Tag Archives: Amazon Detective

Navigating the threat detection and incident response track at re:Inforce 2024

Post Syndicated from Nisha Amthul original https://aws.amazon.com/blogs/security/navigating-the-threat-detection-and-incident-response-track-at-reinforce-2024/

reInforce 2024 blog

A full conference pass is $1,099. Register today with the code flashsale150 to receive a limited time $150 discount, while supplies last.

We’re counting down to AWS re:Inforce, our annual cloud security event! We are thrilled to invite security enthusiasts and builders to join us in Philadelphia, PA, from June 10–12 for an immersive two-and-a-half-day journey into cloud security learning. This year, we’ve expanded the event by half a day to give you more opportunities to delve into the latest security trends and technologies. At AWS re:Inforce, you’ll have the chance to explore the breadth of the Amazon Web Services (AWS) security landscape, learn how to operationalize security services, and enhance your skills and confidence in cloud security to improve your organization’s security posture. As an attendee, you will have access to over 250 sessions across multiple topic tracks, including data protection; identity and access management; threat detection and incident response; network and infrastructure security; generative AI; governance, risk, and compliance; and application security. Plus, get ready to be inspired by our lineup of customer speakers, who will share their firsthand experiences of innovating securely on AWS.

In this post, we’ll provide an overview of the key sessions that include lecture-style presentations featuring real-world use cases from our customers, as well as the interactive small-group sessions led by AWS experts that guide you through practical problems and solutions.

The threat detection and incident response track is designed to demonstrate how to detect and respond to security risks to help protect workloads at scale. AWS experts and customers will present key topics such as threat detection, vulnerability management, cloud security posture management, threat intelligence, operationalization of AWS security services, container security, effective security investigation, incident response best practices, and strengthening security through the use of generative AI and securing generative AI workloads.

Breakout sessions, chalk talks, and lightning talks

TDR201 | Breakout session | How NatWest uses AWS services to manage vulnerabilities at scale
As organizations move to the cloud, rapid change is the new normal. Safeguarding against potential security threats demands continuous monitoring of cloud resources and code that are constantly evolving. In this session, NatWest shares best practices for monitoring their AWS environment for software and configuration vulnerabilities at scale using AWS security services like Amazon Inspector and AWS Security Hub. Learn how security teams can automate the identification and prioritization of critical security insights to manage alert fatigue and swiftly collaborate with application teams for remediation.

TDR301 | Breakout session | Developing an autonomous framework with Security Lake & Torc Robotics
Security teams are increasingly seeking autonomy in their security operations. Amazon Security Lake is a powerful solution that allows organizations to centralize their security data across AWS accounts and Regions. In this session, learn how Security Lake simplifies centralizing and operationalizing security data. Then, hear from Torc Robotics, a leading autonomous trucking company, as they share their experience and best practices for using Security Lake to establish an autonomous security framework.

TDR302 | Breakout session | Detecting and responding to threats in generative AI workloads
While generative AI is an emerging technology, many of the same services and concepts can be used for threat detection and incident response. In this session, learn how you can build out threat detection and incident response capabilities for a generative AI workload that uses Amazon Bedrock. Find out how to effectively monitor this workload using Amazon Bedrock, Amazon GuardDuty, and AWS Security Hub. The session also covers best practices for responding to and remediating security issues that may come up.

TDR303 | Breakout session | Innovations in AWS detection and response services
In this session, learn about the latest advancements and recent AWS launches in the field of detection and response. This session focuses on use cases like threat detection, workload protection, automated and continual vulnerability management, centralized monitoring, continuous cloud security posture management, unified security data management, and discovery and protection of workloads and data. Through these use cases, gain a deeper understanding of how you can seamlessly integrate AWS detection and response services to help protect your workloads at scale, enhance your security posture, and streamline security operations across your entire AWS environment.

TDR304 | Breakout session | Explore cloud workload protection with GuardDuty, feat. Booking.com
Monitoring your workloads at runtime allows you to detect unexpected activity sooner—before it escalates to broader business-impacting security issues. Amazon GuardDuty Runtime Monitoring offers fully managed threat detection that gives you end-to-end visibility across your AWS environment. GuardDuty’s unique detection capabilities are guided by AWS’s visibility into the cloud threat landscape. In this session, learn why AWS built the Runtime Monitoring feature and how it works. Also discover how Booking.com used GuardDuty for runtime protection, supporting their mission to make it easier for everyone to experience the world.

TDR305 | Breakout session | Cyber threat intelligence sharing on AWS
Real-time, contextual, and comprehensive visibility into security issues is essential for resilience in any organization. In this session, join the Australian Cyber Security Centre (ACSC) as they present their Cyber Threat Intelligence Sharing (CTIS) program, built on AWS. With the aim to improve the cyber resilience of the Australian community and help make Australia the most secure place to connect online, the ACSC protects Australia from thousands of threats every day. Learn the technical fundamentals that can help you apply best practices for real-time, bidirectional sharing of threat intelligence across all sectors.

TDR331 | Chalk talk | Unlock OCSF: Turn raw logs into insights with generative AI
So, you have security data stored using the Open Cybersecurity Schema Framework (OCSF)—now what? In this chalk talk, learn how to use AWS analytics tools to mine data stored using the OCSF and leverage generative AI to consume insights. Discover how services such as Amazon Athena, Amazon Q in QuickSight, and Amazon Bedrock can extract, process, and visualize security insights from OCSF data. Gain practical skills to identify trends, detect anomalies, and transform your OCSF data into actionable security intelligence that can help your organization respond more effectively to cybersecurity threats.

TDR332 | Chalk talk | Anatomy of a ransomware event targeting data within AWS
Ransomware events can interrupt operations and cost governments, nonprofits, and businesses billions of dollars. Early detection and automated responses are important mechanisms that can help mitigate your organization’s exposure. In this chalk talk, learn about the anatomy of a ransomware event targeting data within AWS including detection, response, and recovery. Explore the AWS services and features that you can use to protect against ransomware events in your environment, and learn how you can investigate possible ransomware events if they occur.

TDR333 | Chalk talk | Implementing AWS security best practices: Insights and strategies
Have you ever wondered if you are using AWS security services such as Amazon GuardDuty, AWS Security Hub, AWS WAF, and others to the best of their ability? Do you want to dive deep into common use cases to better operationalize AWS security services through insights developed via thousands of deployments? In this chalk talk, learn tips and tricks from AWS experts who have spent years talking to users and documenting guidance outlining AWS security services best practices.

TDR334 | Chalk talk | Unlock your security superpowers with generative AI
Generative AI can accelerate and streamline the process of security analysis and response, enhancing the impact of your security operations team. Its unique ability to combine natural language processing with large existing knowledge bases and agent-based architectures that can interact with your data and systems makes it an ideal tool for augmenting security teams during and after an event. In this chalk talk, explore how generative AI will shape the future of the SOC and lead to new capabilities in incident response and cloud security posture management.

TDR431 | Chalk talk | Harnessing generative AI for investigation and remediation
To help businesses move faster and deliver security outcomes, modern security teams need to identify opportunities to automate and simplify their workflows. One way of doing so is through generative AI. Join this chalk talk to learn how to identify use cases where generative AI can help with investigating, prioritizing, and remediating findings from Amazon GuardDuty, Amazon Inspector, and AWS Security Hub. Then find out how you can develop architectures from these use cases, implement them, and evaluate their effectiveness. The talk offers tenets for generative AI and security that can help you safely use generative AI to reduce cognitive load and increase focus on novel, high-value opportunities.

TDR432 | Chalk talk | New tactics and techniques for proactive threat detection
This insightful chalk talk is led by the AWS Customer Incident Response Team (CIRT), the team responsible for swiftly responding to security events on the customer side of the AWS Shared Responsibility Model. Discover the latest trends in threat tactics and techniques observed by the CIRT, along with effective detection and mitigation strategies. Gain valuable insights into emerging threats and learn how to safeguard your organization’s AWS environment against evolving security risks.

