Tag Archives: announcements

Introducing the Enhanced Document API for DynamoDB in the AWS SDK for Java 2.x

Post Syndicated from John Viegas original https://aws.amazon.com/blogs/devops/introducing-the-enhanced-document-api-for-dynamodb-in-the-aws-sdk-for-java-2-x/

We are excited to announce that the AWS SDK for Java 2.x now offers the Enhanced Document API for DynamoDB, providing an enhanced way of working with Amazon DynamoDb items.
This post covers using the Enhanced Document API for DynamoDB with the DynamoDB Enhanced Client. By using the Enhanced Document API, you can create an EnhancedDocument instance to represent an item with no fixed schema, and then use the DynamoDB Enhanced Client to read and write to DynamoDB.
Furthermore, unlike the Document APIs of aws-sdk-java 1.x, which provided arguments and return types that were not type-safe, the EnhancedDocument provides strongly-typed APIs for working with documents. This interface simplifies the development process and ensures that the data is correctly typed.

Prerequisites:

Before getting started, ensure you are using an up-to-date version of the AWS Java SDK dependency with all the latest released bug-fixes and features. For Enhanced Document API support, you must use version 2.20.33 or later. See our “Set up an Apache Maven project” guide for details on how to manage the AWS Java SDK dependency in your project.

Add dependency for dynamodb-enhanced in pom.xml.

<dependency>
<groupId>software.amazon.awssdk</groupId>
<artifactId>dynamodb-enhanced</artifactId>
<version>2.20.33</version>
</dependency>

Quick walk-through for using Enhanced Document API to interact with DDB

Step 1 : Create a DynamoDB Enhanced Client

Create an instance of the DynamoDbEnhancedClient class, which provides a high-level interface for Amazon DynamoDB that simplifies working with DynamoDB tables.

DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
                                               .dynamoDbClient(DynamoDbClient.create())
                                               .build();

Step 2 : Create a DynamoDbTable resource object with Document table schema

To execute commands against a DynamoDB table using the Enhanced Document API, you must associate the table with your Document table schema to create a DynamoDbTable resource object. The Document table schema builder requires the primary index key and attribute converter providers. Use AttributeConverterProvider.defaultProvider() to convert document attributes of default types. An optional secondary index key can be added to the builder.


DynamoDbTable<EnhancedDocument> documentTable = enhancedClient.table("my_table",
                                              TableSchema.documentSchemaBuilder()
                                                         .addIndexPartitionKey(TableMetadata.primaryIndexName(),"hashKey", AttributeValueType.S)
                                                         .addIndexSortKey(TableMetadata.primaryIndexName(), "sortKey", AttributeValueType.N)
                                                         .attributeConverterProviders(AttributeConverterProvider.defaultProvider())
                                                         .build());
                                                         
// call documentTable.createTable() if "my_table" does not exist in DynamoDB

Step 3 : Write a DynamoDB item using an EnhancedDocument

The EnhancedDocument class has static factory methods along with a builder method to add attributes to a document. The following snippet demonstrates the type safety provided by EnhancedDocument when you construct a document item.

EnhancedDocument simpleDoc = EnhancedDocument.builder()
 .attributeConverterProviders(defaultProvider())
 .putString("hashKey", "sampleHash")
 .putNull("nullKey")
 .putNumber("sortKey", 1.0)
 .putBytes("byte", SdkBytes.fromUtf8String("a"))
 .putBoolean("booleanKey", true)
 .build();
 
documentTable.putItem(simpleDoc);

Step 4 : Read a Dynamo DB item as an EnhancedDocument

Attributes of the Documents retrieved from a DynamoDB table can be accessed with getter methods

EnhancedDocument docGetItem = documentTable.getItem(r -> r.key(k -> k.partitionValue("samppleHash").sortValue(1)));

docGetItem.getString("hashKey");
docGetItem.isNull("nullKey")
docGetItem.getNumber("sortKey").floatValue();
docGetItem.getBytes("byte");
docGetItem.getBoolean("booleanKey"); 

AttributeConverterProviders for accessing document attributes as custom objects

You can provide a custom AttributeConverterProvider instance to an EnhancedDocument to convert document attributes to a specific object type.
These providers can be set on either DocumentTableSchema or EnhancedDocument to read or write attributes as custom objects.

TableSchema.documentSchemaBuilder()
           .attributeConverterProviders(CustomClassConverterProvider.create(), defaultProvider())
           .build();
    
// Insert a custom class instance into an EnhancedDocument as attribute 'customMapOfAttribute'.
EnhancedDocument customAttributeDocument =
EnhancedDocument.builder().put("customMapOfAttribute", customClassInstance, CustomClass.class).build();

// Retrieve attribute 'customMapOfAttribute' as CustomClass object.
CustomClass customClassObject = customAttributeDocument.get("customMapOfAttribute", CustomClass.class);

Convert Documents to JSON and vice-versa

The Enhanced Document API allows you to convert a JSON string to an EnhancedDocument and vice-versa.

// Enhanced document created from JSON string using defaultConverterProviders.
EnhancedDocument documentFromJson = EnhancedDocument.fromJson("{\"key\": \"Value\"}")
                                              
// Converting an EnhancedDocument to JSON string "{\"key\": \"Value\"}"                                                 
String jsonFromDocument = documentFromJson.toJson();

Define a Custom Attribute Converter Provider

Custom attribute converter providers are implementations of AttributeConverterProvider that provide converters for custom classes.
Below is an example for a CustomClassForDocumentAPI which has as a single field stringAttribute of type String and its corresponding AttributeConverterProvider implementation.

public class CustomClassForDocumentAPI {
    private final String stringAttribute;

    public CustomClassForDocumentAPI(Builder builder) {
        this.stringAttribute = builder.stringAttribute;
    }
    public static Builder builder() {
        return new Builder();
    }
    public String stringAttribute() {
        return stringAttribute;
    }
    public static final class Builder {
        private String stringAttribute;
        private Builder() {
        }
        public Builder stringAttribute(String stringAttribute) {
            this.stringAttribute = string;
            return this;
        }
        public CustomClassForDocumentAPI build() {
            return new CustomClassForDocumentAPI(this);
        }
    }
}
import java.util.Map;
import software.amazon.awssdk.enhanced.dynamodb.AttributeConverter;
import software.amazon.awssdk.enhanced.dynamodb.AttributeConverterProvider;
import software.amazon.awssdk.enhanced.dynamodb.EnhancedType;
import software.amazon.awssdk.utils.ImmutableMap;

public class CustomAttributeForDocumentConverterProvider implements AttributeConverterProvider {
    private final Map<EnhancedType<?>, AttributeConverter<?>> converterCache = ImmutableMap.of(
        EnhancedType.of(CustomClassForDocumentAPI.class), new CustomClassForDocumentAttributeConverter());
        // Different types of converters can be added to this map.

    public static CustomAttributeForDocumentConverterProvider create() {
        return new CustomAttributeForDocumentConverterProvider();
    }

    @Override
    public <T> AttributeConverter<T> converterFor(EnhancedType<T> enhancedType) {
        return (AttributeConverter<T>) converterCache.get(enhancedType);
    }
}

A custom attribute converter is an implementation of AttributeConverter that converts a custom classes to and from a map of attribute values, as shown below.

import java.util.LinkedHashMap;
import java.util.Map;
import software.amazon.awssdk.enhanced.dynamodb.AttributeConverter;
import software.amazon.awssdk.enhanced.dynamodb.AttributeValueType;
import software.amazon.awssdk.enhanced.dynamodb.EnhancedType;
import software.amazon.awssdk.enhanced.dynamodb.internal.converter.attribute.EnhancedAttributeValue;
import software.amazon.awssdk.enhanced.dynamodb.internal.converter.attribute.StringAttributeConverter;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;

public class CustomClassForDocumentAttributeConverter implements AttributeConverter<CustomClassForDocumentAPI> {
    public static CustomClassForDocumentAttributeConverter create() {
        return new CustomClassForDocumentAttributeConverter();
    }
    @Override
    public AttributeValue transformFrom(CustomClassForDocumentAPI input) {
        Map<String, AttributeValue> attributeValueMap = new LinkedHashMap<>();
        if(input.string() != null){
            attributeValueMap.put("stringAttribute", AttributeValue.fromS(input.string()));
        }
        return EnhancedAttributeValue.fromMap(attributeValueMap).toAttributeValue();
    }

    @Override
    public CustomClassForDocumentAPI transformTo(AttributeValue input) {
        Map<String, AttributeValue> customAttr = input.m();
        CustomClassForDocumentAPI.Builder builder = CustomClassForDocumentAPI.builder();
        if (customAttr.get("stringAttribute") != null) {
            builder.stringAttribute(StringAttributeConverter.create().transformTo(customAttr.get("stringAttribute")));
        }
        return builder.build();
    }
    @Override
    public EnhancedType<CustomClassForDocumentAPI> type() {
        return EnhancedType.of(CustomClassForDocumentAPI.class);
    }
    @Override
    public AttributeValueType attributeValueType() {
        return AttributeValueType.M;
    }
}

Attribute Converter Provider for EnhancedDocument Builder

When working outside of a DynamoDB table context, make sure to set the attribute converter providers explicitly on the EnhancedDocument builder. When used within a DynamoDB table context, the table schema’s converter provider will be used automatically for the EnhancedDocument.
The code snippet below shows how to set an AttributeConverterProvider using the EnhancedDocument builder method.

// Enhanced document created from JSON string using custom AttributeConverterProvider.
EnhancedDocument documentFromJson = EnhancedDocument.builder()
                                                    .attributeConverterProviders(CustomClassConverterProvider.create())
                                                    .json("{\"key\": \"Values\"}")
                                                    .build();
                                                    
CustomClassForDocumentAPI customClass = documentFromJson.get("key", CustomClassForDocumentAPI.class)

Conclusion

In this blog post we showed you how to set up and begin using the Enhanced Document API with the DynamoDB Enhanced Client and standalone with the EnhancedDocument class. The enhanced client is open-source and resides in the same repository as the AWS SDK for Java 2.0.
We hope you’ll find this new feature useful. You can always share your feedback on our GitHub issues page.

Faster AWS cloud connections with TLS 1.3

Post Syndicated from Kate Rodgers original https://aws.amazon.com/blogs/security/faster-aws-cloud-connections-with-tls-1-3/

At Amazon Web Services (AWS), we strive to continuously improve customer experience by delivering a cloud computing environment that supports the most modern security technologies. To improve the overall performance of your connections, we have already started to enable TLS version 1.3 globally across our AWS service API endpoints, and will complete this process by December 31, 2023. By using TLS 1.3, you can decrease your connection time by removing one network round trip for every connection request, and can benefit from some of the most modern and secure cryptographic cipher suites available today.

If you are using current software tools (2014 or later) including our AWS SDKs or AWS Command Line Interface (AWS CLI), you will automatically receive the benefits of TLS 1.3 with no action required on your part. This is because AWS services will negotiate the highest TLS protocol version that your client software supports. If you want to continue using TLS 1.2, you will still have full control through your client configurations. AWS will retain support for TLS 1.2, in addition to TLS 1.3, into the foreseeable future. Meanwhile, here’s the latest information on the on-going deprecation of TLS 1.0/1.1.

If you have any questions, start a new thread on AWS re:Post, or contact AWS Support or your technical account manager. If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Kate Rodgers

Kate Rodgers

Kate is a Senior Technical Program Manager in AWS Security with over 10 years of experience in industry as an engineer and program manager. Today she works with AWS services, infrastructure, and administrative teams to drive innovative solutions that improve the AWS security posture.

James McDuffie

James McDuffie

James is a Senior Technical Account Manager. He has over 20 years of experience in software development, with previous roles in Software and Hardware Security Architecture in Industrial IoT. He is an active member of the AWS Security community, and he works closely with our customers to help them solve complex security challenges at scale.

Stronger together: Highlights from RSA Conference 2023

Post Syndicated from Anne Grahn original https://aws.amazon.com/blogs/security/stronger-together-highlights-from-rsa-conference-2023/

Golden Gate bridge

RSA Conference 2023 brought thousands of cybersecurity professionals to the Moscone Center in San Francisco, California from April 24 through 27.

The keynote lineup was eclectic, with more than 30 presentations across two stages featuring speakers ranging from renowned theoretical physicist and futurist Dr. Michio Kaku to Grammy-winning musician Chris Stapleton. Topics aligned with this year’s conference theme, “Stronger Together,” and focused on actions that can be taken by everyone, from the C-suite to those of us on the front lines of security, to strengthen collaboration, establish new best practices, and make our defenses more diverse and effective.

