in this post uses Amazon Cognito as the identity provider, with an API Gateway Lambda authorizer to invoke the step-up workflow engine, and DynamoDB as a persistent layer used by the step-up workflow engine. You can see a reference implementation of the API Gateway Lambda authorizer in the step-up-auth GitHub repository. Additionally, the purpose-built step-up workflow engine provides two API endpoints (or API actions), /initiate-auth and /respond-to-challenge, which are realized using the API Gateway Lambda authorizer, to drive the API invocation step-up state.

Note: If you decide to use an API serving layer other than API Gateway, or use an OAuth 2.0 identity provider besides Amazon Cognito, you will have to make changes to the accompanying sample code in the step-up-auth GitHub repository.

Solution architecture

Figure 1 shows the high-level reference architecture.

Figure 1: Step-up authentication high-level reference architecture

Figure 1: Step-up authentication high-level reference architecture

First, let’s talk about the core components in the step-up authentication reference architecture in Figure 1.

Identity provider

In order for a client application or user to invoke a protected backend API action, they must first obtain a valid OAuth token or JSON web token (JWT) from an identity provider. The step-up authentication solution uses Amazon Cognito as the identity provider. The step-up authentication solution and the accompanying step-up API operations use the access token to make the step-up authorization decision.

Protected backend

The step-up authentication solution uses API Gateway to protect backend resources. API Gateway supports several different API integration types, and you can use any one of the supported API Gateway integration types. For this solution, the accompanying sample code in the step-up-auth GitHub repository uses Lambda proxy integration to simulate a protected backend resource.

Data design

The step-up authentication solution relies on two DynamoDB tables, a session table and a setting table. The session table contains the user’s step-up session information, and the setting table contains an API step-up configuration. The API Gateway Lambda authorizer (described in the next section) checks the setting table to determine whether the API request requires a step-up session. For more information about table structure and sample values, see the Step-up authentication data design section in the accompanying GitHub repository.

The session table has the DynamoDB Time to Live (TTL) feature enabled. An item stays in the session table until the TTL time expires, when DynamoDB automatically deletes the item. The TTL value can be controlled by using the environment variable SESSION_TABLE_ITEM_TTL. Later in this post, we’ll cover where to define this environment variable in the Step-up solution design details section; and we’ll cover how to set the optimal value for this environment variable in the Additional considerations section.

Authorizer

The step-up authentication solution uses a purpose-built request parameter-based Lambda authorizer (also called a REQUEST authorizer). This REQUEST authorizer helps protect privileged API operations that require a step-up session.

The authorizer verifies that the API request contains a valid access token in the HTTP Authorization header. Using the access token’s JSON web token ID (JTI) claim as a key, the authorizer then attempts to retrieve a step-up session from the session table. If a session exists and its state is set to either STEP_UP_COMPLETED or STEP_UP_NOT_REQUIRED, then the authorizer lets the API call through by generating an allow API Gateway Lambda authorizer policy. If the set-up state is set to STEP_UP_REQUIRED, then the authorizer returns a 401 Unauthorized response status code to the caller.

If a step-up session does not exist in the session table for the incoming API request, then the authorizer attempts to create a session. It first looks up the setting table for the API configuration. If an API configuration is found and the configuration status is set to STEP_UP_REQUIRED, it indicates that the user must provide additional authentication in order to call this API action. In this case, the authorizer will create a new session in the session table by using the access token’s JTI claim as a session key, and it will return a 401 Unauthorized response status code to the caller. If the API configuration in the setting table is set to STEP_UP_DENY, then the authorizer will return a deny API Gateway Lambda authorizer policy, therefore blocking the API invocation. The caller will receive a 403 Forbidden response status code.

The authorizer uses the purpose-built auth-sdk library to interface with both the session and setting DynamoDB tables. The auth-sdk library provides convenient methods to create, update, or delete items in tables. Internally, auth-sdk uses the DynamoDB v3 Client SDK.

Initiate auth endpoint

When you deploy the step-up authentication solution, you will get the following two API endpoints:

  1. The initiate step-up authentication endpoint (described in this section).
  2. The respond to step-up authentication challenge endpoint (described in the next section).

When a client receives a 401 Unauthorized response status code from API Gateway after invoking a privileged API operation, the client can start the step-up authentication flow by invoking the initiate step-up authentication endpoint (/initiate-auth).

The /initiate-auth endpoint does not require any extra parameters, it only requires the Amazon Cognito access_token to be passed in the Authorization header of the request. The /initiate-auth endpoint uses the access token to call the Amazon Cognito API actions GetUser and GetUserAttributeVerificationCode on behalf of the user.

After the /initiate-auth endpoint has determined the proper multi-factor authentication (MFA) method to use, it returns the MFA method to the client. There are three possible values for the MFA methods:

  • MAYBE_SOFTWARE_TOKEN_STEP_UP, which is used when the MFA method cannot be determined.
  • SOFTWARE_TOKEN_STEP_UP, which is used when the user prefers software token MFA.
  • SMS_STEP_UP, which is used when the user prefers short message service (SMS) MFA.

Let’s take a closer look at how /initiate-auth endpoint determines the type of MFA methods to return to the client. The endpoint calls Amazon Cognito GetUser API action to check for user preferences, and it takes the following actions:

  1. Determines what method of MFA the user prefers, either software token or SMS.
  2. If the user’s preferred method is set to software token, the endpoint returns SOFTWARE_TOKEN_STEP_UP code to the client.
  3. If the user’s preferred method is set to SMS, the endpoint sends an SMS message with a code to the user’s mobile device. It uses the Amazon Cognito GetUserAttributeVerificationCode API action to send the SMS message. After the Amazon Cognito API action returns success, the endpoint returns SMS_STEP_UP code to the client.
  4. When the user preferences don’t include either a software token or SMS, the endpoint checks if the response from Amazon Cognito GetUser API action contains UserMFASetting response attribute list with either SOFTWARE_TOKEN_MFA or SMS_MFA keywords. If the UserMFASetting response attribute list contains SOFTWARE_TOKEN_MFA, then the endpoint returns SOFTWARE_TOKEN_STEP_UP code to the client. If it contains SMS_MFA keyword, then the endpoint invokes the Amazon Cognito GetUserAttributeVerificationCode API action to send the SMS message (as in step 3). Upon successful response from the Amazon Cognito API action, the endpoint returns SMS_STEP_UP code to the client.
  5. If the UserMFASetting response attribute list from Amazon Cognito GetUser API action does not contain SOFTWARE_TOKEN_MFA or SMS_MFA keywords, then the endpoint looks for phone_number_verified attribute. If found, then the endpoint sends an SMS message with a code to the user’s mobile device with verified phone number. The endpoint uses the Amazon Cognito GetUserAttributeVerificationCode API action to send the SMS message (as in step 3). Otherwise, when no verified phone is found, the endpoint returns MAYBE_SOFTWARE_TOKEN_STEP_UP code to the client.

The flowchart shown in Figure 2 illustrates the full decision logic.

Figure 2: MFA decision flow chart

Figure 2: MFA decision flow chart

Respond to challenge endpoint

The respond to challenge endpoint (/respond-to-challenge) is called by the client after it receives an appropriate MFA method from the /initiate-auth endpoint. The user must respond to the challenge appropriately by invoking /respond-to-challenge with a code and an MFA method.

The /respond-to-challenge endpoint receives two parameters in the POST body, one indicating the MFA method and the other containing the challenge response. Additionally, this endpoint requires the Amazon Cognito access token to be passed in the Authorization header of the request.

If the MFA method is SMS_STEP_UP, the /respond-to-challenge endpoint invokes the Amazon Cognito API action VerifyUserAttribute to verify the user-provided challenge response, which is the code that was sent by using SMS.

If the MFA method is SOFTWARE_TOKEN_STEP_UP or MAYBE_SOFTWARE_TOKEN_STEP_UP, the /respond-to-challenge endpoint invokes the Amazon Cognito API action VerifySoftwareToken to verify the challenge response that was sent in the endpoint payload.

After the user-provided challenge response is verified, the /respond-to-challenge endpoint updates the session table with the step-up session state STEP_UP_COMPLETED by using the access_token JTI. If the challenge response verification step fails, no changes are made to the session table. As explained earlier in the Data design section, the step-up session stays in the session table until the TTL time expires, when DynamoDB will automatically delete the item.

Deploy and test the step-up authentication solution

If you want to test the step-up authentication solution at this point, go to the second part of this blog, Implement step-up authentication with Amazon Cognito, Part 2: Deploy and test the solution. That post provides instructions you can use to deploy the solution by using the AWS Cloud Development Kit (AWS CDK) in your AWS account, and test it by using a sample web application.

Otherwise, you can continue reading the rest of this post to review the details and code behind the step-up authentication solution.

Step-up solution design details

Now let’s dig deeper into the step-up authentication solution. Figure 3 expands on the high-level solution design in the previous section and highlights the sequence of events that must take place to perform step-up authentication. In this section, we’ll break down these sequences into smaller parts and discuss each by going over a detailed sequence diagram.

Figure 3: Step-up authentication detailed reference architecture

Figure 3: Step-up authentication detailed reference architecture

Let’s group the step-up authentication flow in Figure 3 into three parts:

  1. Create a step-up session (steps 1-6 in Figure 3)
  2. Initiate step-up authentication (steps 7-8 in Figure 3)
  3. Respond to the step-up challenge (steps 9-12 in Figure 3)

In the next sections, you’ll learn how the user’s API requests are handled by the step-up authentication solution, and how the user state is elevated by going through an additional challenge.

Create a step-up session

After the user successfully logs in, they create a step-up session when invoking a privileged API action that is protected with the step-up Lambda authorizer. This authorizer determines whether to start a step-up challenge based on the configuration within the DynamoDB setting table, which might create a step-up session in the DynamoDB session table. Let’s go over steps 1–6, shown in the architecture diagram in Figure 3, in more detail:

  • Step 1 – It’s important to note that the user must authenticate with Amazon Cognito initially. As a result, they must have a valid access token generated by the Amazon Cognito user pool.
  • Step 2 – The user then invokes a privileged API action and passes the access token in the Authorization header.
  • Step 3 – The API action is protected by using a Lambda authorizer. The authorizer first validates the token by invoking the Amazon Cognito user pool public key. If the token is invalid, a 401 Unauthorized response status code can be sent immediately, prompting the client to present a valid token.
  • Step 4 – The authorizer performs a lookup in the DynamoDB setting table to check whether the current request needs elevated privilege (also known as step-up privilege). In the setting table, you can define which API actions require elevated privilege. You can additionally bundle API operations into a group by defining the group attribute. This allows you to further isolate privileged API operations, especially in a large-scale deployment.
  • Step 5 – If an API action requires elevated privilege, the authorizer will check for an existing step-up session for this specific user in the session table. If a step-up session does not exist, the authorizer will create a new entry in the session table. The key for this table will be the JTI claim of the access_token (which can be obtained after token verification).
  • Step 6 – If a valid session exists, then authorization will be given. Otherwise an unauthorized access response (401 HTTP code) will be sent back from the Lambda authorizer, indicating that the user requires elevated privilege.