TDR433 | Chalk talk | Incident response for multi-account and federated environments
In this chalk talk, AWS security experts guide you through the lifecycle of a compromise involving federation and third-party identity providers. Learn how AWS detects unauthorized access and which approaches can help you respond to complex situations involving organizations with multiple accounts. Discover insights into how you can contain and recover from security events and discuss strong IAM policies, appropriately restrictive service control policies, and resource termination for security event containment. Also, learn how to build resiliency in an environment with IAM permission refinement, organizational strategy, detective controls, chain of custody, and IR break-glass models.

TDR227 | Lightning talk | How Razorpay scales threat detection using AWS
Discover how Razorpay, a leading payment aggregator solution provider authorized by the Reserve Bank of India, efficiently manages millions of business transactions per minute through automated security operations using AWS security services. Join this lightning talk to explore how Razorpay’s security operations team uses AWS Security Hub, Amazon GuardDuty, and Amazon Inspector to monitor their critical workloads on AWS. Learn how they orchestrate complex workflows, automating responses to security events, and reduce the time from detection to remediation.

TDR321 | Lightning talk | Scaling incident response with AWS developer tools
In incident response, speed matters. Responding to incidents at scale can be challenging as the number of resources in your AWS accounts increases. In this lightning talk, learn how to use SDKs and the AWS Command Line Interface (AWS CLI) to rapidly run commands across your estate so you can quickly retrieve data, identify issues, and resolve security-related problems.

TDR322 | Lightning talk | How Snap Inc. secures its services with Amazon GuardDuty
In this lightning talk, discover how Snap Inc. established a secure multi-tenant compute platform on AWS and mitigated security challenges within shared Kubernetes clusters. Snap uses Amazon GuardDuty and the OSS tool Falco for runtime protection across build time, deployment time, and runtime phases. Explore Snap’s techniques for facilitating one-time cluster access through AWS IAM Identity Center. Find out how Snap has implemented isolation strategies between internal tenants using the Pod Security Standards (PSS) and network policies enforced by the Amazon VPC Container Network Interface (CNI) plugin.

TDR326 | Lightning talk | Streamlining security auditing with generative AI
For identifying and responding to security-related events, collecting and analyzing logs is only the first step. Beyond this initial phase, you need to utilize tools and services to parse through logs, understand baseline behaviors, identify anomalies, and create automated responses based on the type of event. In this lightning talk, learn how to effectively parse security logs, identify anomalies, and receive response runbooks that you can implement within your environment.

Interactive sessions (builders’ sessions, code talks, and workshops)

TDR351 | Builders’ session | Accelerating incident remediation with IR playbooks & Amazon Detective
In this builders’ session, learn how to investigate incidents more effectively and discover root cause with Amazon Detective. Amazon Detective provides finding-group summaries by using generative AI to automatically analyze finding groups. Insights in natural language then help you accelerate security investigations. Find out how you can create your own incident response playbooks and test them by handling multi-event security issues.

TDR352 | Builders’ session | How to automate containment and forensics for Amazon EC2
Automated Forensics Orchestrator for Amazon EC2 deploys a mechanism that uses AWS services to orchestrate and automate key digital forensics processes and activities for Amazon EC2 instances in the event of a potential security issue being detected. In this builders’ session, learn how to deploy and scale this self-service AWS solution. Explore the prerequisites, learn how to customize it for your environment, and experience forensic analysis on live artifacts to identify what potential unauthorized users could do in your environment.

TDR353 | Builders’ session | Preventing top misconfigurations associated with security events
Have you ever wondered how you can prevent top misconfigurations that could lead to a security event? Join this builders’ session, where the AWS Customer Incident Response Team (CIRT) reviews some of the most commonly observed misconfigurations that can lead to security events. Then learn how to build mechanisms using AWS Security Hub and other AWS services that can help detect and prevent these issues.

TDR354 | Builders’ session | Insights in your inbox: Build email reporting with AWS Security Hub
AWS Security Hub provides you with a comprehensive view of the security state of your AWS resources by collecting security data from across AWS accounts, AWS Regions, and AWS services. In this builders’ session, learn how to set up a customizable and automated summary email that distills security posture information, insights, and critical findings from Security Hub. Get hands-on with the Security Hub console and discover easy-to-implement code examples that you can use in your own organization to drive security improvements.

TDR355 | Builders’ session | Detecting ransomware and suspicious activity in Amazon RDS
In this builders’ session, acquire skills that can help you detect and respond to threats targeting AWS databases. Using services such as AWS Cloud9 and AWS CloudFormation, simulate real-world intrusions on Amazon RDS and Amazon Aurora and use Amazon Athena to detect unauthorized activities. The session also covers strategies from the AWS Customer Incident Response Team (CIRT) for rapid incident response and configuring essential security settings to enhance your database defenses. The session provides practical experience in configuring audit logging and enabling termination protection to ensure robust database security measures.

TDR451 | Builders’ session | Create a generative AI runbook to resolve security findings
Generative AI has the potential to accelerate and streamline security analysis, response, and recovery, enhancing the effectiveness of human engagement. In this builders’ session, learn how to use Amazon SageMaker notebooks and Amazon Bedrock to quickly resolve security findings in your AWS account. You rely on runbooks for the day-to-day operations, maintenance, and troubleshooting of AWS services. With generative AI, you can gain deeper insights into security findings and take the necessary actions to streamline security analysis and response.

TDR441 | Code talk | How to use generative AI to gain insights in Amazon Security Lake
In this code talk, explore how you can use generative AI to gather enhanced security insights within Amazon Security Lake by integrating Amazon SageMaker Studio and Amazon Bedrock. Learn how AI-powered analytics can help rapidly identify and respond to security threats. By using large language models (LLMs) within Amazon Bedrock to process natural language queries and auto-generate SQL queries, you can expedite security investigations, focusing on relevant data sources within Security Lake. The talk includes a threat analysis exercise to demonstrate the effectiveness of LLMs in addressing various security queries. Learn how you can streamline security operations and gain actionable insights to strengthen your security posture and mitigate risks effectively within AWS environments.

TDR442 | Code talk | Security testing, the practical way
Join this code talk for a practical demonstration of how to test security capabilities within AWS. The talk can help you evaluate and quantify your detection and response effectiveness against key metrics like mean time to detect and mean time to resolution. Explore testing techniques that use open source tools alongside AWS services such as Amazon GuardDuty and AWS WAF. Gain insights into testing your security configurations in your environment and uncover best practices tailored to your testing scenarios. This talk equips you with actionable strategies to enhance your security posture and establish robust defense mechanisms within your AWS environment.

TDR443 | Code talk | How to conduct incident response in your Amazon EKS environment
Join this code talk to gain insights from both adversaries’ and defenders’ perspectives as AWS experts simulate a live security incident within an application across multiple Amazon EKS clusters, invoking an alert in Amazon GuardDuty. Witness the incident response process as experts demonstrate detection, containment, and recovery procedures in near real time. Through this immersive experience, learn how you can effectively respond to and recover from Amazon EKS–specific incidents, and gain valuable insights into incident handling within cloud environments. Don’t miss this opportunity to enhance your incident response capabilities and learn how to more effectively safeguard your AWS infrastructure.

TDR444 | Code talk | Identity forensics in the realm of short-term credentials
AWS Security Token Service (AWS STS) is a common way for users to access AWS services and allows you to utilize role chaining for navigating AWS accounts. When investigating security incidents, understanding the history and potential impact is crucial. Examining a single session is often insufficient because the initial abused credential may be different than the one that precipitated the investigation, and other tokens might be generated. Also, a single session investigation may not encompass all permissions that the adversary controls, due to trust relationships between the roles. In this code talk, learn how you can construct identity forensics capabilities using Amazon Detective and create a custom graph database using Amazon Neptune.

TDR371-R | Workshop | Threat detection and response on AWS
Join AWS experts for an immersive threat detection and response workshop using Amazon GuardDuty, Amazon Inspector, AWS Security Hub, and Amazon Detective. This workshop simulates security events for different types of resources and behaviors and illustrates both manual and automated responses with AWS Lambda. Dive in and learn how to improve your security posture by operationalizing threat detection and response on AWS.