With over 400 sessions and 500 exhibitors discussing the latest trends and technologies, it’s impossible to recap every highlight. Now that the dust has settled and we’ve had time to reflect, here’s a glimpse of what caught our attention.

Noteworthy announcements

Hundreds of companies — including Amazon Web Services (AWS) — made new product and service announcements during the conference.

We announced three new capabilities for our Amazon GuardDuty threat detection service to help customers secure container, database, and serverless workloads. These include GuardDuty Elastic Kubernetes Service (EKS) Runtime Monitoring, GuardDuty RDS Protection for data stored in Amazon Aurora, and GuardDuty Lambda Protection for serverless applications. The new capabilities are designed to provide actionable, contextual, and timely security findings with resource-specific details.

Artificial intelligence

It was hard to find a single keynote, session, or conversation that didn’t touch on the impact of artificial intelligence (AI).

In “AI: Law, Policy and Common Sense Suggestions on How to Stay Out of Trouble,” privacy and gaming attorney Behnam Dayanim highlighted ambiguity around the definition of AI. Referencing a quote from University of Washington School of Law’s Ryan Calo, Dayanim pointed out that AI may be best described as “…a set of techniques aimed at approximating some aspect of cognition,” and should therefore be thought of differently than a discrete “thing” or industry sector.

Dayanim noted examples of skepticism around the benefits of AI. A recent Monmouth University poll, for example, found that 73% of Americans believe AI will make jobs less available and harm the economy, and a surprising 55% believe AI may one day threaten humanity’s existence.

Equally skeptical, he noted, is a joint statement made by the Federal Trade Commission (FTC) and three other federal agencies during the conference reminding the public that enforcement authority applies to AI. The statement takes a pessimistic view, saying that AI is “…often advertised as providing insights and breakthroughs, increasing efficiencies and cost-savings, and modernizing existing practices,” but has the potential to produce negative outcomes.

Dayanim covered existing and upcoming legal frameworks around the world that are aimed at addressing AI-related risks related to intellectual property (IP), misinformation, and bias, and how organizations can design AI governance mechanisms to promote fairness, competence, transparency, and accountability.

Many other discussions focused on the immense potential of AI to automate and improve security practices. RSA Security CEO Rohit Ghai explored the intersection of progress in AI with human identity in his keynote. “Access management and identity management are now table stakes features”, he said. In the AI era, we need an identity security solution that will secure the entire identity lifecycle—not just access. To be successful, he believes, the next generation of identity technology needs to be powered by AI, open and integrated at the data layer, and pursue a security-first approach. “Without good AI,” he said, “zero trust has zero chance.”

Mark Ryland, director at the Office of the CISO at AWS, spoke with Infosecurity about improving threat detection with generative AI.

“We’re very focused on meaningful data and minimizing false positives. And the only way to do that effectively is with machine learning (ML), so that’s been a core part of our security services,” he noted.

We recently announced several new innovations—including Amazon Bedrock, the Amazon Titan foundation model, the general availability of Amazon Elastic Compute Cloud (Amazon EC2) Trn1n instances powered by AWS Trainium, Amazon EC2 Inf2 instances powered by AWS Inferentia2, and the general availability of Amazon CodeWhisperer—that will make it practical for customers to use generative AI in their businesses.

“Machine learning and artificial intelligence will add a critical layer of automation to cloud security. AI/ML will help augment developers’ workstreams, helping them create more reliable code and drive continuous security improvement. — CJ Moses, CISO and VP of security engineering at AWS

The human element

Dozens of sessions focused on the human element of security, with topics ranging from the psychology of DevSecOps to the NIST Phish Scale. In “How to Create a Breach-Deterrent Culture of Cybersecurity, from Board Down,” Andrzej Cetnarski, founder, chairman, and CEO of Cyber Nation Central and Marcus Sachs, deputy director for research at Auburn University, made a data-driven case for CEOs, boards, and business leaders to set a tone of security in their organizations, so they can address “cyber insecure behaviors that lead to social engineering” and keep up with the pace of cybercrime.

Lisa Plaggemier, executive director of the National Cybersecurity Alliance, and Jenny Brinkley, director of Amazon Security, stressed the importance of compelling security awareness training in “Engagement Through Entertainment: How To Make Security Behaviors Stick.” Education is critical to building a strong security posture, but as Plaggemier and Brinkley pointed out, we’re “living through an epidemic of boringness” in cybersecurity training.

According to a recent report, just 28% of employees say security awareness training is engaging, and only 36% say they pay full attention during such training.

Citing a United Airlines preflight safety video and Amazon’s Protect and Connect public service announcement (PSA) as examples, they emphasized the need to make emotional connections with users through humor and unexpected elements in order to create memorable training that drives behavioral change.

Plaggemeier and Brinkley detailed five actionable steps for security teams to improve their awareness training:

  • Brainstorm with staff throughout the company (not just the security people)
  • Find ideas and inspiration from everywhere else (TV episodes, movies… anywhere but existing security training)
  • Be relatable, and include insights that are relevant to your company and teams
  • Start small; you don’t need a large budget to add interest to your training
  • Don’t let naysayers deter you — change often prompts resistance
“You’ve got to make people care. And so you’ve got to find out what their personal motivators are, and how to develop the type of content that can make them care to click through the training and…remember things as they’re walking through an office.” — Jenny Brinkley, director of Amazon Security

Cloud security

Cloud security was another popular topic. In “Architecting Security for Regulated Workloads in Hybrid Cloud,” Mark Buckwell, cloud security architect at IBM, discussed the architectural thinking practices—including zero trust—required to integrate security and compliance into regulated workloads in a hybrid cloud environment.

Mitiga co-founder and CTO Ofer Maor told real-world stories of SaaS attacks and incident response in “It’s Getting Real & Hitting the Fan 2023 Edition.”

Maor highlighted common tactics focused on identity theft, including MFA push fatigue, phishing, business email compromise, and adversary-in-the middle attacks. After detailing techniques that are used to establish persistence in SaaS environments and deliver ransomware, Maor emphasized the importance of forensic investigation and threat hunting to gaining the knowledge needed to reduce the impact of SaaS security incidents.

Sarah Currey, security practice manager, and Anna McAbee, senior solutions architect at AWS, provided complementary guidance in “Top 10 Ways to Evolve Cloud Native Incident Response Maturity.” Currey and McAbee highlighted best practices for addressing incident response (IR) challenges in the cloud — no matter who your provider is:

  1. Define roles and responsibilities in your IR plan
  2. Train staff on AWS (or your provider)
  3. Develop cloud incident response playbooks
  4. Develop account structure and tagging strategy
  5. Run simulations (red team, purple team, tabletop)
  6. Prepare access
  7. Select and set up logs
  8. Enable managed detection services in all available AWS Regions
  9. Determine containment strategy for resource types
  10. Develop cloud forensics capabilities

Speaking to BizTech, Clarke Rodgers, director of enterprise strategy at AWS, noted that tools and services such as Amazon GuardDuty and AWS Key Management Service (AWS KMS) are available to help advance security in the cloud. When organizations take advantage of these services and use partners to augment security programs, they can gain the confidence they need to take more risks, and accelerate digital transformation and product development.

Security takes a village

There are more highlights than we can mention on a variety of other topics, including post-quantum cryptography, data privacy, and diversity, equity, and inclusion. We’ve barely scratched the surface of RSA Conference 2023. If there is one key takeaway, it is that no single organization or individual can address cybersecurity challenges alone. By working together and sharing best practices as an industry, we can develop more effective security solutions and stay ahead of emerging threats.

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Anne Grahn

Anne Grahn

Anne is a Senior Worldwide Security GTM Specialist at AWS based in Chicago. She has more than a decade of experience in the security industry, and focuses on effectively communicating cybersecurity risk. She maintains a Certified Information Systems Security Professional (CISSP) certification.

Danielle Ruderman

Danielle Ruderman

Danielle is a Senior Manager for the AWS Worldwide Security Specialist Organization, where she leads a team that enables global CISOs and security leaders to better secure their cloud environments. Danielle is passionate about improving security by building company security culture that starts with employee engagement.

Amazon SageMaker Geospatial Capabilities Now Generally Available with Security Updates and More Use Case Samples

Post Syndicated from Channy Yun original https://aws.amazon.com/blogs/aws/amazon-sagemaker-geospatial-capabilities-now-generally-available-with-security-updates-and-more-use-case-samples/

At AWS re:Invent 2022, we previewed Amazon SageMaker geospatial capabilities, allowing data scientists and machine learning (ML) engineers to build, train, and deploy ML models using geospatial data. Geospatial ML with Amazon SageMaker supports access to readily available geospatial data, purpose-built processing operations and open source libraries, pre-trained ML models, and built-in visualization tools with Amazon SageMaker’s geospatial capabilities.

During the preview, we had lots of interest and great feedback from customers. Today, Amazon SageMaker geospatial capabilities are generally available with new security updates and additional sample use cases.

Introducing Geospatial ML features with SageMaker Studio
To get started, use the quick setup to launch Amazon SageMaker Studio in the US West (Oregon) Region. Make sure to use the default Jupyter Lab 3 version when you create a new user in the Studio. Now you can navigate to the homepage in SageMaker Studio. Then select the Data menu and click on Geospatial.

Here is an overview of three key Amazon SageMaker geospatial capabilities:

  • Earth Observation jobs – Acquire, transform, and visualize satellite imagery data using purpose-built geospatial operations or pre-trained ML models to make predictions and get useful insights.
  • Vector Enrichment jobs – Enrich your data with operations, such as converting geographical coordinates to readable addresses.
  • Map Visualization – Visualize satellite images or map data uploaded from a CSV, JSON, or GeoJSON file.

You can create all Earth Observation Jobs (EOJ) in the SageMaker Studio notebook to process satellite data using purpose-built geospatial operations. Here is a list of purpose-built geospatial operations that are supported by the SageMaker Studio notebook:

  • Band Stacking – Combine multiple spectral properties to create a single image.
  • Cloud Masking – Identify cloud and cloud-free pixels to get improved and accurate satellite imagery.
  • Cloud Removal – Remove pixels containing parts of a cloud from satellite imagery.
  • Geomosaic – Combine multiple images for greater fidelity.
  • Land Cover Segmentation – Identify land cover types such as vegetation and water in satellite imagery.
  • Resampling – Scale images to different resolutions.
  • Spectral Index – Obtain a combination of spectral bands that indicate the abundance of features of interest.
  • Temporal Statistics – Calculate statistics through time for multiple GeoTIFFs in the same area.
  • Zonal Statistics – Calculate statistics on user-defined regions.

A Vector Enrichment Job (VEJ) enriches your location data through purpose-built operations for reverse geocoding and map matching. While you need to use a SageMaker Studio notebook to execute a VEJ, you can view all the jobs you create using the user interface. To use the visualization in the notebook, you first need to export your output to your Amazon S3 bucket.

  • Reverse Geocoding – Convert coordinates (latitude and longitude) to human-readable addresses.
  • Map Matching – Snap inaccurate GPS coordinates to road segments.

Using the Map Visualization, you can visualize geospatial data, the inputs to your EOJ or VEJ jobs as well as the outputs exported from your Amazon Simple Storage Service (Amazon S3) bucket.

Security Updates
At GA, we have two major security updates—AWS Key Management Service (AWS KMS) for customer managed AWS KMS key support and Amazon Virtual Private Cloud (Amazon VPC) for geospatial operations in the customer Amazon VPC environment.

AWS KMS customer managed keys offer increased flexibility and control by enabling customers to use their own keys to encrypt geospatial workloads.

You can use KmsKeyId to specify your own key in StartEarthObservationJob and StartVectorEnrichmentJob as an optional parameter. If the customer doesn’t provide KmsKeyId, a service owned key will be used to encrypt the customer content. To learn more, see SageMaker geospatial capabilities AWS KMS Support in the AWS documentation.

Using Amazon VPC, you have full control over your network environment and can more securely connect to your geospatial workloads on AWS. You can use SageMaker Studio or Notebook in your Amazon VPC environment for SageMaker geospatial operations and execute SageMaker geospatial API operations through an interface VPC endpoint in SageMaker geospatial operations.