Figure 4 highlights these steps in a sequence diagram.

Figure 4: Sequence diagram for creating a step-up session

Figure 4: Sequence diagram for creating a step-up session

Initiate step-up authentication

After the user receives a 401 Unauthorized response status code from invoking the privileged API action in the previous step, the user must call the /initiate-auth endpoint to start step-up authentication. The endpoint will return the response to the user or the client application to supply the temporary code. Let’s go over steps 7 and 8, shown in the architecture diagram in Figure 3, in more detail:

  • Step 7 – The client application initiates a step-up action by calling the /initiate-auth endpoint. This action is protected by the API Gateway built-in Amazon Cognito authorizer, and the client needs to pass a valid access_token in the Authorization header.
  • Step 8 – The call is forwarded to a Lambda function that will initiate the step-up action with the end user. The function first calls the Amazon Cognito API action GetUser to find out the user’s MFA settings. Depending on which MFA type is enabled for the user, the function uses different Amazon Cognito API operations to start the MFA challenge. For more details, see the Initiate auth endpoint section earlier in this post.

Figure 5 shows these steps in a sequence diagram.

Figure 5: Sequence diagram for invoking /initiate-auth to start step-up authentication

Figure 5: Sequence diagram for invoking /initiate-auth to start step-up authentication

Respond to the step-up challenge

In the previous step, the user receives a challenge code from the /initiate-auth endpoint. Depending on the type of challenge code, user must respond by sending a one-time password (OTP) to the /respond-to-challenge endpoint. The /respond-to-challenge endpoint invokes an Amazon Cognito API action to verify the OTP. Upon successful verification, the /respond-to-challenge endpoint marks the step-up session in the session table to STEP_UP_COMPLETED, indicating that the user now has elevated privilege. At this point, the user can invoke the privileged API action again to perform the elevated business operation. Let’s go over steps 9–12, shown in the architecture diagram in Figure 3, in more detail:

  • Step 9 – The client application presents an appropriate screen to the user to collect a response to the step-up challenge. The client application calls the /respond-to-challenge endpoint that contains the following:
    1. An access_token in the Authorization header.
    2. A step-up challenge type.
    3. A response provided by the user to the step-up challenge.

    This endpoint is protected by the API Gateway built-in Amazon Cognito authorizer.

  • Step 10 – The call is forwarded to the Lambda function, which verifies the response by calling the Amazon Cognito API action VerifyUserAttribute (in the case of SMS_STEP_UP) or VerifySoftwareToken (in the case of SOFTWARE_TOKEN_STEP_UP), depending on the type of step-up action that was returned from the /initiate-auth API action. The Amazon Cognito response will indicate whether verification was successful.
  • Step 11 – If the Amazon Cognito response in the previous step was successful, the Lambda function associated with the /respond-to-challenge endpoint inserts a record in the session table by using the access_token JTI as key. This record indicates that the user has completed step-up authentication. The record is inserted with a time to live (TTL) equal to the lesser of these values: the remaining period in the access_token timeout, or the default TTL value that is set in the Lambda function as a configurable environment variable, SESSION_TABLE_ITEM_TTL. The /respond-to-challenge endpoint returns a 200 status code after successfully updating the session table. It returns a 401 Unauthorized response status code if the operation failed or if the Amazon Cognito API calls in the previous step failed. For more information about the optimal value for the SESSION_TABLE_ITEM_TTL variable, see the Additional considerations section later in this post.
  • Step 12 – The client application can re-try the original call (using the same access token) to the privileged API operations, and this call should now succeed because an active step-up session exists for the user. Calls to other privileged API operations that require step-up should also succeed, as long as the step-up session hasn’t expired.

Figure 6 shows these steps in a sequence diagram.

Figure 6: Invoke the /respond-to-challenge endpoint to complete step-up authentication

Figure 6: Invoke the /respond-to-challenge endpoint to complete step-up authentication

Additional considerations

This solution uses several Amazon Cognito API operations to provide step-up authentication functionality. Amazon Cognito applies rate limiting on all API operations categories, and rapid calls that exceed the assigned quota will be throttled.

The step-up flow for a single user can include multiple Amazon Cognito API operations such as GetUser, GetUserAttributeVerificationCode, VerifyUserAttribute, and VerifySoftwareToken. These Amazon Cognito API operations have different rate limits. The effective rate, in requests per second (RPS), that your privileged and protected API action can achieve will be equivalent to the lowest category rate limit among these API operations. When you use the default quota, your application can achieve 25 SMS_STEP_UP RPS or up to 50 SOFTWARE_TOKEN_STEP_UP RPS.

Certain Amazon Cognito API operations have additional security rate limits per user per hour. For example, the GetUserAttributeVerificationCode API action has a limit of five calls per user per hour. For that reason, we recommend 15 minutes as the minimum value for SESSION_TABLE_ITEM_TTL, as this will allow a single user to have up to four step-up sessions per hour if needed.

Conclusion

In this blog post, you learned about the architecture of our step-up authentication solution and how to implement this architecture to protect privileged API operations by using AWS services. You learned how to use Amazon Cognito as the identity provider to authenticate users with multi-factor security and API Gateway with an authorizer Lambda function to enforce access to API actions by using a step-up authentication workflow engine. This solution uses DynamoDB as a persistent layer to manage the security rules for the step-up authentication workflow engine, which helps you to efficiently manage your rules.

In the next part of this post, Implement step-up authentication with Amazon Cognito, Part 2: Deploy and test the solution, you’ll deploy a reference implementation of the step-up authentication solution in your AWS account. You’ll use a sample web application to test the step-up authentication solution you learned about in this post.

 
If you have feedback about this post, submit comments in the Comments section below. If you have any questions about this post, start a thread on the Amazon Cognito forum.

Want more AWS Security news? Follow us on Twitter.

Salman Moghal

Salman Moghal

Salman is a Principal Consultant in AWS Professional Services, based in Toronto, Canada. He helps customers in architecting, developing, and reengineering data-driven applications at scale, with a sharp focus on security.

Thomas Ross

Thomas Ross

Thomas is a Software Engineering student at Carleton University. He worked at AWS as a Professional Services Intern and a Software Development Engineer Intern in Amazon Aurora. He has an interest in almost anything related to technology, especially systems at high scale, security, distributed systems, and databases.

Ozair Sheikh

Ozair Sheikh

Ozair is a senior product leader for Sponsored Display in Amazon ads, based in Toronto, Canada. He helps advertisers and Ad Tech API Partners build campaign management solutions to reach customers across the purchase journey. He has over 10 years of experience in API management and security, with an obsession for delivering highly secure API products.

Mahmoud Matouk

Mahmoud Matouk

Mahmoud is a Principal Solutions Architect with the Amazon Cognito team. He helps AWS customers build secure and innovative solutions for various identity and access management scenarios.

Deploy and manage OpenAPI/Swagger RESTful APIs with the AWS Cloud Development Kit

Post Syndicated from Luke Popplewell original https://aws.amazon.com/blogs/devops/deploy-and-manage-openapi-swagger-restful-apis-with-the-aws-cloud-development-kit/

This post demonstrates how AWS Cloud Development Kit (AWS CDK) Infrastructure as Code (IaC) constructs and AWS serverless technology can be used to build and deploy a RESTful Application Programming Interface (API) defined in the OpenAPI specification. This post uses an example API that describes  Widget resources and demonstrates how to use an AWS CDK Pipeline to:

  • Deploy a RESTful API stage to Amazon API Gateway from an OpenAPI specification.
  • Build and deploy an AWS Lambda function that contains the API functionality.
  • Auto-generate API documentation and publish it to an Amazon Simple Storage Service (Amazon S3)-hosted website served by the Amazon CloudFront content delivery network (CDN) service. This provides technical and non-technical stakeholders with versioned, current, and accessible API documentation.
  • Auto-generate client libraries for invoking the API and deploy them to AWS CodeArtifact, which is a fully-managed artifact repository service. This allows API client development teams to integrate with different versions of the API in different environments.

The diagram shown in the following figure depicts the architecture of the AWS services and resources described in this post.

 The architecture described in this post consists of an AWS CodePipeline pipeline, provisioned using the AWS CDK, that deploys the Widget API to AWS Lambda and API Gateway. The pipeline then auto-generates the API’s documentation as a website served by CloudFront and deployed to S3. Finally, the pipeline auto-generates a client library for the API and deploys this to CodeArtifact.

Figure 1 – Architecture

The code that accompanies this post, written in Java, is available here.

Background

APIs must be understood by all stakeholders and parties within an enterprise including business areas, management, enterprise architecture, and other teams wishing to consume the API. Unfortunately, API definitions are often hidden in code and lack up-to-date documentation. Therefore, they remain inaccessible for the majority of the API’s stakeholders. Furthermore, it’s often challenging to determine what version of an API is present in different environments at any one time.

This post describes some solutions to these issues by demonstrating how to continuously deliver up-to-date and accessible API documentation, API client libraries, and API deployments.

AWS CDK

The AWS CDK is a software development framework for defining cloud IaC and is available in multiple languages including TypeScript, JavaScript, Python, Java, C#/.Net, and Go. The AWS CDK Developer Guide provides best practices for using the CDK.

This post uses the CDK to define IaC in Java which is synthesized to a cloud assembly. The cloud assembly includes one to many templates and assets that are deployed via an AWS CodePipeline pipeline. A unit of deployment in the CDK is called a Stack.

OpenAPI specification (formerly Swagger specification)

OpenAPI specifications describe the capabilities of an API and are both human and machine-readable. They consist of definitions of API components which include resources, endpoints, operation parameters, authentication methods, and contact information.

Project composition

The API project that accompanies this post consists of three directories:

  • app
  • api
  • cdk

app directory

This directory contains the code for the Lambda function which is invoked when the Widget API is invoked via API Gateway. The code has been developed in Java as an Apache Maven project.

The Quarkus framework has been used to define a WidgetResource class (see src/main/java/aws/sample/blog/cdkopenapi/app/WidgetResources.java ) that contains the methods that align with HTTP Methods of the Widget API.
api directory

The api directory contains the OpenAPI specification file ( openapi.yaml ). This file is used as the source for:

  • Defining the REST API using API Gateway’s support for OpenApi.
  • Auto-generating the API documentation.
  • Auto-generating the API client artifact.