TDR372-R | Workshop | Container threat detection and response with AWS security services
Join AWS experts for an immersive container security workshop using AWS threat detection and response services. This workshop simulates scenarios and security events that may arise while using Amazon ECS and Amazon EKS. The workshop also demonstrates how to use different AWS security services to detect and respond to potential security threats, as well as suggesting how you can improve your security practices. Dive in and learn how to improve your security posture when running workloads on AWS container orchestration services.

TDR373-R | Workshop | Vulnerability management with Amazon Inspector and Jenkins
Join AWS experts for an immersive vulnerability management workshop using Amazon Inspector and Jenkins for continuous integration and continuous delivery (CI/CD). This workshop takes you through approaches to vulnerability management with Amazon Inspector for EC2 instances, container images residing in Amazon ECR and within CI/CD tools, and AWS Lambda functions. Explore the integration of Amazon Inspector with Jenkins, and learn how to operationalize vulnerability management on AWS.

Browse the full re:Inforce catalog to learn more about sessions in other tracks, plus gamified learning, innovation sessions, partner sessions, and labs.

Our comprehensive track content is designed to help arm you with the knowledge and skills needed to securely manage your workloads and applications on AWS. Don’t miss out on the opportunity to stay updated with the latest best practices in threat detection and incident response. Join us in Philadelphia for re:Inforce 2024 by registering today. We can’t wait to welcome you!

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Nisha Amthul

Nisha Amthul

Nisha is a Senior Product Marketing Manager at AWS Security, specializing in detection and response solutions. She has a strong foundation in product management and product marketing within the domains of information security and data protection. When not at work, you’ll find her cake decorating, strength training, and chasing after her two energetic kiddos, embracing the joys of motherhood.

Investigating lateral movements with Amazon Detective investigation and Security Lake integration

Post Syndicated from Yue Zhu original https://aws.amazon.com/blogs/security/investigating-lateral-movements-with-amazon-detective-investigation-and-security-lake-integration/

According to the MITRE ATT&CK framework, lateral movement consists of techniques that threat actors use to enter and control remote systems on a network. In Amazon Web Services (AWS) environments, threat actors equipped with illegitimately obtained credentials could potentially use APIs to interact with infrastructures and services directly, and they might even be able to use APIs to evade defenses and gain direct access to Amazon Elastic Compute Cloud (Amazon EC2) instances. To help customers secure their AWS environments, AWS offers several security services, such as Amazon GuardDuty, a threat detection service that monitors for malicious activity and anomalous behavior, and Amazon Detective, an investigation service that helps you investigate, and respond to, security events in your AWS environment.

After the service is turned on, Amazon Detective automatically collects logs from your AWS environment to help you analyze and investigate security events in-depth. At re:Invent 2023, Detective released Detective Investigations, a one-click investigation feature that automatically investigates AWS Identity and Access Management (IAM) users and roles for indicators of compromise (IoC), and Security Lake integration, which enables customers to retrieve log data from Amazon Security Lake to use as original evidence for deeper analysis with access to more detailed parameters.

In this post, you will learn about the use cases behind these features, how to run an investigation using the Detective Investigation feature, and how to interpret the contents of investigation reports. In addition, you will also learn how to use the Security Lake integration to retrieve raw logs to get more details of the impacted resources.

Triage a suspicious activity

As a security analyst, one of the common workflows in your daily job is to respond to suspicious activities raised by security event detection systems. The process might start when you get a ticket about a GuardDuty finding in your daily operations queue, alerting you that suspicious or malicious activity has been detected in your environment. To view more details of the finding, one of the options is to use the GuardDuty console.

In the GuardDuty console, you will find more details about the finding, such as the account and AWS resources that are in scope, the activity that caused the finding, the IP address that caused the finding and information about its possible geographic location, and times of the first and last occurrences of the event. To triage the finding, you might need more information to help you determine if it is a false positive.

Every GuardDuty finding has a link labeled Investigate with Detective in the details pane. This link allows you to pivot to the Detective console based on aspects of the finding you are investigating to their respective entity profiles. The finding Recon:IAMUser/MaliciousIPCaller.Custom that’s shown in Figure 1 results from an API call made by an IP address that’s on the custom threat list, and GuardDuty observed it made API calls that were commonly used in reconnaissance activity, which commonly occurs prior to attempts at compromise. To investigate this finding, because it involves an IAM role, you can select the Role session link and it will take you to the role session’s profile in the Detective console.

Figure 1: Example finding in the GuardDuty console, with Investigate with Detective pop-up window

Figure 1: Example finding in the GuardDuty console, with Investigate with Detective pop-up window

Within the AWS Role session profile page, you will find security findings from GuardDuty and AWS Security Hub that are associated with the AWS role session, API calls the AWS role session made, and most importantly, new behaviors. Behaviors that deviate from expectations can be used as indicators of compromises to give you more information to determine if the AWS resource might be compromised. Detective highlights new behaviors first observed during the scope time of the events related to the finding that weren’t observed during the Detective baseline time window of 45 days.

If you switch to the New behavior tab within the AWS role session profile, you will find the Newly observed geolocations panel (Figure 2). This panel highlights geolocations of IP addresses where API calls were made from that weren’t observed in the baseline profile. Detective determines the location of requests using MaxMind GeoIP databases based on the IP address that was used to issue requests.

Figure 2: Detective’s Newly observed geolocations panel

Figure 2: Detective’s Newly observed geolocations panel

If you choose Details on the right side of each row, the row will expand and provide details of the API calls made from the same locations from different AWS resources, and you can drill down and get to the API calls made by the AWS resource from a specific geolocation (Figure 3). When analyzing these newly observed geolocations, a question you might consider is why this specific AWS role session made API calls from Bellevue, US. You’re pretty sure that your company doesn’t have a satellite office there, nor do your coworkers who have access to this role work from there. You also reviewed the AWS CloudTrail management events of this AWS role session, and you found some unusual API calls for services such as IAM.

Figure 3: Detective’s Newly observed geolocations panel expanded on details

Figure 3: Detective’s Newly observed geolocations panel expanded on details

You decide that you need to investigate further, because this role session’s anomalous behavior from a new geolocation is sufficiently unexpected, and it made unusual API calls that you would like to know the purpose of. You want to gather anomalous behaviors and high-risk API methods that can be used by threat actors to make impacts. Because you’re investigating an AWS role session rather than investigating a single role session, you decide you want to know what happened in other role sessions associated with the AWS role in case threat actors spread their activities across multiple sessions. To help you examine multiple role sessions automatically with additional analytics and threat intelligence, Detective introduced the Detective Investigation feature at re:Invent 2023.

Run an IAM investigation

Amazon Detective Investigation uses machine learning (ML) models and AWS threat intelligence to automatically analyze resources in your AWS environment to identify potential security events. It identifies tactics, techniques, and procedures (TTPs) used in a potential security event. The MITRE ATT&CK framework is used to classify the TTPs. You can use this feature to help you speed up the investigation and identify indicators of compromise and other TTPs quickly.

To continue with your investigation, you should investigate the role and its usage history as a whole to cover all involved role sessions at once. This addresses the potential case where threat actors assumed the same role under different session names. In the AWS role session profile page that’s shown in Figure 4, you can quickly identify and pivot to the corresponding AWS role profile page under the Assumed role field.

Figure 4: Detective’s AWS role session profile page

Figure 4: Detective’s AWS role session profile page

After you pivot to the AWS role profile page (Figure 5), you can run the automated investigations by choosing Run investigation.

Figure 5: Role profile page, from which an investigation can be run

Figure 5: Role profile page, from which an investigation can be run

The first thing to do in a new investigation is to choose the time scope you want to run the investigation for. Then, choose Confirm (Figure 6).

Figure 6: Setting investigation scope time

Figure 6: Setting investigation scope time

Next, you will be directed to the Investigations page (Figure 7), where you will be able to see the status of your investigation. Once the investigation is done, you can choose the hyperlinked investigation ID to access the investigation report.

Figure 7: Investigations page, with new report

Figure 7: Investigations page, with new report

Another way to run an investigation is to choose Investigations on the left menu panel in the Detective console, and then choose Run investigation. You will then be taken to the page where you will specify the AWS role Amazon Resource Number (ARN) you’re investigating, and the scope time (Figure 8). Then you can choose Run investigation to commence an investigation.