To get started with Amazon VPC support, configure Amazon VPC on SageMaker Studio Domain and create a SageMaker geospatial VPC endpoint in your VPC in the Amazon VPC console. Choose the service name as com.amazonaws.us-west-2.sagemaker-geospatial and select the VPC in which to create the VPC endpoint.

All Amazon S3 resources that are used for input or output in EOJ and VEJ operations should have internet access enabled. If you have no direct access to those Amazon S3 resources via the internet, you can grant SageMaker geospatial VPC endpoint ID access to it by changing the corresponding S3 bucket policy. To learn more, see SageMaker geospatial capabilities Amazon VPC Support in the AWS documentation.

Example Use Case for Geospatial ML
Customers across various industries use Amazon SageMaker geospatial capabilities for real-world applications.

Maximize Harvest Yield and Food Security
Digital farming consists of applying digital solutions to help farmers optimize crop production in agriculture through the use of advanced analytics and machine learning. Digital farming applications require working with geospatial data, including satellite imagery of the areas where farmers have their fields located.

You can use SageMaker to identify farm field boundaries in satellite imagery through pre-trained models for land cover classification. Learn about How Xarvio accelerated pipelines of spatial data for digital farming with Amazon SageMaker Geospatial in the AWS Machine Learning Blog. You can find an end-to-end digital farming example notebook via the GitHub repository.

Damage Assessment
As the frequency and severity of natural disasters increase, it’s important that we equip decision-makers and first responders with fast and accurate damage assessment. You can use geospatial imagery to predict natural disaster damage and geospatial data in the immediate aftermath of a natural disaster to rapidly identify damage to buildings, roads, or other critical infrastructure.

From an example notebook, you can train, deploy, and predict natural disaster damage from the floods in Rochester, Australia, in mid-October 2022. We use images from before and after the disaster as input to its trained ML model. The results of the segmentation mask for the Rochester floods are shown in the following images. Here we can see that the model has identified locations within the flooded region as likely damaged.

You can train and deploy a geospatial segmentation model to assess wildfire damages using multi-temporal Sentinel-2 satellite data via GitHub repository. The area of interest for this example is located in Northern California, from a region that was affected by the Dixie Wildfire in 2021.

Monitor Climate Change
Earth’s climate change increases the risk of drought due to global warming. You can see how to acquire data, perform analysis, and visualize the changes with SageMaker geospatial capabilities to monitor shrinking shoreline caused by climate change in the Lake Mead example, the largest reservoir in the US.

Lake Mead surface area animation

You can find the notebook code for this example in the GitHub repository.

Predict Retail Demand
The new notebook example demonstrates how to use SageMaker geospatial capabilities to perform a vector-based map-matching operation and visualize the results. Map matching allows you to snap noisy GPS coordinates to road segments. With Amazon SageMaker geospatial capabilities, it is possible to perform a VEJ for map matching. This type of job takes a CSV file with route information (such as longitude, latitude, and timestamps of GPS measurements) as input and produces a GeoJSON file that contains the predicted route.

Support Sustainable Urban Development
Arup, one of our customers, uses digital technologies like machine learning to explore the impact of heat on urban areas and the factors that influence local temperatures to deliver better design and support sustainable outcomes. Urban Heat Islands and the associated risks and discomforts are one of the biggest challenges cities are facing today.

Using Amazon SageMaker geospatial capabilities, Arup identifies and measures urban heat factors with earth observation data, which significantly accelerated their ability to counsel clients. It enabled its engineering teams to carry out analytics that weren’t possible previously by providing access to increased volumes, types, and analysis of larger datasets. To learn more, see Facilitating Sustainable City Design Using Amazon SageMaker with Arup in AWS customer stories.

Now Available
Amazon SageMaker geospatial capabilities are now generally available in the US West (Oregon) Region. As part of the AWS Free Tier, you can get started with SageMaker geospatial capabilities for free. The Free Tier lasts 30 days and includes 10 free ml.geospatial.interactive compute hours, up to 10 GB of free storage, and no $150 monthly user fee.

After the 30-day free trial period is complete, or if you exceed the Free Tier limits defined above, you pay for the components outlined on the pricing page.

To learn more, see Amazon SageMaker geospatial capabilities and the Developer Guide. Give it a try and send feedback to AWS re:Post for Amazon SageMaker or through your usual AWS support contacts.

Channy

New – Simplify the Investigation of AWS Security Findings with Amazon Detective

Post Syndicated from Danilo Poccia original https://aws.amazon.com/blogs/aws/new-simplify-the-investigation-of-aws-security-findings-with-amazon-detective/

With Amazon Detective, you can analyze and visualize security data to investigate potential security issues. Detective collects and analyzes events that describe IP traffic, AWS management operations, and malicious or unauthorized activity from AWS CloudTrail logs, Amazon Virtual Private Cloud (Amazon VPC) Flow Logs, Amazon GuardDuty findings, and, since last year, Amazon Elastic Kubernetes Service (EKS) audit logs. Using this data, Detective constructs a graph model that distills log data using machine learning, statistical analysis, and graph theory to build a linked set of data for your security investigations.

Starting today, Detective offers investigation support for findings in AWS Security Hub in addition to those detected by GuardDuty. Security Hub is a service that provides you with a view of your security state in AWS and helps you check your environment against security industry standards and best practices. If you’ve turned on Security Hub and another integrated AWS security services, those services will begin sending findings to Security Hub.

With this new capability, it is easier to use Detective to determine the cause and impact of findings coming from new sources such as AWS Identity and Access Management (IAM) Access Analyzer, Amazon Inspector, and Amazon Macie. All AWS services that send findings to Security Hub are now supported.

Let’s see how this works in practice.

Enabling AWS Security Findings in the Amazon Detective Console
When you enable Detective for the first time, Detective now identifies findings coming from both GuardDuty and Security Hub, and automatically starts ingesting them along with other data sources. Note that you don’t need to enable or publish these log sources for Detective to start its analysis because this is managed directly by Detective.

If you are an existing Detective customer, you can enable investigation of AWS Security Findings as a data source with one click in the Detective Management Console. I already have Detective enabled, so I add the source package.

In the Detective console, in the Settings section of the navigation pane, I choose General. There, I choose Edit in the Optional source packages section to enable Detective for AWS Security Findings.

Console screenshot.

Once enabled, Detective starts analyzing all the relevant data to identify connections between disparate events and activities. To start your investigation process, you can get a visualization of these connections, including resource behavior and activities. Historical baselines, which you can use to provide comparisons against recent activity, are established after two weeks.

Investigating AWS Security Findings in the Amazon Detective Console
I start in the Security Hub console and choose Findings in the navigation pane. There, I filter findings to only see those where the Product name is Inspector and Severity label is HIGH.

Console screenshot.

The first one looks suspicious, so I choose its Title (CVE-2020-36223 – openldap). The Security Hub console provides me with information about the corresponding Common Vulnerabilities and Exposures (CVE) ID and where and how it was found. At the bottom, I have the option to Investigate in Amazon Detective. I follow the Investigate finding link, and the Detective console opens in another browser tab.

Console screenshot.

Here, I see the entities related to this Inspector finding. First, I open the profile of the AWS account to see all the findings associated with this resource, the overall API call volume issued by this resource, and the container clusters in this account.

For example, I look at the successful and failed API calls to have a better understanding of the impact of this finding.

Console screenshot.

Then, I open the profile for the container image. There, I see the images that are related to this image (because they have the same repository or registry as this image), the containers running from this image during the scope time (managed by Amazon EKS), and the findings associated with this resource.

Depending on the finding, Detective helps me correlate information from different sources such as CloudTrail logs, VPC Flow Logs, and EKS audit logs. This information makes it easier to understand the impact of the finding and if the risk has become an incident. For Security Hub, Detective only ingests findings for configuration checks that failed. Because configuration checks that passed have little security value, we’re filtering these outs.

Availability and Pricing
Amazon Detective investigation support for AWS Security Findings is available today for all existing and new Detective customers in all AWS Regions where Detective is available, including the AWS GovCloud (US) Regions. For more information, see the AWS Regional Services List.

Amazon Detective is priced based on the volume of data ingested. By enabling investigation of AWS Security Findings, you can increase the volume of ingested data. For more information, see Amazon Detective pricing.

When GuardDuty and Security Hub provide a finding, they also suggest the remediation. On top of that, Detective helps me investigate if the vulnerability has been exploited, for example, using logs and network traffic as proof.

Currently, findings coming from Security Hub are not included in the Finding groups section of the Detective console. Our plan is to expand Finding groups to cover the newly integrated AWS security services. Stay tuned!

Start using Amazon Detective to investigate potential security issues.

Danilo

Your guide to the threat detection and incident response track at re:Inforce 2023

Post Syndicated from Celeste Bishop original https://aws.amazon.com/blogs/security/your-guide-to-the-threat-detection-and-incident-response-track-at-reinforce-2023/

reInforce 2023

A full conference pass is $1,099. Register today with the code secure150off to receive a limited time $150 discount, while supplies last.


AWS re:Inforce is back, and we can’t wait to welcome security builders to Anaheim, CA, on June 13 and 14. AWS re:Inforce is a security learning conference where you can gain skills and confidence in cloud security, compliance, identity, and privacy. As an attendee, you will have access to hundreds of technical and non-technical sessions, an Expo featuring AWS experts and security partners with AWS Security Competencies, and keynote and leadership sessions featuring Security leadership. re:Inforce 2023 features content across the following six areas:

  • Data protection
  • Governance, risk, and compliance
  • Identity and access management
  • Network and infrastructure security
  • Threat detection and incident response
  • Application security

The threat detection and incident response track is designed to showcase how AWS, customers, and partners can intelligently detect potential security risks, centralize and streamline security management at scale, investigate and respond quickly to security incidents across their environment, and unlock security innovation across hybrid cloud environments.

Breakout sessions, chalk talks, and lightning talks

TDR201 | Breakout session | How Citi advanced their containment capabilities through automation
Incident response is critical for maintaining the reliability and security of AWS environments. To support the 28 AWS services in their cloud environment, Citi implemented a highly scalable cloud incident response framework specifically designed for their workloads on AWS. Using AWS Step Functions and AWS Lambda, Citi’s automated and orchestrated incident response plan follows NIST guidelines and has significantly improved its response time to security events. In this session, learn from real-world scenarios and examples on how to use AWS Step Functions and other core AWS services to effectively build and design scalable incident response solutions.

TDR202 | Breakout session | Wix’s layered security strategy to discover and protect sensitive data
Wix is a leading cloud-based development platform that empowers users to get online with a personalized, professional web presence. In this session, learn how the Wix security team layers AWS security services including Amazon Macie, AWS Security Hub, and AWS Identity and Access Management Access Analyzer to maintain continuous visibility into proper handling and usage of sensitive data. Using AWS security services, Wix can discover, classify, and protect sensitive information across terabytes of data stored on AWS and in public clouds as well as SaaS applications, while empowering hundreds of internal developers to drive innovation on the Wix platform.

TDR203 | Breakout session | Vulnerability management at scale drives enterprise transformation
Automating vulnerability management at scale can help speed up mean time to remediation and identify potential business-impacting issues sooner. In this session, explore key challenges that organizations face when approaching vulnerability management across large and complex environments, and consider the innovative solutions that AWS provides to help overcome them. Learn how customers use AWS services such as Amazon Inspector to automate vulnerability detection, streamline remediation efforts, and improve compliance posture. Whether you’re just getting started with vulnerability management or looking to optimize your existing approach, gain valuable insights and inspiration to help you drive innovation and enhance your security posture with AWS.

TDR204 | Breakout session | Continuous innovation in AWS detection and response services
Join this session to learn about the latest advancements and most recent AWS launches in detection and response. This session focuses on use cases such as automated threat detection, continual vulnerability management, continuous cloud security posture management, and unified security data management. Through these examples, gain a deeper understanding of how you can seamlessly integrate AWS services into your existing security framework to gain greater control and insight, quickly address security risks, and maintain the security of your AWS environment.

TDR205 | Breakout session | Build your security data lake with Amazon Security Lake, featuring Interpublic Group
Security teams want greater visibility into security activity across their entire organizations to proactively identify potential threats and vulnerabilities. Amazon Security Lake automatically centralizes security data from cloud, on-premises, and custom sources into a purpose-built data lake stored in your account and allows you to use industry-leading AWS and third-party analytics and ML tools to gain insights from your data and identify security risks that require immediate attention. Discover how Security Lake can help you consolidate and streamline security logging at scale and speed, and hear from an AWS customer, Interpublic Group (IPG), on their experience.

