All posts by Julian Wood

AWS Lambda introduces recursive loop detection APIs

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/aws-lambda-introduces-recursive-loop-detection-apis/

This post is written by James Ngai, Senior Product Manager, AWS Lambda, and Aneel Murari, Senior Specialist SA, Serverless.

Today, AWS Lambda is announcing new recursive loop detection APIs that allow you to set recursive loop detection configuration on individual Lambda functions. This allows you to turn off recursive loop detection on functions that intentionally use recursive patterns, avoiding disruption of these workloads. You can use these APIs to avoid disruption to any intentionally recursive workflows as Lambda expands support of recursive loop detection to other AWS services.

Overview

AWS Lambda functions are triggered in response to events generated by various AWS services. These Lambda functions may interact with other AWS services by invoking the corresponding service APIs. Typically, the service and resource that generates the triggering event is distinct from the service and resource that the Lambda function calls. However, due to coding errors or configuration issues, there may be situations where these two resources are the same, leading to an infinite or recursive loop. Such misconfigurations can result in runaway workloads, which can incur unplanned usage and charges to your AWS account. For example, a Lambda function processes messages from an Amazon Simple Notification Service (SNS) topic but then puts the resulting notification back to the same SNS topic. This causes an infinite loop.

Lambda provides a built-in preventative guardrail that detects and stops functions running in a recursive or infinite loop between Lambda, Amazon Simple Queue Service (SQS), and SNS. This feature, known as recursive loop detection, is enabled by default for all Lambda functions. This serves as a protective mechanism against unintended usage and unexpected billing from runaway workloads.

Lambda uses an AWS X-Ray trace header primitive called “lineage” to track the number of times a function has been invoked with an event. When your function code sends an event using a supported AWS SDK version, Lambda increments the counter in the lineage header. If your function is then invoked with the same triggering event more than 16 times, Lambda stops the next invocation for that event and emits an Amazon CloudWatch RecursiveInvocationsDropped metric. If the function is invoked synchronously, Lambda returns a RecursiveInvocationException to the caller. For asynchronous invocations, Lambda sends the event to a dead-letter queue or on-failure destination if one is configured.

You do not need to configure active X-Ray tracing for this feature to work. For more information on this feature and an example scenario, please refer to Detecting and stopping recursive loops in AWS Lambda functions.

Although AWS generally discourages this practice due to the possibility of runaway workloads, some customers intentionally employ recursive patterns in their workflows. Previously, customers that run workloads that intentionally use recursive patterns could only opt-out of recursive loop detection on a per-account basis by contacting AWS Support. With these new APIs, customers can selectively opt-out of recursive loop detection on individual functions while maintaining this preventative guardrail for the remaining functions in their account that do not use recursive code.

Today we are introducing two new API actions for recursive loop detection:

  • GetFunctionRecursiveConfig returns details about a function’s recursive loop detection configuration.
  • PutFunctionRecursiveConfig sets the recursive loop detection configuration for a function. By default, recursive loop detection is turned ON for all functions.

How to use the new recursive loop detection APIs

You can configure recursive loop detection for Lambda functions through the Lambda Console, the AWS CLI, or Infrastructure as Code tools like AWS CloudFormation, AWS Serverless Application Model (AWS SAM), or AWS Cloud Development Kit (CDK). This new configuration option is supported in AWS SAM CLI version 1.123.0 and CDK v2.153.0.

If you turn recursive loop detection off for a function, the metric for RecursiveInvocationsDropped is no longer emitted for that function.

Turning off recursive loop detection on your function means that Lambda no longer prevents recursive invocations caused by misconfiguration. This may lead to unexpected usage and billing to your AWS account. You should explore alternate ways of architecting your workload that do not use recursive patterns. AWS recommends you exercise caution when turning off this guardrail feature.

Setting recursive loop detection configuration on a function using the Lambda Console

You can get recursive loop detection configuration in the AWS Lambda console:

  1. In the AWS Lambda Console, navigate to the Functions page. Select the function that uses intentionally recursive patterns.
  2. Select Configuration. You can find recursive loop detection controls under the Concurrency and recursion detection section.
  3. Recursive loop detection controls in the Lambda console

    Recursive loop detection controls in the Lambda console

  4. Recursive loop detection is turned on by default for all functions. You can change the recursive loop detection configuration of a function by choosing Edit.
  5. To turn off recursive loop detection for a function, select Allow recursive loops and select Save.
Setting to allow recursive loops

Setting to allow recursive loops

Setting recursive loop detection configuration using the AWS CLI

You can get the current recursion loop detection configuration of a Lambda function by using the following CLI command:

aws lambda get-function-recursion-config \
--region $AWS_REGION \
--function-name $FUNCTION_NAME

You can update the recursion loop detection configuration for a Lambda function by using the following CLI command:

aws lambda put-function-recursion-config \
--region $AWS_REGION \
--function-name $FUNCTION_NAME \
--recursive-loop Allow|Terminate

Make sure to set appropriate values for AWS_REGION and FUNCTION_NAME in the previous commands. Setting the put-function-recursion-config parameter to Allow turns off the default behavior of detecting recursive loops. Set this value to Terminate to switch back to default behavior.

Setting recursive loop detection configuration using AWS CloudFormation

You can control the recursive loop detection configuration for a Lambda function by setting the RecursiveLoop resource property in CloudFormation. Setting the value of this property to Allow turns off the default behavior of automatically detecting recursive loops. Set this property to Terminate if you want to switch it back to the default behavior. The following CloudFormation snippet shows RecursiveLoop set to Allow.

LambdaFunction:
    Type: AWS::Lambda::Function                                                                                                                                                                                    
    Properties:                                                                                                                                                                                       
      Code:                                                                                                                                                                                          
        S3Bucket:S3_BUCKET                                                                                                                                                                            
        S3Key: S3_KEY      
      Handler: com.example.App::handleRequest                                                                                                                                                        
      MemorySize: 1024
      Role:                                                                                                                                                                                          
        Fn::GetAtt:                                                                                                                                                                                  
        - LambdaFunctionRole                                                                                                                                                                         
        - Arn                                                                                                                                                                               
      Runtime: java17
      RecursiveLoop : Allow                                                                                                                                                                                                                                                                           
      Timeout: 20                                                                                                                                                                        
      TracingConfig:                                                                                                                                                                               
        Mode: Active                                                                                                                                                                                        

Extending recursive loop detection to additional AWS services

Today, recursive loop detection detects and stops loops between Lambda, SQS, and SNS after approximately 16 invocations. Lambda plans to extend support for recursive loop detection to additional AWS services. Using the APIs, you can turn off recursive loop detection for specific functions that use recursive patterns so that they are not impacted when Lambda expands recursive loop detection to additional AWS services in the future.

One way you can identify functions that use recursive patterns is by using the CloudWatch metric RecursiveInvocationsDropped.

  1. Set a CloudWatch alarm on all Lambda functions for the CloudWatch metric RecursiveInvocationsDropped. Configure the alarm to trigger when the metric is greater than a threshold of zero. Refer to CloudWatch documentation to set alarms. You can use the following CLI command to set this alarm:
  2. aws cloudwatch put-metric-alarm --alarm-name lambda-recursive-alarm --metric-name RecursiveInvocationsDropped --namespace AWS/Lambda --statistic Sum --period 60 --threshold 0 --comparison-operator GreaterThanOrEqualToThreshold --evaluation-periods 1 --alarm-actions $arn-of-sns-notification-topic
  3. When Lambda detects recursive invocations, it will emit the RecursiveInvocationsDropped metric, which will trigger the alarm. Note that Lambda will only detect and stop recursive invocations if all the services within the loop support recursive loop detection.
  4. Navigate to the CloudWatch Console and determine which function has emitted the RecursiveInvocationsDropped metric. On the Browse tab, under Metrics, choose to view metrics By Function Name and search for RecursiveInvocationsDropped. This will list all functions that have emitted that metric.
  5. RecursiveInvocationsDropped metric

    RecursiveInvocationsDropped metric

  6. Determine if recursion is the intended pattern for that function. If so, use the recursive loop detection API to turn off recursive loop detection for this function.

Conclusion

Lambda recursive loop detection automatically detects and stops recursive invocations between Lambda and supported services, preventing runaway workloads. In most cases, you should architect your workloads to avoid any recursive loops. In rare and special circumstances, you may want to turn off the default behavior on a case-by-case basis. The recursive loop detection APIs allow you to set recursive loop detection configuration on individual functions.

This feature is available in all AWS Regions where Lambda supports recursive loop detection.

To learn more about these APIs, refer to the AWS Lambda API Reference.

For more serverless learning resources, visit Serverless Land

Serverless ICYMI Q2 2024

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/serverless-icymi-q2-2024/

Welcome to the 26th edition of the AWS Serverless ICYMI (in case you missed it) quarterly recap. Every quarter, we share all the most recent product launches, feature enhancements, blog posts, webinars, live streams, and other interesting things that you might have missed!

In case you missed our last ICYMI, check out what happened last quarter here.

Calendar

Calendar

EDA Day – London 2024

The AWS Serverless DA team hosted the third Event-Driven Architecture (EDA) Day in London on May 14th. This event brought together prominent figures in the event-driven architecture community, AWS, and customer speakers.

EDA Day covered 13 sessions, 2 workshops, and a Q&A panel. David Boyne was the keynote speaker with a talk “Complexity is the Gotcha of Event-Driven Architecture”. There were AWS speakers including Matthew Meckes, Natasha Wright, Julian Wood, Gillian Amstrong, Josh Kahn, Veda Ramen, and Uma Ramadoss. There was also an impressive lineup of guest speakers, Daniele Frasca, David Anderson, Ryan Cormack, Sarah Hamilton, Sheen Brisals, Marcin Sodkiewicz, and Ben Ellerby.

Videos are available on YouTube

EDA Day London

EDA Day London

The future of Serverless

There has been a lot of talk about the future of serverless, with this year being the 10th anniversary of AWS Lambda. Eric Johnson addresses the topic in his ServerlessDays Milan keynote, “Now serverless is all grown up, what’s next”.

AWS Lambda

AWS launched support for the latest release of Ruby 3.3 is based on the new Amazon Linux 2023 runtime. The Ruby 3.3 runtime also provides access to the latest Ruby language features.

There is a new guide on how to retrieve data about Lambda functions that use a deprecated runtime.

Learn how to run code after returning a response from an AWS Lambda function. This post shows how to return a synchronous function response as soon as possible, yet also perform additional asynchronous work after you send the response. For example, you may store data in a database or send information to a logging system.

See how you can use the circuit-breaker pattern with Lambda extensions and Amazon DynamoDB. The circuit breaker pattern can help prevent cascading failures and improve overall system stability.

Circuit-breaker pattern

Circuit-breaker pattern

Lambda functions now scale up to 12X faster in the AWS GovCloud (US) Regions.

Powertools for AWS Lambda (Python) adds support for Agents for Amazon Bedrock.

The AWS SDK for JavaScript v2 enters maintenance mode on September 8, 2024 and reaches end-of-support on September 8, 2025.

Amazon CloudWatch Logs introduced Live Tail streaming CLI support.

Amazon ECS and AWS Fargate

You can now secure Amazon Elastic Container Service (Amazon ECS) workloads on AWS Fargate with customer managed keys (CMKs). Once you add your keys to AWS Key Management Service (AWS KMS), you can use these to encrypt the underlying ephemeral storage of an Amazon ECS task on AWS Fargate.

Windows containers on AWS Fargate now start faster, up to 42% for Windows Server 2022 Core. AWS has optimized the Windows Server AMIs, introduced EC2 fast launch with pre-provisioned snapshots, and reduced network latency.

Amazon ECS Service Connect is a networking capability to simplify service discovery, connectivity, and traffic observability for Amazon ECS. You can now proactively scale Amazon ECS services by using custom metrics.

ECS Connect custom metrics

ECS Service Connect custom metrics

AWS Step Functions

The AWS Step Functions TestState API allows you to test individual states independently and to integrate testing into your preferred development workflows. Learn how to accelerate workflow development to iterate faster.

Step Functions TestState API

Step Functions TestState API

Amazon EventBridge

Amazon EventBridge Pipes now supports event delivery through AWS PrivateLink. You can send events from an event source located in an Amazon Virtual Private Cloud (VPC) to a Pipes target without traversing the public internet.

Amazon Timestream for LiveAnalytics is now an EventBridge Pipes target. Timestream for LiveAnalytics is a fast, scalable, purpose-built time series database that makes it easy to store and analyze trillions of time series data points per day.

EventBridge has a new console dashboard which provides a centralized view of your resources, metrics, and quotas. The console has an improved Learn page and other console enhancements. When using the CloudFormation template export for Pipes, you can also generate the IAM role. There is a new Rules tab in the Event Bus detail page, and the monitoring tab in the Rule detail page now includes additional metrics.

EventBridge Scheduler has some new API request metrics for improved observability.

Generative AI

Amazon Bedrock is a fully managed Generative AI service that offers a choice of high-performing foundation models (FMs) from leading AI companies through a single API. Bedrock now supports new models, including Anthropic’s Claude 3.5, AI21 Labs’ Jamba-Instruct, Amazon Titan Text Premier.

The new Bedrock Converse API provides a consistent way to invoke Amazon Bedrock models and simplifies multi-turn conversations. There is also a JavaScript tutorial to walk you through sending requests to the Converse API using the Javascript SDK.

Amazon Q Developer is now generally available. Amazon Q Developer, part of the Amazon Q family, is a generative AI–powered assistant for software development. Amazon Q is available in the AWS Management Console and as an integrated development environment (IDE) extension for Visual Studio Code, Visual Studio, and JetBrains IDEs. Amazon Q Developer has knowledge of your AWS account resources and can help understand your costs.

Amazon Q list Lambda functions

Amazon Q list Lambda functions

You can use Amazon Q Developer to develop code features and transform code to upgrade Java applications. Amazon Q Developer also offers inline completions in the command line. For more information, see Reimagining software development with the Amazon Q Developer Agent.

Amazon Q code features

Amazon Q code features

Knowledge Bases for Amazon Bedrock now let you configure Guardrails, configure inference parameters, and offers observability logs.

Storage and data

Amazon S3 no longer charges for several HTTP error codes if initiated from outside your individual AWS account or AWS Organization.

You can automatically detect malware in new object uploads to S3 with Amazon GuardDuty.

Amazon Elastic File System (Amazon EFS) now support up to 1.5 GiB/s of throughput per client, a 3x increase over the previous limit of 500 MiB/s.

Discover architectural patterns for real-time analytics using Amazon Kinesis Data Streams in part 1 and part 2 and see how to optimize write throughput.

Amazon API Gateway

Amazon API Gateway now allows you to increase the integration timeout beyond the prior limit of 29 seconds. You can raise the integration timeout for Regional and private REST APIs, but this might require a reduction in your account-level throttle quota limit. This launch can help with workloads that require longer timeouts, such as Generative AI use cases with Large Language Models (LLMs).

You can also now use Amazon Verified Permissions to secure API Gateway REST APIs when using an Open ID connect (OIDC) compliant identity provider. You can now control access based on user attributes and group memberships, without writing code.

AWS AppSync

You can now invoke your AWS AppSync data sources in an event-driven manner. Previously, you could only invoke Lambda functions synchronously from AWS AppSync. AWS AppSync can now trigger Lambda functions in Event mode, asynchronously decoupling the API response from the Lambda invocation, which helps with long-running operations.

AWS AppSync now passes application request headers to Lambda custom authorizer functions. You can make authorization decisions based on the value of the authorization header, and the value of other headers that were sent with the request from the application client.

Learn best practices for AWS AppSync GraphQL APIs. See how to how to optimize the security, performance, coding standards, and deployment of your AWS AppSync API. AWS AppSync also has increase quotas, and new metrics

AWS Amplify

AWS Amplify Gen 2 is now generally available. This now provides a code-first developer experience for building full-stack apps using TypeScript. Amplify Gen 2 allows you to express app requirements like the data models, business logic, and authorization rules in TypeScript.

AWS Amplify Gen2

AWS Amplify Gen2

Amplify has a new experience for file storage. This post explores using Lambda to create serverless functions for Amplify using TypeScript. There are also new team environment workflows.

Serverless blog posts

April

May

June

Serverless container blog posts

April

May

June

Serverless Office Hours

Serverless Office Hours

Serverless Office Hours

April

May

June

Containers from the Couch

Containers from the Couch

Containers from the Couch

April

May

FooBar Serverless

April

February

June

Still looking for more?

The Serverless landing page has more information. The Lambda resources page contains case studies, webinars, whitepapers, customer stories, reference architectures, and even more Getting Started tutorials.

You can also follow the Serverless Developer Advocacy team on X (formerly Twitter) to see the latest news, follow conversations, and interact with the team.

And finally, visit the Serverless Land and Containers on AWS websites for all your serverless and serverless container needs.

Serverless ICYMI Q1 2024

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/serverless-icymi-q1-2024/

Welcome to the 25th edition of the AWS Serverless ICYMI (in case you missed it) quarterly recap. Every quarter, we share all the most recent product launches, feature enhancements, blog posts, webinars, live streams, and other interesting things that you might have missed!

In case you missed our last ICYMI, check out what happened last quarter here.

2024 Q1 calendar

2024 Q1 calendar

Adobe Summit

At the Adobe Summit, the AWS Serverless Developer Advocacy team showcased a solution developed for the NFL using AWS serverless technologies and Adobe Photoshop APIs. The system automates image processing tasks, including background removal and dynamic resizing, by integrating AWS Step Functions, AWS Lambda, Amazon EventBridge, and AI/ML capabilities via Amazon Rekognition. This solution reduced image processing time from weeks to minutes and saved the NFL significant costs. Combining cloud-based serverless architectures with advanced machine learning and API technologies can optimize digital workflows for cost-effective and agile digital asset management.

Adobe Summit ServerlessVideo

Adobe Summit ServerlessVideo

ServerlessVideo is a demo application to stream live videos and also perform advanced post-video processing. It uses several AWS services, including Step Functions, Lambda, EventBridge, Amazon ECS, and Amazon Bedrock in a serverless architecture that makes it fast, flexible, and cost-effective. The team used ServerlessVideo to interview attendees about the conference experience and Adobe and partners about how they use Adobe. Learn more about the project and watch videos from Adobe Summit 2024 at video.serverlessland.com.

AWS Lambda

AWS launched support for the latest long-term support release of .NET 8, which includes API enhancements, improved Native Ahead of Time (Native AOT) support, and improved performance.

AWS Lambda .NET 8

AWS Lambda .NET 8

Learn how to compare design approaches for building serverless microservices. This post covers the trade-offs to consider with various application architectures. See how you can apply single responsibility, Lambda-lith, and read and write functions.

The AWS Serverless Java Container has been updated. This makes it easier to modernize a legacy Java application written with frameworks such as Spring, Spring Boot, or JAX-RS/Jersey in Lambda with minimal code changes.

AWS Serverless Java Container

AWS Serverless Java Container

Lambda has improved the responsiveness for configuring Event Source Mappings (ESMs) and Amazon EventBridge Pipes with event sources such as self-managed Apache Kafka, Amazon Managed Streaming for Apache Kafka (MSK), Amazon DocumentDB, and Amazon MQ.

Chaos engineering is a popular practice for building confidence in system resilience. However, many existing tools assume the ability to alter infrastructure configurations, and cannot be easily applied to the serverless application paradigm. You can use the AWS Fault Injection Service (FIS) to automate and manage chaos experiments across different Lambda functions to provide a reusable testing method.

Amazon ECS and AWS Fargate

Amazon Elastic Container Service (Amazon ECS) now provides managed instance draining as a built-in feature of Amazon ECS capacity providers. This allows Amazon ECS to safely and automatically drain tasks from Amazon Elastic Compute Cloud (Amazon EC2) instances that are part of an Amazon EC2 Auto Scaling Group associated with an Amazon ECS capacity provider. This simplification allows you to remove custom lifecycle hooks previously used to drain Amazon EC2 instances. You can now perform infrastructure updates such as rolling out a new version of the ECS agent by seamlessly using Auto Scaling Group instance refresh, with Amazon ECS ensuring workloads are not interrupted.

Credentials Fetcher makes it easier to run containers that depend on Windows authentication when using Amazon EC2. Credentials Fetcher now integrates with Amazon ECS, using either the Amazon EC2 launch type, or AWS Fargate serverless compute launch type.

Amazon ECS Service Connect is a networking capability to simplify service discovery, connectivity, and traffic observability for Amazon ECS. You can now more easily integrate certificate management to encrypt service-to-service communication using Transport Layer Security (TLS). You do not need to modify your application code, add additional network infrastructure, or operate service mesh solutions.

Amazon ECS Service Connect

Amazon ECS Service Connect

Running distributed machine learning (ML) workloads on Amazon ECS allows ML teams to focus on creating, training and deploying models, rather than spending time managing the container orchestration engine. Amazon ECS provides a great environment to run ML projects as it supports workloads that use NVIDIA GPUs and provides optimized images with pre-installed NVIDIA Kernel drivers and Docker runtime.

See how to build preview environments for Amazon ECS applications with AWS Copilot. AWS Copilot is an open source command line interface that makes it easier to build, release, and operate production ready containerized applications.

Learn techniques for automatic scaling of your Amazon Elastic Container Service  (Amazon ECS) container workloads to enhance the end user experience. This post explains how to use AWS Application Auto Scaling which helps you configure automatic scaling of your Amazon ECS service. You can also use Amazon ECS Service Connect and AWS Distro for OpenTelemetry (ADOT) in Application Auto Scaling.

AWS Step Functions

AWS workloads sometimes require access to data stored in on-premises databases and storage locations. Traditional solutions to establish connectivity to the on-premises resources require inbound rules to firewalls, a VPN tunnel, or public endpoints. Discover how to use the MQTT protocol (AWS IoT Core) with AWS Step Functions to dispatch jobs to on-premises workers to access or retrieve data stored on-premises.

You can use Step Functions to orchestrate many business processes. Many industries are required to provide audit trails for decision and transactional systems. Learn how to build a serverless pipeline to create a reliable, performant, traceable, and durable pipeline for audit processing.

Amazon EventBridge

Amazon EventBridge now supports publishing events to AWS AppSync GraphQL APIs as native targets. The new integration allows you to publish events easily to a wider variety of consumers and simplifies updating clients with near real-time data.

Amazon EventBridge publishing events to AWS AppSync

Amazon EventBridge publishing events to AWS AppSync

Discover how to send and receive CloudEvents with EventBridge. CloudEvents is an open-source specification for describing event data in a common way. You can publish CloudEvents directly to EventBridge, filter and route them, and use input transformers and API Destinations to send CloudEvents to downstream AWS services and third-party APIs.

AWS Application Composer

AWS Application Composer lets you create infrastructure as code templates by dragging and dropping cards on a virtual canvas. These represent CloudFormation resources, which you can wire together to create permissions and references. Application Composer has now expanded to the VS Code IDE as part of the AWS Toolkit. This now includes a generative AI partner that helps you write infrastructure as code (IaC) for all 1100+ AWS CloudFormation resources that Application Composer now supports.

AWS AppComposer generate suggestions

AWS AppComposer generate suggestions

Amazon API Gateway

Learn how to consume private Amazon API Gateway APIs using mutual TLS (mTLS). mTLS helps prevent man-in-the-middle attacks and protects against threats such as impersonation attempts, data interception, and tampering.

Serverless at AWS re:Invent

Serverless at AWS reInvent

Serverless at AWS reInvent

Visit the Serverless Land YouTube channel to find a list of serverless and serverless container sessions from reinvent 2023. Hear from experts like Chris Munns and Julian Wood in their popular session, Best practices for serverless developers, or Nathan Peck and Jessica Deen in Deploying multi-tenant SaaS applications on Amazon ECS and AWS Fargate.

Serverless blog posts

January

February

March

Serverless container blog posts

January

February

December

Serverless Office Hours

Serverless Office Hours

Serverless Office Hours

January

February

March

Containers from the Couch

Containers from the Couch

Containers from the Couch

January

February

March

FooBar Serverless

FooBar Serverless

FooBar Serverless

January

February

March

Still looking for more?

The Serverless landing page has more information. The Lambda resources page contains case studies, webinars, whitepapers, customer stories, reference architectures, and even more Getting Started tutorials.

You can also follow the Serverless Developer Advocacy team on Twitter to see the latest news, follow conversations, and interact with the team.

And finally, visit the Serverless Land and Containers on AWS websites for all your serverless and serverless container needs.

Introducing the .NET 8 runtime for AWS Lambda

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/introducing-the-net-8-runtime-for-aws-lambda/

This post is written by Beau Gosse, Senior Software Engineer and Paras Jain, Senior Technical Account Manager.