Figure 8: Configuring a new investigation from scratch rather than from an existing finding

Figure 8: Configuring a new investigation from scratch rather than from an existing finding

Detective also offers StartInvestigation and GetInvestigation APIs for running Detective Investigations and retrieving investigation reports programmatically.

Interpret the investigation report

The investigation report (Figure 9) includes information on anomalous behaviors, potential TTP mappings of observed CloudTrail events, and indicators of compromises of the resource (in this example, an IAM principal) that was investigated.

At the top of the report, you will find a severity level computed based on the observed behaviors during the scope window, as well as a summary statement to give you a quick understanding of what was found. In Figure 9, the AWS role that was investigated engaged in the following unusual behaviors:

  • Seven tactics showing that the API calls made by this AWS role were mapped to seven tactics of the MITRE ATT&CK framework.
  • Eleven cases of impossible travel representing API calls made from two geolocations that are too far apart for the same user to have physically travelled between them to make the calls from both, within the time span involved.
  • Zero flagged IP addresses. Detective would flag IP addresses that are considered suspicious according to its threat intelligence sources.
  • Two new Autonomous System Organizations (ASOs) which are entities with assigned Autonomous System Numbers (ASNs) as used in Border Gateway Protocol (BGP) routing.
  • Nine new user agents were used to make API calls that weren’t observed in the 45 days prior to the events being investigated.

These indicators of compromise represent unusual behaviors that have either not been observed before in the AWS account involved or that are intrinsically considered high risk. The following summary panel includes the report that shows a detailed breakdown of the investigation results.

Unusual activities are important factors that you should look for during investigations, and sudden behavior change can be a sign of compromise. When you’re investigating an AWS role that can be assumed by different users from different AWS Regions, you are likely to need to examine activity at the granularity of the specific AWS role session that made the APIs calls. Within the report, you can do this by choosing the hyperlinked role name in the summary panel, and it will take you to the AWS role profile page.

Figure 9: Investigation report summary page

Figure 9: Investigation report summary page

Further down on the investigation report is the TTP Mapping from CloudTrail Management Events panel. Detective Investigations maps CloudTrail events to the MITRE ATT&CK framework to help you understand how an API can be used by threat actors. For each mapped API, you can see the tactics, techniques, and procedures it can be used for. In Figure 10, at the top there is a summary of TTPs with different severity levels. At the bottom is a breakdown of potential TTP mappings of observed CloudTrail management events during the investigation scope time.

When you select one of the cards, a side panel appears on the right to give you more details about the APIs. It includes information such as the IP address that made the API call, the details of the TTP the API call was mapped to, and if the API call succeeded or failed. This information can help you understand how these APIs can potentially be used by threat actors to modify your environment, and whether or not the API call succeeded tells you if it might have affected the security of your AWS resources. In the example that’s shown in Figure 10, the IAM role successfully made API calls that are mapped to Lateral Movement in the ATT&CK framework.

Figure 10: Investigation report page with event ATT CK mapping

Figure 10: Investigation report page with event ATT CK mapping

The report also includes additional indicators of compromise (Figure 11). You can find these if you select the Indicators tab next to Overview. Within this tab, you can find the indicators identified during the scope time, and if you select one indicator, details for that indicator will appear on the right. In the example in Figure 11, the IAM role made API calls with a user agent that wasn’t used by this IAM role or other IAM principals in this account, and indicators like this one show sudden behavior change of your IAM principal. You should review them and identify the ones that aren’t expected. To learn more about indicators of compromise in Detective Investigation, see the Amazon Detective User Guide.

Figure 11: Indicators of compromise identified during scope time

Figure 11: Indicators of compromise identified during scope time

At this point, you’ve analyzed the new and unusual behaviors the IAM role made and learned that the IAM role made API calls using new user agents and from new ASOs. In addition, you went through the API calls that were mapped to the MITRE ATT&CK framework. Among the TTPs, there were three API calls that are classified as lateral movements. These should attract attention for the following reasons: first, the purpose of these API calls is to gain access to the EC2 instance involved; and second, ec2-instance-connect:SendSSHPublicKey was run successfully.

Based on the procedure description in the report, this API would grant threat actors temporary SSH access to the target EC2 instance. To gather original evidence, examine the raw logs stored in Security Lake. Security Lake is a fully managed security data lake service that automatically centralizes security data from AWS environments, SaaS providers, on-premises sources, and other sources into a purpose-built data lake stored in your account.

Retrieve raw logs

You can use Security Lake integration to retrieve raw logs from your Security Lake tables within the Detective console as original evidence. If you haven’t enabled the integration yet, you can follow the Integration with Amazon Security Lake guide to enable it. In the context of the example investigation earlier, these logs include details of which EC2 instance was associated with the ec2-instance-connect:SendSSHPublicKey API call. Within the AWS role profile page investigated earlier, if you scroll down to the bottom of the page, you will find the Overall API call volume panel (Figure 12). You can search for the specific API call using the Service and API method filters. Next, choose the magnifier icon, which will initiate a Security Lake query to retrieve the raw logs of the specific CloudTrail event.

Figure 12: Finding the CloudTrail record for a specific API call held in Security Lake

Figure 12: Finding the CloudTrail record for a specific API call held in Security Lake

You can identify the target EC2 instance the API was issued against from the query results (Figure 13). To determine whether threat actors actually made an SSH connection to the target EC2 instance as a result of the API call, you should examine the EC2 instance’s profile page:

Figure 13: Reviewing a CloudTrail log record from Security Lake

Figure 13: Reviewing a CloudTrail log record from Security Lake

From the profile page of the EC2 instance in the Detective console, you can go to the Overall VPC flow volume panel and filter the Amazon Virtual Private Cloud (Amazon VPC) flow logs using the attributes related to the threat actor identified as having made the SSH API call. In Figure 14, you can see the IP address that tried to connect to 22/tcp, which is the SSH port of the target instance. It’s common for threat actors to change their IP address in an attempt to evade detection, and you can remove the IP address filter to see inbound connections to port 22/tcp of your EC2 instance.

Figure 14: Examining SSH connections to the target instance in the Detective profile page

Figure 14: Examining SSH connections to the target instance in the Detective profile page

Iterate the investigation

At this point, you’ve made progress with the help of Detective Investigations and Security Lake integration. You started with a GuardDuty finding, and you got to the point where you were able to identify some of the intent of the threat actors and uncover the specific EC2 instance they were targeting. Your investigation shouldn’t stop here because you’ve successfully identified the EC2 instance, which is the next target to investigate.

You can reuse this whole workflow by starting with the EC2 instance’s New behavior panel, run Detective Investigations on the IAM role attached to the EC2 instance and other IAM principals you think are worth taking a closer look at, then use the Security Lake integration to gather raw logs of the APIs made by the EC2 instance to identify the specific actions taken and their potential consequences.


In this post, you’ve seen how you can use the Amazon Detective Investigation feature to investigate IAM user and role activity and use the Security Lake integration to determine the specific EC2 instances a threat actor appeared to be targeting.

The Detective Investigation feature is automatically enabled for both existing and new customers in AWS Regions that support Detective where Detective has been activated. The Security Lake integration feature can be enabled in your Detective console. If you don’t currently use Detective, you can start a free 30-day trial. For more information on Detective Investigation and Security Lake integration, see Investigating IAM resources using Detective investigations and Security Lake integration.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on X.

Yue Zhu

Yue Zhu

Yue is a security engineer at AWS. Before AWS, he worked as a security engineer focused on threat detection, incident response, vulnerability management, and security tooling development. Outside of work, Yue enjoys reading, cooking, and cycling.

Building a security-first mindset: three key themes from AWS re:Invent 2023

Post Syndicated from Clarke Rodgers original https://aws.amazon.com/blogs/security/building-a-security-first-mindset-three-key-themes-from-aws-reinvent-2023/

Amazon CSO Stephen Schmidt

Amazon CSO Stephen Schmidt

AWS re:Invent drew 52,000 attendees from across the globe to Las Vegas, Nevada, November 27 to December 1, 2023.