TDR209 | Breakout session | Centralizing security at scale with Security Hub & Intuit’s experience
As organizations move their workloads to the cloud, it becomes increasingly important to have a centralized view of security across their cloud resources. AWS Security Hub is a powerful tool that allows organizations to gain visibility into their security posture and compliance status across their AWS accounts and Regions. In this session, learn about Security Hub’s new capabilities that help simplify centralizing and operationalizing security. Then, hear from Intuit, a leading financial software company, as they share their experience and best practices for setting up and using Security Hub to centralize security management.

TDR210 | Breakout session | Streamline security analysis with Amazon Detective
Join us to discover how to streamline security investigations and perform root-cause analysis with Amazon Detective. Learn how to leverage the graph analysis techniques in Detective to identify related findings and resources and investigate them together to accelerate incident analysis. Also hear a customer story about their experience using Detective to analyze findings automatically ingested from Amazon GuardDuty, and walk through a sample security investigation.

TDR310 | Breakout session | Developing new findings using machine learning in Amazon GuardDuty
Amazon GuardDuty provides threat detection at scale, helping you quickly identify and remediate security issues with actionable insights and context. In this session, learn how GuardDuty continuously enhances its intelligent threat detection capabilities using purpose-built machine learning models. Discover how new findings are developed for new data sources using novel machine learning techniques and how they are rigorously evaluated. Get a behind-the-scenes look at GuardDuty findings from ideation to production, and learn how this service can help you strengthen your security posture.

TDR311 | Breakout session | Securing data and democratizing the alert landscape with an event-driven architecture
Security event monitoring is a unique challenge for businesses operating at scale and seeking to integrate detections into their existing security monitoring systems while using multiple detection tools. Learn how organizations can triage and raise relevant cloud security findings across a breadth of detection tools and provide results to downstream security teams in a serverless manner at scale. We discuss how to apply a layered security approach to evaluate the security posture of your data, protect your data from potential threats, and automate response and remediation to help with compliance requirements.

TDR231 | Chalk talk | Operationalizing security findings at scale
You enabled AWS Security Hub standards and checks across your AWS organization and in all AWS Regions. What should you do next? Should you expect zero critical and high findings? What is your ideal state? Is achieving zero findings possible? In this chalk talk, learn about a framework you can implement to triage Security Hub findings. Explore how this framework can be applied to several common critical and high findings, and take away mechanisms to prioritize and respond to security findings at scale.

TDR232 | Chalk talk | Act on security findings using Security Hub’s automation capabilities
Alert fatigue, a shortage of skilled staff, and keeping up with dynamic cloud resources are all challenges that exist when it comes to customers successfully achieving their security goals in AWS. In order to achieve their goals, customers need to act on security findings associated with cloud-based resources. In this session, learn how to automatically, or semi-automatically, act on security findings aggregated in AWS Security Hub to help you secure your organization’s cloud assets across a diverse set of accounts and Regions.

TDR233 | Chalk talk | How LLA reduces incident response time with AWS Systems Manager
Liberty Latin America (LLA) is a leading telecommunications company operating in over 20 countries across Latin America and the Caribbean. LLA offers communications and entertainment services, including video, broadband internet, telephony, and mobile services. In this chalk talk, discover how LLA implemented a security framework to detect security issues and automate incident response in more than 180 AWS accounts accessed by internal stakeholders and third-party partners using AWS Systems Manager Incident Manager, AWS Organizations, Amazon GuardDuty, and AWS Security Hub.

TDR432 | Chalk talk | Deep dive into exposed credentials and how to investigate them
In this chalk talk, sharpen your detection and investigation skills to spot and explore common security events like unauthorized access with exposed credentials. Learn how to recognize the indicators of such events, as well as logs and techniques that unauthorized users use to evade detection. The talk provides knowledge and resources to help you immediately prepare for your own security investigations.

TDR332 | Chalk talk | Speed up zero-day vulnerability response
In this chalk talk, learn how to scale vulnerability management for Amazon EC2 across multiple accounts and AWS Regions. Explore how to use Amazon Inspector, AWS Systems Manager, and AWS Security Hub to respond to zero-day vulnerabilities, and leave knowing how to plan, perform, and report on proactive and reactive remediations.

TDR333 | Chalk talk | Gaining insights from Amazon Security Lake
You’ve created a security data lake, and you’re ingesting data. Now what? How do you use that data to gain insights into what is happening within your organization or assist with investigations and incident response? Join this chalk talk to learn how analytics services and security information and event management (SIEM) solutions can connect to and use data stored within Amazon Security Lake to investigate security events and identify trends across your organization. Leave with a better understanding of how you can integrate Amazon Security Lake with other business intelligence and analytics tools to gain valuable insights from your security data and respond more effectively to security events.

TDR431 | Chalk talk | The anatomy of a ransomware event
Ransomware events can cost governments, nonprofits, and businesses billions of dollars and interrupt operations. Early detection and automated responses are important steps that can limit your organization’s exposure. In this chalk talk, examine the anatomy of a ransomware event that targets data residing in Amazon RDS and get detailed best practices for detection, response, recovery, and protection.

TDR221 | Lightning talk | Streamline security operations and improve threat detection with OCSF
Security operations centers (SOCs) face significant challenges in monitoring and analyzing security telemetry data from a diverse set of sources. This can result in a fragmented and siloed approach to security operations that makes it difficult to identify and investigate incidents. In this lightning talk, get an introduction to the Open Cybersecurity Schema Framework (OCSF) and its taxonomy constructs, and see a quick demo on how this normalized framework can help SOCs improve the efficiency and effectiveness of their security operations.

TDR222 | Lightning talk | Security monitoring for connected devices across OT, IoT, edge & cloud
With the responsibility to stay ahead of cybersecurity threats, CIOs and CISOs are increasingly tasked with managing cybersecurity risks for their connected devices including devices on the operational technology (OT) side of the company. In this lightning talk, learn how AWS makes it simpler to monitor, detect, and respond to threats across the entire threat surface, which includes OT, IoT, edge, and cloud, while protecting your security investments in existing third-party security tools.

TDR223 | Lightning talk | Bolstering incident response with AWS Wickr enterprise integrations
Every second counts during a security event. AWS Wickr provides end-to-end encrypted communications to help incident responders collaborate safely during a security event, even on a compromised network. Join this lightning talk to learn how to integrate AWS Wickr with AWS security services such as Amazon GuardDuty and AWS WAF. Learn how you can strengthen your incident response capabilities by creating an integrated workflow that incorporates GuardDuty findings into a secure, out-of-band communication channel for dedicated teams.

TDR224 | Lightning talk | Securing the future of mobility: Automotive threat modeling
Many existing automotive industry cybersecurity threat intelligence offerings lack the connected mobility insights required for today’s automotive cybersecurity threat landscape. Join this lightning talk to learn about AWS’s approach to developing an automotive industry in-vehicle, domain-specific threat intelligence solution using AWS AI/ML services that proactively collect, analyze, and deduce threat intelligence insights for use and adoption across automotive value chains.

Hands-on sessions (builders’ sessions and workshops)

TDR251 | Builders’ session | Streamline and centralize security operations with AWS Security Hub
AWS Security Hub provides you with a comprehensive view of the security state of your AWS resources by collecting security data from across AWS accounts, Regions, and services. In this builders’ session, explore best practices for using Security Hub to manage security posture, prioritize security alerts, generate insights, automate response, and enrich findings. Come away with a better understanding of how to use Security Hub features and practical tips for getting the most out of this powerful service.

TDR351 | Builders’ session | Broaden your scope: Analyze and investigate potential security issues
In this builders’ session, learn how you can more efficiently triage potential security issues with a dynamic visual representation of the relationship between security findings and associated entities such as accounts, IAM principals, IP addresses, Amazon S3 buckets, and Amazon EC2 instances. With Amazon Detective finding groups, you can group related Amazon GuardDuty findings to help reduce time spent in security investigations and in understanding the scope of a potential issue. Leave this hands-on session knowing how to quickly investigate and discover the root cause of an incident.

TDR352 | Builders’ session | How to automate containment and forensics for Amazon EC2
In this builders’ session, learn how to deploy and scale the self-service Automated Forensics Orchestrator for Amazon EC2 solution, which gives you a standardized and automated forensics orchestration workflow capability to help you respond to Amazon EC2 security events. Explore the prerequisites and ways to customize the solution to your environment.

TDR353 | Builders’ session | Detecting suspicious activity in Amazon S3
Have you ever wondered how to uncover evidence of unauthorized activity in your AWS account? In this builders’ session, join the AWS Customer Incident Response Team (CIRT) for a guided simulation of suspicious activity within an AWS account involving unauthorized data exfiltration and Amazon S3 bucket and object data deletion. Learn how to detect and respond to this malicious activity using AWS services like AWS CloudTrail, Amazon Athena, Amazon GuardDuty, Amazon CloudWatch, and nontraditional threat detection services like AWS Billing to uncover evidence of unauthorized use.

TDR354 | Builders’ session | Simulate and detect unwanted IMDS access due to SSRF
Using appropriate security controls can greatly reduce the risk of unauthorized use of web applications. In this builders’ session, find out how the server-side request forgery (SSRF) vulnerability works, how unauthorized users may try to use it, and most importantly, how to detect it and prevent it from being used to access the instance metadata service (IMDS). Also, learn some of the detection activities that the AWS Customer Incident Response Team (CIRT) performs when responding to security events of this nature.

TDR341 | Code talk | Investigating incidents with Amazon Security Lake & Jupyter notebooks
In this code talk, watch as experts live code and build an incident response playbook for your AWS environment using Jupyter notebooks, Amazon Security Lake, and Python code. Leave with a better understanding of how to investigate and respond to a security event and how to use these technologies to more effectively and quickly respond to disruptions.

TDR441 | Code talk | How to run security incident response in your Amazon EKS environment
Join this Code Talk to get both an adversary’s and a defender’s point of view as AWS experts perform live exploitation of an application running on multiple Amazon EKS clusters, invoking an alert in Amazon GuardDuty. Experts then walk through incident response procedures to detect, contain, and recover from the incident in near real-time. Gain an understanding of how to respond and recover to Amazon EKS-specific incidents as you watch the events unfold.

TDR271-R | Workshop | Chaos Kitty: Gamifying incident response with chaos engineering
When was the last time you simulated an incident? In this workshop, learn to build a sandbox environment to gamify incident response with chaos engineering. You can use this sandbox to test out detection capabilities, play with incident response runbooks, and illustrate how to integrate AWS resources with physical devices. Walk away understanding how to get started with incident response and how you can use chaos engineering principles to create mechanisms that can improve your incident response processes.

TDR371-R | Workshop | Threat detection and response on AWS
Join AWS experts for a hands-on threat detection and response workshop using Amazon GuardDuty, AWS Security Hub, and Amazon Detective. This workshop simulates security events for different types of resources and behaviors and illustrates both manual and automated responses with AWS Lambda. Dive in and learn how to improve your security posture by operationalizing threat detection and response on AWS.

TDR372-R | Workshop | Container threat detection with AWS security services
Join AWS experts for a hands-on container security workshop using AWS threat detection and response services. This workshop simulates scenarios and security events while using Amazon EKS and demonstrates how to use different AWS security services to detect and respond to events and improve your security practices. Dive in and learn how to improve your security posture when running workloads on Amazon EKS.

Browse the full re:Inforce catalog to get details on additional sessions and content at the event, including gamified learning, leadership sessions, partner sessions, and labs.

If you want to learn the latest threat detection and incident response best practices and updates, join us in California by registering for re:Inforce 2023. We look forward to seeing you there!

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Celeste Bishop

Celeste Bishop

Celeste is a Product Marketing Manager in AWS Security, focusing on threat detection and incident response solutions. Her background is in experience marketing and also includes event strategy at Fortune 100 companies. Passionate about soccer, you can find her on any given weekend cheering on Liverpool FC, and her local home club, Austin FC.

Author

Himanshu Verma

Himanshu is a Worldwide Specialist for AWS Security Services. In this role, he leads the go-to-market creation and execution for AWS Security Services, field enablement, and strategic customer advisement. Prior to AWS, he held several leadership roles in Product Management, engineering and development, working on various identity, information security and data protection technologies. He obsesses brainstorming disruptive ideas, venturing outdoors, photography and trying various “hole in the wall” food and drinking establishments around the globe.