The api directory also contains the following files:

  • openapi-generator-config.yaml : This file contains configuration settings for the OpenAPI Generator framework, which is described in the section CI/CD Pipeline.
  • maven-settings.xml: This file is used support the deployment of the generated SDKs or libraries (Apache Maven artifacts) for the API and is described in the CI/CD Pipeline section of this post.

This directory contains a sub directory called docker . The docker directory contains a Dockerfile which defines the commands for building a Docker image:

FROM ruby:2.6.5-alpine
 
RUN apk update \
 && apk upgrade --no-cache \
 && apk add --no-cache --repository http://dl-cdn.alpinelinux.org/alpine/v3.14/main/ nodejs=14.20.0-r0 npm \
 && apk add git \
 && apk add --no-cache build-base
 
# Install Widdershins node packages and ruby gem bundler 
RUN npm install -g widdershins \
 && gem install bundler 
 
# working directory
WORKDIR /openapi
 
# Clone and install the Slate framework
RUN git clone https://github.com/slatedocs/slate
RUN cd slate \
 && bundle install

The Docker image incorporates two open source projects, the NodeJS Widdershins library and the Ruby Slate-framework. These are used together to auto-generate the documentation for the API from the OpenAPI specification.  This Dockerfile is referenced and built by the  ApiStack class, which is described in the CDK Stacks section of this post.

cdk directory

This directory contains an Apache Maven Project developed in Java for provisioning the CDK stacks for the  Widget API.

Under the  src/main/java  folder, the package  aws.sample.blog.cdkopenapi.cdk  contains the files and classes that define the application’s CDK stacks and also the entry point (main method) for invoking the stacks from the CDK Toolkit CLI:

  • CdkApp.java: This file contains the  CdkApp class which provides the main method that is invoked from the AWS CDK Toolkit to build and deploy the  application stacks.
  • ApiStack.java: This file contains the   ApiStack class which defines the  OpenApiBlogAPI   stack and is described in the CDK Stacks section of this post.
  • PipelineStack.java: This file contains the   PipelineStack class which defines the OpenAPIBlogPipeline  stack and is described in the CDK Stacks section of this post.
  • ApiStackStage.java: This file contains the  ApiStackStage class which defines a CDK stage. As detailed in the CI/CD Pipeline section of this post, a DEV stage, containing the  OpenApiBlogAPI stack resources for a DEV environment, is deployed from the  OpenApiBlogPipeline pipeline.

CDK stacks

ApiStack

Note that the CDK bundling functionality is used at multiple points in the  ApiStack  class to produce CDK Assets. The post, Building, bundling, and deploying applications with the AWS CDK, provides more details regarding using CDK bundling mechanisms.

The  ApiStack  class defines multiple resources including:

  • Widget API Lambda function: This is bundled by the CDK in a Docker container using the Java 11 runtime image.
  • Widget  REST API on API Gateway: The REST API is created from an Inline API Definition which is passed as an S3 CDK Asset. This asset includes a reference to the  Widget API OpenAPI specification located under the  api folder (see  api/openapi.yaml ) and builds upon the SpecRestApi construct and API Gateway’s support for OpenApi.
  • API documentation Docker Image Asset: This is the Docker image that contains the open source frameworks (Widdershins and Slate) that are leveraged to generate the API documentation.
  • CDK Asset bundling functionality that leverages the API documentation Docker image to auto-generate documentation for the API.
  • An S3 Bucket for holding the API documentation website.
  • An origin access identity (OAI) which allows CloudFront to securely serve the S3 Bucket API documentation content.
  • A CloudFront distribution which provides CDN functionality for the S3 Bucket website.

Note that the  ApiStack class features the following code which is executed on the  Widget API Lambda construct:

CfnFunction apiCfnFunction = (CfnFunction)apiLambda.getNode().getDefaultChild();
apiCfnFunction.overrideLogicalId("APILambda");

The CDK, by default, auto-assigns an ID for each defined resource but in this case the generated ID is being overridden with “APILambda”. The reason for this is that inside of the  Widget API OpenAPI specification (see  api/openapi.yaml ), there is a reference to the Lambda function by name (“APILambda”) so that the function can be integrated as a proxy for each listed API path and method combination. The OpenAPI specification includes this name as a variable to derive the Amazon Resource Name (ARN) for the Lambda function:

uri:
	Fn::Sub: "arn:aws:apigateway:${AWS::Region}:lambda:path/2015-03-31/functions/${APILambda.Arn}/invocations"

PipelineStack

The  PipelineStack class defines a CDK CodePipline construct which is a higher level construct and pattern. Therefore, the construct doesn’t just map directly to a single CloudFormation resource, but provisions multiple resources to fulfil the requirements of the pattern. The post, CDK Pipelines: Continuous delivery for AWS CDK applications, provides more detail on creating pipelines with the CDK.

final CodePipeline pipeline = CodePipeline.Builder.create(this, "OpenAPIBlogPipeline")
.pipelineName("OpenAPIBlogPipeline")
.selfMutation(true)
      .dockerEnabledForSynth(true)
      .synth(synthStep)
      .build();

CI/CD pipeline

The diagram in the following figure shows the multiple CodePipeline stages and actions created by the CDK CodePipeline construct that is defined in the PipelineStack class.

The CI/CD pipeline’s stages include the Source stage, the Synth stage, the Update pipeline, the Assets stage, and the DEV stage.

Figure 2 – CI/CD Pipeline

The stages defined include the following:

  • Source stage: The pipeline is passed the source code contents from this stage.
  • Synth stage: This stage consists of a Synth Action that synthesizes the CloudFormation templates for the application’s CDK stacks and compiles and builds the project Lambda API function.
  • Update Pipeline stage: This stage checks the OpenAPIBlogPipeline stack and reinitiates the pipeline when changes to its definition have been deployed.
  • Assets stage: The application’s CDK stacks produce multiple file assets (for example, zipped Lambda code) which are published to Amazon S3. Docker image assets are published to a managed CDK framework Amazon Elastic Container Registry (Amazon ECR) repository.
  • DEV stage: The API’s CDK stack ( OpenApiBlogAPI ) is deployed to a hypothetical development environment in this stage. A post stage deployment action is also defined in this stage. Through the use of a CDK ShellStep construct, a Bash script is executed that deploys a generated client Java Archive (JAR) for the Widget API to CodeArtifact. The script employs the OpenAPI Generator project for this purpose:
CodeBuildStep codeArtifactStep = CodeBuildStep.Builder.create("CodeArtifactDeploy")
    .input(pipelineSource)
    .commands(Arrays.asList(
           	"echo $REPOSITORY_DOMAIN",
           	"echo $REPOSITORY_NAME",
           	"export CODEARTIFACT_TOKEN=`aws codeartifact get-authorization-token --domain $REPOSITORY_DOMAIN --query authorizationToken --output text`",
           	"export REPOSITORY_ENDPOINT=$(aws codeartifact get-repository-endpoint --domain $REPOSITORY_DOMAIN --repository $REPOSITORY_NAME --format maven | jq .repositoryEndpoint | sed 's/\\\"//g')",
           	"echo $REPOSITORY_ENDPOINT",
           	"cd api",
           	"wget -q https://repo1.maven.org/maven2/org/openapitools/openapi-generator-cli/5.4.0/openapi-generator-cli-5.4.0.jar -O openapi-generator-cli.jar",
     	          "cp ./maven-settings.xml /root/.m2/settings.xml",
        	          "java -jar openapi-generator-cli.jar batch openapi-generator-config.yaml",
                    "cd client",
                    "mvn --no-transfer-progress deploy -DaltDeploymentRepository=openapi--prod::default::$REPOSITORY_ENDPOINT"
))
      .rolePolicyStatements(Arrays.asList(codeArtifactStatement, codeArtifactStsStatement))
.env(new HashMap<String, String>() {{
      		put("REPOSITORY_DOMAIN", codeArtifactDomainName);
            	put("REPOSITORY_NAME", codeArtifactRepositoryName);
       }})
      .build();

Running the project

To run this project, you must install the AWS CLI v2, the AWS CDK Toolkit CLI, a Java/JDK 11 runtime, Apache Maven, Docker, and a Git client. Furthermore, the AWS CLI must be configured for a user who has administrator access to an AWS Account. This is required to bootstrap the CDK in your AWS account (if not already completed) and provision the required AWS resources.

To build and run the project, perform the following steps:

  1. Fork the OpenAPI blog project in GitHub.
  2. Open the AWS Console and create a connection to GitHub. Note the connection’s ARN.
  3. In the Console, navigate to AWS CodeArtifact and create a domain and repository.  Note the names used.
  4. From the command line, clone your forked project and change into the project’s directory:
git clone https://github.com/<your-repository-path>
cd <your-repository-path>
  1. Edit the CDK JSON file at  cdk/cdk.json  and enter the details:
"RepositoryString": "<your-github-repository-path>",
"RepositoryBranch": "<your-github-repository-branch-name>",
"CodestarConnectionArn": "<connection-arn>",
"CodeArtifactDomain": "<code-artifact-domain-name>",
"CodeArtifactRepository": "<code-artifact-repository-name>"

Please note that for setting configuration values in CDK applications, it is recommend to use environment variables or AWS Systems Manager parameters.

  1. Commit and push your changes back to your GitHub repository:
git push origin main
  1. Change into the  cdk directory and bootstrap the CDK in your AWS account if you haven’t already done so (enter “Y” when prompted):
cd cdk
cdk bootstrap
  1. Deploy the CDK pipeline stack (enter “Y” when prompted):
cdk deploy OpenAPIBlogPipeline

Once the stack deployment completes successfully, the pipeline  OpenAPIBlogPipeline will start running. This will build and deploy the API and its associated resources. If you open the Console and navigate to AWS CodePipeline, then you’ll see a pipeline in progress for the API.

Once the pipeline has completed executing, navigate to AWS CloudFormation to get the output values for the  DEV-OpenAPIBlog  stack deployment:

  1. Select the  DEV-OpenAPIBlog  stack entry and then select the Outputs column. Record the REST_URL value for the key that begins with   OpenAPIBlogRestAPIEndpoint .
  2. Record the CLOUDFRONT_URL value for the key  OpenAPIBlogCloudFrontURL .

The API ping method at https://<REST_URL>/ping can now be invoked using your browser or an API development tool like Postman. Other API other methods, as defined by the OpenApi specification, are also available for invocation (For example, GET https://<REST_URL>/widgets).

To view the generated API documentation, open a browser at https://< CLOUDFRONT_URL>.

The following figure shows the API documentation website that has been auto-generated from the API’s OpenAPI specification. The documentation includes code snippets for using the API from multiple programming languages.