Now in its 12th year, the conference featured 5 keynotes, 17 innovation talks, and over 2,250 sessions and hands-on labs offering immersive learning and networking opportunities.

With dozens of service and feature announcements—and innumerable best practices shared by AWS executives, customers, and partners—the air of excitement was palpable. We were on site to experience all of the innovations and insights, but summarizing highlights isn’t easy. This post details three key security themes that caught our attention.

Security culture

When we think about cybersecurity, it’s natural to focus on technical security measures that help protect the business. But organizations are made up of people—not technology. The best way to protect ourselves is to foster a proactive, resilient culture of cybersecurity that supports effective risk mitigation, incident detection and response, and continuous collaboration.

In Sustainable security culture: Empower builders for success, AWS Global Services Security Vice President Hart Rossman and AWS Global Services Security Organizational Excellence Leader Sarah Currey presented practical strategies for building a sustainable security culture.

Rossman noted that many customers who meet with AWS about security challenges are attempting to manage security as a project, a program, or a side workstream. To strengthen your security posture, he said, you have to embed security into your business.

“You’ve got to understand early on that security can’t be effective if you’re running it like a project or a program. You really have to run it as an operational imperative—a core function of the business. That’s when magic can happen.” — Hart Rossman, Global Services Security Vice President at AWS

Three best practices can help:

  1. Be consistently persistent. Routinely and emphatically thank employees for raising security issues. It might feel repetitive, but treating security events and escalations as learning opportunities helps create a positive culture—and it’s a practice that can spread to other teams. An empathetic leadership approach encourages your employees to see security as everyone’s responsibility, share their experiences, and feel like collaborators.
  2. Brief the board. Engage executive leadership in regular, business-focused meetings. By providing operational metrics that tie your security culture to the impact that it has on customers, crisply connecting data to business outcomes, and providing an opportunity to ask questions, you can help build the support of executive leadership, and advance your efforts to establish a sustainable proactive security posture.
  3. Have a mental model for creating a good security culture. Rossman presented a diagram (Figure 1) that highlights three elements of security culture he has observed at AWS: a student, a steward, and a builder. If you want to be a good steward of security culture, you should be a student who is constantly learning, experimenting, and passing along best practices. As your stewardship grows, you can become a builder, and progress the culture in new directions.
Figure 1: Sample mental model for building security culture

Figure 1: Sample mental model for building security culture

Thoughtful investment in the principles of inclusivity, empathy, and psychological safety can help your team members to confidently speak up, take risks, and express ideas or concerns. This supports an escalation-friendly culture that can reduce employee burnout, and empower your teams to champion security at scale.

In Shipping securely: How strong security can be your strategic advantage, AWS Enterprise Strategy Director Clarke Rodgers reiterated the importance of security culture to building a security-first mindset.

Rodgers highlighted three pillars of progression (Figure 2)—aware, bolted-on, and embedded—that are based on meetings with more than 800 customers. As organizations mature from a reactive security posture to a proactive, security-first approach, he noted, security culture becomes a true business enabler.

“When organizations have a strong security culture and everyone sees security as their responsibility, they can move faster and achieve quicker and more secure product and service releases.” — Clarke Rodgers, Director of Enterprise Strategy at AWS
Figure 2: Shipping with a security-first mindset

Figure 2: Shipping with a security-first mindset

Human-centric AI

CISOs and security stakeholders are increasingly pivoting to a human-centric focus to establish effective cybersecurity, and ease the burden on employees.

According to Gartner, by 2027, 50% of large enterprise CISOs will have adopted human-centric security design practices to minimize cybersecurity-induced friction and maximize control adoption.

As Amazon CSO Stephen Schmidt noted in Move fast, stay secure: Strategies for the future of security, focusing on technology first is fundamentally wrong. Security is a people challenge for threat actors, and for defenders. To keep up with evolving changes and securely support the businesses we serve, we need to focus on dynamic problems that software can’t solve.

Maintaining that focus means providing security and development teams with the tools they need to automate and scale some of their work.

“People are our most constrained and most valuable resource. They have an impact on every layer of security. It’s important that we provide the tools and the processes to help our people be as effective as possible.” — Stephen Schmidt, CSO at Amazon

Organizations can use artificial intelligence (AI) to impact all layers of security—but AI doesn’t replace skilled engineers. When used in coordination with other tools, and with appropriate human review, it can help make your security controls more effective.

Schmidt highlighted the internal use of AI at Amazon to accelerate our software development process, as well as new generative AI-powered Amazon Inspector, Amazon Detective, AWS Config, and Amazon CodeWhisperer features that complement the human skillset by helping people make better security decisions, using a broader collection of knowledge. This pattern of combining sophisticated tooling with skilled engineers is highly effective, because it positions people to make the nuanced decisions required for effective security that AI can’t make on its own.

In How security teams can strengthen security using generative AI, AWS Senior Security Specialist Solutions Architects Anna McAbee and Marshall Jones, and Principal Consultant Fritz Kunstler featured a virtual security assistant (chatbot) that can address common security questions and use cases based on your internal knowledge bases, and trusted public sources.

Figure 3: Generative AI-powered chatbot architecture

Figure 3: Generative AI-powered chatbot architecture

The generative AI-powered solution depicted in Figure 3—which includes Retrieval Augmented Generation (RAG) with Amazon Kendra, Amazon Security Lake, and Amazon Bedrock—can help you automate mundane tasks, expedite security decisions, and increase your focus on novel security problems.

It’s available on Github with ready-to-use code, so you can start experimenting with a variety of large and multimodal language models, settings, and prompts in your own AWS account.

Secure collaboration

Collaboration is key to cybersecurity success, but evolving threats, flexible work models, and a growing patchwork of data protection and privacy regulations have made maintaining secure and compliant messaging a challenge.

An estimated 3.09 billion mobile phone users access messaging apps to communicate, and this figure is projected to grow to 3.51 billion users in 2025.

The use of consumer messaging apps for business-related communications makes it more difficult for organizations to verify that data is being adequately protected and retained. This can lead to increased risk, particularly in industries with unique recordkeeping requirements.

In How the U.S. Army uses AWS Wickr to deliver lifesaving telemedicine, Matt Quinn, Senior Director at The U.S. Army Telemedicine & Advanced Technology Research Center (TATRC), Laura Baker, Senior Manager at Deloitte, and Arvind Muthukrishnan, AWS Wickr Head of Product highlighted how The TATRC National Emergency Tele-Critical Care Network (NETCCN) was integrated with AWS Wickr—a HIPAA-eligible secure messaging and collaboration service—and AWS Private 5G, a managed service for deploying and scaling private cellular networks.

During the session, Quinn, Baker, and Muthukrishnan described how TATRC achieved a low-resource, cloud-enabled, virtual health solution that facilitates secure collaboration between onsite and remote medical teams for real-time patient care in austere environments. Using Wickr, medics on the ground were able to treat injuries that exceeded their previous training (Figure 4) with the help of end-to-end encrypted video calls, messaging, and file sharing with medical professionals, and securely retain communications in accordance with organizational requirements.

“Incorporating Wickr into Military Emergency Tele-Critical Care Platform (METTC-P) not only provides the security and privacy of end-to-end encrypted communications, it gives combat medics and other frontline caregivers the ability to gain instant insight from medical experts around the world—capabilities that will be needed to address the simultaneous challenges of prolonged care, and the care of large numbers of casualties on the multi-domain operations (MDO) battlefield.” — Matt Quinn, Senior Director at TATRC
Figure 4: Telemedicine workflows using AWS Wickr

Figure 4: Telemedicine workflows using AWS Wickr

In a separate Chalk Talk titled Bolstering Incident Response with AWS Wickr and Amazon EventBridge, Senior AWS Wickr Solutions Architects Wes Wood and Charles Chowdhury-Hanscombe demonstrated how to integrate Wickr with Amazon EventBridge and Amazon GuardDuty to strengthen incident response capabilities with an integrated workflow (Figure 5) that connects your AWS resources to Wickr bots. Using this approach, you can quickly alert appropriate stakeholders to critical findings through a secure communication channel, even on a potentially compromised network.