Retiring the AWS Documentation on GitHub

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/retiring-the-aws-documentation-on-github/

About five years ago I announced that AWS Documentation is Now Open Source and on GitHub. After a prolonged period of experimentation we will archive most of the repos starting the week of June 5th, and will devote all of our resources to directly improving the AWS documentation and website.

The primary source for most of the AWS documentation is on internal systems that we had to manually sync with the GitHub repos. Despite the best efforts of our documentation team, keeping the public repos in sync with our internal ones has proven to be very difficult and time consuming, with several manual steps and some parallel editing. With 262 separate repos and thousands of feature launches every year, the overhead was very high and actually consumed precious time that could have been put to use in ways that more directly improved the quality of the documentation.

Our intent was to increase value to our customers through openness and collaboration, but we learned through customer feedback that this wasn’t necessarily the case. After carefully considering many options we decided to retire the repos and to invest all of our resources in making the content better.

Repos containing code samples, sample apps, CloudFormation templates, configuration files, and other supplementary resources will remain as-is since those repos are primary sources and get a high level of engagement.

To help us improvement the documentation, we’re also focusing more resources on your feedback:

We watch the thumbs-up and thumbs-down metrics on a weekly basis, and use the metrics as top-level pointers to areas of the documentation that could be improved. The incoming feedback creates tickets that are routed directly to the person or the team that is responsible for the page. I strongly encourage you to make frequent use of both feedback mechanisms.

Jeff;

Spring 2023 SOC reports now available with 158 services in scope

Post Syndicated from Andrew Najjar original https://aws.amazon.com/blogs/security/spring-2023-soc-reports-now-available-with-158-services-in-scope/

At Amazon Web Services (AWS), we’re committed to providing our customers with continued assurance over the security, availability, confidentiality, and privacy of the AWS control environment.

We’re proud to deliver the Spring 2023 System and Organization Controls (SOC) 1, 2 and 3 reports, which cover October 1, 2022, to March 31, 2023, to support your confidence in AWS services. SOC reports are independent third-party examination reports that demonstrate how AWS achieves key compliance controls and objectives.

In the past, the Privacy SOC 2 report was issued separately from the other reports. However, starting with this Spring 2023 reporting cycle, the SOC 2 report is now consolidated and covers the Security, Availability, Confidentiality, and Privacy Trust Service Criteria.

The Spring 2023 SOC reports include four additional services in scope, for a total of 158 services. See the full list on our Services in Scope by Compliance Program page.

The following are the four additional services now in scope for the Spring 2023 SOC reports:

Five additional AWS Regions have been added to the scope, for a total of 29 Regions. The following are the five additional Regions now in scope for the Spring 2023 SOC reports:

  • Australia: Asia Pacific (Melbourne) (ap-southeast-4)
  • India: Asia Pacific (Hyderabad) (ap-south-2)
  • Spain: Europe (Spain) (eu-south-2)
  • Switzerland: Europe (Zurich) (eu-central-2)
  • United Arab Emirates: Middle East (UAE) (me-central-1)

Customers can download the Spring 2023 SOC reports through AWS Artifact in the AWS Management Console. You can also download the SOC 3 report as a PDF file from AWS.

AWS strives to bring services into the scope of its compliance programs to help you meet your architectural and regulatory needs. If there are additional AWS services you would like to see added to the scope of our SOC reports (or other compliance programs), reach out to your AWS representatives.

As always, we value your feedback and questions. Feel free to reach out to the team through the Contact Us page. If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security how-to-content, news, and feature announcements? Follow us on Twitter.

Andrew Najjar

Andrew Najjar

Andrew is a Compliance Program Manager at AWS. He leads multiple security and privacy initiatives within AWS and has 9 years of experience in security assurance. Andrew holds a master’s degree in information systems and bachelor’s degree in accounting from Indiana University. He is a CPA and AWS Certified Solution Architect – Associate.

ryan wilks

Ryan Wilks

Ryan is a Compliance Program Manager at AWS. He leads multiple security and privacy initiatives within AWS. Ryan has 12 years of experience in information security and holds ITIL, CISM, and CISA certifications.

Nathan Samuel

Nathan Samuel

Nathan is a Compliance Program Manager at AWS. He leads multiple security and privacy initiatives within AWS. Nathan has a bachelor’s of commerce degree from the University of the Witwatersrand, South Africa, and has over 20 years of experience in security assurance. He holds the CISA, CRISC, CGEIT, CISM, CDPSE, and Certified Internal Auditor certifications.

Brownell Combs

Brownell Combs

Brownell is a Compliance Program Manager at AWS. He leads multiple security and privacy initiatives within AWS. Brownell holds a master’s degree in computer science from the University of Virginia and a bachelor’s degree in computer science from Centre College. He has over 20 years of experience in information technology risk management and CISSP, CISA, and CRISC certifications.

AWS completes the 2023 Cyber Essentials Plus certification and NHS Data Security and Protection Toolkit assessment

Post Syndicated from Tariro Dongo original https://aws.amazon.com/blogs/security/aws-completes-the-2023-cyber-essentials-plus-certification-and-nhs-data-security-and-protection-toolkit-assessment/

Amazon Web Services (AWS) is pleased to announce the successful completion of the United Kingdom Cyber Essentials Plus certification and the National Health Service Data Security and Protection Toolkit (NHS DSPT) assessment. The Cyber Essentials Plus certificate and NHS DSPT assessment are valid for one year until March 28, 2024, and June 30, 2024, respectively.

Cyber Essentials Plus is a UK Government-backed, industry-supported certification scheme intended to help organizations demonstrate organizational cyber security against common cyber attacks. An independent third-party auditor certified by the Information Assurance for Small and Medium Enterprises (IASME) completed the audit. The scope of our Cyber Essentials Plus certificate covers AWS Europe (London), AWS Europe (Ireland), and AWS Europe (Frankfurt) Regions.

The NHS DSPT is a self-assessment that organizations use to measure their performance against data security and information governance requirements. The UK Department of Health and Social Care sets these requirements.

When customers move to the AWS Cloud, AWS is responsible for protecting the global infrastructure that runs our services offered in the AWS Cloud. AWS customers are the data controllers for patient health and care data, and are responsible for anything they put in the cloud or connect to the cloud. For more information, see the AWS Shared Security Responsibility Model.

AWS status is available on the AWS Cyber Essentials Plus compliance page, the NHS DSPT portal, and through AWS Artifact. AWS Artifact is a self-service portal for on-demand access to AWS compliance reports. Sign in to AWS Artifact in the AWS Management Console, or learn more at Getting Started with AWS Artifact.

As always, we value your feedback and questions. Reach out to the AWS Compliance team through the Contact Us page. If you have feedback about this post, submit a comment in the Comments section below. To learn more about our other compliance and security programs, see AWS Compliance Programs.

Want more AWS Security news? Follow us on Twitter.

Tariro Dongo

Tariro Dongo

Tariro is a Security Assurance Program Manager at AWS, based in London. Tari is responsible for third-party and customer audits, attestations, certifications, and assessments across EMEA. Previously, Tari worked in security assurance and technology risk in the big four and financial services industry over the last 12 years.

Jennifer Park

Jennifer Park

Jennifer is a Security Assurance Program Manager at AWS, based in New York. She is responsible for third-party and customer audits, attestations and certifications across EMEA. Jennifer graduated from Boston College and has just under one year experience in Security Assurance.

Learn How to Modernize Your Applications at AWS Serverless Innovation Day

Post Syndicated from Marcia Villalba original https://aws.amazon.com/blogs/aws/learn-how-to-modernize-your-applications-at-aws-serverless-innovation-day/

Join us on Wednesday, May 17, for AWS Serverless Innovation Day, a free full-day virtual event. You will learn about AWS Serverless technologies and event-driven architectures from customers, experts, and leaders.

AWS Serverless Innovation Day is an event to empower builders and technical decision-makers with different AWS Serverless technologies, including AWS Lambda, Amazon Elastic Container Service (Amazon ECS) with AWS Fargate, Amazon EventBridge, and AWS Step Functions. The talks of the day will cover three key topics: event-driven architectures, serverless containers, and serverless functions, and how they can be utilized to build and modernize applications. Application modernization is a priority for organizations this year, and serverless helps to increase the software delivery speed and reduce the total cost of ownership.

AWS Serverless Innovation Day

Eric Johnson and Jessica Deen will be the hosts for the event. Holly Mesrobian, VP of Serverless Compute at AWS, will deliver the welcome keynote and share AWS’s vision for Serverless. The day ends with closing remarks from James Beswick and Usman Khalid, Events and Workflows Director at AWS.

The event is split into three groups of talks: event-driven architecture, serverless containers, and Lambda-based applications. Each group kicks off with a fireside chat between AWS customers and an AWS leader. You can learn how organizations, such as Capital One, PostNL, Pentasoft, Delta Air Lines, and Smartsheets, are using AWS Serverless technologies to solve their most challenging problems and continue to innovate.

During the day, all the sessions include demos and use cases, where you can learn the best practices and how to build applications. If you cannot attend all day, here are some of my favorite sessions to watch:

  • Building with serverless workflows at scaleBen Smith will show you how to unleash the power of AWS Step Functions.
  • Event design and event-first development – In this session, David Boyne will show you a robust approach to event design with Amazon EventBridge.
  • Best practices for AWS Lambda – You will learn from Julian Wood how to get the most out of your functions.
  • Optimizing for cost using Amazon ECSScott Coulton will show you how to reduce operational overhead from the control plane with Amazon ECS.

There is no up-front registration required to join the AWS Serverless Innovation Day, but if you want to be notified before the event starts, get in-depth news, articles, and event updates, and get a notification when the on-demand videos are available, you can register on the event page. The event will be streamed on Twitch, LinkedIn Live, YouTube, and Twitter.

See you there.

Marcia

New – Amazon Aurora I/O-Optimized Cluster Configuration with Up to 40% Cost Savings for I/O-Intensive Applications

Post Syndicated from Channy Yun original https://aws.amazon.com/blogs/aws/new-amazon-aurora-i-o-optimized-cluster-configuration-with-up-to-40-cost-savings-for-i-o-intensive-applications/

Since Amazon Aurora launched in 2014, hundreds of thousands of customers have chosen Aurora to run their most demanding applications. Aurora provides unparalleled high performance and availability at global scale with full MySQL and PostgreSQL compatibility at up to one-tenth the cost of commercial databases.

Many customers benefit from the cost-effectiveness of Aurora’s current simple, pay-per-request pricing for input/output (I/O) usage, removing the need to provision I/Os in advance. Customers also benefit from additional cost-saving innovations such as Amazon Aurora Serverless v2 (ASv2), which provides seamless scaling in fine-grained increments based on the application’s demands. For workloads with spikes in demand, you can save up to 90 percent in costs vs. provisioning capacity for peak load with ASv2.

Today, we are announcing the general availability of Amazon Aurora I/O-Optimized, a new cluster configuration that offers improved price performance and predictable pricing for customers with I/O-intensive applications, such as e-commerce applications, payment processing systems, and more. Aurora I/O-Optimized offers improved performance, increasing throughput and reducing latency to support your most demanding workloads.

You can now confidently predict costs for your most I/O-intensive workloads, with up to 40 percent cost savings when your I/O spend exceeds 25 percent of your current Aurora database spend. If you are using Reserved Instances, you will see even greater cost savings.

Now you have the flexibility to choose between the existing configuration newly called Aurora Standard, which is the existing pay-per-request pricing model that is cost-effective for applications with low-to-moderate I/O usage or the new Aurora I/O-Optimized configuration for I/O-intensive applications.

Getting Started with Aurora I/O-Optimized
You can create a new database cluster using the Aurora I/O-Optimized configuration or convert your existing database clusters with a few clicks in the AWS Management Console, AWS Command Line Interface (AWS CLI), or AWS SDKs.

For the Aurora MySQL-Compatible Edition and Aurora PostgreSQL-Compatible Edition, you can choose either the Aurora Standard or Aurora I/O-Optimized configuration.

Aurora I/O-Optimized configuration is available in the latest version of Aurora MySQL version 3.03.1 and higher, Aurora PostgreSQL v15.2 and higher, v14.7 and higher, and v13.10 and higher.

This configuration supports Intel-based Aurora database instance types such as t3, r5, and r6i, Graviton-based database instance types such as t4g, r7g, and x2g, Aurora Serverless v2, Aurora Global Database, on-demand Aurora database instances, and reserved instances.