AWS Lambda now supports .NET 8 as both a managed runtime and container base image. With this release, Lambda developers can benefit from .NET 8 features including API enhancements, improved Native Ahead of Time (Native AOT) support, and improved performance. .NET 8 supports C# 12, F# 8, and PowerShell 7.4. You can develop Lambda functions in .NET 8 using the AWS Toolkit for Visual Studio, the AWS Extensions for .NET CLI, AWS Serverless Application Model (AWS SAM), AWS CDK, and other infrastructure as code tools.

Creating .NET 8 function in the console

Creating .NET 8 function in the console

What’s new

Upgraded operating system

The .NET 8 runtime is built on the Amazon Linux 2023 (AL2023) minimal container image. This provides a smaller deployment footprint than earlier Amazon Linux 2 (AL2) based runtimes and updated versions of common libraries such as glibc 2.34 and OpenSSL 3.

The new image also uses microdnf as a package manager, symlinked as dnf. This replaces the yum package manager used in earlier AL2-based images. If you deploy your Lambda functions as container images, you must update your Dockerfiles to use dnf instead of yum when upgrading to the .NET 8 base image. For more information, see Introducing the Amazon Linux 2023 runtime for AWS Lambda.

Performance

There are a number of language performance improvements available as part of .NET 8. Initialization time can impact performance, as Lambda creates new execution environments to scale your function automatically. There are a number of ways to optimize performance for Lambda-based .NET workloads, including using source generators in System.Text.Json or using Native AOT.

Lambda has increased the default memory size from 256 MB to 512 MB in the blueprints and templates for improved performance with .NET 8. Perform your own functional and performance tests on your .NET 8 applications. You can use AWS Compute Optimizer or AWS Lambda Power Tuning for performance profiling.

At launch, new Lambda runtimes receive less usage than existing established runtimes. This can result in longer cold start times due to reduced cache residency within internal Lambda subsystems. Cold start times typically improve in the weeks following launch as usage increases. As a result, AWS recommends not drawing performance comparison conclusions with other Lambda runtimes until the performance has stabilized.

Native AOT

Lambda introduced .NET Native AOT support in November 2022. Benchmarks show up to 86% improvement in cold start times by eliminating the JIT compilation. Deploying .NET 8 Native AOT functions using the managed dotnet8 runtime rather than the OS-only provided.al2023 runtime gives your function access to .NET system libraries. For example, libicu, which is used for globalization, is not included by default in the provided.al2023 runtime but is in the dotnet8 runtime.

While Native AOT is not suitable for all .NET functions, .NET 8 has improved trimming support. This allows you to more easily run ASP.NET APIs. Improved trimming support helps eliminate build time trimming warnings, which highlight possible runtime errors. This can give you confidence that your Native AOT function behaves like a JIT-compiled function. Trimming support has been added to the Lambda runtime libraries, AWS .NET SDK, .NET Lambda Annotations, and .NET 8 itself.

Using.NET 8 with Lambda

To use .NET 8 with Lambda, you must update your tools.

  1. Install or update the .NET 8 SDK.
  2. If you are using AWS SAM, install or update to the latest version.
  3. If you are using Visual Studio, install or update the AWS Toolkit for Visual Studio.
  4. If you use the .NET Lambda Global Tools extension (Amazon.Lambda.Tools), install the CLI extension and templates. You can upgrade existing tools with dotnet tool update -g Amazon.Lambda.Tools and existing templates with dotnet new install Amazon.Lambda.Templates.

You can also use .NET 8 with Powertools for AWS Lambda (.NET), a developer toolkit to implement serverless best practices such as observability, batch processing, retrieving parameters, idempotency, and feature flags.

Building new .NET 8 functions

Using AWS SAM

  1. Run sam init.
  2. Choose 1- AWS Quick Start Templates.
  3. Choose one of the available templates such as Hello World Example.
  4. Select N for Use the most popular runtime and package type?
  5. Select dotnet8 as the runtime. The dotnet8 Hello World Example also includes a Native AOT template option.
  6. Follow the rest of the prompts to create the .NET 8 function.
AWS SAM .NET 8 init options

AWS SAM .NET 8 init options

You can amend the generated function code and use sam deploy --guided to deploy the function.

Using AWS Toolkit for Visual Studio

  1. From the Create a new project wizard, filter the templates to either the Lambda or Serverless project type and select a template. Use Lambda for deploying a single function. Use Serverless for deploying a collection of functions using AWS CloudFormation.
  2. Continue with the steps to finish creating your project.
  3. You can amend the generated function code.
  4. To deploy, right click on the project in the Solution Explorer and select Publish to AWS Lambda.

Using AWS extensions for the .NET CLI

  1. Run dotnet new list --tag Lambda to get a list of available Lambda templates.
  2. Choose a template and run dotnet new <template name>. To build a function using Native AOT, use dotnet new lambda.NativeAOT or dotnet new serverless.NativeAOT when using the .NET Lambda Annotations Framework.
  3. Locate the generated Lambda function in the directory under src which contains the .csproj file. You can amend the generated function code.
  4. To deploy, run dotnet lambda deploy-function and follow the prompts.
  5. You can test the function in the cloud using dotnet lambda invoke-function or by using the test functionality in the Lambda console.

You can build and deploy .NET Lambda functions using container images. Follow the instructions in the documentation.

Migrating from .NET 6 to .NET 8 without Native AOT

Using AWS SAM

  1. Open the template.yaml file.
  2. Update Runtime to dotnet8.
  3. Open a terminal window and rebuild the code using sam build.
  4. Run sam deploy to deploy the changes.

Using AWS Toolkit for Visual Studio

  1. Open the .csproj project file and update the TargetFramework to net8.0. Update NuGet packages for your Lambda functions to the latest version to pull in .NET 8 updates.
  2. Verify that the build command you are using is targeting the .NET 8 runtime.
  3. There may be additional steps depending on what build/deploy tool you’re using. Updating the function runtime may be sufficient.

.NET function in AWS Toolkit for Visual Studio

Using AWS extensions for the .NET CLI or AWS Toolkit for Visual Studio

  1. Open the aws-lambda-tools-defaults.json file if it exists.
    1. Set the framework field to net8.0. If unspecified, the value is inferred from the project file.
    2. Set the function-runtime field to dotnet8.
  2. Open the serverless.template file if it exists. For any AWS::Lambda::Function or AWS::Servereless::Function resources, set the Runtime property to dotnet8.
  3. Open the .csproj project file if it exists and update the TargetFramework to net8.0. Update NuGet packages for your Lambda functions to the latest version to pull in .NET 8 updates.

Migrating from .NET 6 to .NET 8 Native AOT

The following example migrates a .NET 6 class library function to a .NET 8 Native AOT executable function. This uses the optional Lambda Annotations framework which provides idiomatic .NET coding patterns.

Update your project file

  1. Open the project file.
  2. Set TargetFramework to net8.0.
  3. Set OutputType to exe.
  4. Remove PublishReadyToRun if it exists.
  5. Add PublishAot and set to true.
  6. Add or update NuGet package references to Amazon.Lambda.Annotations and Amazon.Lambda.RuntimeSupport. You can update using the NuGet UI in your IDE, manually, or by running dotnet add package Amazon.Lambda.RuntimeSupport and dotnet add package Amazon.Lambda.Annotations from your project directory.

Your project file should look similar to the following:

<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>exe</OutputType>
    <TargetFramework>net8.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
    <AWSProjectType>Lambda</AWSProjectType>
    <CopyLocalLockFileAssemblies>true</CopyLocalLockFileAssemblies>
    <!-- Generate native aot images during publishing to improve cold start time. -->
    <PublishAot>true</PublishAot>
	  <!-- StripSymbols tells the compiler to strip debugging symbols from the final executable if we're on Linux and put them into their own file. 
		This will greatly reduce the final executable's size.-->
	  <StripSymbols>true</StripSymbols>
  </PropertyGroup>
  <ItemGroup>
    <PackageReference Include="Amazon.Lambda.Core" Version="2.2.0" />
    <PackageReference Include="Amazon.Lambda.RuntimeSupport" Version="1.10.0" />
    <PackageReference Include="Amazon.Lambda.Serialization.SystemTextJson" Version="2.4.0" />
  </ItemGroup>
</Project>

Updating your function code

    1. Reference the annotations library with using Amazon.Lambda.Annotations;
    2. Add [assembly:LambdaGlobalProperties(GenerateMain = true)] to allow the annotations framework to create the main method. This is required as the project is now an executable instead of a library.
    3. Add the below partial class and include a JsonSerializable attribute for any types that you need to serialize, including for your function input and output This partial class is used at build time to generate reflection free code dedicated to serializing the listed types. The following is an example:
    4. /// <summary>
      /// This class is used to register the input event and return type for the FunctionHandler method with the System.Text.Json source generator.
      /// There must be a JsonSerializable attribute for each type used as the input and return type or a runtime error will occur 
      /// from the JSON serializer unable to find the serialization information for unknown types.
      /// </summary>
      [JsonSerializable(typeof(APIGatewayHttpApiV2ProxyRequest))]
      [JsonSerializable(typeof(APIGatewayHttpApiV2ProxyResponse))]
      public partial class MyCustomJsonSerializerContext : JsonSerializerContext
      {
          // By using this partial class derived from JsonSerializerContext, we can generate reflection free JSON Serializer code at compile time
          // which can deserialize our class and properties. However, we must attribute this class to tell it what types to generate serialization code for
          // See https://docs.microsoft.com/en-us/dotnet/standard/serialization/system-text-json-source-generation
      }

    5. After the using statement, add the following to specify the serializer to use. [assembly: LambdaSerializer(typeof(SourceGeneratorLambdaJsonSerializer<LambdaFunctionJsonSerializerContext>))]

    Swap LambdaFunctionJsonSerializerContext for your context if you are not using the partial class from the previous step.

    Updating your function configuration

    If you are using aws-lambda-tools-defaults.json.

    1. Set function-runtime to dotnet8.
    2. Set function-architecture to match your build machine – either x86_64 or arm64.
    3. Set (or update) environment-variables to include ANNOTATIONS_HANDLER=<YourFunctionHandler>. Replace <YourFunctionHandler> with the method name of your function handler, so the annotations framework knows which method to call from the generated main method.
    4. Set function-handler to the name of the executable assembly in your bin directory. By default, this is your project name, which tells the .NET Lambda bootstrap script to run your native binary instead of starting the .NET runtime. If your project file has AssemblyName then use that value for the function handler.
    {
      "function-architecture": "x86_64",
      "function-runtime": "dotnet8",
      "function-handler": "<your-assembly-name>",
      "environment-variables",
      "ANNOTATIONS_HANDLER=<your-function-handler>",
    }

    Deploy and test

    1. Deploy your function. If you are using Amazon.Lambda.Tools, run dotnet lambda deploy-function. Check for trim warnings during build and refactor to eliminate them.
    2. Test your function to ensure that the native calls into AL2023 are working correctly. By default, running local unit tests on your development machine won’t run natively and will still use the JIT compiler. Running with the JIT compiler does not allow you to catch native AOT specific runtime errors.

    Conclusion

    Lambda is introducing the new .NET 8 managed runtime. This post highlights new features in .NET 8. You can create new Lambda functions or migrate existing functions to .NET 8 or .NET 8 Native AOT.

    For more information, see the AWS Lambda for .NET repository, documentation, and .NET on Serverless Land.

    For more serverless learning resources, visit Serverless Land.

Re-platforming Java applications using the updated AWS Serverless Java Container

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/re-platforming-java-applications-using-the-updated-aws-serverless-java-container/

This post is written by Dennis Kieselhorst, Principal Solutions Architect.

The combination of portability, efficiency, community, and breadth of features has made Java a popular choice for businesses to build their applications for over 25 years. The introduction of serverless functions, pioneered by AWS Lambda, changed what you need in a programming language and runtime environment. Functions are often short-lived, single-purpose, and do not require extensive infrastructure configuration.

This blog post shows how you can modernize a legacy Java application to run on Lambda with minimal code changes using the updated AWS Serverless Java Container.

Deployment model comparison

Classic Java enterprise applications often run on application servers such as JBoss/ WildFly, Oracle WebLogic and IBM WebSphere, or servlet containers like Apache Tomcat. The underlying Java virtual machine typically runs 24/7 and serves multiple requests using its multithreading capabilities.

Typical long running Java application server

Typical long running Java application server

When building Lambda functions with Java, an HTTP server is no longer required and there are other considerations for running code in a Lambda environment. Code runs in an execution environment, which processes a single invocation at a time. Functions can run for up to 15 minutes with a maximum of 10 Gb allocated memory.

Functions are triggered by events such as an HTTP request with a corresponding payload. An Amazon API Gateway HTTP request invokes the function with the following JSON payload:

Amazon API Gateway HTTP request payload

Amazon API Gateway HTTP request payload

The code to process these events is different from how you implement it in a traditional application.

AWS Serverless Java Container

The AWS Serverless Java Container makes it easier to run Java applications written with frameworks such as Spring, Spring Boot, or JAX-RS/Jersey in Lambda.

The container provides adapter logic to minimize code changes. Incoming events are translated to the Servlet specification so that frameworks work as before.

AWS Serverless Java Container adapter

AWS Serverless Java Container adapter

Version 1 of this library was released in 2018. Today, AWS is announcing the release of version 2, which supports the latest Jakarta EE specification, along with Spring Framework 6.x, Spring Boot 3.x and Jersey 3.x.

Example: Modifying a Spring Boot application

This following example illustrates how to migrate a Spring Boot 3 application. You can find the full example for Spring and other frameworks in the GitHub repository.

  1. Add the AWS Serverless Java dependency to your Maven POM build file (or Gradle accordingly):
  2. <dependency>
        <groupId>com.amazonaws.serverless</groupId>
        <artifactId>aws-serverless-java-container-springboot3</artifactId>
        <version>2.0.0</version>
    </dependency>
  3. Spring Boot, by default, embeds Apache Tomcat to deal with HTTP requests. The examples use Amazon API Gateway to handle inbound HTTP requests so you can exclude the dependency.
  4. <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <configuration>
                    <createDependencyReducedPom>false</createDependencyReducedPom>
                </configuration>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <artifactSet>
                                <excludes>
                                    <exclude>org.apache.tomcat.embed:*</exclude>
                                </excludes>
                            </artifactSet>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

    The AWS Serverless Java Container accepts API Gateway proxy requests and transforms them into a plain Java object. The library also transforms outputs into a suitable API Gateway response object.

    Once you run your build process, Maven’s Shade-plugin now produces an Uber-JAR that bundles all dependencies, which you can upload to Lambda.

  5. The Lambda runtime must know which handler method to invoke. You can configure and use the SpringDelegatingLambdaContainerHandler implementation or implement your own handler Java class that delegates to AWS Serverless Java Container. This is useful if you want to add additional functionality.
  6. Configure the handler name in the runtime settings of your function.
  7. Configure the handler name

    Configure the handler name

  8. Configure an environment variable named MAIN_CLASS to let the generic handler know where to find your original application main class, which is usually annotated with @SpringBootApplication.
  9. Configure MAIN_CLASS environment variable

    Configure MAIN_CLASS environment variable

    You can also configure these settings using infrastructure as code (IaC) tools such as AWS CloudFormation, the AWS Cloud Development Kit (AWS CDK), or the AWS Serverless Application Model (AWS SAM).

    In an AWS SAM template, the related changes are as follows. Full templates are part of the GitHub repository.

    Handler: com.amazonaws.serverless.proxy.spring.SpringDelegatingLambdaContainerHandler 
    Environment:
      Variables:
        MAIN_CLASS: com.amazonaws.serverless.sample.springboot3.Application

    Optimizing memory configuration

    When running Lambda functions, start-up time and memory footprint are important considerations. The amount of memory you configure for your Lambda function also determines the amount of virtual CPU available. Adding more memory proportionally increases the amount of CPU, and therefore increases the overall computational power available. If a function is CPU-, network- or memory-bound, adding more memory can improve performance.

    Lambda charges for the total amount of gigabyte-seconds consumed by a function. Gigabyte-seconds are a combination of total memory (in gigabytes) and duration (in seconds). Increasing memory incurs additional cost. However, in many cases, increasing the memory available causes a decrease in the function duration due to the additional CPU available. As a result, the overall cost increase may be negligible for additional performance, or may even decrease.

    Choosing the memory allocated to your Lambda functions is an optimization process that balances speed (duration) and cost. You can manually test functions by selecting different memory allocations and measuring the completion time. AWS Lambda Power Tuning is a tool to simplify and automate the process, which you can use to optimize your configuration.

    Power Tuning uses AWS Step Functions to run multiple concurrent versions of a Lambda function at different memory allocations and measures the performance. The function runs in your AWS account, performing live HTTP calls and SDK interactions, to measure performance in a production scenario.

    Improving cold-start time with AWS Lambda SnapStart

    Traditional applications often have a large tree of dependencies. Lambda loads the function code and initializes dependencies during Lambda lifecycle initialization phase. With many dependencies, this initialization time may be too long for your requirements. AWS Lambda SnapStart for Java based functions can deliver up to 10 times faster startup performance.

    Instead of running the function initialization phase on every cold-start, Lambda SnapStart runs the function initialization process at deployment time. Lambda takes a snapshot of the initialized execution environment. This snapshot is encrypted and persisted in a tiered cache for low latency access. When the function is invoked and scales, Lambda resumes the execution environment from the persisted snapshot instead of running the full initialization process. This results in lower startup latency.

    To enable Lambda SnapStart you must first enable the configuration setting, and also publish a function version.

    Enabling SnapStart

    Enabling SnapStart

    Ensure you point your API Gateway endpoint to the published version or an alias to ensure you are using the SnapStart enabled function.

    The corresponding settings in an AWS SAM template contain the following:

    SnapStart: 
      ApplyOn: PublishedVersions
    AutoPublishAlias: my-function-alias

    Read the Lambda SnapStart compatibility considerations in the documentation as your application may contain specific code that requires attention.

    Conclusion

    When building serverless applications with Lambda, you can deliver features faster, but your language and runtime must work within the serverless architectural model. AWS Serverless Java Container helps to bridge between traditional Java Enterprise applications and modern cloud-native serverless functions.

    You can optimize the memory configuration of your Java Lambda function using AWS Lambda Power Tuning tool and enable SnapStart to optimize the initial cold-start time.

    The self-paced Java on AWS Lambda workshop shows how to build cloud-native Java applications and migrate existing Java application to Lambda.

    Explore the AWS Serverless Java Container GitHub repo where you can report related issues and feature requests.

    For more serverless learning resources, visit Serverless Land.

Using generative infrastructure as code with Application Composer

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/using-generative-infrastructure-as-code-with-application-composer/

This post is written by Anna Spysz, Frontend Engineer, AWS Application Composer

AWS Application Composer launched in the AWS Management Console one year ago, and has now expanded to the VS Code IDE as part of the AWS Toolkit. This includes access to a generative AI partner that helps you write infrastructure as code (IaC) for all 1100+ AWS CloudFormation resources that Application Composer now supports.

Overview

Application Composer lets you create IaC templates by dragging and dropping cards on a virtual canvas. These represent CloudFormation resources, which you can wire together to create permissions and references. With support for all 1100+ resources that CloudFormation allows, you can now build with everything from AWS Amplify to AWS X-Ray.

­­Previously, standard CloudFormation resources came only with a basic configuration. Adding an Amplify App resource resulted in the following configuration by default:

  MyAmplifyApp:
    Type: AWS::Amplify::App
    Properties:
      Name: <String>

And in the console:

AWS App Composer in the console

AWS App Composer in the console

Now, Application Composer in the IDE uses generative AI to generate resource-specific configurations with safeguards such as validation against the CloudFormation schema to ensure valid values.

When working on a CloudFormation or AWS Serverless Application Model (AWS SAM) template in VS Code, you can sign in with your Builder ID and generate multiple suggested configurations in Application Composer. Here is an example of an AI generated configuration for the AWS::Amplify::App type:

AI generated configuration for the Amplify App type

AI generated configuration for the Amplify App type

These suggestions are specific to the resource type, and are safeguarded by a check against the CloudFormation schema to ensure valid values or helpful placeholders. You can then select, use, and modify the suggestions to fit your needs.

You now know how to generate a basic example with one resource, but let’s look at building a full application with the help of AI-generated suggestions. This example recreates a serverless application from a Serverless Land tutorial, “Use GenAI capabilities to build a chatbot,” using Application Composer and generative AI-powered code suggestions.

Getting started with the AWS Toolkit in VS Code

If you don’t yet have the AWS Toolkit extension, you can find it under the Extensions tab in VS Code. Install or update it to at least version 2.1.0, so that the screen shows Amazon Q and Application Composer:

Amazon Q and Application Composer

Amazon Q and Application Composer

Next, to enable gen AI-powered code suggestions, you must enable Amazon CodeWhisperer using your Builder ID. The easiest way is to open Amazon Q chat, and select Authenticate. On the next screen, select the Builder ID option, then sign in with your Builder ID.

Enable Amazon CodeWhisperer using your Builder ID

Enable Amazon CodeWhisperer using your Builder ID

After sign-in, your connection appears in the VS Code toolkit panel:

Connection in VS Code toolkit panel

Connection in VS Code toolkit panel

Building with Application Composer

With the toolkit installed and connected with your Builder ID, you are ready to start building.

  1. In a new workspace, create a folder for the application and a blank template.yaml file.
  2. Open this file and initiate Application Composer by choosing the icon in the top right.
Initiate Application Composer

Original architecture diagram

The original tutorial includes this architecture diagram:

Original architecture diagram

Initiate Application Composer

First, add the services in the diagram to sketch out the application architecture, which simultaneously creates a deployable CloudFormation template:

  1. From the Enhanced components list, drag in a Lambda function and a Lambda layer.
  2. Double-click the Function resource to edit its properties. Rename the Lambda function’s Logical ID to LexGenAIBotLambda.
  3. Change the Source path to src/LexGenAIBotLambda, and the runtime to Python.
  4. Change the handler value to TextGeneration.lambda_handler, and choose Save.
  5. Double-click the Layer resource to edit its properties. Rename the layer Boto3Layer and change its build method to Python. Change its Source path to src/Boto3PillowPyshorteners.zip.
  6. Finally, connect the layer to the function to add a reference between them. Your canvas looks like this:
Your App Composer canvas

Your App Composer canvas

The template.yaml file is now updated to include those resources. In the source directory, you can see some generated function files. You will replace them with the tutorial function and layers later.

In the first step, you added some resources and Application Composer generated IaC that includes best practices defaults. Next, you will use standard CloudFormation components.

Using AI for standard components

Start by using the search bar to search for and add several of the Standard components needed for your application.

Search for and add Standard components

Search for and add Standard components

  1. In the Resources search bar, enter “lambda” and add the resource type AWS::Lambda::Permission to the canvas.
  2. Enter “iam” in the search bar, and add type AWS::IAM::Policy.
  3. Add two resources of the type AWS::IAM::Role.

Your application now look like this:

Updated canvas

Updated canvas

Some standard resources have all the defaults you need. For example, when you add the AWS::Lambda::Permission resource, replace the placeholder values with:

FunctionName: !Ref LexGenAIBotLambda
Action: lambda:InvokeFunction
Principal: lexv2.amazonaws.com

Other resources, such as the IAM roles and IAM policy, have a vanilla configuration. This is where you can use the AI assistant. Select an IAM Role resource and choose Generate suggestions to see what the generative AI suggests.

Generate suggestions

Generate suggestions

Because these suggestions are generated by a Large Language Model (LLM), they may differ between each generation. These are checked against the CloudFormation schema, ensuring validity and providing a range of configurations for your needs.

Generating different configurations gives you an idea of what a resource’s policy should look like, and often gives you keys that you can then fill in with the values you need. Use the following settings for each resource, replacing the generated values where applicable.