Figure 5: AWS Wickr integration for incident response communications

Figure 5: AWS Wickr integration for incident response communications

Security is our top priority

AWS re:Invent featured many more highlights on a variety of topics, including adaptive access control with Zero Trust, AWS cyber insurance partners, Amazon CTO Dr. Werner Vogels’ popular keynote, and the security partnerships showcased on the Expo floor. It was a whirlwind experience, but one thing is clear: AWS is working hard to help you build a security-first mindset, so that you can meaningfully improve both technical and business outcomes.

To watch on-demand conference sessions, visit the AWS re:Invent Security, Identity, and Compliance playlist on YouTube.

If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security news? Follow us on Twitter.

Clarke Rodgers

Clarke Rodgers

Clarke is a Director of Enterprise Security at AWS. Clarke has more than 25 years of experience in the security industry, and works with enterprise security, risk, and compliance-focused executives to strengthen their security posture, and understand the security capabilities of the cloud. Prior to AWS, Clarke was a CISO for the North American operations of a multinational insurance company.

Anne Grahn

Anne Grahn

Anne is a Senior Worldwide Security GTM Specialist at AWS, based in Chicago. She has more than 13 years of experience in the security industry, and focuses on effectively communicating cybersecurity risk. She maintains a Certified Information Systems Security Professional (CISSP) certification.

Detect runtime security threats in Amazon ECS and AWS Fargate, new in Amazon GuardDuty

Post Syndicated from Sébastien Stormacq original https://aws.amazon.com/blogs/aws/introducing-amazon-guardduty-ecs-runtime-monitoring-including-aws-fargate/

Today, we’re announcing Amazon GuardDuty ECS Runtime Monitoring to help detect potential runtime security issues in Amazon Elastic Container Service (Amazon ECS) clusters running on both AWS Fargate and Amazon Elastic Compute Cloud (Amazon EC2).

GuardDuty combines machine learning (ML), anomaly detection, network monitoring, and malicious file discovery against various AWS data sources. When threats are detected, GuardDuty generates security findings and automatically sends them to AWS Security Hub, Amazon EventBridge, and Amazon Detective. These integrations help centralize monitoring for AWS and partner services, initiate automated responses, and launch security investigations.

GuardDuty ECS Runtime Monitoring helps detect runtime events such as file access, process execution, and network connections that might indicate runtime threats. It checks hundreds of threat vectors and indicators and can produce over 30 different finding types. For example, it can detect attempts of privilege escalation, activity generated by crypto miners or malware, or activity suggesting reconnaissance by an attacker. This is in addition to GuardDuty‘s primary detection categories.

GuardDuty ECS Runtime Monitoring uses a managed and lightweight security agent that adds visibility into individual container runtime behaviors. When using AWS Fargate, there is no need for you to install, configure, manage, or update the agent. We take care of that for you. This simplifies the management of your clusters and reduces the risk of leaving some tasks without monitoring. It also helps to improve your security posture and pass regulatory compliance and certification for runtime threats.

GuardDuty ECS Runtime Monitoring findings are visible directly in the console. You can configure GuardDuty to also send its findings to multiple AWS services or to third-party monitoring systems connected to your security operations center (SOC).

With this launch, Amazon Detective now receives security findings from GuardDuty ECS Runtime Monitoring and includes them in its collection of data for analysis and investigations. Detective helps to analyze, investigate, and quickly identify the root cause of potential security issues or suspicious activities. It collects log data from AWS resources and uses machine learning, statistical analysis, and graph theory to build a linked set of data that enables you to easily conduct security investigations.

Configure GuardDuty ECS Runtime Monitoring on AWS Fargate
For this demo, I choose to show the experience provided for AWS Fargate. When using Amazon ECS, you must ensure your EC2 instances have the GuardDuty agent installed. You can install the agent manually, bake it into your AMI, or use GuardDuty‘s provided AWS Systems Manager document to install it (go to Systems Manager in the console, select Documents, and then search for GuardDuty). The documentation has more details about installing the agent on EC2 instances.

When operating from a GuardDuty administrator account, I can enable GuardDuty ECS Runtime Monitoring at the organization level to monitor all ECS clusters in all organizations’ AWS accounts.

In this demo, I use the AWS Management Console to enable Runtime Monitoring. Enabling GuardDuty ECS Runtime Monitoring in the console has an effect on all your clusters.

When I want GuardDuty to automatically deploy the GuardDuty ECS Runtime Monitoring agent on Fargate, I enable GuardDuty agent management. To exclude individual clusters from automatic management, I can tag them with GuardDutyManaged=false. I make sure I tag my clusters before enabling ECS Runtime Monitoring in the console. When I don’t want to use the automatic management option, I can leave the option disabled and selectively choose the clusters to monitor with the tag GuardDutyManaged=true.

The Amazon ECS or AWS Fargate cluster administrator must have authorization to manage tags on the clusters.

The IAM TaskExecutionRole you attach to tasks must have permissions to download the GuardDuty agent from a private ECR repository. This is done automatically when you use the AmazonECSTaskExecutionRolePolicy managed IAM policy.

Here is my view of the console when the Runtime Monitoring and agent management are enabled.

guardduty ecs enbale monitoring

I can track the deployment of the security agent by assessing the Coverage statistics across all the ECS clusters.

guardduty ecs cluster coverage

Once monitoring is enabled, there is nothing else to do. Let’s see what findings it detects on my simple demo cluster.

Check out GuardDuty ECS runtime security findings
When GuardDuty ECS Runtime Monitoring detects potential threats, they appear in a list like this one.

ECS Runtime Monitoring - finding list

I select a specific finding to view more details about it.

ECS Runtime Monitoring - finding details

Things to know
By default, a Fargate task is immutable. GuardDuty won’t deploy the agent to monitor containers on existing tasks. If you want to monitor containers for already running tasks, you must stop and start the tasks after enabling GuardDuty ECS Runtime Monitoring. Similarly, when using Amazon ECS services, you must force a new deployment to ensure tasks are restarted with the agent. As I mentioned already, be sure the tasks have IAM permissions to download the GuardDuty monitoring agent from Amazon ECR.

We designed the GuardDuty agent to have little impact on performance, but you should plan for it in your Fargate task sizing calculations.

When you choose automatic agent management, GuardDuty also creates a VPC endpoint to allow the agent to communicate with GuardDuty APIs. When—just like me—you create your cluster with a CDK or CloudFormation script with the intention to delete the cluster after a period of time (for example, in a continuous integration scenario), bear in mind that the VPC endpoint must be deleted manually to allow CloudFormation to delete your stack.

Pricing and availability
You can now use GuardDuty ECS Runtime Monitoring on AWS Fargate and Amazon EC2 instances. For a full list of Regions where GuardDuty ECS Runtime Monitoring is available, visit our Region-specific feature availability page.

You can try GuardDuty ECS Runtime Monitoring for free for 30 days. When you enable GuardDuty for the first time, you have to explicitly enable GuardDuty ECS Runtime Monitoring. At the end of the trial period, we charge you per vCPU per hour of the monitoring agents. The GuardDuty pricing page has all the details.

Get insights about the threats to your container and enable GuardDuty ECS Runtime Monitoring today.

— seb

Amazon Detective adds new capabilities to accelerate and improve your cloud security investigations

Post Syndicated from Sébastien Stormacq original https://aws.amazon.com/blogs/aws/amazon-detective-adds-investigations-and-finding-group-summaries-to-help-you-investigate-security-findings/

Today, Amazon Detective adds four new capabilities to help you save time and strengthen your security operations.

First, Detective investigations for IAM help security analysts investigate AWS Identity and Access Management (IAM) objects, such as users and roles, for indicators of compromise (IoCs) to determine potential involvement in known tactics from the MITRE ATT&CK framework. These automatic investigations are available in the Detective section of the AWS Management Console and through a new API to automate your analysis or incident response or to send these findings to other systems, such as AWS Security Hub or your SIEM.