The API’s auto-generated documentation website provides descriptions of the API’s methods and resources as well as code snippets in multiple languages including JavaScript, Python, and Java.

Figure 3 – Auto-generated API documentation

To view the generated API client code artifact, open the Console and navigate to AWS CodeArtifact. The following figure shows the generated API client artifact that has been published to CodeArtifact.

The CodeArtifact service user interface in the Console shows the different versions of the API’s auto-generated client libraries.

Figure 4 – API client artifact in CodeArtifact

Cleaning up

  1. From the command change to the  cdk directory and remove the API stack in the DEV stage (enter “Y” when prompted):
cd cdk
cdk destroy OpenAPIBlogPipeline/DEV/OpenAPIBlogAPI
  1. Once this has completed, delete the pipeline stack:
cdk destroy OpenAPIBlogPipeline
  1. Delete the S3 bucket created to support pipeline operations. Open the Console and navigate to Amazon S3. Delete buckets with the prefix  openapiblogpipeline .

Conclusion

This post demonstrates the use of the AWS CDK to deploy a RESTful API defined by the OpenAPI/Swagger specification. Furthermore, this post describes how to use the AWS CDK to auto-generate API documentation, publish this documentation to a web site hosted on Amazon S3, auto-generate API client libraries or SDKs, and publish these artifacts to an Apache Maven repository hosted on CodeArtifact.

The solution described in this post can be improved by:

  • Building and pushing the API documentation Docker image to Amazon ECR, and then using this image in CodePipeline API pipelines.
  • Creating stages for different environments such as TEST, PREPROD, and PROD.
  • Adding integration testing actions to make sure that the API Deployment is working correctly.
  • Adding Manual approval actions for that are executed before deploying the API to PROD.
  • Using CodeBuild caching of artifacts including Docker images and libraries.

About the author:

Luke Popplewell

Luke Popplewell works primarily with federal entities in the Australian Government. In his role as an architect, Luke uses his knowledge and experience to help organisations reach their goals on the AWS cloud. Luke has a keen interest in serverless technology, modernization, DevOps and event-driven architectures.

Leverage L2 constructs to reduce the complexity of your AWS CDK application

Post Syndicated from David Boldt original https://aws.amazon.com/blogs/devops/leverage-l2-constructs-to-reduce-the-complexity-of-your-aws-cdk-application/

The AWS Cloud Development Kit (AWS CDK) is an open-source software development framework to define your cloud application resources using familiar programming languages. AWS CDK uses the familiarity and expressive power of programming languages for modeling your applications. Constructs are the basic building blocks of AWS CDK apps. A construct represents a “cloud component” and encapsulates everything that AWS CloudFormation needs to create the component. Furthermore, AWS Construct Library lets you ease the process of building your application using predefined templates and logic. Three levels of constructs exist:

  • L1 – These are low-level constructs called Cfn (short for CloudFormation) resources. They’re periodically generated from the AWS CloudFormation Resource Specification. The name pattern is CfnXyz, where Xyz is name of the resource. When using these constructs, you must configure all of the resource properties. This requires a full understanding of the underlying CloudFormation resource model and its corresponding attributes.
  • L2 – These represent AWS resources with a higher-level, intent-based API. They provide additional functionality with defaults, boilerplate, and glue logic that you’d be writing yourself with L1 constructs. AWS constructs offer convenient defaults and reduce the need to know all of the details about the AWS resources that they represent. This is done while providing convenience methods that make it simpler to work with the resources and as a result creating your application.
  • L3 – These constructs are called patterns. They’re designed to complete common tasks in AWS, often involving multiple types of resources.

In this post, I show a sample architecture and how the complexity of an AWS CDK application is reduced by using L2 constructs.

Overview of the sample architecture

This solution uses Amazon API Gateway, AWS Lambda, and Amazon DynamoDB. I implement a simple serverless web application. The application receives a POST request from a user via API Gateway and forwards it to a Lambda function using proxy integration. The Lambda function writes the request body to a DynamoDB table.

The sample code can be found on GitHub.

The sample code can be found on GitHub.

Walkthrough

You can follow the instructions in the README file of the GitHub repository to deploy the stack. In the following walkthrough, I explain each logical unit and the differences when implementing it using L1 and L2 constructs. Before each code sample, I’ll show the path in the GitHub repository where you can find its source.

Create the DynamoDB table

First, I create a DynamoDB table to store the request content.

L1 construct

With L1 constructs, I must define each attribute of a table separately. For the DynamoDB table, these are keySchemaattributeDefinitions, and provisionedThroughput. They all require detailed CloudFormation knowledge, for example, how a keyType is defined.

lib/level1/database/infrastructure.ts

this.cfnDynamoDbTable = new dynamodb.CfnTable(
   this, 
   "CfnDynamoDbTable", 
   {
      keySchema: [
         {
            attributeName: props.attributeName,
            keyType: "HASH",
         },
      ],
      attributeDefinitions: [
         {
            attributeName: props.attributeName,
            attributeType: "S",
         },
      ],
      provisionedThroughput: {
         readCapacityUnits: 5,
         writeCapacityUnits: 5,
      },
   },
);

L2 construct

The corresponding L2 construct lets me use the default values for readCapacity (5) and writeCapacity (5). To further reduce the complexity, I define the attributes and the partition key simultaneously. In addition, I utilize the dynamodb.AttributeType.STRING enum.

lib/level2/database/infrastructure.ts

this.dynamoDbTable = new dynamodb.Table(
   this, 
   "DynamoDbTable", 
   {
      partitionKey: {
         name: props.attributeName,
         type: dynamodb.AttributeType.STRING,
      },
   },
);

Create the Lambda function

Next, I create a Lambda function which receives the request and stores the content in the DynamoDB table. The runtime code uses Node.js.

L1 construct

When creating a Lambda function using L1 construct, I must specify all of the properties at creation time – the business logic code location, runtime, and the function handler. This includes the role for the Lambda function to assume. As a result, I must provide the Attribute Resource Name (ARN) of the role. In the “Granting permissions” sections later in this post, I show how to create this role.

lib/level1/api/infrastructure.ts

const cfnLambdaFunction = new lambda.CfnFunction(
   this, 
   "CfnLambdaFunction", 
   {
      code: {
         zipFile: fs.readFileSync(
            path.resolve(__dirname, "runtime/index.js"),
            "utf8"
         ),
      },
      role: this.cfnIamLambdaRole.attrArn,
      runtime: "nodejs16.x",
      handler: "index.handler",
      environment: {
         variables: {
            TABLE_NAME: props.dynamoDbTableArn,
         },
      },
   },
);

L2 construct

I can achieve the same result with less complexity by leveraging the NodejsFunction L2 construct for Lambda function. It sets a default version for Node.js runtime unless another one is explicitly specified. The construct creates a Lambda function with automatic transpiling and bundling of TypeScript or Javascript code. This results in smaller Lambda packages that contain only the code and dependencies needed to run the function, and it uses esbuild under the hood. The Lambda function handler code is located in the runtime directory of the API logical unit. I provide the path to the Lambda handler file in the entry property. I don’t have to specify the handler function name, because the NodejsFunction construct uses the handler name by default. Moreover, a Lambda execution role isn’t required to be provided during L2 Lambda construct creation. If no role is specified, then a default one is generated which has permissions for Lambda execution. In the section ‘Granting Permissions’, I describe how to customize the role after creating the construct.

lib/level2/api/infrastructure.ts

this.lambdaFunction = new lambda_nodejs.NodejsFunction(
   this, 
   "LambdaFunction", 
   {
      entry: path.resolve(__dirname, "runtime/index.ts"),
      runtime: lambda.Runtime.NODEJS_16_X,
      environment: {
         TABLE_NAME: props.dynamoDbTableName,
      },
   },
);

Create API Gateway REST API

Next, I define the API Gateway REST API to receive POST requests with Cross-origin resource sharing (CORS) enabled.

L1 construct

Every step, from creating a new API Gateway REST API, to the deployment process, must be configured individually. With an L1 construct, I must have a good understanding of CORS and the exact configuration of headers and methods.

Furthermore, I must know all of the specifics, such as for the Lambda integration type I must know how to construct the URI.

lib/level1/api/infrastructure.ts

const cfnApiGatewayRestApi = new apigateway.CfnRestApi(
   this, 
   "CfnApiGatewayRestApi", 
   {
      name: props.apiName,
   },
);

const cfnApiGatewayPostMethod = new apigateway.CfnMethod(
   this, 
   "CfnApiGatewayPostMethod", 
   {
      httpMethod: "POST",
      resourceId: cfnApiGatewayRestApi.attrRootResourceId,
      restApiId: cfnApiGatewayRestApi.ref,
      authorizationType: "NONE",
      integration: {
         credentials: cfnIamApiGatewayRole.attrArn,
         type: "AWS_PROXY",
         integrationHttpMethod: "ANY",
         uri:
            "arn:aws:apigateway:" +
            Stack.of(this).region +
            ":lambda:path/2015-03-31/functions/" +
            cfnLambdaFunction.attrArn +
            "/invocations",
            passthroughBehavior: "WHEN_NO_MATCH",
      },
   },
);

const CfnApiGatewayOptionsMethod = new apigateway.CfnMethod(
    this,
    "CfnApiGatewayOptionsMethod",
   {    
      // fields omitted
   },
);

const cfnApiGatewayDeployment = new apigateway.CfnDeployment(
    this,
    "cfnApiGatewayDeployment",
    {
      restApiId: cfnApiGatewayRestApi.ref,
      stageName: "prod",
    },
);

L2 construct

Creating an API Gateway REST API with CORS enabled is simpler with L2 constructs. I can leverage the defaultCorsPreflightOptions property and the construct builds the required options method. To set origins and methods, I can use the apigateway.Cors enum. To configure the Lambda proxy option, all I need to do is to set the proxy variable in the method to true. A default deployment is created automatically.

lib/level2/api/infrastructure.ts

this.api = new apigateway.RestApi(
   this, 
   "ApiGatewayRestApi", 
   {
      defaultCorsPreflightOptions: {
         allowOrigins: apigateway.Cors.ALL_ORIGINS,
         allowMethods: apigateway.Cors.ALL_METHODS,
      },
   },
);

this.api.root.addMethod(
    "POST",
    new apigateway.LambdaIntegration(this.lambdaFunction, {
      proxy: true,
    })
);

Granting permissions

In the sample application, I must give permissions to two different resources:

  1.  API Gateway REST API to invoke the Lambda function.
  2. Lambda function to write data to the DynamoDB table.

L1 construct

For both resources, I must define AWS Identity and Access Management (IAM) roles. This requires in-depth knowledge of IAM, how policies are structured, and which actions are required. In the following code snippet, I start by creating the policy documents. Afterward, I create a role for each resource. These are provided at creation time to the corresponding constructs as shown earlier.