  1. Double-click the “Permission” resource to edit its settings. Change its Logical ID to LexGenAIBotLambdaInvoke and replace its Resource configuration with the following, then choose Save:
  2. Action: lambda:InvokeFunction
    FunctionName: !GetAtt LexGenAIBotLambda.Arn
    Principal: lexv2.amazonaws.com
  3. Double-click the “Role” resource to edit its settings. Change its Logical ID to CfnLexGenAIDemoRole and replace its Resource configuration with the following, then choose Save:
  4. AssumeRolePolicyDocument:
      Statement:
        - Action: sts:AssumeRole
          Effect: Allow
          Principal:
            Service: lexv2.amazonaws.com
      Version: '2012-10-17'
    ManagedPolicyArns:
      - !Join
        - ''
        - - 'arn:'
          - !Ref AWS::Partition
          - ':iam::aws:policy/AWSLambdaExecute'
  5. Double-click the “Role2” resource to edit its settings. Change its Logical ID to LexGenAIBotLambdaServiceRole and replace its Resource configuration with the following, then choose Save:
  6. AssumeRolePolicyDocument:
      Statement:
        - Action: sts:AssumeRole
          Effect: Allow
          Principal:
            Service: lambda.amazonaws.com
      Version: '2012-10-17'
    ManagedPolicyArns:
      - !Join
        - ''
        - - 'arn:'
          - !Ref AWS::Partition
          - ':iam::aws:policy/service-role/AWSLambdaBasicExecutionRole'
  7. Double-click the “Policy” resource to edit its settings. Change its Logical ID to LexGenAIBotLambdaServiceRoleDefaultPolicy and replace its Resource configuration with the following, then choose Save:
PolicyDocument:
  Statement:
    - Action:
        - lex:*
        - logs:*
        - s3:DeleteObject
        - s3:GetObject
        - s3:ListBucket
        - s3:PutObject
      Effect: Allow
      Resource: '*'
    - Action: bedrock:InvokeModel
      Effect: Allow
      Resource: !Join
        - ''
        - - 'arn:aws:bedrock:'
          - !Ref AWS::Region
          - '::foundation-model/anthropic.claude-v2'
  Version: '2012-10-17'
PolicyName: LexGenAIBotLambdaServiceRoleDefaultPolicy
Roles:
  - !Ref LexGenAIBotLambdaServiceRole

Once you have updated the properties of each resource, you see the connections and groupings automatically made between them:

Connections and automatic groupings

Connections and automatic groupings

To add the Amazon Lex bot:

  1. In the resource picker, search for and add the type AWS::Lex::Bot. Here’s another chance to see what configuration the AI suggests.
  2. Change the Amazon Lex bot’s logical ID to LexGenAIBot update its configuration to the following:
  3. DataPrivacy:
      ChildDirected: false
    IdleSessionTTLInSeconds: 300
    Name: LexGenAIBot
    RoleArn: !GetAtt CfnLexGenAIDemoRole.Arn
    AutoBuildBotLocales: true
    BotLocales:
      - Intents:
          - InitialResponseSetting:
              CodeHook:
                EnableCodeHookInvocation: true
                IsActive: true
                PostCodeHookSpecification: {}
            IntentClosingSetting:
              ClosingResponse:
                MessageGroupsList:
                  - Message:
                      PlainTextMessage:
                        Value: Hi there, I'm a GenAI Bot. How can I help you?
            Name: WelcomeIntent
            SampleUtterances:
              - Utterance: Hi
              - Utterance: Hey there
              - Utterance: Hello
              - Utterance: I need some help
              - Utterance: Help needed
              - Utterance: Can I get some help?
          - FulfillmentCodeHook:
              Enabled: true
              IsActive: true
              PostFulfillmentStatusSpecification: {}
            InitialResponseSetting:
              CodeHook:
                EnableCodeHookInvocation: true
                IsActive: true
                PostCodeHookSpecification: {}
            Name: GenerateTextIntent
            SampleUtterances:
              - Utterance: Generate content for
              - Utterance: 'Create text '
              - Utterance: 'Create a response for '
              - Utterance: Text to be generated for
          - FulfillmentCodeHook:
              Enabled: true
              IsActive: true
              PostFulfillmentStatusSpecification: {}
            InitialResponseSetting:
              CodeHook:
                EnableCodeHookInvocation: true
                IsActive: true
                PostCodeHookSpecification: {}
            Name: FallbackIntent
            ParentIntentSignature: AMAZON.FallbackIntent
        LocaleId: en_US
        NluConfidenceThreshold: 0.4
    Description: Bot created demonstration of GenAI capabilities.
    TestBotAliasSettings:
      BotAliasLocaleSettings:
        - BotAliasLocaleSetting:
            CodeHookSpecification:
              LambdaCodeHook:
                CodeHookInterfaceVersion: '1.0'
                LambdaArn: !GetAtt LexGenAIBotLambda.Arn
            Enabled: true
          LocaleId: en_US
  4. Choose Save on the resource.

Once all of your resources are configured, your application looks like this:

New AI generated canvas

New AI generated canvas

Adding function code and deployment

Once your architecture is defined, review and refine your template.yaml file. For a detailed reference and to ensure all your values are correct, visit the GitHub repository and check against the template.yaml file.

  1. Copy the Lambda layer directly from the repository, and add it to ./src/Boto3PillowPyshorteners.zip.
  2. In the .src/ directory, rename the generated handler.py to TextGeneration.py. You can also delete any unnecessary files.
  3. Open TextGeneration.py and replace the placeholder code with the following:
  4. import json
    import boto3
    import os
    import logging
    from botocore.exceptions import ClientError
    
    LOG = logging.getLogger()
    LOG.setLevel(logging.INFO)
    
    region_name = os.getenv("region", "us-east-1")
    s3_bucket = os.getenv("bucket")
    model_id = os.getenv("model_id", "anthropic.claude-v2")
    
    # Bedrock client used to interact with APIs around models
    bedrock = boto3.client(service_name="bedrock", region_name=region_name)
    
    # Bedrock Runtime client used to invoke and question the models
    bedrock_runtime = boto3.client(service_name="bedrock-runtime", region_name=region_name)
    
    
    def get_session_attributes(intent_request):
        session_state = intent_request["sessionState"]
        if "sessionAttributes" in session_state:
            return session_state["sessionAttributes"]
    
        return {}
    
    def close(intent_request, session_attributes, fulfillment_state, message):
        intent_request["sessionState"]["intent"]["state"] = fulfillment_state
        return {
            "sessionState": {
                "sessionAttributes": session_attributes,
                "dialogAction": {"type": "Close"},
                "intent": intent_request["sessionState"]["intent"],
            },
            "messages": [message],
            "sessionId": intent_request["sessionId"],
            "requestAttributes": intent_request["requestAttributes"]
            if "requestAttributes" in intent_request
            else None,
        }
    
    def lambda_handler(event, context):
        LOG.info(f"Event is {event}")
        accept = "application/json"
        content_type = "application/json"
        prompt = event["inputTranscript"]
    
        try:
            request = json.dumps(
                {
                    "prompt": "\n\nHuman:" + prompt + "\n\nAssistant:",
                    "max_tokens_to_sample": 4096,
                    "temperature": 0.5,
                    "top_k": 250,
                    "top_p": 1,
                    "stop_sequences": ["\\n\\nHuman:"],
                }
            )
    
            response = bedrock_runtime.invoke_model(
                body=request,
                modelId=model_id,
                accept=accept,
                contentType=content_type,
            )
    
            response_body = json.loads(response.get("body").read())
            LOG.info(f"Response body: {response_body}")
            response_message = {
                "contentType": "PlainText",
                "content": response_body["completion"],
            }
            session_attributes = get_session_attributes(event)
            fulfillment_state = "Fulfilled"
    
            return close(event, session_attributes, fulfillment_state, response_message)
    
        except ClientError as e:
            LOG.error(f"Exception raised while execution and the error is {e}")
  5. To deploy the infrastructure, go back to the App Composer extension, and choose the Sync icon. Follow the guided AWS SAM instructions to complete the deployment.
App Composer Sync

App Composer Sync

After the message SAM Sync succeeded, navigate to CloudFormation in the AWS Management Console to see the newly created resources. To continue building the chatbot, follow the rest of the original tutorial.

Conclusion

This guide demonstrates how AI-generated CloudFormation can streamline your workflow in Application Composer, enhance your understanding of resource configurations, and speed up the development process. As always, adhere to the AWS Responsible AI Policy when using these features.

Managing AWS Lambda runtime upgrades

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/managing-aws-lambda-runtime-upgrades/

This post is written by Julian Wood, Principal Developer Advocate, and Dan Fox, Principal Specialist Serverless Solutions Architect.

AWS Lambda supports multiple programming languages through the use of runtimes. A Lambda runtime provides a language-specific execution environment, which provides the OS, language support, and additional settings, such as environment variables and certificates that you can access from your function code.

You can use managed runtimes that Lambda provides or build your own. Each major programming language release has a separate managed runtime, with a unique runtime identifier, such as python3.11 or nodejs20.x.

Lambda automatically applies patches and security updates to all managed runtimes and their corresponding container base images. Automatic runtime patching is one of the features customers love most about Lambda. When these patches are no longer available, Lambda ends support for the runtime. Over the next few months, Lambda is deprecating a number of popular runtimes, triggered by end of life of upstream language versions and of Amazon Linux 1.

Runtime Deprecation
Node.js 14 Nov 27, 2023
Node.js 16 Mar 11, 2024
Python 3.7 Nov 27, 2023
Java 8 (Amazon Linux 1) Dec 31, 2023
Go 1.x Dec 31, 2023
Ruby 2.7 Dec 07, 2023
Custom Runtime (provided) Dec 31, 2023

Runtime deprecation is not unique to Lambda. You must upgrade code using Python 3.7 or Node.js 14 when those language versions reach end of life, regardless of which compute service your code is running on. Lambda can help make this easier by tracking which runtimes you are using and providing deprecation notifications.

This post contains considerations and best practices for managing runtime deprecations and upgrades when using Lambda. Adopting these techniques makes managing runtime upgrades easier, especially when working with a large number of functions.

Specifying Lambda runtimes

When you deploy your function as a .zip file archive, you choose a runtime when you create the function. To change the runtime, you can update your function’s configuration.

Lambda keeps each managed runtime up to date by taking on the operational burden of patching the runtimes with security updates, bug fixes, new features, performance enhancements, and support for minor version releases. These runtime updates are published as runtime versions. Lambda applies runtime updates to functions by migrating the function from an earlier runtime version to a new runtime version.

You can control how your functions receive these updates using runtime management controls. Runtime versions and runtime updates apply to patch updates for a given Lambda runtime. Lambda does not automatically upgrade functions between major language runtime versions, for example, from nodejs14.x to nodejs18.x.

For a function defined as a container image, you choose a runtime and the Linux distribution when you create the container image. Most customers start with one of the Lambda base container images, although you can also build your own images from scratch. To change the runtime, you create a new container image from a different base container image.

Why does Lambda deprecate runtimes?

Lambda deprecates a runtime when upstream runtime language maintainers mark their language end-of-life or security updates are no longer available.

In almost all cases, the end-of-life date of a language version or operating system is published well in advance. The Lambda runtime deprecation policy gives end-of-life schedules for each language that Lambda supports. Lambda notifies you by email and via your Personal Health Dashboard if you are using a runtime that is scheduled for deprecation.

Lambda runtime deprecation happens in several stages. Lambda first blocks creating new functions that use a given runtime. Lambda later also blocks updating existing functions using the unsupported runtime, except to update to a supported runtime. Lambda does not block invocations of functions that use a deprecated runtime. Function invocations continue indefinitely after the runtime reaches end of support.

Lambda is extending the deprecation notification period from 60 days before deprecation to 180 days. Previously, blocking new function creation happened at deprecation and blocking updates to existing functions 30 days later. Blocking creation of new functions now happens 30 days after deprecation, and blocking updates to existing functions 60 days after.

Lambda occasionally delays deprecation of a Lambda runtime for a limited period beyond the end of support date of the language version that the runtime supports. During this period, Lambda only applies security patches to the runtime OS. Lambda doesn’t apply security patches to programming language runtimes after they reach their end of support date.

Can Lambda automatically upgrade my runtime?

Moving from one major version of the language runtime to another has a significant risk of being a breaking change. Some libraries and dependencies within a language have deprecation schedules and do not support versions of a language past a certain point. Moving functions to new runtimes could potentially impact large-scale production workloads that customers depend on.

Since Lambda cannot guarantee backward compatibility between major language versions, upgrading the Lambda runtime used by a function is a customer-driven operation.

Lambda function versions

You can use function versions to manage the deployment of your functions. In Lambda, you make code and configuration changes to the default function version, which is called $LATEST. When you publish a function version, Lambda takes a snapshot of the code, runtime, and function configuration to maintain a consistent experience for users of that function version. When you invoke a function, you can specify the version to use or invoke the $LATEST version. Lambda function versions are required when using Provisioned Concurrency or SnapStart.

Some developers use an auto-versioning process by creating a new function version each time they deploy a change. This results in many versions of a function, with only a single version actually in use.

While Lambda applies runtime updates to published function versions, you cannot update the runtime major version for a published function version, for example from Node.js 16 to Node.js 20. To update the runtime for a function, you must update the $LATEST version, then create a new published function version if necessary. This means that different versions of a function can use different runtimes. The following shows the same function with version 1 using Node.js 14.x and version 2 using Node.js 18.x.

Version 1 using Node.js 14.x

Version 1 using Node.js 14.x

Version 2 using Node.js 18.x

Version 2 using Node.js 18.x

Ensure you create a maintenance process for deleting unused function versions, which also impact your Lambda storage quota.

Managing function runtime upgrades

Managing function runtime upgrades should be part of your software delivery lifecycle, in a similar way to how you treat dependencies and security updates. You need to understand which functions are being actively used in your organization. Organizations can create prioritization based on security profiles and/or function usage. You can use the same communication mechanisms you may already be using for handling security vulnerabilities.

Implement preventative guardrails to ensure that developers can only create functions using supported runtimes. Using infrastructure as code, CI/CD pipelines, and robust testing practices makes updating runtimes easier.

Identifying impacted functions

There are tools available to check Lambda runtime configuration and to identify which functions and what published function versions are actually in use. Deleting a function or function version that is no longer in use is the simplest way to avoid runtime deprecations.

You can identify functions using deprecated or soon to be deprecated runtimes using AWS Trusted Advisor. Use the AWS Lambda Functions Using Deprecated Runtimes check, in the Security category that provides 120 days’ notice.

AWS Trusted Advisor Lambda functions using deprecated runtimes

AWS Trusted Advisor Lambda functions using deprecated runtimes

Trusted Advisor scans all versions of your functions, including $LATEST and published versions.

The AWS Command Line Interface (AWS CLI) can list all functions in a specific Region that are using a specific runtime. To find all functions in your account, repeat the following command for each AWS Region and account. Replace the <REGION> and <RUNTIME> parameters with your values. The --function-version ALL parameter causes all function versions to be returned; omit this parameter to return only the $LATEST version.

aws lambda list-functions --function-version ALL --region <REGION> --output text —query "Functions[?Runtime=='<RUNTIME>'].FunctionArn"

You can use AWS Config to create a view of the configuration of resources in your account and also store configuration snapshot data in Amazon S3. AWS Config queries do not support published function versions, they can only query the $LATEST version.

You can then use Amazon Athena and Amazon QuickSight to make dashboards to visualize AWS Config data. For more information, see the Implementing governance in depth for serverless applications learning guide.

Dashboard showing AWS Config data

Dashboard showing AWS Config data

There are a number of ways that you can track Lambda function usage.

You can use Amazon CloudWatch metrics explorer to view Lambda by runtime and track the Invocations metric within the default CloudWatch metrics retention period of 15 months.

Track invocations in Amazon CloudWatch metrics

Track invocations in Amazon CloudWatch metrics

You can turn on AWS CloudTrail data event logging to log an event every time Lambda functions are invoked. This helps you understand what identities are invoking functions and the frequency of their invocations.

AWS Cost and Usage Reports can show which functions are incurring cost and in use.

Limiting runtime usage

AWS CloudFormation Guard is an open-source evaluation tool to validate infrastructure as code templates. Create policy rules to ensure that developers only chose approved runtimes. For more information, see Preventative Controls with AWS CloudFormation Guard.

AWS Config rules allow you to check that Lambda function settings for the runtime match expected values. For more information on running these rules before deployment, see Preventative Controls with AWS Config. You can also reactively flag functions as non-compliant as your governance policies evolve. For more information, see Detective Controls with AWS Config.

Lambda does not currently have service control policies (SCP) to block function creation based on the runtime

Upgrade best practices

Use infrastructure as code tools to build and manage your Lambda functions, which can make it easier to manage upgrades.

Ensure you run tests against your functions when developing locally. Include automated tests as part of your CI/CD pipelines to provide confidence in your runtime upgrades. When rolling out function upgrades, you can use weighted aliases to shift traffic between two function versions as you monitor for errors and failures.

Using runtimes after deprecation

AWS strongly advises you to upgrade your functions to a supported runtime before deprecation to continue to benefit from security patches, bug-fixes, and the latest runtime features. While deprecation does not affect function invocations, you will be using an unsupported runtime, which may have unpatched security vulnerabilities. Your function may eventually stop working, for example, due to a certificate expiry.

Lambda blocks function creation and updates for functions using deprecated runtimes. To create or update functions after these operations are blocked, contact AWS Support.

Conclusion

Lambda is deprecating a number of popular runtimes over the next few months, reflecting the end-of-life of upstream language versions and Amazon Linux 1. This post covers considerations for managing Lambda function runtime upgrades.

For more serverless learning resources, visit Serverless Land.

Scaling improvements when processing Apache Kafka with AWS Lambda

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/scaling-improvements-when-processing-apache-kafka-with-aws-lambda/

AWS Lambda is improving the automatic scaling behavior when processing data from Apache Kafka event-sources. Lambda is increasing the default number of initial consumers, improving how quickly consumers scale up, and helping to ensure that consumers don’t scale down too quickly. There is no additional action that you must take, and there is no additional cost.

Running Kafka on AWS

Apache Kafka is a popular open-source platform for building real-time streaming data pipelines and applications. You can deploy and manage your own Kafka solution on-premises or in the cloud on Amazon EC2.

Amazon Managed Streaming for Apache Kafka (MSK) is a fully managed service that makes it easier to build and run applications that use Kafka to process streaming data. MSK Serverless is a cluster type for Amazon MSK that allows you to run Kafka without having to manage and scale cluster capacity. It automatically provisions and scales capacity while managing the partitions in your topic, so you can stream data without thinking about right-sizing or scaling clusters. MSK Serverless offers a throughput-based pricing model, so you pay only for what you use. For more information, see Using Kafka to build your streaming application.

Using Lambda to consume records from Kafka

Processing streaming data can be complex in traditional, server-based architectures, especially if you must react in real-time. Many organizations spend significant time and cost managing and scaling their streaming platforms. In order to react fast, they must provision for peak capacity, which adds complexity.

Lambda and serverless architectures remove the undifferentiated heavy lifting when processing Kafka streams. You don’t have to manage infrastructure, can reduce operational overhead, lower costs, and scale on-demand. This helps you focus more on building streaming applications. You can write Lambda functions in a number of programming languages, which provide flexibility when processing streaming data.

Lambda event source mapping

Lambda can integrate natively with your Kafka environments as a consumer to process stream data as soon as it’s generated.

To consume streaming data from Kafka, you configure an event source mapping (ESM) on your Lambda functions. This is a resource managed by the Lambda service, which is separate from your function. It continually polls records from the topics in the Kafka cluster. The ESM optionally filters records and batches them into a payload. Then, it calls the Lambda Invoke API to deliver the payload to your Lambda function synchronously for processing.

As Lambda manages the pollers, you don’t need to manage a fleet of consumers across multiple teams. Each team can create and configure their own ESM with Lambda handling the polling.

AWS Lambda event source mapping

AWS Lambda event source mapping

For more information on using Lambda to process Kafka streams, see the learning guide.

Scaling and throughput

Kafka uses partitions to increase throughput and spread the load of records to all brokers in a cluster.

The Lambda event source mapping resource includes pollers and processors. Pollers have consumers that read records from Kafka partitions. The poller assigners send them to processors which batch the records and invoke your function.

When you create a Kafka event source mapping, Lambda allocates consumers to process all partitions in the Kafka topic. Previously, Lambda allocated a minimum of one processor for a consumer.

Lambda previous initial scaling

Lambda previous initial scaling

With these scaling improvements, Lambda allocates multiple processors to improve processing. This reduces the possibility of a single invoke slowing down the entire processing stream.

Lambda updated initial scaling

Lambda updated initial scaling

Each consumer sends records to multiple processors running in parallel to handle increased workloads. Records in each partition are only assigned to a single processor to maintain order.

Lambda automatically scales up or down the number of consumers and processors based on workload. Lambda samples the consumer offset lag of all the partitions in the topic every minute. If the lag is increasing, this means Lambda can’t keep up with processing the records from the partition.

The scaling algorithm accounts for the current offset lag, and also the rate of new messages added to the topic. Lambda can reach the maximum number of consumers within three minutes to lower the offset lag as quickly as possible. Lambda is also reducing the scale down behavior to ensure records are processed more quickly and latency is reduced, particularly for bursty workloads.

Total processors for all pollers can only scale up to the total number of partitions in the topic.

After successful invokes, the poller periodically commits offsets to the respective brokers.

Lambda further scaling

Lambda further scaling

You can monitor the throughput of your Kafka topic using consumer metrics consumer_lag and consumer_offset.

To check how many function invocations occur in parallel, you can also monitor the concurrency metrics for your function. The concurrency is approximately equal to the total number of processors across all pollers, depending on processor activity. For example, if three pollers have five processors running for a given ESM, the function concurrency would be approximately 15 (5 + 5 + 5).

Seeing the improved scaling in action

There are a number of Serverless Patterns that you can use to process Kafka streams using Lambda. To set up Amazon MSK Serverless, follow the instructions in the GitHub repo:

  1. Create an example Amazon MSK Serverless topic with 1000 partitions.
  2. ./kafka-topics.sh --create --bootstrap-server "{bootstrap-server}" --command-config client.properties --replication-factor 3 --partitions 1000 --topic msk-1000p
  3. Add records to the topic using a UUID as a key to distribute records evenly across partitions. This example adds 13 million records.
  4. for x in {1..13000000}; do echo $(uuidgen -r),message_$x; done | ./kafka-console-producer.sh --broker-list "{bootstrap-server}" --topic msk-1000p --producer.config client.properties --property parse.key=true --property key.separator=, --producer-property acks=all
  5. Create a Python function based on this pattern, which logs the processed records.
  6. Amend the function code to insert a delay of 0.1 seconds to simulate record processing.
  7. import json
    import base64
    import time
    
    def lambda_handler(event, context):
        # Define a variable to keep track of the number of the message in the batch of messages
        i=1
        # Looping through the map for each key (combination of topic and partition)
        for record in event['records']:
            for messages in event['records'][record]:
                print("********************")
                print("Record number: " + str(i))
                print("Topic: " + str(messages['topic']))
                print("Partition: " + str(messages['partition']))
                print("Offset: " + str(messages['offset']))
                print("Timestamp: " + str(messages['timestamp']))
                print("TimestampType: " + str(messages['timestampType']))
                if None is not messages.get('key'):
                    b64decodedKey=base64.b64decode(messages['key'])
                    decodedKey=b64decodedKey.decode('ascii')
                else:
                    decodedKey="null"
                if None is not messages.get('value'):
                    b64decodedValue=base64.b64decode(messages['value'])
                    decodedValue=b64decodedValue.decode('ascii')
                else:
                    decodedValue="null"
                print("Key = " + str(decodedKey))
                print("Value = " + str(decodedValue))
                i=i+1
                time.sleep(0.1)
        return {
            'statusCode': 200,
        }
    
  8. Configure the ESM to point to the previously created cluster and topic.
  9. Use the default batch size of 100. Set the StartingPosition to TRIM_HORIZON to process from the beginning of the stream.
  10. Deploy the function, which also adds and configures the ESM.
  11. View the Amazon CloudWatch ConcurrentExecutions and OffsetLag metrics to view the processing.

With the scaling improvements, once the ESM is configured, the ESM and function scale up to handle the number of partitions.

Lambda automatic scaling improvement graph

Lambda automatic scaling improvement graph

Increasing data processing throughput

It is important that your function can keep pace with the rate of traffic. A growing offset lag means that the function processing cannot keep up. If the age is high in relation to the stream’s retention period, you can lose data as records expire from the stream.

This value should generally not exceed 50% of the stream’s retention period. When the value reaches 100% of the stream retention period, data is lost. One temporary solution is to increase the retention time of the stream. This gives you more time to resolve the issue before losing data.

There are several ways to improve processing throughput.

  1. Avoid processing unnecessary records by using content filtering to control which records Lambda sends to your function. This helps reduce traffic to your function, simplifies code, and reduces overall cost.
  2. Lambda allocates processors across all pollers based on the number of partitions up to a maximum of one concurrent Lambda function per partition. You can increase the number of processing Lambda functions by increasing the number of partitions.
  3. For compute intensive functions, you can increase the memory allocated to your function, which also increases the amount of virtual CPU available. This can help reduce the duration of a processing function.
  4. Lambda polls Kafka with a configurable batch size of records. You can increase the batch size to process more records in a single invocation. This can improve processing time and reduce costs, particularly if your function has an increased init time. A larger batch size increases the latency to process the first record in the batch, but potentially decreases the latency to process the last record in the batch. There is a tradeoff between cost and latency when optimizing a partition’s capacity and the decision depends on the needs of your workload.
  5. Ensure that your producers evenly distribute records across partitions using an effective partition key strategy. A workload is unbalanced when a single key dominates other keys, creating a hot partition, which impacts throughput.