Second, Detective finding group summaries uses generative artificial intelligence (AI) to enrich its investigations. It automatically analyzes finding groups and provides insights in natural language to accelerate security investigations. It provides a plain language title based on the analysis of the finding group with relevant summarized insights, such as describing the activity that initiated the event and its impact, if any. Finding group summaries handles the heavy lifting of analyzing the finding group built across multiple AWS data sources, making it easier and faster to investigate unusual or suspicious activity.

In addition to these two new capabilities that I describe in this post, Detective adds another two capabilities not covered here:

  • Detective now supports security investigations for threats detected by Amazon GuardDuty ECS Runtime Monitoring.
  • Detective now integrates with Amazon Security Lake, enabling security analysts to query and retrieve logs stored in Security Lake.

Amazon Detective makes it easier to analyze, investigate, and quickly identify the root cause of security findings or suspicious activities. Detective uses machine learning (ML), statistical analysis, and graph theory to help you visualize and conduct faster and more efficient security investigations. Detective automatically collects logs data and events from sources like AWS CloudTrail logs, Amazon Virtual Private Cloud (Amazon VPC) Flow Logs, Amazon GuardDuty findings, Amazon Elastic Kubernetes Service (Amazon EKS) audit logs, and AWS security findings. Detective maintains up to a year of aggregated data for analysis and investigations.

Cloud security professionals often find threat hunting and incident investigations to be resource-intensive and time-consuming. They must manually gather and analyze data from various sources to identify potential IAM-related threats. IAM investigations are particularly challenging due to dynamic cloud permissions and credentials. Analysts need to piece together data from different systems, including audit logs, entitlement reports, and CloudTrail events, which can be dispersed. Cloud permissions are often granted on-demand or through automation scripts, making authorization changes hard to track. Reconstructing activity timelines and identifying irregular entitlements can take hours or days, depending on complexity. Limited visibility into legacy systems and incomplete logs further complicates IAM investigations, making it difficult to obtain a definitive understanding of unauthorized access.

Detective investigations for IAM triage findings and surface only the most critical, suspicious issues, allowing security analysts to focus on high-level investigations. It automatically analyzes resources in your AWS environment to identify potential indicators of compromise or suspicious activity using machine learning and threat intelligence. This allows analysts to identify patterns and comprehend which resources are impacted by security events, offering a proactive approach to threat identification and mitigation.

The investigations are not only available in the console; you can use the new StartInvestigation API to automate a remediation workflow or collect information about all IP involved or AWS resources compromised. You can also use the API to feed the data to other systems to build a consolidated view of your security posture.

Finding group summaries evaluates the connections between security events across an environment and provides insights in natural language that link related threats, compromised resources, and malicious actor behavior. This narrative offers security analysts a comprehensive overview of security incidents that goes beyond individual service reports. By grouping and contextualizing data from multiple sources, finding group summaries identifies threats that might go unnoticed when insights are isolated. This approach improve the speed and efficiency of investigations and responses. Security analysts can utilize finding group summaries to gain a holistic understanding of security events and their interrelationships, helping them make informed decisions regarding containment and remediation.

Let’s see these two capabilities in action
In this demo, I start with Detective investigations for IAM in the Detective section of the console. The Detective dashboard shows me the number of investigations done and the number of IAM roles and users involved in suspicious activities.

Detective Automated Investifation - dashboard

From there, I drill down the list of investigations.

Detective Automated Investifation - list

And I select one specific investigation to get the details. There is a summary first.

Detective Automated Investifation - dashb

I scroll down the page to see what IP addresses are involved and for what type of activities. This example shows me a physical impossibility: the same IP was used in a short time from two different places, Australia and Japan.

Detective Automated Investifation - ip addresses

The most interesting section of the page, in my opinion, is the mappings to tactics, techniques, and procedures (TTP). All TTPs are classified according to their severity. The console shows the techniques and actions used. When selecting a specific TTP, I can see the details in the right pane. In this example, the suspicious IP address has been involved in more than 2,000 failed attempts to change the trusted policy of an IAM role.

Detective Automated Investifation - ttps

Finally, I navigate to the Indicators tab to see the list of indicators.

Detective Automated Investifation - indicators

On the other side, finding group summaries is available under Finding groups. I select a finding group to receive a natural language explanation of the findings and risks involved.

Detective Gen AI Findings

Pricing and availability
These two new capabilities are now available to all AWS customers.

Detective investigations for IAM is available in all AWS Regions where Detective is available. Finding group summaries is available in five AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore, Tokyo), and Europe (Frankfurt).

Learn all the details about Amazon Detective and get started today.

— seb

Improve your security investigations with Detective finding groups visualizations

Post Syndicated from Rich Vorwaller original https://aws.amazon.com/blogs/security/improve-your-security-investigations-with-detective-finding-groups-visualizations/

At AWS, we often hear from customers that they want expanded security coverage for the multiple services that they use on AWS. However, alert fatigue is a common challenge that customers face as we introduce new security protections. The challenge becomes how to operationalize, identify, and prioritize alerts that represent real risk.

In this post, we highlight recent enhancements to Amazon Detective finding groups visualizations. We show you how Detective automatically consolidates multiple security findings into a single security event—called finding groups—and how finding group visualizations help reduce noise and prioritize findings that present true risk. We incorporate additional services like Amazon GuardDuty, Amazon Inspector, and AWS Security Hub to highlight how effective findings groups is at consolidating findings for different AWS security services.

Overview of solution

This post uses several different services. The purpose is twofold: to show how you can enable these services for broader protection, and to show how Detective can help you investigate findings from multiple services without spending a lot of time sifting through logs or querying multiple data sources to find the root cause of a security event. These are the services and their use cases:

  • GuardDuty – a threat detection service that continuously monitors your AWS accounts and workloads for malicious activity. If potential malicious activity, such as anomalous behavior, credential exfiltration, or command and control (C2) infrastructure communication is detected, GuardDuty generates detailed security findings that you can use for visibility and remediation. Recently, GuardDuty released the following threat detections for specific services that we’ll show you how to enable for this walkthrough: GuardDuty RDS Protection, EKS Runtime Monitoring, and Lambda Protection.
  • Amazon Inspector – an automated vulnerability management service that continually scans your AWS workloads for software vulnerabilities and unintended network exposure. Like GuardDuty, Amazon Inspector sends a finding for alerting and remediation when it detects a software vulnerability or a compute instance that’s publicly available.
  • Security Hub – a cloud security posture management service that performs automated, continuous security best practice checks against your AWS resources to help you identify misconfigurations, and aggregates your security findings from integrated AWS security services.
  • Detective – a security service that helps you investigate potential security issues. It does this by collecting log data from AWS CloudTrail, Amazon Virtual Private Cloud (Amazon VPC) flow logs, and other services. Detective then uses machine learning, statistical analysis, and graph theory to build a linked set of data called a security behavior graph that you can use to conduct faster and more efficient security investigations.

The following diagram shows how each service delivers findings along with log sources to Detective.

Figure 1: Amazon Detective log source diagram

Figure 1: Amazon Detective log source diagram

Enable the required services

If you’ve already enabled the services needed for this post—GuardDuty, Amazon Inspector, Security Hub, and Detective—skip to the next section. For instructions on how to enable these services, see the following resources:

Each of these services offers a free 30-day trial and provides estimates on charges after your trial expires. You can also use the AWS Pricing Calculator to get an estimate.

To enable the services across multiple accounts, consider using a delegated administrator account in AWS Organizations. With a delegated administrator account, you can automatically enable services for multiple accounts and manage settings for each account in your organization. You can view other accounts in the organization and add them as member accounts, making central management simpler. For instructions on how to enable the services with AWS Organizations, see the following resources:

Enable GuardDuty protections

The next step is to enable the latest detections in GuardDuty and learn how Detective can identify multiple threats that are related to a single security event.

If you’ve already enabled the different GuardDuty protection plans, skip to the next section. If you recently enabled GuardDuty, the protections plans are enabled by default, except for EKS Runtime Monitoring, which is a two-step process.