lib/level1/api/infrastructure.ts

const cfnLambdaAssumeIamPolicyDocument = {
    // fields omitted
};

this.cfnLambdaIamRole = new iam.CfnRole(
   this, 
   "cfnLambdaIamRole", 
   {
      assumeRolePolicyDocument: cfnLambdaAssumeIamPolicyDocument,
      managedPolicyArns: [
        "arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole",
      ],
   },
);
    
const cfnApiGatewayAssumeIamPolicyDocument = {
   // fields omitted
};

const cfnApiGatewayInvokeLambdaIamPolicyDocument = {
   Version: "2012-10-17",
   Statement: [
      {
         Action: ["lambda:InvokeFunction"],
         Resource: [cfnLambdaFunction.attrArn],
         Effect: "Allow",
      },
   ],
};

const cfnApiGatewayIamRole = new iam.CfnRole(
   this, 
   "cfnApiGatewayIamRole", 
   {
      assumeRolePolicyDocument: cfnApiGatewayAssumeIamPolicyDocument,
      policies: [{
         policyDocument: cfnApiGatewayInvokeLambdaIamPolicyDocument,
         policyName: "ApiGatewayInvokeLambdaIamPolicy",
      }],
   },
);

The database construct exposes a function to grant write access to any IAM role. The function creates a policy, which allows dynamodb:PutItem on the database table and adds it as an additional policy to the role.

lib/level1/database/infrastructure.ts

grantWriteData(cfnIamRole: iam.CfnRole) {
   const cfnPutDynamoDbIamPolicyDocument = {
      Version: "2012-10-17",
      Statement: [
         {
            Action: ["dynamodb:PutItem"],
            Resource: [this.cfnDynamoDbTable.attrArn],
            Effect: "Allow",
         },
      ],
   };

    cfnIamRole.policies = [{
        policyDocument: cfnPutDynamoDbIamPolicyDocument,
        policyName: "PutDynamoDbIamPolicy",
    }];
}

At this point, all permissions are in place, except that Lambda function doesn’t have permissions to write data to the DynamoDB table yet. To grant write access, I call the grantWriteData function of the Database construct with the IAM role of the Lambda function.

lib/deployment.ts

database.grantWriteData(api.cfnLambdaIamRole)

L2 construct

Creating an API Gateway REST API with the LambdaIntegration construct generates the IAM role and attaches the role to the API Gateway REST API method. Giving the Lambda function permission to write to the DynamoDB table can be achieved with the following single line:

lib/deployment.ts

database.dynamoDbTable.grantWriteData(api.lambdaFunction);

Using L3 constructs

To reduce complexity even further, I can leverage L3 constructs. In the case of this sample architecture, I can utilize the LambdaRestApi construct. This construct uses a default Lambda proxy integration. It automatically generates a method and a deployment, and grants permissions. As a result, I can achieve the same with even less code.

const restApi = new apigateway.LambdaRestApi(
   this, 
   "restApiLevel3", 
   {
      handler: this.lambdaFunction,
      defaultCorsPreflightOptions: {
         allowOrigins: apigateway.Cors.ALL_ORIGINS,
         allowMethods: apigateway.Cors.ALL_METHODS
      },
   },
);

Cleanup

Many services in this post are available in the AWS Free Tier. However, using this solution may incur costs, and you should tear down the stack if you don’t need it anymore. Cleanup steps are included in the RADME file of the GitHub repository.

Conclusion

In this post, I highlight the difference between using L1 and L2 AWS CDK constructs with an example architecture. Leveraging L2 constructs reduces the complexity of your application by using predefined patterns, boiler plate, and glue logic. They offer convenient defaults and reduce the need to know all of the details about the AWS resources they represent, while providing convenient methods that make it simpler to work with the resource. Additionally, I showed how to reduce complexity for common tasks even further by using an L3 construct.

Visit the AWS CDK documentation to learn more about building resilient, scalable, and cost-efficient architectures with the expressive power of a programming language.

Author:

David Boldt

David Boldt is a Solutions Architect at AWS, based in Hamburg, Germany. David works with customers to enable them with best practices in their cloud journey. He is passionate about the internet of Things and how it can be leveraged to solve different challenges across industries.

Announcing the Cloudflare API Gateway

Post Syndicated from Ben Solomon original https://blog.cloudflare.com/api-gateway/

Announcing the Cloudflare API Gateway

Announcing the Cloudflare API Gateway

Over the past decade, the Internet has experienced a tectonic shift. It used to be composed of static websites: with text, images, and the occasional embedded movie. But the Internet has grown enormously. We now rely on API-driven applications to help with almost every aspect of life. Rather than just download files, we are able to engage with apps by exchanging rich data. We track workouts and send the results to the cloud. We use smart locks and all kinds of IoT devices. And we interact with our friends online.

This is all wonderful, but it comes with an explosion of complexity on the back end. Why? Developers need to manage APIs in order to support this functionality. They need to monitor and authenticate every single request. And because these tasks are so difficult, they’re usually outsourced to an API gateway provider.

Unfortunately, today’s gateways leave a lot to be desired. First: they’re not cheap. Then there’s the performance impact. And finally, there’s a data and privacy risk, since more than 50% of traffic reaches APIs (and is presumably sent through a third party gateway). What a mess.

Today we’re announcing the Cloudflare API Gateway. We’re going to completely replace your existing gateway at a fraction of the cost. And our solution uses the technology behind Workers, Bot Management, Access, and Transform Rules to provide the most advanced API toolset on the market.

What is API Gateway?

In short, it’s a package of features that will do everything for your APIs. We break it down into three categories:

Security
These are the products we have already blogged about. Tools like Discovery, Schema Validation, Abuse Detection, and more. We’ve spent a lot of time applying our security expertise to the world of APIs.

Management & Monitoring
These are the foundational tools that keep your APIs in order. Some examples: analytics, routing, and authentication. We are already able to do these things with existing products like Cloudflare Access, and more features are on the way.

Everything Else
These are the small (but crucial) items that keep everything running. Cloudflare already offers SSL/TLS termination, load balancing, and proxy services that can run by default.

Today’s blog post describes each feature in detail. We’re excited to announce that all the security features are now generally available, so let’s start by discussing those.

Discovery

Our customers are eager to protect their APIs. Unfortunately, they don’t always have these endpoints documented—or worse, they think everything is documented, but have unknowingly lost or modified endpoints. These hidden endpoints are sometimes called shadow APIs. We need to begin our journey with an exhaustive (and accurate) picture of API surface area.

That’s where Discovery comes in. Head to the Cloudflare dashboard, select the Security tab, then choose “API Shield.” Activate the feature and tell us how you want to identify your API traffic. Most users provide a header (available today), but we can also use the request body or cookie (available soon).

Announcing the Cloudflare API Gateway

We provide an exhaustive list of your API endpoints. Cloudflare lists each method, path, and additional metadata to help you understand your surface area. We even collapse endpoints that include variables (e.g., /account/217) to become generally applicable (e.g., /account/{var1}).

Discovery is a powerful countermeasure to entropy. Our customers often expect to find 30 endpoints, but are surprised to learn they have over 100 active endpoints.

Schema Validation

Perhaps you already have a schema for your API endpoints. A schema is like a template: it provides the paths, methods, and additional data you expect API requests to include. Many developers follow the OpenAPI standard to generate (and maintain) a schema.

To harden your security, we can validate incoming traffic against this schema. This is a great way to stop basic attacks. Cloudflare will turn away nonconforming requests, discarding nonsense traffic that ignored the dress code. Simply upload your schema to the dashboard, select the actions you want to take, and deploy:

Announcing the Cloudflare API Gateway

Schema Validation has already vetted traffic for some of the world’s largest crypto sites, delivery services, and payment platforms. It’s available now, and we’ll add body validation soon.

Abuse Detection

A robust security approach will use Schema Validation and Discovery in tandem, ensuring traffic matches the expected format. But what about abusive traffic that makes it through?

As Cloudflare discovers new API endpoints, we actually suggest rate limits for each one. That’s the role of Abuse Detection, and it opens the door to a more sophisticated kind of security.

Consider an API endpoint that returns weather updates. Specifically, the endpoint will return “yes” if it is likely to snow in the next hour, and “no” otherwise. Our algorithm might detect that the average user requests this data once every 10 minutes. A small group of scrapers, however, makes 37 requests per 10 minutes. Cloudflare automatically recommends a threshold in between, weighted to provide normal users with some breathing room. This would prevent abusive scraping services from fetching the weather too often.

Announcing the Cloudflare API Gateway

We provide the option to create a rule using our new Advanced Rate Limiting engine. You can use cookies, headers, and more to tune thresholds. We’ve been using Abuse Detection to protect api.cloudflare.com for months now.

Our favorite part of this feature: it relies on the machine learning approach we use for Bot Management. Just another way our products can feed into (and benefit from) each other.

Abuse Detection is available now. If you’re interested in Sequential Abuse Detection, which we use to flag anomalous request flows, check out our previous blog post. The sequential piece is in early access, and we’re continuing to tune it before an official launch.

mTLS

Mutual TLS takes security to a new level. You can use certificates to validate incoming traffic as it reaches your APIs—which is especially useful for mobile and IoT devices. Moreover, this is an excellent positive security model that can (and should) be adopted for most device ecosystems.

Announcing the Cloudflare API Gateway

As an example, let’s return to our weather API. Perhaps this service includes a second endpoint that receives the current temperature from a thermometer. But there’s a problem: anyone can make fake requests, providing inaccurate readings to the endpoint. To prevent this, use mTLS to install a client certificate on the legitimate thermometer, then let Cloudflare validate that certificate. Any other requests will be turned away. Problem solved!

We already offer a set of free certificates to every Cloudflare customer. That will continue. But starting today, API Gateway customers get unlimited certificates by default.

Authentication

Many modern APIs require authentication. In fact, authentication unlocks all sorts of capabilities—it allows sessions (with login), personal data exchange, and infrastructure efficiency. And of course, Cloudflare protects authenticated traffic as it passes through our network.

But with API Gateway, Cloudflare plays a more active role in authenticating traffic, helping to issue and validate the following:

  • API keys
  • JSON web tokens (JWT)
  • OAuth 2.0 tokens

Using access control lists, we help you manage different user groups with varying permissions. And this matters—because your current provider is introducing tons of latency and unnecessary data exchange. If a request has to go somewhere outside the Cloudflare ecosystem, it’s traveling farther than it needs to:

Announcing the Cloudflare API Gateway

Cloudflare can authenticate on our global network and handle requests in a fraction of the time. This kind of technology is difficult to implement, but we felt it was too important to ignore. How did we build it so quickly? Cloudflare Access. We took our experience working with identity providers and, once again, ported it over to the world of APIs. Our gateway includes unlimited authentication and token exchange. These features will be available soon.