R7g instances for Amazon Aurora are powered by the latest generation AWS Graviton3 processors, delivering up to 30 percent performance gains and up to 20 percent improved price performance for Aurora, as compared to R6g instances.

In your existing Aurora clusters, you can switch the storage configuration to Aurora I/O-Optimized once every 30 days or switch back to Aurora Standard at any time. You can change the cluster storage configuration only at the cluster level. The change applies to all instances in the cluster.

After changing the configuration, you don’t need to reboot the database instances within the cluster to take advantage of the price-performance benefits of Aurora I/O-Optimized.

Now Available
Amazon Aurora I/O-Optimized configuration is now generally available for Amazon Aurora MySQL-Compatible Edition and Aurora PostgreSQL-Compatible Edition in most AWS Regions where Aurora is available, with China (Beijing), China (Ningxia), AWS GovCloud (US-East), and AWS GovCloud (US-West) Regions coming soon.

Aurora is billed differently for the two configurations: Aurora Standard or Aurora I/O-Optimized. The latter doesn’t charge for I/Os, charging a set price for compute and storage relative to the former. For I/O-intensive applications, its price/performance will be better, and you can save up to 40 percent on costs. To see pricing examples, visit the Aurora Pricing page.

To learn more, read Amazon Aurora storage and reliability in the AWS documentation. Give it a try, and please send feedback to AWS re:Post for Amazon Aurora or through your usual AWS support contacts.

Channy

Debugging SnapStart-enabled Lambda functions made easy with AWS X-Ray

Post Syndicated from Marcia Villalba original https://aws.amazon.com/blogs/compute/debugging-snapstart-enabled-lambda-functions-made-easy-with-aws-x-ray/

This post is written by Rahul Popat (Senior Solutions Architect) and Aneel Murari (Senior Solutions Architect) 

Today, AWS X-Ray is announcing support for SnapStart-enabled AWS Lambda functions. Lambda SnapStart is a performance optimization that significantly improves the cold startup times for your functions. Announced at AWS re:Invent 2022, this feature delivers up to 10 times faster function startup times for latency-sensitive Java applications at no extra cost, and with minimal or no code changes.

X-Ray is a distributed tracing system that provides an end-to-end view of how an application is performing. X-Ray collects data about requests that your application serves and provides tools you can use to gain insight into opportunities for optimizations. Now you can use X-Ray to gain insights into the performance improvements of your SnapStart-enabled Lambda function.

With today’s feature launch, by turning on X-Ray tracing for SnapStart-enabled Lambda functions, you see separate subsegments corresponding to the Restore and Invoke phases for your Lambda function’s execution.

How does Lambda SnapStart work?

With SnapStart, the function’s initialization is done ahead of time when you publish a function version. Lambda takes an encrypted snapshot of the initialized execution environment and persists the snapshot in a tiered cache for low latency access.

When the function is first invoked or scaled, Lambda restores the cached execution environment from the persisted snapshot instead of initializing anew. This results in reduced startup times.

X-Ray tracing before this feature launch

Using an example of a Hello World application written in Java, a Lambda function is configured with SnapStart and fronted by Amazon API Gateway:

Before today’s launch, X-Ray was not supported for SnapStart-enabled Lambda functions. So if you had enabled X-Ray tracing for API Gateway, the X-Ray trace for the sample application would look like:

The trace only shows the overall duration of the Lambda service call. You do not have insight into your function’s execution or the breakdown of different phases of Lambda function lifecycle.

Next, enable X-Ray for your Lambda function and see how you can view a breakdown of your function’s total execution duration.

Prerequisites for enabling X-Ray for SnapStart-enabled Lambda function

SnapStart is only supported for Lambda functions with Java 11 and newly launched Java 17 managed runtimes. You can only enable SnapStart for the published versions of your Lambda function. Once you’ve enabled SnapStart, Lambda publishes all subsequent versions with snapshots. You may also create a Lambda function alias, which points to the published version of your Lambda function.

Make sure that the Lambda function’s execution role has appropriate permissions to write to X-Ray.

Enabling AWS X-Ray for your Lambda function with SnapStart

You can enable X-Ray tracing for your Lambda function using AWS Management Console, AWS Command Line Interface (AWS CLI), AWS Serverless Application Model (AWS SAM), AWS CloudFormation template, or via AWS Cloud Deployment Kit (CDK).

This blog shows how you can achieve this via AWS Management Console and AWS SAM. For more information on enabling SnapStart and X-Ray using other methods, refer to AWS Lambda Developer Guide.

Enabling SnapStart and X-Ray via AWS Management Console

To enable SnapStart and X-Ray for Lambda function via the AWS Management Console:

  1. Navigate to your Lambda Function.
  2. On the Configuration tab, choose Edit and change the SnapStart attribute value from None to PublishedVersions.
  3. Choose Save.

To enable X-Ray via the AWS Management Console:

  1. Navigate to your Lambda Function.
  2. ­On the Configuration tab, scroll down to the Monitoring and operations tools card and choose Edit.
  3. Under AWS X-Ray, enable Active tracing.
  4. Choose Save

To publish a new version of Lambda function via the AWS Management Console:

  1. Navigate to your Lambda Function.
  2. On the Version tab, choose Publish new version.
  3. Verify that PublishedVersions is shown below SnapStart.
  4. Choose Publish.

To create an alias for a published version of your Lambda function via the AWS Management Console:

  1. Navigate to your Lambda Function.
  2. On the Aliases tab, choose Create alias.
  3. Provide a Name for an alias and select a Version of your Lambda function to point the alias to.
  4. Choose Save.

Enabling SnapStart and X-Ray via AWS SAM

To enable SnapStart and X-Ray for Lambda function via AWS SAM:

    1. Enable Lambda function versions and create an alias by adding a AutoPublishAlias property in template.yaml file. AWS SAM automatically publishes a new version for each new deployment and automatically assigns the alias to the newly published version.
      Resources:
        my-function:
          type: AWS::Serverless::Function
          Properties:
            […]
            AutoPublishAlias: live
    2. Enable SnapStart on Lambda function by adding the SnapStart property in template.yaml file.
      Resources: 
        my-function: 
          type: AWS::Serverless::Function 
          Properties: 
            […] 
            SnapStart:
             ApplyOn: PublishedVersions
    3. Enable X-Ray for Lambda function by adding the Tracing property in template.yaml file.
      Resources:
        my-function:
          type: AWS::Serverless::Function
          Properties:
            […]
            Tracing: Active 

You can find the complete AWS SAM template for the preceding example in this GitHub repository.

Using X-Ray to gain insights into SnapStart-enabled Lambda function’s performance

To demonstrate X-Ray integration for your Lambda function with SnapStart, you can build, deploy, and test the sample Hello World application using AWS SAM CLI. To do this, follow the instructions in the README file of the GitHub project.

The build and deployment output with AWS SAM looks like this:

Once your application is deployed to your AWS account, note that SnapStart and X-Ray tracing is enabled for your Lambda function. You should also see an alias `live` created against the published version of your Lambda function.

You should also have an API deployed via API Gateway, which is pointing to the `live` alias of your Lambda function as the backend integration.

Now, invoke your API via `curl` command or any other HTTP client. Make sure to replace the url with your own API’s url.

$ curl --location --request GET https://{rest-api-id}.execute-api.{region}.amazonaws.com/{stage}/hello

Navigate to Amazon CloudWatch and under the X-Ray service map, you see a visual representation of the trace data generated by your application.

Under Traces, you can see the individual traces, Response code, Response time, Duration, and other useful metrics.

Select a trace ID to see the breakdown of total Duration on your API call.

You can now see the complete trace for the Lambda function’s invocation with breakdown of time taken during each phase. You can see the Restore duration and actual Invocation duration separately.

Restore duration shown in the trace includes the time it takes for Lambda to restore a snapshot on the microVM, load the runtime (JVM), and run any afterRestore hooks if specified in your code. Note that, the process of restoring snapshots can include time spent on activities outside the microVM. This time is not reported in the Restore sub-segment, but is part of the AWS::Lambda segment in X-Ray traces.

This helps you better understand the latency of your Lambda function’s execution, and enables you to identify and troubleshoot the performance issues and errors.

Conclusion

This blog post shows how you can enable AWS X-Ray for your Lambda function enabled with SnapStart, and measure the end-to-end performance of such functions using X-Ray console. You can now see a complete breakdown of your Lambda function’s execution time. This includes Restore duration along with the Invocation duration, which can help you to understand your application’s startup times (cold starts), diagnose slowdowns, or troubleshoot any errors and timeouts.

To learn more about the Lambda SnapStart feature, visit the AWS Lambda Developer Guide.

For more serverless learning resources, visit Serverless Land.

Customer checklist for eIDAS regulation now available

Post Syndicated from Borja Larrumbide original https://aws.amazon.com/blogs/security/customer-checklist-for-eidas-regulation-now-available/

AWS is pleased to announce the publication of a checklist to help customers align with the requirements of the European Union’s electronic identification, authentication, and trust services (eIDAS) regulation regarding the use of electronic identities and trust services. The eIDAS regulation covers electronic identification and trust services for electronic transactions in the European single market.

This checklist is intended as a reference and supporting document to help institutions align with the requirements of eIDAS and the European Telecommunications Standards Institute (ETSI). Where applicable, under the AWS Shared Responsibility Model, this checklist provides supporting details and references in relation to AWS to assist institutions when adopting eIDAS and ETSI for their workloads on AWS services.

For the controls that AWS is fully or partially responsible for, the checklist compares the eIDAS and ETSI requirements to the following:

This checklist is valid until the current eIDAS EU regulation 910/2014, published July 23rd, 2014, ceases to be in force. The checklist is available upon request.

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Borja Larrumbide

Borja Larrumbide

Borja is a Security Assurance Manager for AWS in Spain and Portugal. Previously, he worked at companies such as Microsoft and BBVA in different roles and sectors. Borja is a seasoned security assurance practitioner with years of experience engaging key stakeholders at national and international levels. His areas of interest include security, privacy, risk management, and compliance.

Daniel Fuertes

Daniel Fuertes

Daniel is a Security Audit Program Manager at AWS based in Madrid, Spain. Daniel leads multiple security audits, attestations, and certification programs in Spain and other EMEA countries. Daniel has nine years of experience in security assurance, including previous experience as an auditor for the PCI DSS security framework.

New Storage-Optimized Amazon EC2 I4g Instances: Graviton Processors and AWS Nitro SSDs

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-storage-optimized-amazon-ec2-i4g-instances-graviton-processors-and-aws-nitro-ssds/

Today we are launching I4g instances powered by AWS Graviton2 processors that deliver up to 15% better compute performance than our other storage-optimized instances.

With up to 64 vCPUs, 512 GiB of memory, and 15 TB of NVMe storage, one of the six instance sizes is bound to be a great fit for your storage-intensive workloads: relational and non-relational databases, search engines, file systems, in-memory analytics, batch processing, streaming, and so forth. These workloads are generally very sensitive to I/O latency, and require plenty of random read/write IOPS along with high CPU performance.

Here are the specs:

Instance Name vCPUs
Memory
Storage
Network Bandwidth
EBS Bandwidth
i4g.large 2 16 GiB 468 GB up to 10 Gbps up to 40 Gbps
i4g.xlarge 4 32GiB 937 GB up to 10 Gbps up to 40 Gbps
i4g.2xlarge 8 64 GiB 1.875 TB up to 12 Gbps up to 40 Gbps
i4g.4xlarge 16 128 GiB 3.750 TB up to 25 Gbps up to 40 Gbps
i4g.8xlarge 32 256 GiB 7.500 TB
(2 x 3.750 TB)
18.750 Gbps 40 Gbps
i4g.16xlarge 64 512 GiB 15.000 TB
(4 x 3.750 TB)
37.500 Gbps 80 Gbps

The I4g instances make use of AWS Nitro SSDs (read AWS Nitro SSD – High Performance Storage for your I/O-Intensive Applications to learn more) for NVMe storage. Each storage volume can deliver the following performance (all measured using 4 KiB blocks):

  • Up to 800K random write IOPS
  • Up to 1 million random read IOPS
  • Up to 5600 MB/second of sequential writes
  • Up to 8000 MB/second of sequential reads

Torn Write Protection is supported for 4 KiB, 8 KiB, and 16 KiB blocks.