See Increasing data processing throughput for some additional guidance.

Conclusion

Today, AWS Lambda is improving the automatic scaling behavior when processing data from Apache Kafka event-sources. Lambda is increasing the default number of initial consumers, improving how quickly they scale up, and ensuring they don’t scale down too quickly. There is no additional action that you must take, and there is no additional cost.

You can explore the scaling improvements with your existing workloads or deploy an Amazon MSK cluster and try one of the patterns to measure processing time.

To explore using Lambda to process Kafka streams, see the learning guide.

For more serverless learning resources, visit Serverless Land.

Enhancing runtime security and governance with the AWS Lambda Runtime API proxy extension

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/enhancing-runtime-security-and-governance-with-the-aws-lambda-runtime-api-proxy-extension/

This post is written by Anton Aleksandrov, Principal Serverless Solutions Architect,  and Shridhar Pandey, Senior AWS Lambda Product Manager.

AWS Lambda runtimes use the Lambda Runtime API to communicate with the Lambda service. Runtimes use it to retrieve inbound events to be processed by the function handler, return successful handler responses to the Lambda service, and report failures. This post shows how to intercept inbound events and outbound responses without changing function code, using the Runtime API proxy pattern.

This approach enables security vendors and engineering teams to provide enhanced, non-invasive security and governance tools for Lambda functions. Use cases include sanitizing event payload, blocking malicious events, and auditing and augmenting payloads.

Overview

The Lambda Runtime API is an HTTP endpoint available within the Lambda execution environment. It allows the Lambda runtime that executes the function code to communicate with the Lambda service. It is used by managed Lambda runtimes, such as Node.js or Python, as well as custom runtime, which enables developers to create their own Lambda runtime in any programming language of their choice.

Lambda runtimes use the Runtime API to retrieve the next incoming event to be processed by the function handler and return the handler response to the Lambda service.

Lambda Extensions enable you to integrate Lambda functions with your organization’s preferred tools for monitoring, observability, security, and governance. You can use extensions from AWS, AWS Lambda Ready partners, and open-source projects for a wide range of use cases. Extensions allow adding functionality, such as pre-fetching configurations or dispatching telemetry, without making intrusive changes to function code. Lambda Extensions are packaged as Lambda layers and run as a separate process in the execution environment.

This is how runtimes and extensions communicate with the Lambda service via the Runtime API and Extensions API endpoints:

AWS Lambda Runtime API and Extensions API endpoints

AWS Lambda Runtime API and Extensions API endpoints

When you register your extension with the Lambda service, you can specify you want to receive the INVOKE event. The Lambda service sends this event to the extension asynchronously when a function is invoked.

The information supplied contains the function invocation metadata, but not the event payload. This makes the event useful for observability, but limited for application security and governance use cases, such as inspecting payloads for vulnerabilities, sanitizing inputs, and blocking malicious events.

The Lambda Runtime API proxy is a pattern that enables you to hook into the function invocation request and response lifecycle. It allows you to use extensions to implement advanced security, compliance, governance, and observability scenarios without changes to function code. You can add runtime security mechanisms, implement audit procedures for data flowing in and out of the function, enhance observability by auto-injecting tracing headers, and many more.

Understanding the Lambda Runtime API workflow

This is how the Lambda Runtime consumes the Lambda Runtime API:

How the Lambda Runtime consumes the Lambda Runtime API

How the Lambda Runtime consumes the Lambda Runtime API

Lambda runtimes use the value of the AWS_LAMBDA_RUNTIME_API environment variable to make Runtime API requests. The two primary endpoints are /next, which is used to retrieve the next event to process, and /response, which is used to return event processing results to the Lambda service. In addition, the Runtime API also provides endpoints for reporting failures. See the full protocol and schema definitions of the Runtime API.

How the Runtime API proxy approach works

The Runtime API proxy is a component that you can build to hook into the invocation workflow. It proxies requests and responses, allowing you to augment them, and control the workflow:

Runtime API proxy hooks

Runtime API proxy hooks

When the Lambda service creates a new execution environment, it starts by initializing the extensions attached to the function. The execution environment waits for all extensions to register with the Lambda service by calling the Extensions API /register endpoint, then proceeds to initialize the runtime. This allows you to start the Runtime API proxy HTTP listener during extension initialization, making it ready to serve the runtime requests.

Runtime API proxy flow

Runtime API proxy flow

By default, the value of the AWS_LAMBDA_RUNTIME_API environment variable in the runtime process points to the Lambda Runtime API endpoint 127.0.0.1:9001. You can use a wrapper script to change that value to point to the Runtime API proxy endpoint instead.

A wrapper script enables you to customize the runtime startup behavior of your Lambda function by letting you set configuration parameters that cannot be set through language-specific environment variables. You can add a wrapper script to your function by setting the AWS_LAMBDA_EXEC_WRAPPER environment variable. The following wrapper script assumes that the Runtime API Proxy is listening on port 9009.

#!/bin/bash
export AWS_LAMBDA_RUNTIME_API="127.0.0.1:9009"
exec "$@"

You can either add this export line to an existing wrapper script or create a new one.

Runtime API proxy example

Runtime API proxy example

The Runtime API Proxy is bootstrapped by the Lambda service when a new execution environment is created and it’s ready to proxy requests from the Lambda runtime to the Runtime API before first invocation.

Implementing the Runtime API proxy logic

AWS recommends you implement extensions using a programming language that compiles to a binary executable, such as Golang or Rust. This allows you to use the extension with any Lambda runtime. Extensions implemented in interpreted languages, such as JavaScript and Python, or languages that require additional virtual machines, such as Java and C#, can only be used with that specific runtime.

This diagram shows a scenario where both incoming events and outbound responses are processed by the extension. You can use this workflow for auditing event or response payloads, sanitizing them, or injecting additional properties. You can use it for scenarios like masking account numbers, stripping personally identifiable information (PII), or injecting observability headers.

Runtime API proxy logic

Runtime API proxy logic

This diagram demonstrates an advanced scenario, where the first inbound event is identified as malicious, and rejected by the Runtime API proxy. The function handler is not invoked. The second event is not flagged as malicious, and is therefore forwarded to the handler for processing. You can use this workflow for security scenarios like runtime application protection.

Runtime API proxy security scenario

Runtime API proxy security scenario

AWS Partners using the Runtime API Proxy solution

“Using Lambda Runtime API proxy solution is a game-changing approach for us. It enables us to support multiple Lambda runtimes with a single implementation, provides comprehensive visibility into Lambda execution, and allows to detect attackers targeting serverless applications,” says Julio Guerra, Engineering Manager, Application Security Management, Datadog.

“Lambda Runtime API proxy is a simple solution that gives us a pluggable way to protect Lambda Function URLs. We can implement request authorization and enrichment with no changes to function code,” says Ilya Zilber, Senior Manager, Solutions Engineering, Okta Inc.

Security best practices

Extensions run within the same execution environment as the function, so they have the same level of access to resources such as file system, networking, and environment variables. IAM permissions assigned to the function are shared with extensions. Our guidance is to assign the least required privileges to your functions.

Always install extensions from a trusted source only. Use Infrastructure as Code (IaC) tools, such as AWS CloudFormation, to simplify the task of attaching the same extension configuration, including AWS Identity and Access Management (IAM) permissions, to multiple functions. Additionally, IaC tools allow you to have an audit record of extensions and versions you’ve used previously.

When building extensions, do not log sensitive data. Sanitize payloads and metadata before logging or persisting them for audit purposes.

Considerations

The Runtime API proxy approach allows you to hook into the Lambda request/response workflow, enabling new security and observability use cases. There are several important considerations:

  • This requires you to have a good understanding of the Lambda execution environment lifecycle and the Lambda Runtime API. You must implement proxying for all Runtime API endpoints and handle potential runtime failures.
  • Prepare your extension for composability for scenarions in which more than one extension implements the Runtime API proxy pattern. Allow your extension consumers to configure the extension via environment variables using at least two parameters – the port your proxy listens on and the Runtime API endpoint your proxy forwards requests to. The latter should default to the original value of the AWS_LAMBDA_RUNTIME_API environment variable. See sample implementations below for details.
  • Proxying API requests with default buffered responses requires additional work to support functions with response payload streaming.
  • Proxying API requests adds latency. The added overhead depends on your implementation. AWS recommends using programming languages that can be compiled to an executable binary, such as Rust and Golang, and keeping your extensions lightweight and optimized.

Samples

You can find sample extensions implementing the Runtime API Proxy at https://github.com/aws-samples/aws-lambda-extensions/. See Golang, Rust, and Node.js samples.

Follow the instructions described in README.md for a step-by-step tutorial on running the extension.

Conclusion

This post introduces and illustrates the Lambda Runtime API proxy pattern. You can use this pattern to hook into the Lambda function request and response workflow to intercept, process, audit, modify, and block inbound events and handler responses.

You can use this pattern to implement enhanced runtime security and governance scenarios, as well as scenarios from other domains.. AWS customers and partners can use this advanced solution approach to add enhanced security and observability to Lambda functions without requiring code changes.

For more serverless learning resources, visit Serverless Land.

Detecting and stopping recursive loops in AWS Lambda functions

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/detecting-and-stopping-recursive-loops-in-aws-lambda-functions/

This post is written by Pawan Puthran, Principal Serverless Specialist TAM, Aneel Murari, Senior Serverless Specialist Solution Architect, and Shree Shrikhande, Senior AWS Lambda Product Manager.

AWS Lambda is announcing a recursion control to detect and stop Lambda functions running in a recursive or infinite loop.

At launch, this feature is available for Lambda integrations with Amazon Simple Queue Service (Amazon SQS), Amazon SNS, or when invoking functions directly using the Lambda invoke API. Lambda now detects functions that appear to be running in a recursive loop and drops requests after exceeding 16 invocations.

This can help reduce costs from unexpected Lambda function invocations because of recursion. You receive notifications about this action through the AWS Health Dashboard, email, or by configuring Amazon CloudWatch Alarms.

Overview

You can invoke Lambda functions in multiple ways. AWS services generate events that invoke Lambda functions, and Lambda functions can send messages to other AWS services. In most architectures, the service or resource that invokes a Lambda function should be different from the service or resource that the function outputs to. Because of misconfiguration or coding bugs, a function can send a processed event to the same service or resource that invokes the Lambda function, causing a recursive loop.

Lambda now detects the function running in a recursive loop between supported services, after exceeding 16 invocations. It returns a RecursiveInvocationException to the caller. There is no additional charge for this feature. For asynchronous invokes, Lambda sends the event to a dead-letter queue or on-failure destination, if one is configured.

The following is an example of an order processing system.

Image processing system

Order processing system

  1. A new order information message is sent to the source SQS queue.
  2. Lambda consumes the message from the source queue using an ESM.
  3. The Lambda function processes the message and sends the updated orders message to a destination SQS queue using the SQS SendMessage API.
  4. The source queue has a dead-letter queue(DLQ) configured for handling any failed or unprocessed messages.
  5. Because of a misconfiguration, the Lambda function sends the message to the source SQS queue instead of the destination queue. This causes a recursive loop of Lambda function invocations.

To explore sample code for this example, see the GitHub repo.

In the preceding example, after 16 invocations, Lambda throws a RecursiveInvocationException to the ESM. The ESM stops invoking the Lambda function and, once the maxReceiveCount is exceeded, SQS moves the message to the source queues configured DLQ.

You receive an AWS Health Dashboard notification with steps to troubleshoot the function.

AWS Health Dashboard notification

AWS Health Dashboard notification

You also receive an email notification to the registered email address on the account.

Email notification

Email notification

Lambda emits a RecursiveInvocationsDropped CloudWatch metric, which you can view in the CloudWatch console.

RecursiveInvocationsDropped CloudWatch metric

RecursiveInvocationsDropped CloudWatch metric

How does Lambda detect recursion?

For Lambda to detect recursive loops, your function must use one of the supported AWS SDK versions or higher.

Lambda uses an AWS X-Ray trace header primitive called “Lineage” to track the number of times a function has been invoked with an event. When your function code sends an event using a supported AWS SDK version, Lambda increments the counter in the lineage header. If your function is then invoked with the same triggering event more than 16 times, Lambda stops the next invocation for that event. You do not need to configure active X-Ray tracing for this feature to work.

An example lineage header looks like:

X-Amzn-Trace-Id:Root=1-645f7998-4b1e232810b0bb733dba2eab;Parent=5be88d12eefc1fc0;Sampled=1;Lineage=43e12f0f:5

43e12f0f is the hash of a resource, in this case a Lambda function. 5 is the number of times this function has been invoked with the same event. The logic of hash generation, encoding, and size of the lineage header may change in the future. You should not design any application functionality based on this.

When using an ESM to consume messages from SQS, after the maxReceiveCount value is exceeded, the message is sent to the source queue’s configured DLQ. When Lambda detects a recursive loop and drops subsequent invocations, it returns a RecursiveInvocationException to the ESM. This increments the maxReceiveCount value. When the ESM auto retries to process events, based on the error handling configuration, these retries are not considered recursive invocations.

When using SQS, you can also batch multiple messages into one Lambda event. Where the message batch size is greater than 1, Lambda uses the maximum lineage value within the batch of messages. It drops the entire batch if the value exceeds 16.

Recursion detection in action

You can deploy a sample application example in the GitHub repo to test Lambda recursive loop detection. The application includes a Lambda function that reads from an SQS queue and writes messages back to the same SQS queue.

As prerequisites, you must install:

To deploy the application:

    1. Set your AWS Region:
export REGION=<your AWS region>
    1. Clone the GitHub repository
git clone https://github.com/aws-samples/aws-lambda-recursion-detection-sample.git
cd aws-lambda-recursion-detection-sample
    1. Use AWS SAM to build and deploy the resources to your AWS account. Enter a stack name, such as lambda-recursion, when prompted. Accept the remaining default values.
sam build –-use-container
sam deploy --guided --region $REGION

To test the application:

    1. Save the name of the SQS queue in a local environment variable:
SOURCE_SQS_URL=$(aws cloudformation describe-stacks \ --region $REGION \ --stack-name lambda-recursion \ --query 'Stacks[0].Outputs[?OutputKey==`SourceSQSqueueURL`].OutputValue' --output text)
  1. Publish a message to the source SQS queue:
aws sqs send-message --queue-url $SOURCE_SQS_URL --message-body '{"orderId":"111","productName":"Bolt","orderStatus":"Submitted"}' --region $REGION

This invokes the Lambda function, which writes the message back to the queue.

To verify that Lambda has detected the recursion:

  1. Navigate to the CloudWatch console. Choose All Metrics under Metrics in the left-hand panel and search for RecursiveInvocationsDropped.

    Find RecursiveInvocationsDropped.

    Find RecursiveInvocationsDropped.

  2. Choose Lambda > By Function Name and choose RecursiveInvocationsDropped for the function you created. Under Graphed metrics, change the statistic to sum and Period to 1 minute. You see one record. Refresh if you don’t see the metric after a few seconds.
Metrics sum view

Metrics sum view

Actions to take when Lambda stops a recursive loop

When you receive a notification regarding recursion in your account, the following steps can help address the issue.

  • To stop further invoke attempts while you fix the underlying configuration issue, set the function concurrency to 0. This acts as an off switch for the Lambda function. You can choose the “Throttle” button in the Lambda console or use the PutFunctionConcurrency API to set the function concurrency to 0.
  • You can also disable or delete the event source mapping or trigger for the Lambda function.
  • Check your Lambda function code and configuration for any code defects that create loops. For example, check your environment variables to ensure you are not using the same SQS queue or SNS topic as source and target.
  • If an SQS Queue is the event source for your Lambda function, configure a DLQ on the source queue.
  • If an SNS topic is the event source, configure an On-Failure Destination for the Lambda function.

Disabling recursion detection

You may have valid use-cases where Lambda recursion is intentional as part of your design. In this case, use caution and implement suitable guardrails to prevent unexpected charges to your account. To learn more about best practices for using recursive invocation patterns, see Recursive patterns that cause run-away Lambda functions in the AWS Lambda Operator Guide.

This feature is turned on by default to stop recursive loops. To request turning it off for your account, reach out to AWS Support.

Conclusion

Lambda recursion control for SQS and SNS automatically detects and stops functions running in a recursive or infinite loop. This can be due to misconfiguration or coding errors. Recursion control helps reduce unexpected usage with Lambda and downstream services. The post also explains how Lambda detects and stops recursive loops and notifies you through AWS Health Dashboard to troubleshoot the function.

To learn more about the feature, visit the AWS Lambda Developer Guide.

For more serverless learning resources, visit Serverless Land

Implementing AWS Lambda error handling patterns

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/implementing-aws-lambda-error-handling-patterns/

This post is written by Jeff Chen, Principal Cloud Application Architect, and Jeff Li, Senior Cloud Application Architect

Event-driven architectures are an architecture style that can help you boost agility and build reliable, scalable applications. Splitting an application into loosely coupled services can help each service scale independently. A distributed, loosely coupled application depends on events to communicate application change states. Each service consumes events from other services and emits events to notify other services of state changes.

Handling errors becomes even more important when designing distributed applications. A service may fail if it cannot handle an invalid payload, dependent resources may be unavailable, or the service may time out. There may be permission errors that can cause failures. AWS services provide many features to handle error conditions, which you can use to improve the resiliency of your applications.

This post explores three use-cases and design patterns for handling failures.

Overview

AWS Lambda, Amazon Simple Queue Service (Amazon SQS), Amazon Simple Notification Service (Amazon SNS), and Amazon EventBridge are core building blocks for building serverless event-driven applications.

The post Understanding the Different Ways to Invoke Lambda Functions lists the three different ways of invoking a Lambda function: synchronous, asynchronous, and poll-based invocation. For a list of services and which invocation method they use, see the documentation.

Lambda’s integration with Amazon API Gateway is an example of a synchronous invocation. A client makes a request to API Gateway, which sends the request to Lambda. API Gateway waits for the function response and returns the response to the client. There are no built-in retries or error handling. If the request fails, the client attempts the request again.

Lambda’s integration with SNS and EventBridge are examples of asynchronous invocations. SNS, for example, sends an event to Lambda for processing. When Lambda receives the event, it places it on an internal event queue and returns an acknowledgment to SNS that it has received the message. Another Lambda process reads events from the internal queue and invokes your Lambda function. If SNS cannot deliver an event to your Lambda function, the service automatically retries the same operation based on a retry policy.

Lambda’s integration with SQS uses poll-based invocations. Lambda runs a fleet of pollers that poll your SQS queue for messages. The pollers read the messages in batches and invoke your Lambda function once per batch.

You can apply this pattern in many scenarios. For example, your operational application can add sales orders to an operational data store. You may then want to load the sales orders to your data warehouse periodically so that the information is available for forecasting and analysis. The operational application can batch completed sales as events and place them on an SQS queue. A Lambda function can then process the events and load the completed sale records into your data warehouse.

If your function processes the batch successfully, the pollers delete the messages from the SQS queue. If the batch is not successfully processed, the pollers do not delete the messages from the queue. Once the visibility timeout expires, the messages are available again to be reprocessed. If the message retention period expires, SQS deletes the message from the queue.

The following table shows the invocation types and retry behavior of the AWS services mentioned.

AWS service example Invocation type Retry behavior
Amazon API Gateway Synchronous No built-in retry, client attempts retries.

Amazon SNS

Amazon EventBridge

Asynchronous Built-in retries with exponential backoff.
Amazon SQS Poll-based Retries after visibility timeout expires until message retention period expires.

There are a number of design patterns to use for poll-based and asynchronous invocation types to retain failed messages for additional processing. These patterns can help you recover from delivery or processing failures.

You can explore the patterns and test the scenarios by deploying the code from this repository which uses the AWS Cloud Development Kit (AWS CDK) using Python.

Lambda poll-based invocation pattern

When using Lambda with SQS, if Lambda isn’t able to process the message and the message retention period expires, SQS drops the message. Failure to process the message can be due to function processing failures, including time-outs or invalid payloads. Processing failures can also occur when the destination function does not exist, or has incorrect permissions.

You can configure a separate dead-letter queue (DLQ) on the source queue for SQS to retain the dropped message. A DLQ preserves the original message and is useful for analyzing root causes, handling error conditions properly, or sending notifications that require manual interventions. In the poll-based invocation scenario, the Lambda function itself does not maintain a DLQ. It relies on the external DLQ configured in SQS. For more information, see Using Lambda with Amazon SQS.

The following shows the design pattern when you configure Lambda to poll events from an SQS queue and invoke a Lambda function.

Lambda synchronously polling catches of messages from SQS

Lambda synchronously polling batches of messages from SQS

To explore this pattern, deploy the code in this repository. Once deployed, you can use this instruction to test the pattern with the happy and unhappy paths.

Lambda asynchronous invocation pattern

With asynchronous invokes, there are two failure aspects to consider when using Lambda. The event source cannot deliver the message to Lambda and the Lambda function errors when processing the event.

Event sources vary in how they handle failures delivering messages to Lambda. If SNS or EventBridge cannot send the event to Lambda after exhausting all their retry attempts, the service drops the event. You can configure a DLQ on an SNS topic or EventBridge event bus to hold the dropped event. This works in the same way as the poll-based invocation pattern with SQS.

Lambda functions may then error due to input payload syntax errors, duration time-outs, or the function throws an exception such as a data resource not available.

For asynchronous invokes, you can configure how long Lambda retains an event in its internal queue, up to 6 hours. You can also configure how many times Lambda retries when the function errors, between 0 and 2. Lambda discards the event when the maximum age passes or all retry attempts fail. To retain a copy of discarded events, you can configure either a DLQ or, preferably, a failed-event destination as part of your Lambda function configuration.

A Lambda destination enables you to specify what to do next if an asynchronous invocation succeeds or fails. You can configure a destination to send invocation records to SQS, SNS, EventBridge, or another Lambda function. Destinations are preferred for failure processing as they support additional targets and include additional information. A DLQ holds the original failed event. With a destination, Lambda also passes details of the function’s response in the invocation record. This includes stack traces, which can be useful for analyzing the root cause.

Using both a DLQ and Lambda destinations

You can apply this pattern in many scenarios. For example, many of your applications may contain customer records. To comply with the California Consumer Privacy Act (CCPA), different organizations may need to delete records for a particular customer. You can set up a consumer delete SNS topic. Each organization creates a Lambda function, which processes the events published by the SNS topic and deletes customer records in its managed applications.

The following shows the design pattern when you configure an SNS topic as the event source for a Lambda function, which uses destination queues for success and failure process.

SNS topic as event source for Lambda

SNS topic as event source for Lambda

You configure a DLQ on the SNS topic to capture messages that SNS cannot deliver to Lambda. When Lambda invokes the function, it sends details of the successfully processed messages to an on-success SQS destination. You can use this pattern to route an event to multiple services for simpler use cases. For orchestrating multiple services, AWS Step Functions is a better design choice.

Lambda can also send details of unsuccessfully processed messages to an on-failure SQS destination.

A variant of this pattern is to replace an SQS destination with an EventBridge destination so that multiple consumers can process an event based on the destination.

To explore how to use an SQS DLQ and Lambda destinations, deploy the code in this repository. Once deployed, you can use this instruction to test the pattern with the happy and unhappy paths.

Using a DLQ

Although destinations is the preferred method to handle function failures, you can explore using DLQs.

The following shows the design pattern when you configure an SNS topic as the event source for a Lambda function, which uses SQS queues for failure process.

Lambda invoked asynchonously

Lambda invoked asynchonously

You configure a DLQ on the SNS topic to capture the messages that SNS cannot deliver to the Lambda function. You also configure a separate DLQ for the Lambda function. Lambda saves an unsuccessful event to this DLQ after Lambda cannot process the event after maximum retry attempts.

To explore how to use a Lambda DLQ, deploy the code in this repository. Once deployed, you can use this instruction to test the pattern with happy and unhappy paths.

Conclusion

This post explains three patterns that you can use to design resilient event-driven serverless applications. Error handling during event processing is an important part of designing serverless cloud applications.

You can deploy the code from the repository to explore how to use poll-based and asynchronous invocations. See how poll-based invocations can send failed messages to a DLQ. See how to use DLQs and Lambda destinations to route and handle unsuccessful events.

Learn more about event-driven architecture on Serverless Land.

Introducing AWS Lambda response streaming

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/introducing-aws-lambda-response-streaming/

Today, AWS Lambda is announcing support for response payload streaming. Response streaming is a new invocation pattern that lets functions progressively stream response payloads back to clients.

You can use Lambda response payload streaming to send response data to callers as it becomes available. This can improve performance for web and mobile applications. Response streaming also allows you to build functions that return larger payloads and perform long-running operations while reporting incremental progress.