Routing & Management

Let’s talk briefly about microservices. Modern applications are behemoths, so developers break them up into smaller chunks called “microservices.”

Consider an application that helps you book a hotel room. It might use a microservice to fetch available dates, another to fetch prices, and still another to fetch room types. Perhaps a different team manages each microservice, but they all need to be available from a single public entry point:

Announcing the Cloudflare API Gateway

That single entry point—traditionally managed by an API gateway—is responsible for routing each request to the right microservice. Many of our customers have been paying standalone services to do this for years. That’s no longer necessary. We’ve built on our Transform Rules product to dynamically re-write and re-route at our edge. It’s easy to configure, fast to deploy, and natively built into API Gateway. Cloudflare can now be your API’s single point of entry.

That’s just the tip of the iceberg. API Gateway can actually replace your microservices through an integration with our Workers product. How? Consider writing a Worker that performs some action; perhaps return hotel prices, which are stored with Durable Objects on our network. With API Gateway, requests arrive at our network, are routed to the correct microservice with Transform Rules, and then are fully served with Workers (still on our network!). These Workers may contact your origin for additional information, where necessary.

Announcing the Cloudflare API Gateway

Workers are faster, cheaper, and simpler than microservice alternatives. This integration will be available soon.

API Analytics

Customers tell us that seeing API traffic is sometimes more important than even acting on it. In fact, this trend isn’t specific to APIs. We published another blog today that explores how one customer uses our bot intelligence to passively log information about threats.

Announcing the Cloudflare API Gateway

With API Analytics, we’ve drawn on our other products to show useful data in real time. You can view popular endpoints, filter by ML-driven insights, see histograms of abuse thresholds, and capture trends.

API Analytics will be available soon. When this happens, you’ll also be able to export custom reports and share insights within your organization.

Logging, Quota Management, and More

All of our established features, like caching, load balancing, and log integrations work natively with API Gateway. These shouldn’t be overlooked as primitive gateway features; they’re essential. And because Cloudflare performs all of these functions in the same place, you get the latency benefits without having to do a thing.

We are also expanding our Enterprise Logs functionality to perform real-time logging. If you choose to authenticate on Cloudflare’s network, you can view detailed logs of each user who has accessed an API. Similarly, we keep track of each request’s lifespan as it is received, validated, routed, and responded to. Everything is logged.

Finally, we are building Quota Management, a feature that counts API requests over a longer period of time (like a month) and allows you to manage thresholds for your users. We’ve also launched Advanced Rate Limiting to help with more sophisticated cases (including body inspection for GraphQL).

Conclusion

Our API security features—Discovery, Schema Validation, Abuse Detection, and mTLS—are available now! We call these features API Shield because they form the shield that protects the remaining gateway functions. Enterprise customers can ask their account teams for access today.

Many of the other portions of API Gateway are now in early access. According to Gartner®, “by 2025, less than 50% of enterprise APIs will be managed, as explosive growth in APIs surpasses the capabilities of API management tools.” Our goal is to offer an affordable gateway that will fight this trend. If you have a specific feature you want to test, let your account team know, so we can onboard you as soon as possible.

Source: Gartner, “Predicts 2022: APIs Demand Improved Security and Management”, Shameen Pillai, Jeremy D’Hoinne, John Santoro, Mark O’Neill, Sham Gill, 6 December 2021. GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.

Use Macie to discover sensitive data as part of automated data pipelines

Post Syndicated from Brandon Wu original https://aws.amazon.com/blogs/security/use-macie-to-discover-sensitive-data-as-part-of-automated-data-pipelines/

Data is a crucial part of every business and is used for strategic decision making at all levels of an organization. To extract value from their data more quickly, Amazon Web Services (AWS) customers are building automated data pipelines—from data ingestion to transformation and analytics. As part of this process, my customers often ask how to prevent sensitive data, such as personally identifiable information, from being ingested into data lakes when it’s not needed. They highlight that this challenge is compounded when ingesting unstructured data—such as files from process reporting, text files from chat transcripts, and emails. They also mention that identifying sensitive data inadvertently stored in structured data fields—such as in a comment field stored in a database—is also a challenge.

In this post, I show you how to integrate Amazon Macie as part of the data ingestion step in your data pipeline. This solution provides an additional checkpoint that sensitive data has been appropriately redacted or tokenized prior to ingestion. Macie is a fully managed data security and privacy service that uses machine learning and pattern matching to discover sensitive data in AWS.

When Macie discovers sensitive data, the solution notifies an administrator to review the data and decide whether to allow the data pipeline to continue ingesting the objects. If allowed, the objects will be tagged with an Amazon Simple Storage Service (Amazon S3) object tag to identify that sensitive data was found in the object before progressing to the next stage of the pipeline.

This combination of automation and manual review helps reduce the risk that sensitive data—such as personally identifiable information—will be ingested into a data lake. This solution can be extended to fit your use case and workflows. For example, you can define custom data identifiers as part of your scans, add additional validation steps, create Macie suppression rules to archive findings automatically, or only request manual approvals for findings that meet certain criteria (such as high severity findings).

Solution overview

Many of my customers are building serverless data lakes with Amazon S3 as the primary data store. Their data pipelines commonly use different S3 buckets at each stage of the pipeline. I refer to the S3 bucket for the first stage of ingestion as the raw data bucket. A typical pipeline might have separate buckets for raw, curated, and processed data representing different stages as part of their data analytics pipeline.

Typically, customers will perform validation and clean their data before moving it to a raw data zone. This solution adds validation steps to that pipeline after preliminary quality checks and data cleaning is performed, noted in blue (in layer 3) of Figure 1. The layers outlined in the pipeline are:

  1. Ingestion – Brings data into the data lake.
  2. Storage – Provides durable, scalable, and secure components to store the data—typically using S3 buckets.
  3. Processing – Transforms data into a consumable state through data validation, cleanup, normalization, transformation, and enrichment. This processing layer is where the additional validation steps are added to identify instances of sensitive data that haven’t been appropriately redacted or tokenized prior to consumption.
  4. Consumption – Provides tools to gain insights from the data in the data lake.

 

Figure 1: Data pipeline with sensitive data scan

Figure 1: Data pipeline with sensitive data scan

The application runs on a scheduled basis (four times a day, every 6 hours by default) to process data that is added to the raw data S3 bucket. You can customize the application to perform a sensitive data discovery scan during any stage of the pipeline. Because most customers do their extract, transform, and load (ETL) daily, the application scans for sensitive data on a scheduled basis before any crawler jobs run to catalog the data and after typical validation and data redaction or tokenization processes complete.

You can expect that this additional validation will add 5–10 minutes to your pipeline execution at a minimum. The validation processing time will scale linearly based on object size, but there is a start-up time per job that is constant.

If sensitive data is found in the objects, an email is sent to the designated administrator requesting an approval decision, which they indicate by selecting the link corresponding to their decision to approve or deny the next step. In most cases, the reviewer will choose to adjust the sensitive data cleanup processes to remove the sensitive data, deny the progression of the files, and re-ingest the files in the pipeline.

Additional considerations for deploying this application for regular use are discussed at the end of the blog post.

Application components

The following resources are created as part of the application:

Note: the application uses various AWS services, and there are costs associated with these resources after the Free Tier usage. See AWS Pricing for details. The primary drivers of the solution cost will be the amount of data ingested through the pipeline, both for Amazon S3 storage and data processed for sensitive data discovery with Macie.

The architecture of the application is shown in Figure 2 and described in the text that follows.
 

Figure 2: Application architecture and logic

Figure 2: Application architecture and logic

Application logic

  1. Objects are uploaded to the raw data S3 bucket as part of the data ingestion process.
  2. A scheduled EventBridge rule runs the sensitive data scan Step Functions workflow.
  3. triggerMacieScan Lambda function moves objects from the raw data S3 bucket to the scan stage S3 bucket.
  4. triggerMacieScan Lambda function creates a Macie sensitive data discovery job on the scan stage S3 bucket.
  5. checkMacieStatus Lambda function checks the status of the Macie sensitive data discovery job.
  6. isMacieStatusCompleteChoice Step Functions Choice state checks whether the Macie sensitive data discovery job is complete.
    1. If yes, the getMacieFindingsCount Lambda function runs.
    2. If no, the Step Functions Wait state waits 60 seconds and then restarts Step 5.
  7. getMacieFindingsCount Lambda function counts all of the findings from the Macie sensitive data discovery job.
  8. isSensitiveDataFound Step Functions Choice state checks whether sensitive data was found in the Macie sensitive data discovery job.
    1. If there was sensitive data discovered, run the triggerManualApproval Lambda function.
    2. If there was no sensitive data discovered, run the moveAllScanStageS3Files Lambda function.
  9. moveAllScanStageS3Files Lambda function moves all of the objects from the scan stage S3 bucket to the scanned data S3 bucket.
  10. triggerManualApproval Lambda function tags and moves objects with sensitive data discovered to the manual review S3 bucket, and moves objects with no sensitive data discovered to the scanned data S3 bucket. The function then sends a notification to the ApprovalRequestNotification Amazon SNS topic as a notification that manual review is required.
  11. Email is sent to the email address that’s subscribed to the ApprovalRequestNotification Amazon SNS topic (from the application deployment template) for the manual review user with the option to Approve or Deny pipeline ingestion for these objects.
  12. Manual review user assesses the objects with sensitive data in the manual review S3 bucket and selects the Approve or Deny links in the email.
  13. The decision request is sent from the Amazon API Gateway to the receiveApprovalDecision Lambda function.
  14. manualApprovalChoice Step Functions Choice state checks the decision from the manual review user.
    1. If denied, run the deleteManualReviewS3Files Lambda function.
    2. If approved, run the moveToScannedDataS3Files Lambda function.
  15. deleteManualReviewS3Files Lambda function deletes the objects from the manual review S3 bucket.
  16. moveToScannedDataS3Files Lambda function moves the objects from the manual review S3 bucket to the scanned data S3 bucket.
  17. The next step of the automated data pipeline will begin with the objects in the scanned data S3 bucket.

Prerequisites

For this application, you need the following prerequisites:

You can use AWS Cloud9 to deploy the application. AWS Cloud9 includes the AWS CLI and AWS SAM CLI to simplify setting up your development environment.

Deploy the application with AWS SAM CLI

You can deploy this application using the AWS SAM CLI. AWS SAM uses AWS CloudFormation as the underlying deployment mechanism. AWS SAM is an open-source framework that you can use to build serverless applications on AWS.