Available Now
I4g instances are available today in the US East (Ohio, N. Virginia), US West (Oregon), and Europe (Ireland) AWS Regions in On-Demand, Spot, Reserved Instance, and Savings Plan form.

Jeff;

A sneak peek at the identity and access management sessions for AWS re:Inforce 2023

Post Syndicated from Marc von Mandel original https://aws.amazon.com/blogs/security/a-sneak-peek-at-the-identity-and-access-management-sessions-for-aws-reinforce-2023/

reInforce 2023

A full conference pass is $1,099. Register today with the code secure150off to receive a limited time $150 discount, while supplies last.


AWS re:Inforce 2023 is fast approaching, and this post can help you plan your agenda with a look at the sessions in the identity and access management track. AWS re:Inforce is a learning conference where you can learn more about cloud security, compliance, identity, and privacy. You have access to hundreds of technical and non-technical sessions, an AWS Partner expo featuring security partners with AWS Security Competencies, and keynote and leadership sessions featuring AWS Security leadership. AWS re:Inforce 2023 will take place in-person in Anaheim, California, on June 13 and 14. re:Inforce 2023 features content in the following six areas:

The identity and access management track will share recommended practices and learnings for identity management and governance in AWS environments. You will hear from other AWS customers about how they are building customer identity and access management (CIAM) patterns for great customer experiences and new approaches for managing standard, elevated, and privileged workforce access. You will also hear from AWS leaders about accelerating the journey to least privilege with access insights and the role of identity within a Zero Trust architecture.

This post highlights some of the identity and access management sessions that you can sign up for, including breakout sessions, chalk talks, code talks, lightning talks, builders’ sessions, and workshops. For the full catalog, see the AWS re:Inforce catalog preview.

Breakout sessions

Lecture-style presentations that cover topics at all levels and delivered by AWS experts, builders, customers, and partners. Breakout sessions typically include 10–15 minutes of Q&A at the end.

IAM201: A first-principles approach: AWS Identity and Access Management (IAM)
Learning how to build effectively and securely on AWS starts with a strong working knowledge of AWS Identity and Access Management (IAM). In this session aimed at engineers who build on AWS, explore a no-jargon, first-principles approach to IAM. Learn the fundamental concepts of IAM authentication and authorization policies as well as concrete techniques that you can immediately apply to the workloads you run on AWS.

IAM301: Establishing a data perimeter on AWS, featuring USAA
In this session, dive deep into the data perimeter controls that help you manage your trusted identities and their access to trusted resources from expected networks. USAA shares how they use automation to embed security and AWS Identity and Access Management (IAM) baselines to empower a self-service mindset. Learn how they use data perimeters to support decentralization without compromising on security. Also, discover how USAA uses a threat-based approach to prioritize implementation of specific data perimeters.

IAM302: Create enterprise-wide preventive guardrails, featuring Inter & Co.
In this session, learn how to establish permissions guardrails within your multi-account environment with AWS Organizations and service control policies (SCPs). Explore how effective use of SCPs can help your builders innovate on AWS while maintaining a high bar on security. Learn about the strategies to incorporate SCPs at different levels within your organization. In addition, Inter & Co. share their strategies for implementing enterprise-wide guardrails at scale within their multi-account environments. Discover how they use code repositories and CI/CD pipelines to manage approvals and deployments of SCPs.

IAM303: Balance least privilege & agile development, feat. Fidelity & Merck
Finding a proper balance between securing multiple AWS accounts and enabling agile development to accelerate business innovation has been key to the cloud adoption journey for AWS customers. In this session, learn how Fidelity and Merck empowered their business stakeholders to quickly develop solutions while still conforming to security standards and operating within the guardrails at scale.

IAM304: Migrating to Amazon Cognito, featuring approaches from Fandango
Digital transformation of customer-facing applications often involves changes to identity and access management to help improve security and user experience. This process can benefit from fast-growing technologies and open standards and may involve migration to a modern customer identity and access management solution, such as Amazon Cognito, that offers the security and scale your business requires. There are several ways to approach migrating users to Amazon Cognito. In this session, learn about options and best practices, as well as lessons learned from Fandango’s migration to Amazon Cognito.

IAM305: Scaling access with AWS IAM Identity Center, feat. Allegiant Airlines
In this session, learn how to scale assignment of permission sets to users and groups by automating federated role-based access to any AWS accounts in your organization. As a highlight of this session, hear Allegiant Airlines’ success story of how this automation has benefited Allegiant by centralizing management of federated access for their organization of more than 5,000 employees. Additionally, explore how to build this automation in your environment using infrastructure as code tools like Terraform and AWS CloudFormation using a CI/CD pipeline.

IAM306: Managing hybrid workloads with IAM Roles Anywhere, featuring Hertz
A key element of using AWS Identity and Access Management (IAM) Roles Anywhere is managing how identities are assigned to your workloads. In this session, learn how you can define and manage identities for your workloads, how to use those identities to control access to an AWS resource via attribute-based access control (ABAC), and how to monitor and audit activities performed by those identities. Discover key concepts, best practices, and troubleshooting tips. Hertz describes how they used IAM Roles Anywhere to secure access to AWS services from Salesforce and how it has improved their overall security posture.

IAM307: Steps towards a Zero Trust architecture on AWS
Modern workplaces have evolved beyond traditional network boundaries as they have expanded to hybrid and multi-cloud environments. Identity has taken center stage for information security teams. The need for fine-grained, identity-based authorization, flexible identity-aware networks, and the removal of unneeded pathways to data has accelerated the adoption of Zero Trust principles and architecture. In this session, learn about different architecture patterns and security mechanisms available from AWS that you can apply to secure standard, sensitive, and privileged access to your critical data and workloads.

Builders’ sessions

Small-group sessions led by an AWS expert who guides you as you build the service or product on your own laptop. Use your laptop to experiment and build along with the AWS expert.

IAM351: Sharing resources across accounts with least-privilege permissions
Are you looking to manage your resource access control permissions? Learn how you can author customer managed permissions to provide least-privilege access to your resources shared using AWS Resource Access Manager (AWS RAM). Explore how to use customer managed permissions with use cases ranging from managing incident response with AWS Systems Manager Incident Manager to enhancing your IP security posture with Amazon VPC IP Address Manager.

IAM352: Cedar policy language in action
Cedar is a language for defining permissions as policies that describe who should have access to what. Amazon Verified Permissions and AWS Verified Access use Cedar to define fine-grained permissions for applications and end users. In this builders’ session, come learn by building Cedar policies for access control.

IAM355: Using passwordless authentication with Amazon Cognito and WebAuthn
In recent years, passwordless authentication has been on the rise. The FIDO Alliance, a first-mover for enabling passwordless in 2009, is an open industry association whose stated mission is to develop and promote authentication standards that “help reduce the world’s over-reliance on passwords.” This builders’ session allows participants to learn about and follow the steps to implement a passwordless authentication experience on a web or mobile application using Amazon Cognito.

IAM356: AWS Identity and Access Management (IAM) policies troubleshooting
In this builders’ session, walk through practical examples that can help you build, test, and troubleshoot AWS Identity and Access Management (IAM) policies. Utilize a workflow that can help you create fine-grained access policies with the help of the IAM API, the AWS Management Console, and AWS CloudTrail. Also review key concepts of IAM policy evaluation logic.

Chalk talks

Highly interactive sessions with a small audience. Experts lead you through problems and solutions on a digital whiteboard as the discussion unfolds.

IAM231: Lessons learned from AWS IAM Identity Center migrations
In this chalk talk, discover best practices and tips to migrate your workforce users’ access from IAM users to AWS IAM Identity Center (successor to AWS Single Sign-On). Learn how to create preventive guardrails, gain visibility into the usage of IAM users across an organization, and apply authentication solutions for common use cases.

IAM331: Leaving IAM access keys behind: A modern path forward
Static credentials have been used for a long time to secure multiple types of access, including access keys for AWS Identity and Access Management (IAM) users, command line tools, secure shell access, application API keys, and pre-shared keys for VPN access. However, best practice recommends replacing static credentials with short-term credentials. In this chalk talk, learn how to identify static access keys in your environment, quantify the risk, and then apply multiple available methods to replace them with short-term credentials. The talk also covers prescriptive guidance and best practice advice for improving your overall management of IAM access keys.

IAM332: Practical identity and access management: The basics of IAM on AWS
Learn from prescriptive guidance on how to build an Identity and Access Management strategy on AWS. We provide guidance on human access versus machine access using services like IAM Identity Center. You will also learn about the different IAM policy types, where each policy type is useful, and how you should incorporate each policy type in your AWS environment. This session will walk you through what you need to know to build an effective identity and access management baseline.

IAM431: A tour of the world of IAM policy evaluation
This session takes you beyond the basics of IAM policy evaluation and focuses on how policy evaluation works with advanced AWS features. Hear about how policies are evaluated alongside AWS Key Management Service (AWS KMS) key grants, Amazon Simple Storage Service (Amazon S3) and Amazon Elastic File System (Amazon EFS) access points, Amazon VPC Lattice, and more. You’ll leave this session with prescriptive guidance on what to do and what to avoid when designing authorization schemes.

Code talks

Engaging, code-focused sessions with a small audience. AWS experts lead an interactive discussion featuring live coding and/or code samples as they explain the “why” behind AWS solutions.

IAM341: Cedar: Fast, safe, and fine-grained access for your applications
Cedar is a new policy language that helps you write fine-grained permissions in your applications. With Cedar, you can customize authorization and you can define and enforce who can access what. This code talk explains the design of Cedar, how it was built to a high standard of assurance, and its benefits. Learn what makes Cedar ergonomic, fast, and analyzable: simple syntax for expressing common authorization use cases, policy structure that allows for scalable real-time evaluation, and comprehensive auditing based on automated reasoning. Also find out how Cedar’s implementation was made safer through formal verification and differential testing.

IAM441: Enable new Amazon Cognito use cases with OAuth2.0 flows
Delegated authorization without user interaction on a consumer device and reinforced passwordless authentication for higher identity assurance are advanced authentication flows achievable with Amazon Cognito. In this code talk, you can discover new OAuth2.0 flow diagrams, code snippets, and long and short demos that offer different approaches to these authentication use cases. Gain confidence using AWS Lambda triggers with Amazon Cognito, native APIs, and OAuth2.0 endpoints to help ensure greater success in customer identity and access management strategy.

Lightning talks

Short and focused theater presentations that are dedicated to either a specific customer story, service demo, or partner offering (sponsored).

IAM221: Accelerate your business with AWS Directory Service
In this lightning talk, explore AWS Directory Service for Microsoft Active Directory and discover a number of use cases that provide flexibility, empower agile application development, and integrate securely with other identity stores. Join the talk to discover how you can take advantage of this managed service and focus on what really matters to your customers.

IAM321: Move toward least privilege with IAM Access Analyzer
AWS Identity and Access Management (IAM) Access Analyzer provides tools that simplify permissions management by making it easy for organizations to set, verify, and refine permissions. In this lightning talk, dive into how you can detect resources shared with an external entity across one or multiple AWS accounts with IAM Access Analyzer. Find out how you can activate and use this feature and how it integrates with AWS Security Hub.

Workshops

Interactive learning sessions where you work in small teams to solve problems using AWS Cloud security services. Come prepared with your laptop and a willingness to learn!

IAM371: Building a Customer Identity and Access Management (CIAM) solution
How do your customers access your application? Get a head start on customer identity and access management (CIAM) by using Amazon Cognito. Join this workshop to learn how to build CIAM solutions on AWS using Amazon Cognito, Amazon Verified Permissions, and several other AWS services. Start from the basic building blocks of CIAM and build up to advanced user identity and access management use cases in customer-facing applications.

IAM372: Consuming AWS Resources from everywhere with IAM Roles Anywhere
If your workload already lives on AWS, then there is a high chance that some temporary AWS credentials have been securely distributed to perform needed tasks. But what happens when your workload is on premises? In this workshop, learn how to use AWS Identity and Access Management (IAM) Roles Anywhere. Start from the basics and create the necessary steps to learn how to use your applications outside of AWS in a safe way using IAM Roles Anywhere in practice.

IAM373: Building a data perimeter to allow access to authorized users
In this workshop, learn how to create a data perimeter by building controls that allow access to data only from expected network locations and by trusted identities. The workshop consists of five modules, each designed to illustrate a different AWS Identity and Access Management (IAM) principle or network control. Learn where and how to implement the appropriate controls based on different risk scenarios.