In traditional request-response models, the response needs to be fully generated and buffered before it is returned to the client. This can delay the time to first byte (TTFB) performance while the client waits for the response to be generated. Web applications are especially sensitive to TTFB and page load performance. Response streaming lets you send partial responses back to the client as they become ready, improving TTFB latency to within milliseconds. For web applications, this can improve visitor experience and search engine rankings.

Other applications may have large payloads, like images, videos, large documents, or database results. Response streaming lets you transfer these payloads back to the client without having to buffer the entire payload in memory. You can use response streaming to send responses larger than Lambda’s 6 MB response payload limit up to a soft limit of 20 MB.

Response streaming currently supports the Node.js 14.x and subsequent managed runtimes. You can also implement response streaming using custom runtimes. You can progressively stream response payloads through Lambda function URLs, including as an Amazon CloudFront origin, along with using the AWS SDK or using Lambda’s invoke API. You can also use Amazon API Gateway and Application Load Balancer to stream larger payloads.

Writing response streaming enabled functions

Writing the handler for response streaming functions differs from typical Node handler patterns. To indicate to the runtime that Lambda should stream your function’s responses, you must wrap your function handler with the streamifyResponse() decorator. This tells the runtime to use the correct stream logic path, allowing the function to stream responses.

This is an example handler with response streaming enabled:

exports.handler = awslambda.streamifyResponse(
    async (event, responseStream, context) => {
        responseStream.setContentType(“text/plain”);
        responseStream.write(“Hello, world!”);
        responseStream.end();
    }
);

The streamifyResponse decorator accepts the following additional parameter, responseStream, besides the default node handler parameters, event, and context.

The new responseStream object provides a stream object that your function can write data to. Data written to this stream is sent immediately to the client. You can optionally set the Content-Type header of the response to pass additional metadata to your client about the contents of the stream.

Writing to the response stream

The responseStream object implements Node’s Writable Stream API. This offers a write() method to write information to the stream. However, we recommend that you use pipeline() wherever possible to write to the stream. This can improve performance, ensuring that a faster readable stream does not overwhelm the writable stream.

An example function using pipeline() showing how you can stream compressed data:

const pipeline = require("util").promisify(require("stream").pipeline);
const zlib = require('zlib');
const { Readable } = require('stream');

exports.gzip = awslambda.streamifyResponse(async (event, responseStream, _context) => {
    // As an example, convert event to a readable stream.
    const requestStream = Readable.from(Buffer.from(JSON.stringify(event)));
    
    await pipeline(requestStream, zlib.createGzip(), responseStream);
});

Ending the response stream

When using the write() method, you must end the stream before the handler returns. Use responseStream.end() to signal that you are not writing any more data to the stream. This is not required if you write to the stream with pipeline().

Reading streamed responses

Response streaming introduces a new InvokeWithResponseStream API. You can read a streamed response from your function via a Lambda function URL or use the AWS SDK to call the new API directly.

Neither API Gateway nor Lambda’s target integration with Application Load Balancer support chunked transfer encoding. It therefore does not support faster TTFB for streamed responses. You can, however, use response streaming with API Gateway to return larger payload responses, up to API Gateway’s 10 MB limit. To implement this, you must configure an HTTP_PROXY integration between your API Gateway and a Lambda function URL, instead of using the LAMBDA_PROXY integration.

You can also configure CloudFront with a function URL as origin. When streaming responses through a function URL and CloudFront, you can have faster TTFB performance and return larger payload sizes.

Using Lambda response streaming with function URLs

You can configure a function URL to invoke your function and stream the raw bytes back to your HTTP client via chunked transfer encoding. You configure the Function URL to use the new InvokeWithResponseStream API by changing the invoke mode of your function URL from the default BUFFERED to RESPONSE_STREAM.

RESPONSE_STREAM enables your function to stream payload results as they become available if you wrap the function with the streamifyResponse() decorator. Lambda invokes your function using the InvokeWithResponseStream API. If InvokeWithResponseStream invokes a function that is not wrapped with streamifyResponse(), Lambda does not stream the response and instead returns a buffered response which is subject to the 6 MB size limit.

Using AWS Serverless Application Model (AWS SAM) or AWS CloudFormation, set the InvokeMode property:

  MyFunctionUrl:
    Type: AWS::Lambda::Url
    Properties:
      TargetFunctionArn: !Ref StreamingFunction
      AuthType: AWS_IAM
      InvokeMode: RESPONSE_STREAM

Using generic HTTP client libraries with function URLs

Each language or framework may use different methods to form an HTTP request and parse a streamed response. Some HTTP client libraries only return the response body after the server closes the connection. These clients do not work with functions that return a response stream. To get the benefit of response streams, use an HTTP client that returns response data incrementally. Many HTTP client libraries already support streamed responses, including the Apache HttpClient for Java, Node’s built-in http client, and Python’s requests and urllib3 packages. Consult the documentation for the HTTP library that you are using.

Example applications

There are a number of example Lambda streaming applications in the Serverless Patterns Collection. They use AWS SAM to build and deploy the resources in your AWS account.

Clone the repository and explore the examples. The README file in each pattern folder contains additional information.

git clone https://github.com/aws-samples/serverless-patterns/ 
cd serverless-patterns

Time to first byte using write()

  1. To show how streaming improves time to first bite, deploy the lambda-streaming-ttfb-write-sam pattern.
  2. cd lambda-streaming-ttfb-write-sam
  3. Use AWS SAM to deploy the resources to your AWS account. Run a guided deployment to set the default parameters for the first deployment.
  4. sam deploy -g --stack-name lambda-streaming-ttfb-write-sam

    For subsequent deployments you can use sam deploy.

  5. Enter a Stack Name and accept the initial defaults.
  6. AWS SAM deploys a Lambda function with streaming support and a function URL.

    AWS SAM deploy --g

    AWS SAM deploy –g

    Once the deployment completes, AWS SAM provides details of the resources.

    AWS SAM resources

    AWS SAM resources

    The AWS SAM output returns a Lambda function URL.

  7. Use curl with your AWS credentials to view the streaming response as the URL uses AWS Identity and Access Management (IAM) for authorization. Replace the URL and Region parameters for your deployment.
curl --request GET https://<url>.lambda-url.<Region>.on.aws/ --user AKIAIOSFODNN7EXAMPLE:wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY --aws-sigv4 'aws:amz:<Region>:lambda'

You can see the gradual display of the streamed response.

Using curl to stream response from write () function

Using curl to stream response from write () function

Time to first byte using pipeline()

  1. To try an example using pipeline(), deploy the lambda-streaming-ttfb-pipeline-sam pattern.
  2. cd ..
    cd lambda-streaming-ttfb-pipeline-sam
  3. Use AWS SAM to deploy the resources to your AWS account. Run a guided deployment to set the default parameters for the first deploy.
  4. sam deploy -g --stack-name lambda-streaming-ttfb-pipeline-sam
  5. Enter a Stack Name and accept the initial defaults.
  6. Use curl with your AWS credentials to view the streaming response. Replace the URL and Region parameters for your deployment.
curl --request GET https://<url>.lambda-url.<Region>.on.aws/ --user AKIAIOSFODNN7EXAMPLE:wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY --aws-sigv4 'aws:amz:<Region>:lambda'

You can see the pipelined response stream returned.

Using curl to stream response from function

Using curl to stream response from function

Large payloads

  1. To show how streaming enables you to return larger payloads, deploy the lambda-streaming-large-sam application. AWS SAM deploys a Lambda function, which returns a 7 MB PDF file which is larger than Lambda’s non-stream 6 MB response payload limit.
  2. cd ..
    cd lambda-streaming-large-sam
    sam deploy -g --stack-name lambda-streaming-large-sam
  3. The AWS SAM output returns a Lambda function URL. Use curl with your AWS credentials to view the streaming response.
curl --request GET https://<url>.lambda-url.<Region>.on.aws/ --user AKIAIOSFODNN7EXAMPLE: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY --aws-sigv4 'aws:amz:<Region>:lambda' -o SVS401-ri22.pdf -w '%{content_type}'

This downloads the PDF file SVS401-ri22.pdf to your current directory and displays the content type as application/pdf.

You can also use API Gateway to stream a large payload with an HTTP_PROXY integration with a Lambda function URL.

Invoking a function with response streaming using the AWS SDK

You can use the AWS SDK to stream responses directly from the new Lambda InvokeWithResponseStream API. This provides additional functionality such as handling midstream errors. This can be helpful when building, for example, internal microservices. Response streaming is supported with the AWS SDK for Java 2.x, AWS SDK for JavaScript v3, and AWS SDKs for Go version 1 and version 2.

The SDK response returns an event stream that you can read from. The event stream contains two event types. PayloadChunk contains a raw binary buffer with partial response data received by the client. InvokeComplete signals that the function has completed sending data. It also contains additional metadata, such as whether the function encountered an error in the middle of the stream. Errors can include unhandled exceptions thrown by your function code and function timeouts.

Using the AWS SDK for Javascript v3

  1. To see how to use the AWS SDK to stream responses from a function, deploy the lambda-streaming-sdk-sam pattern.
  2. cd ..
    cd lambda-streaming-sdk-sam
    sam deploy -g --stack-name lambda-streaming-sdk-sam
  3. Enter a Stack Name and accept the initial defaults.
  4. AWS SAM deploys three Lambda functions with streaming support.

  • HappyPathFunction: Returns a full stream.
  • MidstreamErrorFunction: Simulates an error midstream.
  • TimeoutFunction: Function times out before stream completes.
  • Run the SDK example application, which invokes each Lambda function and outputs the result.
  • npm install @aws-sdk/client-lambda
    node index.mjs

    You can see each function and how the midstream and timeout errors are returned back to the SDK client.

    Streaming midstream error

    Streaming midstream error

    Streaming timeout error

    Streaming timeout error

    Quotas and pricing

    Streaming responses incur an additional cost for network transfer of the response payload. You are billed based on the number of bytes generated and streamed out of your Lambda function over the first 6 MB. For more information, see Lambda pricing.

    There is an initial maximum response size of 20 MB, which is a soft limit you can increase. There is a maximum bandwidth throughput limit of 16 Mbps (2 MB/s) for streaming functions.

    Conclusion

    Today, AWS Lambda is announcing support for response payload streaming to send partial responses to callers as the responses become available. This can improve performance for web and mobile applications. You can also use response streaming to build functions that return larger payloads and perform long-running operations while reporting incremental progress. Stream partial responses through Lambda function URLs, or using the AWS SDK. Response streaming currently supports the Node.js 14.x and subsequent runtimes, as well as custom runtimes.

    There are a number of example Lambda streaming applications in the Serverless Patterns Collection to explore the functionality.

    Lambda response streaming support is also available through many AWS Lambda Partners such as Datadog, Dynatrace, New Relic, Pulumi and Lumigo.

    For more serverless learning resources, visit Serverless Land.

    Serverless ICYMI Q1 2023

    Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/serverless-icymi-q1-2023/

    Welcome to the 21st edition of the AWS Serverless ICYMI (in case you missed it) quarterly recap. Every quarter, we share all the most recent product launches, feature enhancements, blog posts, webinars, live streams, and other interesting things that you might have missed!

    ICYMI2023Q1

    In case you missed our last ICYMI, check out what happened last quarter here.

    Artificial intelligence (AI) technologies, ChatGPT, and DALL-E are creating significant interest in the industry at the moment. Find out how to integrate serverless services with ChatGPT and DALL-E to generate unique bedtime stories for children.

    Example notification of a story hosted with Next.js and App Runner

    Example notification of a story hosted with Next.js and App Runner

    Serverless Land is a website maintained by the Serverless Developer Advocate team to help you build serverless applications and includes workshops, code examples, blogs, and videos. There is now enhanced search functionality so you can search across resources, patterns, and video content.

    SLand-search

    ServerlessLand search

    AWS Lambda

    AWS Lambda has improved how concurrency works with Amazon SQS. You can now control the maximum number of concurrent Lambda functions invoked.

    The launch blog post explains the scaling behavior of Lambda using this architectural pattern, challenges this feature helps address, and a demo of maximum concurrency in action.

    Maximum concurrency is set to 10 for the SQS queue.

    Maximum concurrency is set to 10 for the SQS queue.

    AWS Lambda Powertools is an open-source library to help you discover and incorporate serverless best practices more easily. Lambda Powertools for .NET is now generally available and currently focused on three observability features: distributed tracing (Tracer), structured logging (Logger), and asynchronous business and application metrics (Metrics). Powertools is also available for Python, Java, and Typescript/Node.js programming languages.

    To learn more:

    Lambda announced a new feature, runtime management controls, which provide more visibility and control over when Lambda applies runtime updates to your functions. The runtime controls are optional capabilities for advanced customers that require more control over their runtime changes. You can now specify a runtime management configuration for each function with three settings, Automatic (default), Function update, or manual.

    There are three new Amazon CloudWatch metrics for asynchronous Lambda function invocations: AsyncEventsReceived, AsyncEventAge, and AsyncEventsDropped. You can track the asynchronous invocation requests sent to Lambda functions to monitor any delays in processing and take corrective actions if required. The launch blog post explains the new metrics and how to use them to troubleshoot issues.

    Lambda now supports Amazon DocumentDB change streams as an event source. You can use Lambda functions to process new documents, track updates to existing documents, or log deleted documents. You can use any programming language that is supported by Lambda to write your functions.

    There is a helpful blog post suggesting best practices for developing portable Lambda functions that allow you to port your code to containers if you later choose to.

    AWS Step Functions

    AWS Step Functions has expanded its AWS SDK integrations with support for 35 additional AWS services including Amazon EMR Serverless, AWS Clean Rooms, AWS IoT FleetWise, AWS IoT RoboRunner and 31 other AWS services. In addition, Step Functions also added support for 1000+ new API actions from new and existing AWS services such as Amazon DynamoDB and Amazon Athena. For the full list of added services, visit AWS SDK service integrations.

    Amazon EventBridge

    Amazon EventBridge has launched the AWS Controllers for Kubernetes (ACK) for EventBridge and Pipes . This allows you to manage EventBridge resources, such as event buses, rules, and pipes, using the Kubernetes API and resource model (custom resource definitions).

    EventBridge event buses now also support enhanced integration with Service Quotas. Your quota increase requests for limits such as PutEvents transactions-per-second, number of rules, and invocations per second among others will be processed within one business day or faster, enabling you to respond quickly to changes in usage.

    AWS SAM

    The AWS Serverless Application Model (SAM) Command Line Interface (CLI) has added the sam list command. You can now show resources defined in your application, including the endpoints, methods, and stack outputs required to test your deployed application.

    AWS SAM has a preview of sam build support for building and packaging serverless applications developed in Rust. You can use cargo-lambda in the AWS SAM CLI build workflow and AWS SAM Accelerate to iterate on your code changes rapidly in the cloud.

    You can now use AWS SAM connectors as a source resource parameter. Previously, you could only define AWS SAM connectors as a AWS::Serverless::Connector resource. Now you can add the resource attribute on a connector’s source resource, which makes templates more readable and easier to update over time.

    AWS SAM connectors now also support multiple destinations to simplify your permissions. You can now use a single connector between a single source resource and multiple destination resources.

    In October 2022, AWS released OpenID Connect (OIDC) support for AWS SAM Pipelines. This improves your security posture by creating integrations that use short-lived credentials from your CI/CD provider. There is a new blog post on how to implement it.

    Find out how best to build serverless Java applications with the AWS SAM CLI.

    AWS App Runner

    AWS App Runner now supports retrieving secrets and configuration data stored in AWS Secrets Manager and AWS Systems Manager (SSM) Parameter Store in an App Runner service as runtime environment variables.

    AppRunner also now supports incoming requests based on HTTP 1.0 protocol, and has added service level concurrency, CPU and Memory utilization metrics.

    Amazon S3

    Amazon S3 now automatically applies default encryption to all new objects added to S3, at no additional cost and with no impact on performance.

    You can now use an S3 Object Lambda Access Point alias as an origin for your Amazon CloudFront distribution to tailor or customize data to end users. For example, you can resize an image depending on the device that an end user is visiting from.

    S3 has introduced Mountpoint for S3, a high performance open source file client that translates local file system API calls to S3 object API calls like GET and LIST.

    S3 Multi-Region Access Points now support datasets that are replicated across multiple AWS accounts. They provide a single global endpoint for your multi-region applications, and dynamically route S3 requests based on policies that you define. This helps you to more easily implement multi-Region resilience, latency-based routing, and active-passive failover, even when data is stored in multiple accounts.

    Amazon Kinesis

    Amazon Kinesis Data Firehose now supports streaming data delivery to Elastic. This is an easier way to ingest streaming data to Elastic and consume the Elastic Stack (ELK Stack) solutions for enterprise search, observability, and security without having to manage applications or write code.

    Amazon DynamoDB

    Amazon DynamoDB now supports table deletion protection to protect your tables from accidental deletion when performing regular table management operations. You can set the deletion protection property for each table, which is set to disabled by default.

    Amazon SNS

    Amazon SNS now supports AWS X-Ray active tracing to visualize, analyze, and debug application performance. You can now view traces that flow through Amazon SNS topics to destination services, such as Amazon Simple Queue Service, Lambda, and Kinesis Data Firehose, in addition to traversing the application topology in Amazon CloudWatch ServiceLens.

    SNS also now supports setting content-type request headers for HTTPS notifications so applications can receive their notifications in a more predictable format. Topic subscribers can create a DeliveryPolicy that specifies the content-type value that SNS assigns to their HTTPS notifications, such as application/json, application/xml, or text/plain.

    EDA Visuals collection added to Serverless Land

    The Serverless Developer Advocate team has extended Serverless Land and introduced EDA visuals. These are small bite sized visuals to help you understand concept and patterns about event-driven architectures. Find out about batch processing vs. event streaming, commands vs. events, message queues vs. event brokers, and point-to-point messaging. Discover bounded contexts, migrations, idempotency, claims, enrichment and more!

    EDA-visuals

    EDA Visuals

    To learn more:

    Serverless Repos Collection on Serverless Land

    There is also a new section on Serverless Land containing helpful code repositories. You can search for code repos to use for examples, learning or building serverless applications. You can also filter by use-case, runtime, and level.

    Serverless Repos Collection

    Serverless Repos Collection

    Serverless Blog Posts

    January

    Jan 12 – Introducing maximum concurrency of AWS Lambda functions when using Amazon SQS as an event source

    Jan 20 – Processing geospatial IoT data with AWS IoT Core and the Amazon Location Service

    Jan 23 – AWS Lambda: Resilience under-the-hood

    Jan 24 – Introducing AWS Lambda runtime management controls

    Jan 24 – Best practices for working with the Apache Velocity Template Language in Amazon API Gateway

    February

    Feb 6 – Previewing environments using containerized AWS Lambda functions

    Feb 7 – Building ad-hoc consumers for event-driven architectures

    Feb 9 – Implementing architectural patterns with Amazon EventBridge Pipes

    Feb 9 – Securing CI/CD pipelines with AWS SAM Pipelines and OIDC

    Feb 9 – Introducing new asynchronous invocation metrics for AWS Lambda

    Feb 14 – Migrating to token-based authentication for iOS applications with Amazon SNS

    Feb 15 – Implementing reactive progress tracking for AWS Step Functions

    Feb 23 – Developing portable AWS Lambda functions

    Feb 23 – Uploading large objects to Amazon S3 using multipart upload and transfer acceleration

    Feb 28 – Introducing AWS Lambda Powertools for .NET

    March

    Mar 9 – Server-side rendering micro-frontends – UI composer and service discovery

    Mar 9 – Building serverless Java applications with the AWS SAM CLI

    Mar 10 – Managing sessions of anonymous users in WebSocket API-based applications

    Mar 14 –
    Implementing an event-driven serverless story generation application with ChatGPT and DALL-E

    Videos

    Serverless Office Hours – Tues 10AM PT

    Weekly office hours live stream. In each session we talk about a specific topic or technology related to serverless and open it up to helping you with your real serverless challenges and issues. Ask us anything you want about serverless technologies and applications.

    January

    Jan 10 – Building .NET 7 high performance Lambda functions

    Jan 17 – Amazon Managed Workflows for Apache Airflow at Scale

    Jan 24 – Using Terraform with AWS SAM

    Jan 31 – Preparing your serverless architectures for the big day

    February

    Feb 07- Visually design and build serverless applications

    Feb 14 – Multi-tenant serverless SaaS

    Feb 21 – Refactoring to Serverless

    Feb 28 – EDA visually explained

    March

    Mar 07 – Lambda cookbook with Python

    Mar 14 – Succeeding with serverless

    Mar 21 – Lambda Powertools .NET

    Mar 28 – Server-side rendering micro-frontends

    FooBar Serverless YouTube channel

    Marcia Villalba frequently publishes new videos on her popular serverless YouTube channel. You can view all of Marcia’s videos at https://www.youtube.com/c/FooBar_codes.

    January

    Jan 12 – Serverless Badge – A new certification to validate your Serverless Knowledge

    Jan 19 – Step functions Distributed map – Run 10k parallel serverless executions!

    Jan 26 – Step Functions Intrinsic Functions – Do simple data processing directly from the state machines!

    February

    Feb 02 – Unlock the Power of EventBridge Pipes: Integrate Across Platforms with Ease!

    Feb 09 – Amazon EventBridge Pipes: Enrichment and filter of events Demo with AWS SAM

    Feb 16 – AWS App Runner – Deploy your apps from GitHub to Cloud in Record Time

    Feb 23 – AWS App Runner – Demo hosting a Node.js app in the cloud directly from GitHub (AWS CDK)

    March

    Mar 02 – What is Amazon DynamoDB? What are the most important concepts? What are the indexes?

    Mar 09 – Choreography vs Orchestration: Which is Best for Your Distributed Application?

    Mar 16 – DynamoDB Single Table Design: Simplify Your Code and Boost Performance with Table Design Strategies

    Mar 23 – 8 Reasons You Should Choose DynamoDB for Your Next Project and How to Get Started

    Sessions with SAM & Friends

    SAMFiends

    AWS SAM & Friends

    Eric Johnson is exploring how developers are building serverless applications. We spend time talking about AWS SAM as well as others like AWS CDK, Terraform, Wing, and AMPT.

    Feb 16 – What’s new with AWS SAM

    Feb 23 – AWS SAM with AWS CDK

    Mar 02 – AWS SAM and Terraform

    Mar 10 – Live from ServerlessDays ANZ

    Mar 16 – All about AMPT

    Mar 23 – All about Wing

    Mar 30 – SAM Accelerate deep dive

    Still looking for more?

    The Serverless landing page has more information. The Lambda resources page contains case studies, webinars, whitepapers, customer stories, reference architectures, and even more Getting Started tutorials.

    You can also follow the Serverless Developer Advocacy team on Twitter to see the latest news, follow conversations, and interact with the team.

    Introducing AWS Lambda Powertools for .NET

    Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/introducing-aws-lambda-powertools-for-net/

    This blog post is written by Amir Khairalomoum, Senior Solutions Architect.

    Modern applications are built with modular architectural patterns, serverless operational models, and agile developer processes. They allow you to innovate faster, reduce risk, accelerate time to market, and decrease your total cost of ownership (TCO). A microservices architecture comprises many distributed parts that can introduce complexity to application observability. Modern observability must respond to this complexity, the increased frequency of software deployments, and the short-lived nature of AWS Lambda execution environments.

    The Serverless Applications Lens for the AWS Well-Architected Framework focuses on how to design, deploy, and architect your serverless application workloads in the AWS Cloud. AWS Lambda Powertools for .NET translates some of the best practices defined in the serverless lens into a suite of utilities. You can use these in your application to apply structured logging, distributed tracing, and monitoring of metrics.

    Following the community’s continued adoption of AWS Lambda Powertools for Python, Java, and TypeScript, AWS Lambda Powertools for .NET is now generally available.

    This post shows how to use the new open source Powertools library to implement observability best practices with minimal coding. It walks through getting started, with the provided examples available in the Powertools GitHub repository.

    About Powertools

    Powertools for .NET is a suite of utilities that helps with implementing observability best practices without needing to write additional custom code. It currently supports Lambda functions written in C#, with support for runtime versions .NET 6 and newer. Powertools provides three core utilities:

    • Tracing provides a simpler way to send traces from functions to AWS X-Ray. It provides visibility into function calls, interactions with other AWS services, or external HTTP requests. You can add attributes to traces to allow filtering based on key information. For example, when using the Tracing attribute, it creates a ColdStart annotation. You can easily group and analyze traces to understand the initialization process.
    • Logging provides a custom logger that outputs structured JSON. It allows you to pass in strings or more complex objects, and takes care of serializing the log output. The logger handles common use cases, such as logging the Lambda event payload, and capturing cold start information. This includes appending custom keys to the logger.
    • Metrics simplifies collecting custom metrics from your application, without the need to make synchronous requests to external systems. This functionality allows capturing metrics asynchronously using Amazon CloudWatch Embedded Metric Format (EMF) which reduces latency and cost. This provides convenient functionality for common cases, such as validating metrics against CloudWatch EMF specification and tracking cold starts.