To deploy the application

  1. Initialize the serverless application using the AWS SAM CLI from the GitHub project in the aws-samples repository. This will clone the project locally which includes the source code for the Lambda functions, Step Functions state machine definition file, and the AWS SAM template. On the command line, run the following:
    sam init --location gh: aws-samples/amazonmacie-datapipeline-scan
    

    Alternatively, you can clone the Github project directly.

  2. Deploy your application to your AWS account. On the command line, run the following:
    sam deploy --guided
    

    Complete the prompts during the guided interactive deployment. The first deployment prompt is shown in the following example.

    Configuring SAM deploy
    ======================
    
            Looking for config file [samconfig.toml] :  Found
            Reading default arguments  :  Success
    
            Setting default arguments for 'sam deploy'
            =========================================
            Stack Name [maciepipelinescan]:
    

  3. Settings:
    • Stack Name – Name of the CloudFormation stack to be created.
    • AWS RegionRegion—for example, us-west-2, eu-west-1, ap-southeast-1—to deploy the application to. This application was tested in the us-west-2 and ap-southeast-1 Regions. Before selecting a Region, verify that the services you need are available in those Regions (for example, Macie and Step Functions).
    • Parameter StepFunctionName – Name of the Step Functions state machine to be created—for example, maciepipelinescanstatemachine).
    • Parameter BucketNamePrefix – Prefix to apply to the S3 buckets to be created (S3 bucket names are globally unique, so choosing a random prefix helps ensure uniqueness).
    • Parameter ApprovalEmailDestination – Email address to receive the manual review notification.
    • Parameter EnableMacie – Whether you need Macie enabled in your account or Region. You can select yes or no; select yes if you need Macie to be enabled for you as part of this template, select no, if you already have Macie enabled.
  4. Confirm changes and provide approval for AWS SAM CLI to deploy the resources to your AWS account by responding y to prompts, as shown in the following example. You can accept the defaults for the SAM configuration file and SAM configuration environment prompts.
    #Shows you resources changes to be deployed and require a 'Y' to initiate deploy
    Confirm changes before deploy [y/N]: y
    #SAM needs permission to be able to create roles to connect to the resources in your template
    Allow SAM CLI IAM role creation [Y/n]: y
    ReceiveApprovalDecisionAPI may not have authorization defined, Is this okay? [y/N]: y
    ReceiveApprovalDecisionAPI may not have authorization defined, Is this okay? [y/N]: y
    Save arguments to configuration file [Y/n]: y
    SAM configuration file [samconfig.toml]: 
    SAM configuration environment [default]:
    

    Note: This application deploys an Amazon API Gateway with two REST API resources without authorization defined to receive the decision from the manual review step. You will be prompted to accept each resource without authorization. A token (Step Functions taskToken) is used to authenticate the requests.

  5. This creates an AWS CloudFormation changeset. Once the changeset creation is complete, you must provide a final confirmation of y to Deploy the changeset? [y/N] when prompted as shown in the following example.
    Changeset created successfully. arn:aws:cloudformation:ap-southeast-1:XXXXXXXXXXXX:changeSet/samcli-deploy1605213119/db681961-3635-4305-b1c7-dcc754c7XXXX
    
    
    Previewing CloudFormation changeset before deployment
    ======================================================
    Deploy this changeset? [y/N]:
    

Your application is deployed to your account using AWS CloudFormation. You can track the deployment events in the command prompt or via the AWS CloudFormation console.

After the application deployment is complete, you must confirm the subscription to the Amazon SNS topic. An email will be sent to the email address entered in Step 3 with a link that you need to select to confirm the subscription. This confirmation provides opt-in consent for AWS to send emails to you via the specified Amazon SNS topic. The emails will be notifications of potentially sensitive data that need to be approved. If you don’t see the verification email, be sure to check your spam folder.

Test the application

The application uses an EventBridge scheduled rule to start the sensitive data scan workflow, which runs every 6 hours. You can manually start an execution of the workflow to verify that it’s working. To test the function, you will need a file that contains data that matches your rules for sensitive data. For example, it is easy to create a spreadsheet, document, or text file that contains names, addresses, and numbers formatted like credit card numbers. You can also use this generated sample data to test Macie.

We will test by uploading a file to our S3 bucket via the AWS web console. If you know how to copy objects from the command line, that also works.

Upload test objects to the S3 bucket

  1. Navigate to the Amazon S3 console and upload one or more test objects to the <BucketNamePrefix>-data-pipeline-raw bucket. <BucketNamePrefix> is the prefix you entered when deploying the application in the AWS SAM CLI prompts. You can use any objects as long as they’re a supported file type for Amazon Macie. I suggest uploading multiple objects, some with and some without sensitive data, in order to see how the workflow processes each.

Start the Scan State Machine

  1. Navigate to the Step Functions state machines console. If you don’t see your state machine, make sure you’re connected to the same region that you deployed your application to.
  2. Choose the state machine you created using the AWS SAM CLI as seen in Figure 3. The example state machine is maciepipelinescanstatemachine, but you might have used a different name in your deployment.
     
    Figure 3: AWS Step Functions state machines console

    Figure 3: AWS Step Functions state machines console

  3. Select the Start execution button and copy the value from the Enter an execution name – optional box. Change the Input – optional value replacing <execution id> with the value just copied as follows:
    {
        “id”: “<execution id>”
    }
    

    In my example, the <execution id> is fa985a4f-866b-b58b-d91b-8a47d068aa0c from the Enter an execution name – optional box as shown in Figure 4. You can choose a different ID value if you prefer. This ID is used by the workflow to tag the objects being processed to ensure that only objects that are scanned continue through the pipeline. When the EventBridge scheduled event starts the workflow as scheduled, an ID is included in the input to the Step Functions workflow. Then select Start execution again.
     

    Figure 4: New execution dialog box

    Figure 4: New execution dialog box

  4. You can see the status of your workflow execution in the Graph inspector as shown in Figure 5. In the figure, the workflow is at the pollForCompletionWait step.
     
    Figure 5: AWS Step Functions graph inspector

    Figure 5: AWS Step Functions graph inspector

The sensitive discovery job should run for about five to ten minutes. The jobs scale linearly based on object size, but there is a start-up time per job that is constant. If sensitive data is found in the objects uploaded to the <BucketNamePrefix>-data-pipeline-upload S3 bucket, an email is sent to the address provided during the AWS SAM deployment step, notifying the recipient requesting of the need for an approval decision, which they indicate by selecting the link corresponding to their decision to approve or deny the next step as shown in Figure 6.
 

Figure 6: Sensitive data identified email

Figure 6: Sensitive data identified email

When you receive this notification, you can investigate the findings by reviewing the objects in the <BucketNamePrefix>-data-pipeline-manual-review S3 bucket. Based on your review, you can either apply remediation steps to remove any sensitive data or allow the data to proceed to the next step of the data ingestion pipeline. You should define a standard response process to address discovery of sensitive data in the data pipeline. Common remediation steps include review of the files for sensitive data, deleting the files that you do not want to progress, and updating the ETL process to redact or tokenize sensitive data when re-ingesting into the pipeline. When you re-ingest the files into the pipeline without sensitive data, the files will not be flagged by Macie.

The workflow performs the following:

  • If you select Approve, the files are moved to the <BucketNamePrefix>-data-pipeline-scanned-data S3 bucket with an Amazon S3 SensitiveDataFound object tag with a value of true.
  • If you select Deny, the files are deleted from the <BucketNamePrefix>-data-pipeline-manual-review S3 bucket.
  • If no action is taken, the Step Functions workflow execution times out after five days and the file will automatically be deleted from the <BucketNamePrefix>-data-pipeline-manual-review S3 bucket after 10 days.

Clean up the application

You’ve successfully deployed and tested the sensitive data pipeline scan workflow. To avoid ongoing charges for resources you created, you should delete all associated resources by deleting the CloudFormation stack. In order to delete the CloudFormation stack, you must first delete all objects that are stored in the S3 buckets that you created for the application.

To delete the application

  1. Empty the S3 buckets created in this application (<BucketNamePrefix>-data-pipeline-raw S3 bucket, <BucketNamePrefix>-data-pipeline-scan-stage, <BucketNamePrefix>-data-pipeline-manual-review, and <BucketNamePrefix>-data-pipeline-scanned-data).
  2. Delete the CloudFormation stack used to deploy the application.

Considerations for regular use

Before using this application in a production data pipeline, you will need to stop and consider some practical matters. First, the notification mechanism used when sensitive data is identified in the objects is email. Email doesn’t scale: you should expand this solution to integrate with your ticketing or workflow management system. If you choose to use email, subscribe a mailing list so that the work of reviewing and responding to alerts is shared across a team.

Second, the application is run on a scheduled basis (every 6 hours by default). You should consider starting the application when your preliminary validations have completed and are ready to perform a sensitive data scan on the data as part of your pipeline. You can modify the EventBridge Event Rule to run in response to an Amazon EventBridge event instead of a scheduled basis.

Third, the application currently uses a 60 second Step Functions Wait state when polling for the Macie discovery job completion. In real world scenarios, the discovery scan will take 10 minutes at a minimum, likely several orders of magnitude longer. You should evaluate the typical execution times for your application execution and tune the polling period accordingly. This will help reduce costs related to running Lambda functions and log storage within CloudWatch Logs. The polling period is defined in the Step Functions state machine definition file (macie_pipeline_scan.asl.json) under the pollForCompletionWait state.

Fourth, the application currently doesn’t account for false positives in the sensitive data discovery job results. Also, the application will progress or delete all objects identified based on the decision by the reviewer. You should consider expanding the application to handle false positives through automation rather than manual review / intervention (such as deleting the files from the manual review bucket or removing the sensitive data tags applied).

Last, the solution will stop the ingestion of a subset of objects into your pipeline. This behavior is similar to other validation and data quality checks that most customers perform as part of the data pipeline. However, you should test to ensure that this will not cause unexpected outcomes and address them in your downstream application logic accordingly.

Conclusion

In this post, I showed you how to integrate sensitive data discovery using Macie as an additional validation step in an automated data pipeline. You’ve reviewed the components of the application, deployed it using the AWS SAM CLI, tested to validate that the application functions as expected, and cleaned up by removing deployed resources.

You now know how to integrate sensitive data scanning into your ETL pipeline. You can use automation and—where required—manual review to help reduce the risk of sensitive data, such as personally identifiable information, being inadvertently ingested into a data lake. You can take this application and customize it to fit your use case and workflows, such as using custom data identifiers as part of your scans, adding additional validation steps, creating Macie suppression rules to define cases to archive findings automatically, or only request manual approvals for findings that meet certain criteria (such as high severity findings).