If these sessions look interesting to you, join us in Anaheim by registering for AWS re:Inforce 2023. We look forward to seeing you there!

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Marc von Mandel

Marc von Mandel

Marc leads the product marketing strategy and execution for AWS Identity Services. Prior to AWS, Marc led product marketing at IBM Security Services across several categories, including Identity and Access Management Services (IAM), Network and Infrastructure Security Services, and Cloud Security Services. Marc currently lives in Atlanta, Georgia and enjoys spending time with family, running, and experimenting with cooking.

AWS Week in Review – AWS Notifications, Serverless event, and More – May 8, 2023

Post Syndicated from Marcia Villalba original https://aws.amazon.com/blogs/aws/aws-week-in-review-aws-notifications-serverless-event-and-more-may-8-2023/

At the end of this week, I’m flying to Seattle to take part in the AWS Serverless Innovation Day. Along with many customers and colleagues from AWS, we are going to be live on May 17 at a virtual free event. During the AWS Serverless Innovation Day we will share best practices related to building event-driven applications and using serverless functions and containers. Get a calendar reminder and check the full agenda at the event site.

Serverless innovation day

Last Week’s Launches
Here are some launches that got my attention during the previous week.

New Local Zones in Auckland – AWS Local Zones allow you to deliver applications that require single-digit millisecond latency or local data processing. Starting last week, AWS Local Zones is available in Auckland, New Zealand.

All AWS Local Zones

AWS Notifications Channy wrote an article explaining how you can view and configure notifications for your AWS account. In addition to the AWS Management Console notifications, the AWS Console Mobile Application now allows you to create and receive actionable push notifications when a resource requires your attention.

AWS SimSpace Weaver Last reInvent, we launched AWS SimSpace Weaver, a fully managed compute service that helps you deploy large spatial simulations in the cloud. Starting last week, AWS SimSpace Weaver allows you to save the state of the simulations at a specific point in time.

AWS Security Hub Added four new integration partners to help customers with their cloud security posture monitoring, and now it provides detailed tracking of finding changes with the finding history feature. This last feature provides an immutable trail of changes to get more visibility into the changes made to your findings.

AWS Compute Optimizer – AWS Compute Optimizer supports inferred workload type filtering on Amazon EC2 instance recommendations and automatically detects the applications that might run on your AWS resources. Now AWS Compute Optimizer supports filtering your rightsizing recommendation by tags and identifies and filters Microsoft SQL Server workloads as an inferred workload type.

AWS AppSyncNow AWS AppSync GraphQL APIs support Private API. With Private APIs, you can now create GraphQL APIs that can only be accessed from your Amazon Virtual Private Cloud (Amazon VPC).

For a full list of AWS announcements, be sure to keep an eye on the What’s New at AWS page.

Other AWS News
Some other updates and news that you may have missed:

  • Responsible AI in the Generative EraAmazon Science published a very interesting blog post this week about the special challenges raised by building a responsible generative AI and the different things builders of applications can do in order to solve these challenges.
  • Patterns for Building an API to Upload Files to Amazon S3 – Amazon S3 is one of the most used services by our customers, and applications often require a way for users to upload files. In this article, Thomas Moore shows different ways to do this in a secure way.
  • The Official AWS Podcast – Listen each week for updates on the latest AWS news and deep dives into exciting use cases. There are also official AWS podcasts in your local languages. Check out the ones in FrenchGermanItalian, and Spanish.
  • AWS Open-Source News and Updates – This is a newsletter curated by my colleague Ricardo to bring you the latest open-source projects, posts, events, and more.

Upcoming AWS Events
Check your calendars and sign up for these AWS events:

  • AWS Serverless Innovation DayJoin us on May 17 for a virtual and free event about AWS Serverless. We will have talks and fireside chats with customers related to AWS Lambda, Amazon ECS with Fargate, AWS Step Functions, and Amazon EventBridge.
  • AWS re:Inforce 2023You can now register for AWS re:Inforce, happening in Anaheim, California, on June 13–14.
  • AWS Global Summits – There are many summits going on right now around the world: Stockholm (May 11), Hong Kong (May 23), India (May 25), Amsterdam (June 1), London (June 7), Washington, DC (June 7–8), Toronto (June 14), Madrid (June 15), and Milano (June 22).
  • AWS Community Day – Join a community-led conference run by AWS user group leaders in your region: Warsaw (June 1), Chicago (June 15), Manila (June 29–30), and Munich (September 14).
  • AWS User Group Peru Conference – The local AWS User Group announced a one-day cloud event in Spanish and English in Lima on September 23. Seb, Jeff, and I will be attending the event from the AWS News blog team. Register today!

That’s all for this week. Check back next Monday for another Week in Review!

— Marcia

This post is part of our Week in Review series. Check back each week for a quick roundup of interesting news and announcements from AWS!

S3 URI Parsing is now available in AWS SDK for Java 2.x

Post Syndicated from David Ho original https://aws.amazon.com/blogs/devops/s3-uri-parsing-is-now-available-in-aws-sdk-for-java-2-x/

The AWS SDK for Java team is pleased to announce the general availability of Amazon Simple Storage Service (Amazon S3) URI parsing in the AWS SDK for Java 2.x. You can now parse path-style and virtual-hosted-style S3 URIs to easily retrieve the bucket, key, region, style, and query parameters. The new parseUri() API and S3Uri class provide the highly-requested parsing features that many customers miss from the AWS SDK for Java 1.x. Please note that Amazon S3 AccessPoints and Amazon S3 on Outposts URI parsing are not supported.

Motivation

Users often need to extract important components like bucket and key from stored S3 URIs to use in S3Client operations. The new parsing APIs allow users to conveniently do so, bypassing the need for manual parsing or storing the components separately.

Getting Started

To begin, first add the dependency for S3 to your project.

<dependency>
    <groupId>software.amazon.awssdk</groupId>
    <artifactId>s3</artifactId>
    <version>${s3.version}</version>
</dependency>

Next, instantiate S3Client and S3Utilities objects.

S3Client s3Client = S3Client.create();
S3Utilities s3Utilities = s3Client.utilities();

Parsing an S3 URI

To parse your S3 URI, call parseUri() from S3Utilities, passing in the URI. This will return a parsed S3Uri object. If you have a String of the URI, you’ll need to convert it into an URI object first.

String url = "https://s3.us-west-1.amazonaws.com/myBucket/resources/doc.txt?versionId=abc123&partNumber=77&partNumber=88";
URI uri = URI.create(url);
S3Uri s3Uri = s3Utilities.parseUri(uri);

With the S3Uri, you can call the appropriate getter methods to retrieve the bucket, key, region, style, and query parameters. If the bucket, key, or region is not specified in the URI, an empty Optional will be returned. If query parameters are not specified in the URI, an empty map will be returned. If the field is encoded in the URI, it will be returned decoded.

Region region = s3Uri.region().orElse(null); // Region.US_WEST_1
String bucket = s3Uri.bucket().orElse(null); // "myBucket"
String key = s3Uri.key().orElse(null); // "resources/doc.txt"
boolean isPathStyle = s3Uri.isPathStyle(); // true

Retrieving query parameters

There are several APIs for retrieving the query parameters. You can return a Map<String, List<String>> of the query parameters. Alternatively, you can specify a query parameter to return the first value for the given query, or return the list of values for the given query.

Map<String, List<String>> queryParams = s3Uri.rawQueryParameters(); // {versionId=["abc123"], partNumber=["77", "88"]}
String versionId = s3Uri.firstMatchingRawQueryParameter("versionId").orElse(null); // "abc123"
String partNumber = s3Uri.firstMatchingRawQueryParameter("partNumber").orElse(null); // "77"
List<String> partNumbers = s3Uri.firstMatchingRawQueryParameters("partNumber"); // ["77", "88"]

Caveats

Special Characters

If you work with object keys or query parameters with reserved or unsafe characters, they must be URL-encoded, e.g., replace whitespace " " with "%20".

Valid:
"https://s3.us-west-1.amazonaws.com/myBucket/object%20key?query=%5Bbrackets%5D"

Invalid:
"https://s3.us-west-1.amazonaws.com/myBucket/object key?query=[brackets]"

Virtual-hosted-style URIs

If you work with virtual-hosted-style URIs with bucket names that contain a dot, i.e., ".", the dot must not be URL-encoded.

Valid:
"https://my.Bucket.s3.us-west-1.amazonaws.com/key"

Invalid:
"https://my%2EBucket.s3.us-west-1.amazonaws.com/key"

Conclusion

In this post, I discussed parsing S3 URIs in the AWS SDK for Java 2.x and provided code examples for retrieving the bucket, key, region, style, and query parameters. To learn more about how to set up and begin using the feature, visit our Developer Guide. If you are curious about how it is implemented, check out the source code on GitHub. As always, the AWS SDK for Java team welcomes bug reports, feature requests, and pull requests on the aws-sdk-java-v2 GitHub repository.

Get details on security finding changes with the new Finding History feature in Security Hub

Post Syndicated from Nicholas Jaeger original https://aws.amazon.com/blogs/security/get-details-on-security-finding-changes-with-the-new-finding-history-feature-in-security-hub/

In today’s evolving security threat landscape, security teams increasingly require tools to detect and track security findings to protect their organizations’ assets. One objective of cloud security posture management is to identify and address security findings in a timely and effective manner. AWS Security Hub aggregates, organizes, and prioritizes security alerts and findings from various AWS services and supported security solutions from the AWS Partner Network.

As the volume of findings increases, tracking the changes and actions that have been taken on each finding becomes more difficult, as well as more important to perform timely and effective investigations. In this post, we will show you how to use the new Finding History feature in Security Hub to track and understand the history of a security finding.

Updates to findings occur when finding providers update certain fields, such as resource details, by using the BatchImportFindings API. You, as a user, can update certain fields, such as workflow status, in the AWS Management Console or through the BatchUpdateFindings API. Ticketing, incident management, security information and event management (SIEM), and automatic remediation solutions can also use the BatchUpdateFindings API to update findings. This new capability highlights these various changes and when they occurred so that you don’t need to investigate this yourself.

Finding History

The new Finding History feature in Security Hub helps you understand the state of a finding by providing an immutable history of changes within the finding details. By using this feature, you can track the history of each finding, including the before and after values of the fields that were changed, who or what made the changes, and when the changes were made. This simplifies how you operate on a finding by giving you visibility into the changes made to a finding over time, alongside the rest of the finding details, which removes the need for separate tooling or additional processes. This feature is available at no additional cost in AWS Regions where Security Hub is available, and appears by default for new or updated findings. Finding History is also available through the Security Hub APIs.

To try out this new feature, open the Security Hub console, select a finding, and choose the History tab. There you will see a chronological list of changes that have been made to the finding. The transparency of the finding history helps you quickly assess the status of the finding, understand actions already taken, and take the necessary actions to mitigate risk. For example, upon resolving a finding, you can add a note to the finding to indicate why you resolved it. Both the resolved status and note will appear in the history.

In the following example, the finding was updated and then resolved with an explanatory note left by the person that reviewed the finding. With Finding History, you can see the previous updates and events in the finding’s History tab.

Figure 1: Finding History shows recent updates to the finding

Figure 1: Finding History shows recent updates to the finding

In addition, you can still view the current state of the finding in its Details tab.

Figure 2: Finding Details shows the record of a security check or security-related detection

Figure 2: Finding Details shows the record of a security check or security-related detection

Conclusion

With the new Finding History feature in Security Hub, you have greater visibility into the activity and updates on each finding, allowing for more efficient investigation and response to potential security risks. Next time that you start work to investigate and respond to a security finding in Security Hub, begin by checking the finding history.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on the AWS Security, Identity, & Compliance re:Post or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Nicholas Jaeger

Nicholas Jaeger

Nicholas is a Senior Security Specialist Solutions Architect at AWS. His background includes software engineering, teaching, solutions architecture, and AWS security. Today, he focuses on helping as many customers operate as securely as possible on AWS. Nicholas also hosts AWS Security Activation Days to provide customers with prescriptive guidance while using AWS security services to increase visibility and reduce risk.

Shachar Hirshberg

Shachar Hirshberg

Shachar is a Senior Product Manager at AWS Security Hub with over a decade of experience in building, designing, launching, and scaling top-tier enterprise software products. He is passionate about further improving how customers harness AWS services to enable innovation and enhance the security of their cloud environments. Outside of work, Shachar is an avid traveler and a skiing enthusiast.