    Getting started

    The following steps explain how to use Powertools to implement structured logging, add custom metrics, and enable tracing with AWS X-Ray. The example application consists of an Amazon API Gateway endpoint, a Lambda function, and an Amazon DynamoDB table. It uses the AWS Serverless Application Model (AWS SAM) to manage the deployment.

    When you send a GET request to the API Gateway endpoint, the Lambda function is invoked. This function calls a location API to find the IP address, stores it in the DynamoDB table, and returns it with a greeting message to the client.

    Example application

    Example application

    The AWS Lambda Powertools for .NET utilities are available as NuGet packages. Each core utility has a separate NuGet package. It allows you to add only the packages you need. This helps to make the Lambda package size smaller, which can improve the performance.

    To implement each of these core utilities in a separate example, use the Globals sections of the AWS SAM template to configure Powertools environment variables and enable active tracing for all Lambda functions and Amazon API Gateway stages.

    Sometimes resources that you declare in an AWS SAM template have common configurations. Instead of duplicating this information in every resource, you can declare them once in the Globals section and let your resources inherit them.

    Logging

    The following steps explain how to implement structured logging in an application. The logging example shows you how to use the logging feature.

    To add the Powertools logging library to your project, install the packages from NuGet gallery, from Visual Studio editor, or by using following .NET CLI command:

    dotnet add package AWS.Lambda.Powertools.Logging

    Use environment variables in the Globals sections of the AWS SAM template to configure the logging library:

      Globals:
        Function:
          Environment:
            Variables:
              POWERTOOLS_SERVICE_NAME: powertools-dotnet-logging-sample
              POWERTOOLS_LOG_LEVEL: Debug
              POWERTOOLS_LOGGER_CASE: SnakeCase

    Decorate the Lambda function handler method with the Logging attribute in the code. This enables the utility and allows you to use the Logger functionality to output structured logs by passing messages as a string. For example:

    [Logging]
    public async Task<APIGatewayProxyResponse> FunctionHandler
             (APIGatewayProxyRequest apigProxyEvent, ILambdaContext context)
    {
      ...
      Logger.LogInformation("Getting ip address from external service");
      var location = await GetCallingIp();
      ...
    }

    Lambda sends the output to Amazon CloudWatch Logs as a JSON-formatted line.

    {
      "cold_start": true,
      "xray_trace_id": "1-621b9125-0a3b544c0244dae940ab3405",
      "function_name": "powertools-dotnet-tracing-sampl-HelloWorldFunction-v0F2GJwy5r1V",
      "function_version": "$LATEST",
      "function_memory_size": 256,
      "function_arn": "arn:aws:lambda:eu-west-2:286043031651:function:powertools-dotnet-tracing-sample-HelloWorldFunction-v0F2GJwy5r1V",
      "function_request_id": "3ad9140b-b156-406e-b314-5ac414fecde1",
      "timestamp": "2022-02-27T14:56:39.2737371Z",
      "level": "Information",
      "service": "powertools-dotnet-sample",
      "name": "AWS.Lambda.Powertools.Logging.Logger",
      "message": "Getting ip address from external service"
    }

    Another common use case, especially when developing new Lambda functions, is to print a log of the event received by the handler. You can achieve this by enabling LogEvent on the Logging attribute. This is disabled by default to prevent potentially leaking sensitive event data into logs.

    [Logging(LogEvent = true)]
    public async Task<APIGatewayProxyResponse> FunctionHandler
             (APIGatewayProxyRequest apigProxyEvent, ILambdaContext context)
    {
      ...
    }

    With logs available as structured JSON, you can perform searches on this structured data using CloudWatch Logs Insights. To search for all logs that were output during a Lambda cold start, and display the key fields in the output, run following query:

    fields coldStart='true'
    | fields @timestamp, function_name, function_version, xray_trace_id
    | sort @timestamp desc
    | limit 20
    CloudWatch Logs Insights query for cold starts

    CloudWatch Logs Insights query for cold starts

    Tracing

    Using the Tracing attribute, you can instruct the library to send traces and metadata from the Lambda function invocation to AWS X-Ray using the AWS X-Ray SDK for .NET. The tracing example shows you how to use the tracing feature.

    When your application makes calls to AWS services, the SDK tracks downstream calls in subsegments. AWS services that support tracing, and resources that you access within those services, appear as downstream nodes on the service map in the X-Ray console.

    You can instrument all of your AWS SDK for .NET clients by calling RegisterXRayForAllServices before you create them.

    public class Function
    {
      private static IDynamoDBContext _dynamoDbContext;
      public Function()
      {
        AWSSDKHandler.RegisterXRayForAllServices();
        ...
      }
      ...
    }

    To add the Powertools tracing library to your project, install the packages from NuGet gallery, from Visual Studio editor, or by using following .NET CLI command:

    dotnet add package AWS.Lambda.Powertools.Tracing

    Use environment variables in the Globals sections of the AWS SAM template to configure the tracing library.

      Globals:
        Function:
          Tracing: Active
          Environment:
            Variables:
              POWERTOOLS_SERVICE_NAME: powertools-dotnet-tracing-sample
              POWERTOOLS_TRACER_CAPTURE_RESPONSE: true
              POWERTOOLS_TRACER_CAPTURE_ERROR: true

    Decorate the Lambda function handler method with the Tracing attribute to enable the utility. To provide more granular details for your traces, you can use the same attribute to capture the invocation of other functions outside of the handler. For example:

    [Tracing]
    public async Task<APIGatewayProxyResponse> FunctionHandler
             (APIGatewayProxyRequest apigProxyEvent, ILambdaContext context)
    {
      ...
      var location = await GetCallingIp().ConfigureAwait(false);
      ...
    }
    
    [Tracing(SegmentName = "Location service")]
    private static async Task<string?> GetCallingIp()
    {
      ...
    }

    Once traffic is flowing, you see a generated service map in the AWS X-Ray console. Decorating the Lambda function handler method, or any other method in the chain with the Tracing attribute, provides an overview of all the traffic flowing through the application.

    AWS X-Ray trace service view

    AWS X-Ray trace service view

    You can also view the individual traces that are generated, along with a waterfall view of the segments and subsegments that comprise your trace. This data can help you pinpoint the root cause of slow operations or errors within your application.

    AWS X-Ray waterfall trace view

    AWS X-Ray waterfall trace view

    You can also filter traces by annotation and create custom service maps with AWS X-Ray Trace groups. In this example, use the filter expression annotation.ColdStart = true to filter traces based on the ColdStart annotation. The Tracing attribute adds these automatically when used within the handler method.

    View trace attributes

    View trace attributes

    Metrics

    CloudWatch offers a number of included metrics to help answer general questions about the application’s throughput, error rate, and resource utilization. However, to understand the behavior of the application better, you should also add custom metrics relevant to your workload.

    The metrics utility creates custom metrics asynchronously by logging metrics to standard output using the Amazon CloudWatch Embedded Metric Format (EMF).

    In the sample application, you want to understand how often your service is calling the location API to identify the IP addresses. The metrics example shows you how to use the metrics feature.

    To add the Powertools metrics library to your project, install the packages from the NuGet gallery, from the Visual Studio editor, or by using the following .NET CLI command:

    dotnet add package AWS.Lambda.Powertools.Metrics

    Use environment variables in the Globals sections of the AWS SAM template to configure the metrics library:

      Globals:
        Function:
          Environment:
            Variables:
              POWERTOOLS_SERVICE_NAME: powertools-dotnet-metrics-sample
              POWERTOOLS_METRICS_NAMESPACE: AWSLambdaPowertools

    To create custom metrics, decorate the Lambda function with the Metrics attribute. This ensures that all metrics are properly serialized and flushed to logs when the function finishes its invocation.

    You can then emit custom metrics by calling AddMetric or push a single metric with a custom namespace, service and dimensions by calling PushSingleMetric. You can also enable the CaptureColdStart on the attribute to automatically create a cold start metric.

    [Metrics(CaptureColdStart = true)]
    public async Task<APIGatewayProxyResponse> FunctionHandler
             (APIGatewayProxyRequest apigProxyEvent, ILambdaContext context)
    {
      ...
      // Add Metric to capture the amount of time
      Metrics.PushSingleMetric(
            metricName: "CallingIP",
            value: 1,
            unit: MetricUnit.Count,
            service: "lambda-powertools-metrics-example",
            defaultDimensions: new Dictionary<string, string>
            {
                { "Metric Type", "Single" }
            });
      ...
    }

    Conclusion

    CloudWatch and AWS X-Ray offer functionality that provides comprehensive observability for your applications. Lambda Powertools .NET is now available in preview. The library helps implement observability when running Lambda functions based on .NET 6 while reducing the amount of custom code.

    It simplifies implementing the observability best practices defined in the Serverless Applications Lens for the AWS Well-Architected Framework for a serverless application and allows you to focus more time on the business logic.

    You can find the full documentation and the source code for Powertools in GitHub. We welcome contributions via pull request, and encourage you to create an issue if you have any feedback for the project. Happy building with AWS Lambda Powertools for .NET.

    For more serverless learning resources, visit Serverless Land.

    Introducing AWS Lambda runtime management controls

    Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/introducing-aws-lambda-runtime-management-controls/

    This blog post is written by Jonathan Tuliani, Principal Product Manager.

    Today, AWS Lambda is announcing runtime management controls which provide more visibility and control over when Lambda applies runtime updates to your functions. Lambda is also changing how it rolls out automatic runtime updates to your functions. Together, these changes provide more flexibility in how you take advantage of the latest runtime features, performance improvements, and security updates.

    By default, all functions will continue to receive automatic runtime updates. You do not need to change how you use Lambda to continue to benefit from the security and operational simplicity of the managed runtimes Lambda provides. The runtime controls are optional capabilities for advanced customers that require more control over their runtime changes.

    This post explains what new runtime management controls are available and how you can take advantage of this new capability.

    Overview

    For each runtime, Lambda provides a managed execution environment. This includes the underlying Amazon Linux operating system, programming language runtime, and AWS SDKs. Lambda takes on the operational burden of applying patches and security updates to all these components. Customers tell us how much they appreciate being able to deploy a function and leave it, sometimes for years, without having to apply patches. With Lambda, patching ‘just works’, automatically.

    Lambda strives to provide updates which are backward compatible with existing functions. However, as with all software patching, there are rare cases where a patch can expose an underlying issue with an existing function that depends on the previous behavior. For example, consider a bug in one of the runtime OS packages. Applying a patch to fix the bug is the right choice for the vast majority of customers and functions. However, in rare cases, a function may depend on the previous (incorrect) behavior. Customers with critical workloads running in Lambda tell us they would like a way to further mitigate even this slight risk of disruption.

    With the launch of runtime management controls, Lambda now offers three new capabilities. First, Lambda provides visibility into which patch version of a runtime your function is using and when runtime updates are applied. Second, you can optionally synchronize runtime updates with function deployments. This provides you with control over when Lambda applies runtime updates and enables early detection of rare runtime update incompatibilities. Third, in the rare case where a runtime update incompatibility occurs, you can roll back your function to an earlier runtime version. This keeps your function working and minimizes disruption, providing time to remedy the incompatibility before returning to the latest runtime version.

    Runtime identifiers and runtime versions

    Lambda runtimes define the components of the execution environment in which your function code runs. This includes the OS, programming language runtime, environment variables, and certificates. For Python, Node.js and Ruby, the runtime also includes the AWS SDK. Each Lambda runtime has a unique runtime identifier, for example, nodejs18.x, or python3.9. Each runtime identifier represents a distinct major release of the programming language.

    Runtime management controls introduce the concept of Lambda runtime versions. A runtime version is an immutable version of a particular runtime. Each Lambda runtime, such as Node.js 16, or Python 3.9, starts with an initial runtime version. Every time Lambda updates the runtime, it adds a new runtime version to that runtime. These updates cover all runtime components (OS, language runtime, etc.) and therefore use a Lambda-defined numbering scheme, independent of the version numbers used by the programming language. For each runtime version, Lambda also publishes a corresponding base image for customers who package their functions as container images.

    New runtime identifiers represent a major release for the programming language, and sometimes other runtime components, such as the OS or SDK. Lambda cannot guarantee compatibility between runtime identifiers, although most times you can upgrade your functions with little or no modification. You control when you upgrade your functions to a new runtime identifier. In contrast, new runtime versions for the same runtime identifier have a very high level of backward compatibility with existing functions. By default, Lambda automatically applies runtime updates by moving functions from the previous runtime version to a newer runtime version.

    Each runtime version has a version number, and an Amazon Resource Name (ARN). You can view the version in a new platform log line, INIT_START. Lambda emits this log line each time it creates a new execution environment during the cold start initialization process.

    INIT_START Runtime Version: python:3.9.v14	Runtime Version ARN: arn:aws:lambda:eu-south-1::runtime:7b620fc2e66107a1046b140b9d320295811af3ad5d4c6a011fad1fa65127e9e6I

    INIT_START Runtime Version: python:3.9.v14 Runtime Version ARN: arn:aws:lambda:eu-south-1::runtime:7b620fc2e66107a1046b140b9d320295811af3ad5d4c6a011fad1fa65127e9e6I

    Runtime versions improve visibility into managed runtime updates. You can use the INIT_START log line to identify when the function transitions from one runtime version to another. This helps you investigate whether a runtime update might have caused any unexpected behavior of your functions. Changes in behavior caused by runtime updates are very rare. If your function isn’t behaving as expected, by far the most likely cause is an error in the function code or configuration.

    Runtime management modes

    With runtime management controls, you now have more control over when Lambda applies runtime updates to your functions. You can now specify a runtime management configuration for each function. You can set the runtime management configuration independently for $LATEST and each published function version.

    You can specify one of three runtime update modes: auto, function update, or manual. The runtime update mode controls when Lambda updates the function version to a new runtime version. By default, all functions receive runtime updates automatically, the alternatives are for advanced users in specific cases.

    Automatic

    Auto updates are the default, and are the right choice for most customers to ensure that you continue to benefit from runtime version updates. They help minimize your operational overheads by letting Lambda take care of runtime updates.

    While Lambda has always provided automatic runtime updates, this release includes a change to how automatic runtime updates are rolled out. Previously, Lambda applied runtime updates to all functions in each region, following a region-by-region deployment sequence. With this release, functions configured to use the auto runtime update mode now receive runtime updates in two phases. Initially, Lambda only applies a new runtime version to newly created or updated functions. After this initial period is complete, Lambda then applies the runtime update to any remaining functions configured to use the auto runtime update mode.

    This two-phase rollout synchronizes runtime updates with function updates for customers who are actively developing their functions. This makes it easier to detect and respond to any unexpected changes in behavior. For functions not in active development, auto mode continues to provide the operational benefits of fully automatic runtime updates.

    Function update

    In function update mode, Lambda updates your function to the latest available runtime version whenever you change your function code or configuration. This is the same as the first phase of auto mode. The difference is that, in auto mode, there is a second phase when Lambda applies runtime updates to functions which have not been changed. In function update mode, if you do not change a function, it continues to use the current runtime version indefinitely. This means that when using function update mode, you must update your functions regularly to keep their runtimes up-to-date. If you do not update a function regularly, you should use the auto runtime update mode.

    Synchronizing runtime updates with function deployments gives you control over when Lambda applies runtime updates. For example, you can avoid applying updates during business-critical events, such as a product launch or holiday sales.

    When used with CI/CD pipelines, function update mode enables early detection and mitigation in the rare event of a runtime update incompatibility. This is especially effective if you create a new published function version with each deployment. Each published function version captures a static copy of the function code and configuration, so that you can roll back to a previously published function version if required. Using function update mode extends the published function version to also capture the runtime version. This allows you to synchronize rollout and rollback of the entire Lambda execution environment, including function code, configuration, and runtime version.

    Manual

    Consider the rare event that a runtime update is incompatible with one of your functions. With runtime management controls, you can now roll back to an earlier runtime version. This keeps your function working and minimizes disruption, giving you time to remedy the incompatibility before returning to the latest runtime version.

    There are two ways to implement a runtime version rollback. You can use function update mode with a published function version to synchronize the rollback of code, configuration, and runtime version. Or, for functions using the default auto runtime update mode, you can roll back your runtime version by using manual mode.

    The manual runtime update mode provides you with full control over which runtime version your function uses. When enabling manual mode, you must specify the ARN of the runtime version to use, which you can find from the INIT_START log line.

    Lambda does not impose a time limit on how long you can use any particular runtime version. However, AWS strongly recommends using manual mode only for short-term remediation of code incompatibilities. Revert your function back to auto mode as soon as you resolve the issue. Functions using the same runtime version for an extended period may eventually stop working due to, for example, a certificate expiry.

    Using runtime management controls

    You can configure runtime management controls via the Lambda AWS Management Console and AWS Command Line Interface (AWS CLI). You can also use infrastructure as code tools such as AWS CloudFormation and the AWS Serverless Application Model (AWS SAM).

    Console

    From the Lambda console, navigate to a specific function. You can find runtime management controls on the Code tab, in the Runtime settings panel. Expand Runtime management configuration to view the current runtime update mode and runtime version ARN.

    Runtime settings

    Runtime settings

    To change runtime update mode, select Edit runtime management configuration. You can choose between automatic, function update, and manual runtime update modes.

    Edit runtime management configuration (Auto)

    Edit runtime management configuration (Auto)

    In manual mode, you must also specify the runtime version ARN.

    Edit runtime management configuration (Manual)

    Edit runtime management configuration (Manual)

    AWS SAM

    AWS SAM is an open-source framework for building serverless applications. You can specify runtime management settings using the RuntimeManagementConfig property.

    Resources:
      HelloWorldFunction:
        Type: AWS::Serverless::Function
        Properties:
          Handler: lambda_function.handler
          Runtime: python3.9
          RuntimeManagementConfig:
            UpdateOn: Manual
            RuntimeVersionArn: arn:aws:lambda:eu-west-1::runtime:7b620fc2e66107a1046b140b9d320295811af3ad5d4c6a011fad1fa65127e9e6

    AWS CLI

    You can also manage runtime management settings using the AWS CLI. You configure runtime management controls via a dedicated command aws lambda put-runtime-management-config, rather than aws lambda update-function-configuration.

    aws lambda put-runtime-management-config --function-name <function_arn> --update-runtime-on Manual --runtime-version-arn <runtime_version_arn>

    To view the existing runtime management configuration, use aws lambda get-runtime-management-config.

    aws lambda get-runtime-management-config --function-name <function_arn>

    The current runtime version ARN is also returned by aws lambda get-function and aws lambda get-function-configuration.

    Conclusion

    Runtime management controls provide more visibility and flexibility over when and how Lambda applies runtime updates to your functions. You can specify one of three update modes: auto, function update, or manual. These modes allow you to continue to take advantage of Lambda’s automatic patching, synchronize runtime updates with your deployments, and rollback to an earlier runtime version in the rare event that a runtime update negatively impacts your function.

    For more information on runtime management controls, see our documentation page.

    For more serverless learning resources, visit Serverless Land.

    Introducing maximum concurrency of AWS Lambda functions when using Amazon SQS as an event source

    Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/introducing-maximum-concurrency-of-aws-lambda-functions-when-using-amazon-sqs-as-an-event-source/

    This blog post is written by Solutions Architects John Lee and Jeetendra Vaidya.

    AWS Lambda now provides a way to control the maximum number of concurrent functions invoked by Amazon SQS as an event source. You can use this feature to control the concurrency of Lambda functions processing messages in individual SQS queues.

    This post describes how to set the maximum concurrency of SQS triggers when using SQS as an event source with Lambda. It also provides an overview of the scaling behavior of Lambda using this architectural pattern, challenges this feature helps address, and a demo of the maximum concurrency feature.

    Overview

    Lambda uses an event source mapping to process items from a stream or queue. The event source mapping reads from an event source, such as an SQS queue, optionally filters the messages, batches them, and invokes the mapped Lambda function.

    The scaling behavior for Lambda integration with SQS FIFO queues is simple. A single Lambda function processes batches of messages within a single message group to ensure that messages are processed in order.

    For SQS standard queues, the event source mapping polls the queue to consume incoming messages, starting at five concurrent batches with five functions at a time. As messages are added to the SQS queue, Lambda continues to scale out to meet demand, adding up to 60 functions per minute, up to 1,000 functions, to consume those messages. To learn more about Lambda scaling behavior, read ”Understanding how AWS Lambda scales with Amazon SQS standard queues.”

    Lambda processing standard SQS queues

    Lambda processing standard SQS queues

    Challenges

    When a large number of messages are in the SQS queue, Lambda scales out, adding additional functions to process the messages. The scale out can consume the concurrency quota in the account. To prevent this from happening, you can set reserved concurrency for individual Lambda functions. This ensures that the specified Lambda function can always scale to that much concurrency, but it also cannot exceed this number.

    When the Lambda function concurrency reaches the reserved concurrency limit, the queue configuration specifies the subsequent behavior. The message is returned to the queue and retried based on the redrive policy, expired based on its retention policy, or sent to another SQS dead-letter queue (DLQ). While sending unprocessed messages to a DLQ is a good option to preserve messages, it requires a separate mechanism to inspect and process messages from the DLQ.

    The following example shows a Lambda function reaching its reserved concurrency quota of 10.

    Lambda reaching reserved concurrency of 10.

    Lambda reaching reserved concurrency of 10.

    Maximum Lambda concurrency with SQS as an event source

    The launch of maximum concurrency for SQS as an event source allows you to control Lambda function concurrency per source. You set the maximum concurrency on the event source mapping, not on the Lambda function.

    This event source mapping setting does not change the scaling or batching behavior of Lambda with SQS. You can continue to batch messages with a customized batch size and window. It rather sets a limit on the maximum number of concurrent function invocations per SQS event source. Once Lambda scales and reaches the maximum concurrency configured on the event source, Lambda stops reading more messages from the queue. This feature also provides you with the flexibility to define the maximum concurrency for individual event sources when the Lambda function has multiple event sources.

    Maximum concurrency is set to 10 for the SQS queue.

    Maximum concurrency is set to 10 for the SQS queue.

    This feature can help prevent a Lambda function from consuming all available Lambda concurrency of the account and avoids messages returning to the queue unnecessarily because of Lambda functions being throttled. It provides an easier way to control and consume messages at a desired pace, controlled by the maximum number of concurrent Lambda functions.

    The maximum concurrency setting does not replace the existing reserved concurrency feature. Both serve distinct purposes and the two features can be used together. Maximum concurrency can help prevent overwhelming downstream systems and unnecessary throttled invocations. Reserved concurrency guarantees a maximum number of concurrent instances for the function.

    When used together, the Lambda function can have its own allocated capacity (reserved concurrency), while being able to control the throughput for each event source (maximum concurrency). When using the two features together, you must set the function reserved concurrency higher than the maximum concurrency on the SQS event source mapping to prevent throttling.

    Setting maximum concurrency for SQS as an event source

    You can configure the maximum concurrency for an SQS event source through the AWS Management Console, AWS Command Line Interface (CLI), or infrastructure as code tools such as AWS Serverless Application Model (AWS SAM). The minimum supported value is 2 and the maximum value is 1000. Refer to the Lambda quotas documentation for the latest limits.

    Configuring the maximum concurrency for an SQS trigger in the console

    Configuring the maximum concurrency for an SQS trigger in the console

    You can set the maximum concurrency through the create-event-source-mapping AWS CLI command.

    aws lambda create-event-source-mapping --function-name my-function --ScalingConfig {MaxConcurrency=2} --event-source-arn arn:aws:sqs:us-east-2:123456789012:my-queue

    Seeing the maximum concurrency setting in action

    The following demo compares Lambda receiving and processes messages differently when using maximum concurrency compared to reserved concurrency.

    This GitHub repository contains an AWS SAM template that deploys the following resources:

    • ReservedConcurrencyQueue (SQS queue)
    • ReservedConcurrencyDeadLetterQueue (SQS queue)
    • ReservedConcurrencyFunction (Lambda function)
    • MaxConcurrencyQueue (SQS queue)
    • MaxConcurrencyDeadLetterQueue (SQS queue)
    • MaxConcurrencyFunction (Lambda function)
    • CloudWatchDashboard (CloudWatch dashboard)

    The AWS SAM template provisions two sets of identical architectures and an Amazon CloudWatch dashboard to monitor the resources. Each architecture comprises a Lambda function receiving messages from an SQS queue, and a DLQ for the SQS queue.

    The maxReceiveCount is set as 1 for the SQS queues, which sends any returned messages directly to the DLQ. The ReservedConcurrencyFunction has its reserved concurrency set to 5, and the MaxConcurrencyFunction has the maximum concurrency for the SQS event source set to 5.