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on the Amazon Macie forum.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Brandon Wu

Brandon is a security solutions architect helping financial services organizations secure their critical workloads on AWS. In his spare time, he enjoys exploring outdoors and experimenting in the kitchen.

How Netflix Scales its API with GraphQL Federation (Part 1)

Post Syndicated from Netflix Technology Blog original https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2

Netflix is known for its loosely coupled and highly scalable microservice architecture. Independent services allow for evolving at different paces and scaling independently. Yet they add complexity for use cases that span multiple services. Rather than exposing 100s of microservices to UI developers, Netflix offers a unified API aggregation layer at the edge.

UI developers love the simplicity of working with one conceptual API for a large domain. Back-end developers love the decoupling and resilience offered by the API layer. But as our business has scaled, our ability to innovate rapidly has approached an invisible asymptote. As we’ve grown the number of developers and increased our domain complexity, developing the API aggregation layer has become increasingly harder.

In order to address this rising problem, we’ve developed a federated GraphQL platform to power the API layer. This solves many of the consistency and development velocity challenges with minimal tradeoffs on dimensions like scalability and operability. We’ve successfully deployed this approach for Netflix’s studio ecosystem and are exploring patterns and adaptations that could work in other domains. We’re sharing our story to inspire others and encourage conversations around applicability elsewhere.

Case Study: Studio Edge

Intro to Studio Ecosystem

Netflix is producing original content at an accelerated pace. From the time a TV show or a movie is pitched to when it’s available on Netflix, a lot happens behind the scenes. This includes but is not limited to talent scouting and casting, deal and contract negotiations, production and post-production, visual effects and animations, subtitling and dubbing, and much more. Studio Engineering is building hundreds of applications and tools that power these workflows.

Netflix Studio Content Lifecycle
Content Lifecycle

Studio API

Looking back to a few years ago, one of the pains in the studio space was the growing complexity of the data and its relationships. The workflows depicted above are inherently connected but the data and its relationships were disparate and existed in myriads of microservices. The product teams solved for this with two architectural patterns.

1) Single-use aggregation layers — Due to the loose coupling, we observed that many teams spent considerable effort building duplicative data-fetching code and aggregation layers to support their product needs. This was either done by UI teams via BFF (Backend For Frontend) or by a backend team in a mid-tier service.

2) Materialized views for data from other teams — some teams used a pattern of building a materialized view of another service’s data for their specific system needs. Materialized views had performance benefits, but data consistency lagged by varying degrees. This was not acceptable for the most important workflows in the Studio. Inconsistent data across different Studio applications was the top support issue in Studio Engineering in 2018.

Graph API: To better address the underlying needs, our team started building a curated graph API called “Studio API”. Its goal was to provide an unified abstraction on top of data and relationships. Studio API used GraphQL as its underlying API technology and created significant leverage for accessing core shared data. Consumers of Studio API were able to explore the graph and build new features more quickly. We also observed fewer instances of data inconsistency across different UI applications, as every field in GraphQL resolves to a single piece of data-fetching code.

Studio API Graph
Studio API Graph
Studio API Architecture Diagram
Studio API Architecture

Bottlenecks of Studio API

The One Graph exposed by Studio API was a runaway success; product teams loved the reusability and easy, consistent data access. But new bottlenecks emerged as the number of consumers and amount of data in the graph increased.

First, the Studio API team was disconnected from the domain expertise and the product needs, which negatively impacted the schema’s health. Second, connecting new elements from a back-end into the graph API was manual and ran counter to the rapid evolution promised by a microservice architecture. Finally, it was hard for one small team to handle the increasing operational and support burden for the expanding graph.

We knew that there had to be a better way — unified but decoupled, curated but fast moving.

Returning to Core Principles

To address these bottlenecks, we leaned into our rich history of microservices and breaking monoliths apart. We still wanted to keep the unified GraphQL schema of Studio API but decentralize the implementation of the resolvers to their respective domain teams.

As we were brainstorming the new architecture back in early 2019, Apollo released the GraphQL Federation Specification. This promised the benefits of a unified schema with distributed ownership and implementation. We ran a test implementation of the spec with promising results, and reached out to collaborate with Apollo on the future of GraphQL Federation. Our next generation architecture, “Studio Edge”, emerged with federation as a critical element.

GraphQL Federation Primer

The goal of GraphQL Federation is two-fold: provide a unified API for consumers while also giving backend developers flexibility and service isolation. To achieve this, schemas need to be created and annotated to indicate how ownership is distributed. Let’s look at an example with three core entities:

  1. Movie: At Netflix, we make titles (shows, films, shorts etc.). For simplicity, let’s assume each title is a Movie object.
  2. Production: Each Movie is associated with a Studio Production. A Production object tracks everything needed to make a Movie including shooting location, vendors, and more.
  3. Talent: the people working on a Movie are the Talent, including actors, directors, and so on.

These three domains are owned by three separate engineering teams responsible for their own data sources, business logic, and corresponding microservices. In an unfederated implementation, we would have this simple Schema and Resolvers owned and implemented by the Studio API team. The GraphQL Framework would take in queries from clients and orchestrate the calls to the resolvers in a breadth-first traversal.

Schemas & Resolvers for Studio API
Schema & Resolvers for Studio API

To transition to a federated architecture, we need to transfer ownership of these resolvers to their respective domains without sacrificing the unified schema. To achieve this, we need to extend the Movie type across GraphQL service boundaries:

Federating the movie type
Federating Movie

This ability to extend a Movie type across GraphQL service boundaries makes Movie a Federated Type. Resolving a given field requires delegation by a gateway layer down to the owning domain services.

Studio Edge Architecture

Using the ability to federate a type, we envisioned the following architecture:

Studio Edge Architecture Diagram
Studio Edge Architecture

Key Architectural Components

Domain Graph Service (DGS) is a standalone spec-compliant GraphQL service. Developers define their own federated GraphQL schema in a DGS. A DGS is owned and operated by a domain team responsible for that subsection of the API. A DGS developer has the freedom to decide if they want to convert their existing microservice to a DGS or spin up a brand new service.

Schema Registry is a stateful component that stores all the schemas and schema changes for every DGS. It exposes CRUD APIs for schemas, which are used by developer tools and CI/CD pipelines. It is responsible for schema validation, both for the individual DGS schemas and for the combined schema. Last, the registry composes together the unified schema and provides it to the gateway.

GraphQL Gateway is primarily responsible for serving GraphQL queries to the consumers. It takes a query from a client, breaks it into smaller sub-queries (a query plan), and executes that plan by proxying calls to the appropriate downstream DGSs.

Implementation Details

There are 3 main business logic components that power GraphQL Federation.

Schema Composition

Composition is the phase that takes all of the federated DGS schemas and aggregates them into a single unified schema. This composed schema is exposed by the Gateway to the consumers of the graph.

Schema Composition Phases
Schema Composition Phases

Whenever a new schema is pushed by a DGS, the Schema Registry validates that:

  1. New schema is a valid GraphQL schema
  2. New schema composes seamlessly with the rest of the DGSs schemas to create a valid composed schema
  3. New schema is backwards compatible

If all of the above conditions are met, then the schema is checked into the Schema Registry.

Query Planning and Execution

The federation config consists of all the individual DGS schemas and the composed schema. The Gateway uses the federation config and the client query to generate a query plan. The query plan breaks down the client query into smaller sub-queries that are then sent to the downstream DGSs for execution, along with an execution ordering that includes what needs to be done in sequence versus run in parallel.

Query Plan Inputs
Query Plan Inputs

Let’s build a simple query from the schema referenced above and see what the query plan might look like.

Simplified Query Plan
Simplified Query Plan

For this query, the gateway knows which fields are owned by which DGS based on the federation config. Using that information, it breaks the client query into three separate queries to three DGSs. The first query is sent to Movie DGS since the root field movies is owned by that DGS. This results in retrieving the movieId and title fields for the first 10 movies in the dataset. Then using the movieIds it got from the previous request, the gateway executes two parallel requests to Production DGS and Talent DGS to fetch the production and actors fields for those 10 movies. Upon completion, the sub-query responses are merged together and the combined data response is returned to the caller.

A note on performance: Query Planning and Execution adds a ~10ms overhead in the worst case. This includes the compute for building the query plan, as well as the deserialization of DGS responses and the serialization of merged gateway response.

Entity Resolver

Now you might be wondering, how do the parallel sub-queries to Production and Talent DGS actually work? That’s not something that the DGS supports. This is the final piece of the puzzle.

Let’s go back to our federated type Movie. In order for the gateway to join Movie seamlessly across DGSs, all the DGSs that define and extend the Movie need to agree on one or more fields that define the primary key (e.g. movieId). To make this work, Apollo introduced the @key directive in the Federation Spec. Second, DGSs have to implement a resolver for a generic Query field, _entities. The _entities query returns a union type of all the federated types in that DGS. The gateway uses the _entities query to look up Movie by movieId.

Let’s take a look at how the query plan actually looks like

Detailed federated query plan
Detailed Federated Query Plan

The representation object consists of the movieId and is generated from the response of the first request to Movie DGS. Since we requested for the first 10 movies, we would have 10 representation objects to send to Production and Talent DGS.

This is similar to Relay’s Object Identification with a few differences. _Entity is a union type, while Relay’s Node is an interface. Also, with @key, there is support for variable key names and types as well as composite keys while in Relay, the id is a single opaque ID field.

Combined together, these are the ingredients that power the core of a federated API architecture.

The Journey, Summarized

Our Studio Ecosystem architecture has evolved in distinct phases, all motivated by reducing the time between idea and implementation, improving the developer experience, and streamlining operations. The architectural phases look like:

Evolution of an API Architecture
Evolution of an API Architecture

Stay Tuned

Over the past year we’ve implemented the federated API architecture components in our Studio Edge. Getting here required rapid iteration, lots of cross-functional collaborations, a few pivots, and ongoing investment. We’re live with 70 DGSes and hundreds of developers contributing to and using the Studio Edge architecture. In our next Netflix Tech Blog post, we’ll share what we learned along the way, including the cross-cutting concerns necessary to build a holistic solution.

We want to thank the entire GraphQL open-source community for all the generous contributions and paving the path towards the promise of GraphQL. If you’d like to be a part of solving complex and interesting problems like this at Netflix scale, check out our jobs page or reach out to us directly.

By Tejas Shikhare

Additional Credits: Stephen Spalding, Jennifer Shin, Philip Fisher-Ogden, Robert Reta, Antoine Boyer, Bruce Wang, David Simmer


How Netflix Scales its API with GraphQL Federation (Part 1) was originally published in Netflix TechBlog on Medium, where people are continuing the conversation by highlighting and responding to this story.