    Pre-requisites

    Running this demo requires the AWS CLI and the AWS SAM CLI. After installing both CLIs, clone this GitHub repository and navigate to the root of the directory:

    git clone https://github.com/aws-samples/aws-lambda-amazon-sqs-max-concurrency
    cd aws-lambda-amazon-sqs-max-concurrency

    Deploying the AWS SAM template

    1. Build the AWS SAM template with the build command to prepare for deployment to your AWS environment.
    2. sam build
    3. Use the guided deploy command to deploy the resources in your account.
    4. sam deploy --guided
    5. Give the stack a name and accept the remaining default values. Once deployed, you can track the progress through the CLI or by navigating to the AWS CloudFormation page in the AWS Management Console.
    6. Note the queue URLs from the Outputs tab in the AWS SAM CLI, CloudFormation console, or navigate to the SQS console to find the queue URLs.
    The Outputs tab of the launched AWS SAM template provides URLs to CloudWatch dashboard and SQS queues.

    The Outputs tab of the launched AWS SAM template provides URLs to CloudWatch dashboard and SQS queues.

    Running the demo

    The deployed Lambda function code simulates processing by sleeping for 10 seconds before returning a 200 response. This allows the function to reach a high function concurrency number with only a small number of messages.

    To add 25 messages to the Reserved Concurrency queue, run the following commands. Replace <ReservedConcurrencyQueueURL> with your queue URL from the AWS SAM Outputs.

    for i in {1..25}; do aws sqs send-message --queue-url <ReservedConcurrencyQueueURL> --message-body testing; done 

    To add 25 messages to the Maximum Concurrency queue, run the following commands. Replace <MaxConcurrencyQueueURL> with your queue URL from the AWS SAM Outputs.

    for i in {1..25}; do aws sqs send-message --queue-url <MaxConcurrencyQueueURL> --message-body testing; done 

    After sending messages to both queues, navigate to the dashboard URL available in the Outputs tab to view the CloudWatch dashboard.

    Validating results

    Both Lambda functions have the same number of invocations and the same concurrent invocations fixed at 5. The CloudWatch dashboard shows the ReservedConcurrencyFunction experienced throttling and 9 messages, as seen in the top-right metric, were sent to the corresponding DLQ. The MaxConcurrencyFunction did not experience any throttling and messages were not delivered to the DLQ.

    CloudWatch dashboard showing throttling and DLQs.

    CloudWatch dashboard showing throttling and DLQs.

    Clean up

    To remove all the resources created in this demo, use the delete command and follow the prompts:

    sam delete

    Conclusion

    You can now control the maximum number of concurrent functions invoked by SQS as a Lambda event source. This post explains the scaling behavior of Lambda using this architectural pattern, challenges this feature helps address, and a demo of maximum concurrency in action.

    There are no additional charges to use this feature besides the standard SQS and Lambda charges. You can start using maximum concurrency for SQS as an event source with new or existing event source mappings by connecting it with SQS. This feature is available in all Regions where Lambda and SQS are available.

    For more serverless learning resources, visit Serverless Land.

    Introducing payload-based message filtering for Amazon SNS

    Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/introducing-payload-based-message-filtering-for-amazon-sns/

    This post is written by Prachi Sharma (Software Development Manager, Amazon SNS), Mithun Mallick (Principal Solutions Architect, AWS Integration Services), and Otavio Ferreira (Sr. Software Development Manager, Amazon SNS).

    Amazon Simple Notification Service (SNS) is a messaging service for Application-to-Application (A2A) and Application-to-Person (A2P) communication. The A2A functionality provides high-throughput, push-based, many-to-many messaging between distributed systems, microservices, and event-driven serverless applications. These applications include Amazon Simple Queue Service (SQS), Amazon Kinesis Data Firehose, AWS Lambda, and HTTP/S endpoints. The A2P functionality enables you to communicate with your customers via mobile text messages (SMS), mobile push notifications, and email notifications.

    Today, we’re introducing the payload-based message filtering option of SNS, which augments the existing attribute-based option, enabling you to offload additional filtering logic to SNS and further reduce your application integration costs. For more information, see Amazon SNS Message Filtering.

    Overview

    You use SNS topics to fan out messages from publisher systems to subscriber systems, addressing your application integration needs in a loosely-coupled way. Without message filtering, subscribers receive every message published to the topic, and require custom logic to determine whether an incoming message needs to be processed or filtered out. This results in undifferentiating code, as well as unnecessary infrastructure costs. With message filtering, subscribers set a filter policy to their SNS subscription, describing the characteristics of the messages in which they are interested. Thus, when a message is published to the topic, SNS can verify the incoming message against the subscription filter policy, and only deliver the message to the subscriber upon a match. For more information, see Amazon SNS Subscription Filter Policies.

    However, up until now, the message characteristics that subscribers could express in subscription filter policies were limited to metadata in message attributes. As a result, subscribers could not benefit from message filtering when the messages were published without attributes. Examples of such messages include AWS events published to SNS from 60+ other AWS services, like Amazon Simple Storage Service (S3), Amazon CloudWatch, and Amazon CloudFront. For more information, see Amazon SNS Event Sources.

    The new payload-based message filtering option in SNS empowers subscribers to express their SNS subscription filter policies in terms of the contents of the message. This new capability further enables you to use SNS message filtering for your event-driven architectures (EDA) and cross-account workloads, specifically where subscribers may not be able to influence a given publisher to have its events sent with attributes. With payload-based message filtering, you have a simple, no-code option to further prevent unwanted data from being delivered to and processed by subscriber systems, thereby simplifying the subscribers’ code as well as reducing costs associated with downstream compute infrastructure. This new message filtering option is available across SNS Standard and SNS FIFO topics, for JSON message payloads.

    Applying payload-based filtering in a use case

    Consider an insurance company moving their lead generation platform to a serverless architecture based on microservices, adopting enterprise integration patterns to help them develop and scale these microservices independently. The company offers a variety of insurance types to its customers, including auto and home insurance. The lead generation and processing workflow for each insurance type is different, and entails notifying different backend microservices, each designed to handle a specific type of insurance request.

    Payload filtering example

    Payload filtering example

    The company uses multiple frontend apps to interact with customers and receive leads from them, including a web app, a mobile app, and a call center app. These apps submit the customer-generated leads to an internal lead storage microservice, which then uploads the leads as XML documents to an S3 bucket. Next, the S3 bucket publishes events to an SNS topic to notify that lead documents have been created. Based on the contents of each lead document, the SNS topic forks the workflow by delivering the auto insurance leads to an SQS queue and the home insurance leads to another SQS queue. These SQS queues are respectively polled by the auto insurance and the home insurance lead processing microservices. Each processing microservice applies its business logic to validate the incoming leads.

    The following S3 event, in JSON format, refers to a lead document uploaded with key auto-insurance-2314.xml to the S3 bucket. S3 automatically publishes this event to SNS, which in turn matches the S3 event payload against the filter policy of each subscription in the SNS topic. If the event matches the subscription filter policy, SNS delivers the event to the subscribed SQS queue. Otherwise, SNS filters the event out.

    {
      "Records": [{
        "eventVersion": "2.1",
        "eventSource": "aws:s3",
        "awsRegion": "sa-east-1",
        "eventTime": "2022-11-21T03:41:29.743Z",
        "eventName": "ObjectCreated:Put",
        "userIdentity": {
          "principalId": "AWS:AROAJ7PQSU42LKEHOQNIC:demo-user"
        },
        "requestParameters": {
          "sourceIPAddress": "177.72.241.11"
        },
        "responseElements": {
          "x-amz-request-id": "SQCC55WT60XABW8CF",
          "x-amz-id-2": "FRaO+XDBrXtx0VGU1eb5QaIXH26tlpynsgaoJrtGYAWYRhfVMtq/...dKZ4"
        },
        "s3": {
          "s3SchemaVersion": "1.0",
          "configurationId": "insurance-lead-created",
          "bucket": {
            "name": "insurance-bucket-demo",
            "ownerIdentity": {
              "principalId": "A1ATLOAF34GO2I"
            },
            "arn": "arn:aws:s3:::insurance-bucket-demo"
          },
          "object": {
            "key": "auto-insurance-2314.xml",
            "size": 17,
            "eTag": "1530accf30cab891d759fa3bb8322211",
            "sequencer": "00737AF379B2683D6C"
          }
        }
      }]
    }
    

    To express its interest in auto insurance leads only, the SNS subscription for the auto insurance lead processing microservice sets the following filter policy. Note that, unlike attribute-based policies, payload-based policies support property nesting.

    {
      "Records": {
        "s3": {
          "object": {
            "key": [{
              "prefix": "auto-"
            }]
          }
        },
        "eventName": [{
          "prefix": "ObjectCreated:"
        }]
      }
    }
    

    Likewise, to express its interest in home insurance leads only, the SNS subscription for the home insurance lead processing microservice sets the following filter policy.

    {
      "Records": {
        "s3": {
          "object": {
            "key": [{
              "prefix": "home-"
            }]
          }
        },
        "eventName": [{
          "prefix": "ObjectCreated:"
        }]
      }
    }
    

    Note that each filter policy uses the string prefix matching capability of SNS message filtering. In this use case, this matching capability enables the filter policy to match only the S3 objects whose key property value starts with the insurance type it’s interested in (either auto- or home-). Note as well that each filter policy matches only the S3 events whose eventName property value starts with ObjectCreated, as opposed to ObjectRemoved. For more information, see Amazon S3 Event Notifications.

    Deploying the resources and filter policies

    To deploy the AWS resources for this use case, you need an AWS account with permissions to use SNS, SQS, and S3. On your development machine, install the AWS Serverless Application Model (SAM) Command Line Interface (CLI). You can find the complete SAM template for this use case in the aws-sns-samples repository in GitHub.

    The SAM template has a set of resource definitions, as presented below. The first resource definition creates the SNS topic that receives events from S3.

    InsuranceEventsTopic:
        Type: AWS::SNS::Topic
        Properties:
          TopicName: insurance-events-topic
    

    The next resource definition creates the S3 bucket where the insurance lead documents are stored. This S3 bucket publishes an event to the SNS topic whenever a new lead document is created.

    InsuranceEventsBucket:
        Type: AWS::S3::Bucket
        DeletionPolicy: Retain
        DependsOn: InsuranceEventsTopicPolicy
        Properties:
          BucketName: insurance-doc-events
          NotificationConfiguration:
            TopicConfigurations:
              - Topic: !Ref InsuranceEventsTopic
                Event: 's3:ObjectCreated:*'

    The next resource definitions create the SQS queues to be subscribed to the SNS topic. As presented in the architecture diagram, there’s one queue for auto insurance leads, and another queue for home insurance leads.

    AutoInsuranceEventsQueue:
        Type: AWS::SQS::Queue
        Properties:
          QueueName: auto-insurance-events-queue
          
    HomeInsuranceEventsQueue:
        Type: AWS::SQS::Queue
        Properties:
          QueueName: home-insurance-events-queue

    The next resource definitions create the SNS subscriptions and their respective filter policies. Note that, in addition to setting the FilterPolicy property, you need to set the FilterPolicyScope property to MessageBody in order to enable the new payload-based message filtering option for each subscription. The default value for the FilterPolicyScope property is MessageAttributes.

    AutoInsuranceEventsSubscription:
        Type: AWS::SNS::Subscription
        Properties:
          Protocol: sqs
          Endpoint: !GetAtt AutoInsuranceEventsQueue.Arn
          TopicArn: !Ref InsuranceEventsTopic
          FilterPolicyScope: MessageBody
          FilterPolicy:
            '{"Records":{"s3":{"object":{"key":[{"prefix":"auto-"}]}}
            ,"eventName":[{"prefix":"ObjectCreated:"}]}}'
      
    HomeInsuranceEventsSubscription:
        Type: AWS::SNS::Subscription
        Properties:
          Protocol: sqs
          Endpoint: !GetAtt HomeInsuranceEventsQueue.Arn
          TopicArn: !Ref InsuranceEventsTopic
          FilterPolicyScope: MessageBody
          FilterPolicy:
            '{"Records":{"s3":{"object":{"key":[{"prefix":"home-"}]}}
            ,"eventName":[{"prefix":"ObjectCreated:"}]}}'

    Once you download the full SAM template from GitHub to your local development machine, run the following command in your terminal to build the deployment artifacts.

    sam build –t SNS-Payload-Based-Filtering-SAM.template

    Once SAM has finished building the deployment artifacts, run the following command to deploy the AWS resources and the SNS filter policies. The command guides you through the process of setting deployment preferences, which you can answer based on your requirements. For more information, refer to the SAM Developer Guide.

    sam deploy --guided

    Once SAM has finished deploying the resources, you can start testing the solution in the AWS Management Console.

    Testing the filter policies

    Go the AWS CloudFormation console, choose the stack created by the SAM template, then choose the Outputs tab. Note the name of the S3 bucket created.

    S3 bucket name

    S3 bucket name

    Now switch to the S3 console, and choose the bucket with the corresponding name. Once on the bucket details page, upload a test file whose name starts with the auto- prefix. For example, you can name your test file auto-insurance-7156.xml. The upload triggers an S3 event, typed as ObjectCreated, which is then routed through the SNS topic to the SQS queue that stores auto insurance leads.

    Insurance bucket contents

    Insurance bucket contents

    Now switch to the SQS console, and choose to receive messages for the SQS queue storing an auto insurance lead. Note that the SQS queue for home insurance leads is empty.

    SQS home insurance queue empty

    SQS home insurance queue empty

    If you want to check the filter policy configured, you may switch to the SNS console, choose the SNS topic created by the SAM template, and choose the SNS subscription for auto insurance leads. Once on the subscription details page, you can view the filter policy, in JSON format, alongside the filter policy scope set to “Message body”.

    SNS filter policy

    SNS filter policy

    You may repeat the testing steps above, now with another file whose name starts with the home- prefix, and see how the S3 event is routed through the SNS topic to the SQS queue that stores home insurance leads.

    Monitoring the filtering activity

    CloudWatch provides visibility into your SNS message filtering activity, with dedicated metrics, which also enables you to create alarms. You can use the NumberOfNotifcationsFilteredOut-MessageBody metric to monitor the number of messages filtered out due to payload-based filtering, as opposed to attribute-based filtering. For more information, see Monitoring Amazon SNS topics using CloudWatch.

    Moreover, you can use the NumberOfNotificationsFilteredOut-InvalidMessageBody metric to monitor the number of messages filtered out due to having malformed JSON payloads. You can have these messages with malformed JSON payloads moved to a dead-letter queue (DLQ) for troubleshooting purposes. For more information, see Designing Durable Serverless Applications with DLQ for Amazon SNS.

    Cleaning up

    To delete all the AWS resources that you created as part of this use case, run the following command from the project root directory.

    sam delete

    Conclusion

    In this blog post, we introduce the use of payload-based message filtering for SNS, which provides event routing for JSON-formatted messages. This enables you to write filter policies based on the contents of the messages published to SNS. This also removes the message parsing overhead from your subscriber systems, as well as any custom logic from your publisher systems to move message properties from the payload to the set of attributes. Lastly, payload-based filtering can facilitate your event-driven architectures (EDA) by enabling you to filter events published to SNS from 60+ other AWS event sources.

    For more information, see Amazon SNS Message Filtering, Amazon SNS Event Sources, and Amazon SNS Pricing. For more serverless learning resources, visit Serverless Land.

    Introducing the AWS Lambda Telemetry API

    Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/introducing-the-aws-lambda-telemetry-api/

    This blog post is written by Anton Aleksandrov, Principal Solution Architect and Shridhar Pandey, Senior Product Manager

    Today AWS is announcing the AWS Lambda Telemetry API. This provides an easier way to receive enhanced function telemetry directly from the Lambda service and send it to custom destinations. Developers and operators can now more easily monitor and observe their Lambda functions using Lambda extensions from their preferred observability tool providers.

    Extensions can use the Lambda Logs API to collect logs generated by the Lambda service and code running in their Lambda function. While the Logs API provides extensions with access to logs, it does not provide a way to collect additional telemetry, such as traces and metrics, which the Lambda service generates during initialization and invocation of your Lambda function.

    Previously, observability tools retrieved traces from AWS X-Ray using the AWS X-Ray API or built their own custom tracing libraries to generate traces during Lambda function invocation. Tools required customers to modify AWS Identity and Access Management (IAM) policies to grant access to the traces from X-Ray. This caused additional complexity for tools to collect traces and metrics from multiple sources and introduced latency in seeing Lambda function traces in observability tool dashboards.

    The Lambda Telemetry API is a new API that enhances the existing Lambda Logs API functionality. With the new Telemetry API, observability tools can receive function and extension logs, and also events, traces, and metrics directly from within the Lambda service. You do not need to install additional tracing libraries. This reduces latency and simplifies access permissions, as the extension does not require additional access to X-Ray.

    Today you can use Telemetry API-enabled extensions to send telemetry data to Coralogix, Datadog, Dynatrace, Lumigo, New Relic, Sedai, Site24x7, Serverless.com, Sumo Logic, Sysdig, Thundra, or your own custom destinations.

    Overview

    To receive logs, extensions subscribe using the new Lambda Telemetry API.

    Lambda Telemetry API

    Lambda Telemetry API

    The Lambda service then streams the telemetry events directly to the extension. The events include platform events, trace spans, function and extension logs, and additional Lambda platform metrics. The extension can then process, filter, and route them to any preferred destination.

    You can add an extension from the tooling provider of your choice to your Lambda function. You can deploy extensions, including ones that use the Telemetry API, as Lambda layers, with the AWS Management Console and AWS Command Line Interface (AWS CLI). You can also use infrastructure as code tools such as AWS CloudFormation, the AWS Serverless Application Model (AWS SAM), Serverless Framework, and Terraform.

    Lambda Extensions from the AWS Partner Network (APN) available at launch

    Today, you can use Lambda extensions that use Telemetry API from the following Lambda partners:

    • The Coralogix AWS Lambda Telemetry Exporter extension now offers improved monitoring and alerting for Lambda functions by further streamlining collection and correlation of logs, metrics, and traces.
    • The Datadog extension further simplifies how you visualize the impact of cold starts, and monitor and alert on latency, duration, and payload size of your Lambda functions by collecting logs, traces, and real-time metrics from your function in a simple and cost-effective way.
    • Dynatrace now provides a simplified observability configuration for AWS Lambda through a seamless integration. The new solution delivers low-latency telemetry, enables monitoring at scale, and helps reduce monitoring costs for your serverless workloads.
    • The Lumigo lambda-log-shipper extension simplifies aggregating and forwarding Lambda logs to third-party tools. It now also makes it easy for you to detect Lambda function timeouts.
    • The New Relic extension now provides a unified observability view for your Lambda functions with insights that help you better understand and optimize the performance of your functions.
    • Sedai now uses the Telemetry API to help you improve the performance and availability of your Lambda functions by gathering insights about your function and providing recommendations for manual and autonomous remediation in a cost-effective manner.
    • The Site24x7 extension now offers new metrics, which enable you to get deeper insights into the different phases of the Lambda function lifecycle, such as initialization and invocation.
    • Serverless.com now uses the Telemetry API to provide real-time performance details for your Lambda function through the Dev Mode feature of their new Serverless Console V.2 offering, which simplifies debugging in the AWS Cloud.
    • Sumo Logic now makes it easier, faster, and more cost-effective for you to get your mission-critical Lambda function telemetry sent directly to Sumo Logic so you could quickly analyze and remediate errors and exceptions.
    • The Sysdig Monitor extension generates and collects real-time metrics directly from the Lambda platform. The simplified instrumentation offers lower latency, reduced MTTR (mean time to resolution) for critical issues, and cost benefits while monitoring your serverless applications.
    • The Thundra extension enables you to export logs, metrics, and events for Lambda execution environment lifecycle events emitted by the Telemetry API to a destination of your choice such as an S3 bucket, a database, or a monitoring backend.

    Seeing example Telemetry API extensions in action

    This demo shows an example of using a telemetry extension to receive telemetry, batch, and send it to a desired destination.

    To set up the example, visit the GitHub repo for the extension implemented in the language of your choice and follow the instructions in the README.md file.

    To configure the batching behavior, which controls when the extension sends the data, set the Lambda environment variable DISPATCH_MIN_BATCH_SIZE. When the extension receives the batch threshold, it POSTs the telemetry events batch to the destination specified in the DISPATCH_POST_URI environment variable.

    You can configure an example DISPATCH_POST_URL for the extension to deliver the telemetry data using https://webhook.site/.

    Lambda environment variables

    Lambda environment variables

    Telemetry events for one invoke may be received and processed during the next invocation. Events for the last invoke may be processed during the SHUTDOWN event.

    Test and invoke the function from the Lambda console, or AWS CLI. You can see that the webhook receives the telemetry data.

    Webhook receiving telemetry data

    Webhook receiving telemetry data

    You can also view the function and extension logs in CloudWatch Logs. The example extension includes verbose logging to understand the extension lifecycle.

    CloudWatch Logs showing extension verbose logging

    Sample Telemetry API events

    When the extension receives telemetry data, each event contains a JSON dictionary with additional information, such as related metrics or trace spans. The following example shows a function initialization event. You can see that the function initializes with on-demand concurrency. The runtime version is Node.js 14, the initialization is successful, and the initialization duration is 123 milliseconds.

    {
      "time": "2022-08-02T12:01:23.521Z",
      "type": "platform.initStart",
      "record": {
        "initializationType": "on-demand",
        "phase":"init",
        "runtimeVersion": "nodejs-14.v3",
        "runtimeVersionArn": "arn"
      }
    }
    
    {
      "time": "2022-08-02T12:01:23.521Z",
      "type": "platform.initRuntimeDone",
      "record": {
        "initializationType": "on-demand",
        "status": "success"
      }
    }
    
    {
      "time": "2022-08-02T12:01:23.521Z",
      "type": "platform.initReport",
      "record": {
        "initializationType": "on-demand",
        "phase":"init",
        "metrics": {
          "durationMs": 123.0,
        }
      }
    }
    

    Function invocation events include the associated requestId and tracing information connecting this invocation with the X-Ray tracing context, and platform spans showing response latency and response duration as well as invocation metrics such as duration in milliseconds.

    {
        "time": "2022-08-02T12:01:23.521Z",
        "type": "platform.start",
        "record": {
          "requestId": "e6b761a9-c52d-415d-b040-7ba94b9452f3",
          "version": "$LATEST",
          "tracing": {
            "spanId": "54565fb41ac79632",
            "type": "X-Amzn-Trace-Id",
            "value": "Root=1-62e900b2-710d76f009d6e7785905449a;Parent=0efbd19962d95b05;Sampled=1"
          }
        }
      }
      
      {
        "time": "2022-08-02T12:01:23.521Z",
        "type": "platform.runtimeDone",
        "record": {
          "requestId": "e6b761a9-c52d-415d-b040-7ba94b9452f3",
          "status": "success",
          "tracing": {
            "spanId": "54565fb41ac79632",
            "type": "X-Amzn-Trace-Id",
            "value": "Root=1-62e900b2-710d76f009d6e7785905449a;Parent=0efbd19962d95b05;Sampled=1"
          },
          "spans": [
            {
              "name": "responseLatency", 
              "start": "2022-08-02T12:01:23.521Z",
              "durationMs": 23.02
            },
            {
              "name": "responseDuration", 
              "start": "2022-08-02T12:01:23.521Z",
              "durationMs": 20
            }
          ],
          "metrics": {
            "durationMs": 200.0,
            "producedBytes": 15
          }
        }
      }
      
      {
        "time": "2022-08-02T12:01:23.521Z",
        "type": "platform.report",
        "record": {
          "requestId": "e6b761a9-c52d-415d-b040-7ba94b9452f3",
          "metrics": {
            "durationMs": 220.0,
            "billedDurationMs": 300,
            "memorySizeMB": 128,
            "maxMemoryUsedMB": 90,
            "initDurationMs": 200.0
          },
          "tracing": {
            "spanId": "54565fb41ac79632",
            "type": "X-Amzn-Trace-Id",
            "value": "Root=1-62e900b2-710d76f009d6e7785905449a;Parent=0efbd19962d95b05;Sampled=1"
          }
        }
      }
    

    Building a Telemetry API extension

    Lambda extensions run as independent processes in the execution environment and continue to run after the function invocation is fully processed. Because extensions run as separate processes, you can write them in a language different from the function code. We recommend implementing extensions using a compiled language as a self-contained binary. This makes the extension compatible with all the supported runtimes.

    Extensions that use the Telemetry API have the following lifecycle.

    Telemetry API lifecycle

    Telemetry API lifecycle

    1. The extension registers itself using the Lambda Extension API and subscribes to receive INVOKE and SHUTDOWN events. With the Telemetry API, the registration response body contains additional information, such as function name, function version, and account ID.
    2. The extensions start a telemetry listener. This is a local HTTP or TCP endpoint. We recommend using HTTP rather than TCP.
    3. The extensions use the Telemetry API to subscribe to desired telemetry event streams.
    4. The Lambda service POSTs telemetry stream data to your telemetry listener. We recommend batching the telemetry data as it arrives to the listener. You can perform any custom processing on this data and send it on to an S3 bucket, other custom destination, or an external observability service.

    See the Telemetry API documentation and sample extensions for additional details.

    The Lambda Telemetry API supersedes the Lambda Logs API. While the Logs API remains fully functional, AWS recommends using the Telemetry API. New functionality is only available with the Extensions API. Extensions can only subscribe to either the Logs or Telemetry API. After subscribing to one of them, any attempt to subscribe to the other returns an error.

    Mapping Telemetry API schema to OpenTelemetry spans

    The Lambda Telemetry API schema is semantically compatible with OpenTelemetry (OTEL). You can use events received from the Telemetry API to build and report OTEL spans. Three Telemetry API lifecycle events represent a single function invocation: start, runtimeDone, and runtimeReport. You should represent this as a single OTEL span. You can add additional details to your spans using information available in runtimeDone events under the event.spans property.

    Mapping of Telemetry API events to OTEL spans is described in the Telemetry API documentation.

    Metrics and pricing

    The Telemetry API introduces new per-invoke metrics to help you understand the impact of extensions on your function’s performance. The metrics are available within the report.runtimeDone event.

    • platform.runtime measures the time taken by the Lambda Runtime to run your function handler code.
    • producedBytes measures the number of bytes returned during the invoke phase.

    There are also two new trace spans available within the report.runtimeDone event:

    • responseLatencyMs measures the time taken by the Runtime to send a response.
    • responseDurationMs measures the time taken by the Runtime to finish sending the response from when it starts streaming it.

    Extensions using Telemetry API, like other extensions, share the same billing model as Lambda functions. When using Lambda functions with extensions, you pay for requests served, and the combined compute time used to run your code and all extensions, in 1-ms increments. To learn more about the billing for extensions, visit the Lambda pricing page.

    Useful links

    Conclusion

    The Lambda Telemetry API allows you to receive enhanced telemetry data more easily using your preferred monitoring and observability tools. The Telemetry API enhances the functionality of the Logs API to receive logs, metrics, and traces directly from the Lambda service. Developers and operators can send telemetry to destinations without custom libraries, with reduced latency, and simplified permissions.

    To see how the Telemetry API works, try the demos in the GitHub repository.

    Build your own extensions using the Telemetry API today, or use extensions provided by the Lambda observability partners.

    For more serverless learning resources, visit Serverless Land.

    Introducing message data protection for Amazon SNS

    Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/introducing-message-data-protection-for-amazon-sns/

    This post is written by Otavio Ferreira, Senior Software Development Manager, Marc Pinaud, Senior Product Manager, Usman Nisar, Senior Software Engineer, Hardik Vasa, Senior Solutions Architect, and Mithun Mallick, Senior Specialist Solution Architect.

    Today, we are announcing the public preview release of new data protection capabilities for Amazon Simple Notification Service (SNS), message data protection. This is a new way to discover and protect sensitive data in motion at scale, without writing custom code.

    SNS is a fully managed serverless messaging service. It provides topics for push-based, many-to-many pub/sub messaging for decoupling distributed systems, microservices, and event-driven serverless applications. As applications grow, so does the amount of data transmitted and the number of systems sending and receiving data. When moving data between different applications, guardrails can help you comply with data privacy regulations that require you to safeguard sensitive personally identifiable information (PII) or protected health information (PHI).

    With message data protection for SNS, you can scan messages in real time for PII/PHI data and receive audit reports containing scan results. You can also prevent applications from receiving sensitive data by blocking inbound messages to an SNS topic or outbound messages to an SNS subscription. Message data protection for SNS supports a repository of over 25 unique PII/PHI data identifiers. These include people’s names, addresses, social security numbers, credit card numbers, and prescription drug codes.

    These capabilities can help you adhere to a variety of compliance regulations, including HIPAA, FedRAMP, GDPR, and PCI. For more information, including the complete list of supported data identifiers, see message data protection in the SNS Developer Guide.

    Overview

    SNS topics enable you to integrate distributed applications more easily. As applications become more complex, it can become challenging for topic owners to manage the data flowing through their topics. Developers that publish messages to a topic may inadvertently send sensitive data, increasing regulatory risk. Message data protection enables SNS topic owners to protect sensitive application data with built-in, no-code, scalable capabilities.

    To discover and protect data flowing through SNS topics with message data protection, topic owners associate data protection policies to their topics. Within these policies, you can write statements that define which types of sensitive data you want to discover and protect. As part of this, you can define whether you want to act on data flowing inbound to a topic or outbound to a subscription, which AWS accounts or specific AWS Identity and Access Management (AWS IAM) principals the policy is applicable to, and the actions you want to take on the data.

    Message data protection provides two actions to help you protect your data. Auditing, to report on the amount of PII/PHI found, and blocking, to prevent the publishing or delivery of payloads that contain PII/PHI data. Once the data protection policy is set, message data protection uses pattern matching and machine learning models to scan your messages in real time for PII/PHI data identifiers and enforce the data protection policy.

    For auditing, you can choose to send audit reports to Amazon Simple Storage Service (S3) for archival, Amazon Kinesis Data Firehose for analytics, or Amazon CloudWatch for logging and alarming. Message data protection does not interfere with the topic owner’s ability to use message data encryption at rest, nor with the subscriber’s ability to filter out unwanted messages using message filtering.

    Applying message data protection in a use case

    Consider an application that processes a variety of transactions for a set of health clinics, an organization that operates in a regulated environment. Compliance frameworks require that the organization take measures to protect both sensitive health records and financial information.

    Reference architecture

    The application is based on an event-driven serverless architecture. It has a data protection policy attached to the topic to audit for sensitive data and prevent downstream systems from processing certain data types.

    The application publishes an event to an SNS topic every time a patient schedules a visit or sees a doctor at a clinic. The SNS topic fans out the event to two subscribed systems, billing and scheduling. Each system stores events in an Amazon SQS queue, which is processed using an AWS Lambda function.

    Setting a data protection policy to an SNS topic

    You can apply a data protection policy to an SNS topic using the AWS Management Console, the AWS CLI, or the AWS SDKs. You can also use AWS CloudFormation to automate the provisioning of the data protection policy.

    This example uses CloudFormation to provision the infrastructure. You have two options for deploying the resources:

    • Deploy the resources by using the message data protection deploy script within the aws-sns-samples repository in GitHub.
    • Alternatively, use the following four CloudFormation templates in order. Allow time for each stack to complete before deploying the next stack, to create the following resources:

    1. Prerequisites template

    • Two IAM roles with a managed policy that allows access to receive messages from the SNS topic, one for the billing and another for scheduling system, respectively.

    2. Topic owner template

    • SNS topic that delivers events to two distinct systems.
    • A data protection policy that defines both auditing and blocking actions for specific types of PII and PHI.
    • S3 bucket to archive audit findings.
    • CloudWatch log group to monitor audit findings.
    • Kinesis Data Firehose to deliver audit findings to other destinations.

    3. Scheduling subscriber template

    • SQS queue for the Scheduling system.
    • Lambda function for the Scheduling system.

    4. Billing subscriber template

    • SQS queue for the Billing system.
    • Lambda function for the Billing system.

    CloudFormation creates the following data protection policy as part of the topic owner template:

      ClinicSNSTopic:
        Type: 'AWS::SNS::Topic'
        Properties:
          TopicName: SampleClinic
          DataProtectionPolicy:
            Name: data-protection-example-policy
            Description: Policy Description
            Version: 2021-06-01
            Statement:
              - Sid: audit
                DataDirection: Inbound
                Principal:
                 - '*'
                DataIdentifier:
                  - 'arn:aws:dataprotection::aws:data-identifier/Address'
                  - 'arn:aws:dataprotection::aws:data-identifier/AwsSecretKey'
                  - 'arn:aws:dataprotection::aws:data-identifier/DriversLicense-US'
                  - 'arn:aws:dataprotection::aws:data-identifier/EmailAddress'
                  - 'arn:aws:dataprotection::aws:data-identifier/IpAddress'
                  - 'arn:aws:dataprotection::aws:data-identifier/NationalDrugCode-US'
                  - 'arn:aws:dataprotection::aws:data-identifier/PassportNumber-US'
                  - 'arn:aws:dataprotection::aws:data-identifier/Ssn-US'
                Operation:
                  Audit:
                    SampleRate: 99
                    FindingsDestination:
                      CloudWatchLogs:
                        LogGroup: !Ref AuditCWLLogs
                      Firehose:
                        DeliveryStream: !Ref AuditFirehose
                    NoFindingsDestination:
                      S3:
                        Bucket: !Ref AuditS3Bucket
              - Sid: deny-inbound
                DataDirection: Inbound
                Principal:
                  - '*'
                DataIdentifier:
                  - 'arn:aws:dataprotection::aws:data-identifier/PassportNumber-US'
                  - 'arn:aws:dataprotection::aws:data-identifier/Ssn-US'
                Operation:
                  Deny: {}
              - Sid: deny-outbound-billing
                DataDirection: Outbound
                Principal:
                  - !ImportValue "BillingRoleExportDataProtectionDemo"
                DataIdentifier:
                  - 'arn:aws:dataprotection::aws:data-identifier/NationalDrugCode-US'
                Operation:
                  Deny: {}
              - Sid: deny-outbound-scheduling
                DataDirection: Outbound
                Principal:
                  - !ImportValue "SchedulingRoleExportDataProtectionDemo"
                DataIdentifier:
                  - 'arn:aws:dataprotection::aws:data-identifier/Address'
                  - 'arn:aws:dataprotection::aws:data-identifier/CreditCardNumber'
                Operation:
                  Deny: {}

    This data protection policy defines:

    • Metadata about the data protection policy, for example name, description, version, and statement IDs (sid).
    • The first statement (sid: audit) scans inbound messages from all principals for addresses, social security numbers, driver’s license, email addresses, IP addresses, national drug codes, passport numbers, and AWS secret keys.
      • The sampling rate is set to 99% so almost all messages are scanned for the defined PII/PHI.
      • Audit results with findings are delivered to CloudWatch Logs and Kinesis Data Firehose for analytics. Audit results without findings are archived to S3.
    • The second statement (sid: deny-inbound) blocks inbound messages to the topic coming from any principal, if the payload includes either a social security number or passport number.
    • The third statement (sid: deny-outbound-billing) blocks the delivery of messages to subscriptions created by the BillingRole, if the messages include any national drug codes.
    • The fourth statement (sid: deny-outbound-scheduling) blocks the delivery of messages to subscriptions created by the SchedulingRole, if the messages include any credit card numbers or addresses.

    Testing the capabilities

    Test the message data protection capabilities using the following steps:

    1. Publish a message without PII/PHI data to the Clinic Topic. In the CloudWatch console, navigate to the log streams of the respective Lambda functions to confirm that the message is delivered to both subscribers. Both messages are delivered because the payload contains no sensitive data for the data protection policy to deny. The log message looks as follows:
      "This is a demo! received from queue arn:aws:sqs:us-east-1:111222333444:Scheduling-SchedulingQueue"
    2. Publish a message with a social security number (try ‘SSN: 123-12-1234’) to the Clinic Topic. The request is denied, and an audit log is delivered to your CloudWatch Logs log group and Firehose delivery stream.
    3. Navigate to the CloudWatch log console and confirm that the audit log is visible in the /aws/vendedlogs/clinicaudit CloudWatch log group. The following example shows that the data protection policy (sid: deny-inbound) denied the inbound message as the payload contains a US social security number (SSN) between the 5th and the 15th character.
      {
          "messageId": "77ec5f0c-5129-5429-b01d-0457b965c0ac",
          "auditTimestamp": "2022-07-28T01:27:40Z",
          "callerPrincipal": "arn:aws:iam::111222333444:role/Admin",
          "resourceArn": "arn:aws:sns:us-east-1:111222333444:SampleClinic",
          "dataIdentifiers": [
              {
                  "name": "Ssn-US",
                  "count": 1,
                  "detections": [
                      {
                          "start": 5,
                          "end": 15
                      }
                  ]
              }
          ]
      }
      
    4. You can use the CloudWatch metrics, MessageWithFindings and MessageWithNoFindings, to track how frequently PII/PHI data is published to an SNS topic. Here’s an example of what the CloudWatch metric graph looks like as the amount of sensitive data published to a topic varies over time:
      CloudWatch metric graph
    5. Publish a message with an address (try ‘410 Terry Ave N, Seattle 98109, WA’). The request is only delivered to the Billing subscription. The data protection policy (sid: deny-outbound-scheduling) denies the outbound message to the Scheduling subscription as the payload contains an address.
    6. Confirm that the message is only delivered to the Billing Lambda function by navigating to the CloudWatch console and inspecting the logs of the two respective Lambda functions. The CloudWatch log of the Billing Lambda function contains the sensitive message that was delivered to it as it was an authorized subscriber. Here’s an example of what the log contains:410 Terry Ave N, Seattle 98109, WA received from queue arn:aws:sqs:us-east-1:111222333444:Billing-BillingQueue
    7. Publish a message with a drug code (try ‘NDC: 0777-3105-02’). The request is only delivered to the Scheduling subscription. The data protection policy (sid: deny-outbound-billing) denies the outbound message to the Billing subscription as the payload contains a drug code.
    8. Confirm that the message is only delivered to the Scheduling Lambda function by navigating to the CloudWatch console and inspecting the logs of the two respective Lambda functions. The CloudWatch log of the Scheduling Lambda function contains the sensitive message that was delivered to it as it was an authorized subscriber. Here’s an example of what the log contains:
      NDC: 0777-3105-02 received from queue arn:aws:sqs:us-east-1:111222333444:Scheduling-SchedulingQueue

    Cleaning up

    After testing, avoid incurring usage charges by deleting the resources that you created. Navigate to the CloudFormation console and delete the four CloudFormation stacks that you created during the walkthrough. Remember, you must delete all the objects from the S3 bucket before deleting the stack.

    Conclusion

    This post shows how message data protection enables a topic owner to discover and protect sensitive data that is exchanged through SNS topics. The example shows how to create a data protection policy that generates audit reports for sensitive data and blocks messages from delivery to specific subscribers if the payload contains sensitive data.

    Get started with SNS and message data protection by using the AWS Management Console, AWS Command Line Interface (CLI), AWS SDKs, or CloudFormation.

    For more details, see message data protection in the SNS Developer Guide. For information on pricing, see SNS pricing.

    For more serverless learning resources, visit Serverless Land.

    Building AWS Lambda governance and guardrails

    Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/building-aws-lambda-governance-and-guardrails/

    When building serverless applications using AWS Lambda, there are a number of considerations regarding security, governance, and compliance. This post highlights how Lambda, as a serverless service, simplifies cloud security and compliance so you can concentrate on your business logic. It covers controls that you can implement for your Lambda workloads to ensure that your applications conform to your organizational requirements.

    The Shared Responsibility Model

    The AWS Shared Responsibility Model distinguishes between what AWS is responsible for and what customers are responsible for with cloud workloads. AWS is responsible for “Security of the Cloud” where AWS protects the infrastructure that runs all the services offered in the AWS Cloud. Customers are responsible for “Security in the Cloud”, managing and securing their workloads. When building traditional applications, you take on responsibility for many infrastructure services, including operating systems and network configuration.

    Traditional application shared responsibility

    Traditional application shared responsibility

    One major benefit when building serverless applications is shifting more responsibility to AWS so you can concentrate on your business applications. AWS handles managing and patching the underlying servers, operating systems, and networking as part of running the services.

    Serverless application shared responsibility

    Serverless application shared responsibility

    For Lambda, AWS manages the application platform where your code runs, which includes patching and updating the managed language runtimes. This reduces the attack surface while making cloud security simpler. You are responsible for the security of your code and AWS Identity and Access Management (IAM) to the Lambda service and within your function.

    Lambda is SOCHIPAAPCI, and ISO-compliant. For more information, see Compliance validation for AWS Lambda and the latest Lambda certification and compliance readiness services in scope.

    Lambda isolation

    Lambda functions run in separate isolated AWS accounts that are dedicated to the Lambda service. Lambda invokes your code in a secure and isolated runtime environment within the Lambda service account. A runtime environment is a collection of resources running in a dedicated hardware-virtualized Micro Virtual Machines (MVM) on a Lambda worker node.

    Lambda workers are bare metalEC2 Nitro instances, which are managed and patched by the Lambda service team. They have a maximum lease lifetime of 14 hours to keep the underlying infrastructure secure and fresh. MVMs are created by Firecracker, an open source virtual machine monitor (VMM) that uses Linux’s Kernel-based Virtual Machine (KVM) to create and manage MVMs securely at scale.

    MVMs maintain a strong separation between runtime environments at the virtual machine hardware level, which increases security. Runtime environments are never reused across functions, function versions, or AWS accounts.

    Isolation model for AWS Lambda workers

    Isolation model for AWS Lambda workers

    Network security

    Lambda functions always run inside secure Amazon Virtual Private Cloud (Amazon VPCs) owned by the Lambda service. This gives the Lambda function access to AWS services and the public internet. There is no direct network inbound access to Lambda workers, runtime environments, or Lambda functions. All inbound access to a Lambda function only comes via the Lambda Invoke API, which sends the event object to the function handler.

    You can configure a Lambda function to connect to private subnets in a VPC in your account if necessary, which you can control with IAM condition keys . The Lambda function still runs inside the Lambda service VPC but sends all network traffic through your VPC. Function outbound traffic comes from your own network address space.

    AWS Lambda service VPC with VPC-to-VPC NAT to customer VPC

    AWS Lambda service VPC with VPC-to-VPC NAT to customer VPC

    To give your VPC-connected function access to the internet, route outbound traffic to a NAT gateway in a public subnet. Connecting a function to a public subnet doesn’t give it internet access or a public IP address, as the function is still running in the Lambda service VPC and then routing network traffic into your VPC.

    All internal AWS traffic uses the AWS Global Backbone rather than traversing the internet. You do not need to connect your functions to a VPC to avoid connectivity to AWS services over the internet. VPC connected functions allow you to control and audit outbound network access.

    You can use security groups to control outbound traffic for VPC-connected functions and network ACLs to block access to CIDR IP ranges or ports. VPC endpoints allow you to enable private communications with supported AWS services without internet access.

    You can use VPC Flow Logs to audit traffic going to and from network interfaces in your VPC.

    Runtime environment re-use

    Each runtime environment processes a single request at a time. After Lambda finishes processing the request, the runtime environment is ready to process an additional request for the same function version. For more information on how Lambda manages runtime environments, see Understanding AWS Lambda scaling and throughput.

    Data can persist in the local temporary filesystem path, in globally scoped variables, and in environment variables across subsequent invocations of the same function version. Ensure that you only handle sensitive information within individual invocations of the function by processing it in the function handler, or using local variables. Do not re-use files in the local temporary filesystem to process unencrypted sensitive data. Do not put sensitive or confidential information into Lambda environment variables, tags, or other freeform fields such as Name fields.

    For more Lambda security information, see the Lambda security whitepaper.

    Multiple accounts

    AWS recommends using multiple accounts to isolate your resources because they provide natural boundaries for security, access, and billing. Use AWS Organizations to manage and govern individual member accounts centrally. You can use AWS Control Tower to automate many of the account build steps and apply managed guardrails to govern your environment. These include preventative guardrails to limit actions and detective guardrails to detect and alert on non-compliance resources for remediation.

    Lambda access controls

    Lambda permissions define what a Lambda function can do, and who or what can invoke the function. Consider the following areas when applying access controls to your Lambda functions to ensure least privilege:

    Execution role

    Lambda functions have permission to access other AWS resources using execution roles. This is an AWS principal that the Lambda service assumes which grants permissions using identity policy statements assigned to the role. The Lambda service uses this role to fetch and cache temporary security credentials, which are then available as environment variables during a function’s invocation. It may re-use them across different runtime environments that use the same execution role.

    Ensure that each function has its own unique role with the minimum set of permissions..

    Identity/user policies

    IAM identity policies are attached to IAM users, groups, or roles. These policies allow users or callers to perform operations on Lambda functions. You can restrict who can create functions, or control what functions particular users can manage.

    Resource policies

    Resource policies define what identities have fine-grained inbound access to managed services. For example, you can restrict which Lambda function versions can add events to a specific Amazon EventBridge event bus. You can use resource-based policies on Lambda resources to control what AWS IAM identities and event sources can invoke a specific version or alias of your function. You also use a resource-based policy to allow an AWS service to invoke your function on your behalf. To see which services support resource-based policies, see “AWS services that work with IAM”.

    Attribute-based access control (ABAC)

    With attribute-based access control (ABAC), you can use tags to control access to your Lambda functions. With ABAC, you can scale an access control strategy by setting granular permissions with tags without requiring permissions updates for every new user or resource as your organization scales. You can also use tag policies with AWS Organizations to standardize tags across resources.

    Permissions boundaries

    Permissions boundaries are a way to delegate permission management safely. The boundary places a limit on the maximum permissions that a policy can grant. For example, you can use boundary permissions to limit the scope of the execution role to allow only read access to databases. A builder with permission to manage a function or with write access to the applications code repository cannot escalate the permissions beyond the boundary to allow write access.

    Service control policies

    When using AWS Organizations, you can use Service control policies (SCPs) to manage permissions in your organization. These provide guardrails for what actions IAM users and roles within the organization root or OUs can do. For more information, see the AWS Organizations documentation, which includes example service control policies.

    Code signing

    As you are responsible for the code that runs in your Lambda functions, you can ensure that only trusted code runs by using code signing with the AWS Signer service. AWS Signer digitally signs your code packages and Lambda validates the code package before accepting the deployment, which can be part of your automated software deployment process.

    Auditing Lambda configuration, permissions and access

    You should audit access and permissions regularly to ensure that your workloads are secure. Use the IAM console to view when an IAM role was last used.

    IAM last used

    IAM last used

    IAM access advisor

    Use IAM access advisor on the Access Advisor tab in the IAM console to review when was the last time an AWS service was used from a specific IAM user or role. You can use this to remove IAM policies and access from your IAM roles.

    IAM access advisor

    IAM access advisor

    AWS CloudTrail

    AWS CloudTrail helps you monitor, log, and retain account activity to provide a complete event history of actions across your AWS infrastructure. You can monitor Lambda API actions to ensure that only appropriate actions are made against your Lambda functions. These include CreateFunction, DeleteFunction, CreateEventSourceMapping, AddPermission, UpdateEventSourceMapping,  UpdateFunctionConfiguration, and UpdateFunctionCode.

    AWS CloudTrail

    AWS CloudTrail

    IAM Access Analyzer

    You can validate policies using IAM Access Analyzer, which provides over 100 policy checks with security warnings for overly permissive policies. To learn more about policy checks provided by IAM Access Analyzer, see “IAM Access Analyzer policy validation”.

    You can also generate IAM policies based on access activity from CloudTrail logs, which contain the permissions that the role used in your specified date range.

    IAM Access Analyzer

    IAM Access Analyzer

    AWS Config

    AWS Config provides you with a record of the configuration history of your AWS resources. AWS Config monitors the resource configuration and includes rules to alert when they fall into a non-compliant state.

    For Lambda, you can track and alert on changes to your function configuration, along with the IAM execution role. This allows you to gather Lambda function lifecycle data for potential audit and compliance requirements. For more information, see the Lambda Operators Guide.

    AWS Config includes Lambda managed config rules such as lambda-concurrency-check, lambda-dlq-check, lambda-function-public-access-prohibited, lambda-function-settings-check, and lambda-inside-vpc. You can also write your own rules.

    There are a number of other AWS services to help with security compliance.

    1. AWS Audit Manager: Collect evidence to help you audit your use of cloud services.
    2. Amazon GuardDuty: Detect unexpected and potentially unauthorized activity in your AWS environment.
    3. Amazon Macie: Evaluates your content to identify business-critical or potentially confidential data.
    4. AWS Trusted Advisor: Identify opportunities to improve stability, save money, or help close security gaps.
    5. AWS Security Hub: Provides security checks and recommendations across your organization.

    Conclusion

    Lambda makes cloud security simpler by taking on more responsibility using the AWS Shared Responsibility Model. Lambda implements strict workload security at scale to isolate your code and prevent network intrusion to your functions. This post provides guidance on assessing and implementing best practices and tools for Lambda to improve your security, governance, and compliance controls. These include permissions, access controls, multiple accounts, and code security. Learn how to audit your function permissions, configuration, and access to ensure that your applications conform to your organizational requirements.

    For more serverless learning resources, visit Serverless Land.