For the next steps, we use the delegated administrator account in GuardDuty to make sure that the protection plans are enabled for each AWS account. When you use GuardDuty (or Security Hub, Detective, and Inspector) with AWS Organizations, you can designate an account to be the delegated administrator. This is helpful so that you can configure these security services for multiple accounts at the same time. For instructions on how to enable a delegated administrator account for GuardDuty, see Managing GuardDuty accounts with AWS Organizations.

To enable EKS Protection

  1. Sign in to the GuardDuty console using the delegated administrator account, choose Protection plans, and then choose EKS Protection.
  2. In the Delegated administrator section, choose Edit and then choose Enable for each scope or protection. For this post, select EKS Audit Log Monitoring, EKS Runtime Monitoring, and Manage agent automatically, as shown in Figure 2. For more information on each feature, see the following resources:
  3. To enable these protections for current accounts, in the Active member accounts section, choose Edit and Enable for each scope of protection.
  4. To enable these protections for new accounts, in the New account default configuration section, choose Edit and Enable for each scope of protection.

To enable RDS Protection

The next step is to enable RDS Protection. GuardDuty RDS Protection works by analysing RDS login activity for potential threats to your Amazon Aurora databases (MySQL-Compatible Edition and Aurora PostgreSQL-Compatible Editions). Using this feature, you can identify potentially suspicious login behavior and then use Detective to investigate CloudTrail logs, VPC flow logs, and other useful information around those events.

  1. Navigate to the RDS Protection menu and under Delegated administrator (this account), select Enable and Confirm.
  2. In the Enabled for section, select Enable all if you want RDS Protection enabled on all of your accounts. If you want to select a specific account, choose Manage Accounts and then select the accounts for which you want to enable RDS Protection. With the accounts selected, choose Edit Protection Plans, RDS Login Activity, and Enable for X selected account.
  3. (Optional) For new accounts, turn on Auto-enable RDS Login Activity Monitoring for new member accounts as they join your organization.
Figure 2: Enable EKS Runtime Monitoring

Figure 2: Enable EKS Runtime Monitoring

To enable Lambda Protection

The final step is to enable Lambda Protection. Lambda Protection helps detect potential security threats during the invocation of AWS Lambda functions. By monitoring network activity logs, GuardDuty can generate findings when Lambda functions are involved with malicious activity, such as communicating with command and control servers.

  1. Navigate to the Lambda Protection menu and under Delegated administrator (this account), select Enable and Confirm.
  2. In the Enabled for section, select Enable all if you want Lambda Protection enabled on all of your accounts. If you want to select a specific account, choose Manage Accounts and select the accounts for which you want to enable RDS Protection. With the accounts selected, choose Edit Protection Plans, Lambda Network Activity Monitoring, and Enable for X selected account.
  3. (Optional) For new accounts, turn on Auto-enable Lambda Network Activity Monitoring for new member accounts as they join your organization.
Figure 4: Enable Lambda Network Activity Monitoring

Figure 4: Enable Lambda Network Activity Monitoring

Now that you’ve enabled these new protections, GuardDuty will start monitoring EKS audit logs, EKS runtime activity, RDS login activity, and Lambda network activity. If GuardDuty detects suspicious or malicious activity for these log sources or services, it will generate a finding for the activity, which you can review in the GuardDuty console. In addition, you can automatically forward these findings to Security Hub for consolidation, and to Detective for security investigation.

Detective data sources

If you have Security Hub and other AWS security services such as GuardDuty or Amazon Inspector enabled, findings from these services are forwarded to Security Hub. With the exception of sensitive data findings from Amazon Macie, you’re automatically opted in to other AWS service integrations when you enable Security Hub. For the full list of services that forward findings to Security Hub, see Available AWS service integrations.

With each service enabled and forwarding findings to Security Hub, the next step is to enable the data source in Detective called AWS security findings, which are the findings forwarded to Security Hub. Again, we’re going to use the delegated administrator account for these steps to make sure that AWS security findings are being ingested for your accounts.

To enable AWS security findings

  1. Sign in to the Detective console using the delegated administrator account and navigate to Settings and then General.
  2. Choose Optional source packages, Edit, select AWS security findings, and then choose Save.
    Figure 5: Enable AWS security findings

    Figure 5: Enable AWS security findings

When you enable Detective, it immediately starts creating a security behavior graph for AWS security findings to build a linked dataset between findings and entities, such as RDS login activity from Aurora databases, EKS runtime activity, and suspicious network activity for Lambda functions. For GuardDuty to detect potential threats that affect your database instances, it first needs to undertake a learning period of up to two weeks to establish a baseline of normal behavior. For more information, see How RDS Protection uses RDS login activity monitoring. For the other protections, after suspicious activity is detected, you can start to see findings in both GuardDuty and Security Hub consoles. This is where you can start using Detective to better understand which findings are connected and where to prioritize your investigations.

Detective behavior graph

As Detective ingests data from GuardDuty, Amazon Inspector, and Security Hub, as well as CloudTrail logs, VPC flow logs, and Amazon Elastic Kubernetes Service (Amazon EKS) audit logs, it builds a behavior graph database. Graph databases are purpose-built to store and navigate relationships. Relationships are first-class citizens in graph databases, which means that they’re not computed out-of-band or by interfering with relationships through querying foreign keys. Because Detective stores information on relationships in your graph database, you can effectively answer questions such as “are these security findings related?”. In Detective, you can use the search menu and profile panels to view these connections, but a quicker way to see this information is by using finding groups visualizations.

Finding groups visualizations

Finding groups extract additional information out of the behavior graph to highlight findings that are highly connected. Detective does this by running several machine learning algorithms across your behavior graph to identify related findings and then statically weighs the relationships between those findings and entities. The result is a finding group that shows GuardDuty and Amazon Inspector findings that are connected, along with entities like Amazon Elastic Compute Cloud (Amazon EC2) instances, AWS accounts, and AWS Identity and Access Management (IAM) roles and sessions that were impacted by these findings. With finding groups, you can more quickly understand the relationships between multiple findings and their causes because you don’t need to connect the dots on your own. Detective automatically does this and presents a visualization so that you can see the relationships between various entities and findings.

Enhanced visualizations

Recently, we released several enhancements to finding groups visualizations to aid your understanding of security connections and root causes. These enhancements include:

  • Dynamic legend – the legend now shows icons for entities that you have in the finding group instead of showing all available entities. This helps reduce noise to only those entities that are relevant to your investigation.
  • Aggregated evidence and finding icons – these icons provide a count of similar evidence and findings. Instead of seeing the same finding or evidence repeated multiple times, you’ll see one icon with a counter to help reduce noise.
  • More descriptive side panel information – when you choose a finding or entity, the side panel shows additional information, such as the service that identified the finding and the finding title, in addition to the finding type, to help you understand the action that invoked the finding.
  • Label titles – you can now turn on or off titles for entities and findings in the visualization so that you don’t have to choose each to get a summary of what the different icons mean.

To use the finding groups visualization

  1. Open the Detective console, choose Summary, and then choose View all finding groups.
  2. Choose the title of an available finding group and scroll down to Visualization.
  3. Under the Select layout menu, choose one of the layouts available, or choose and drag each icon to rearrange the layout according to how you’d like to see connections.
  4. For a complete list of involved entities and involved findings, scroll down below the visualization.

Figure 6 shows an example of how you can use finding groups visualization to help identify the root cause of findings quickly. In this example, an IAM role was connected to newly observed geolocations, multiple GuardDuty findings detected malicious API calls, and there were newly observed user agents from the IAM session. The visualization can give you high confidence that the IAM role is compromised. It also provides other entities that you can search against, such as the IP address, S3 bucket, or new user agents.

Figure 6: Finding groups visualization

Figure 6: Finding groups visualization

Now that you have the new GuardDuty protections enabled along with the data source of AWS security findings, you can use finding groups to more quickly visualize which IAM sessions have had multiple findings associated with unauthorized access, or which EC2 instances are publicly exposed with a software vulnerability and active GuardDuty finding—these patterns can help you determine if there is an actual risk.


In this blog post, you learned how to enable new GuardDuty protections and use Detective, finding groups, and visualizations to better identify, operationalize, and prioritize AWS security findings that represent real risk. We also highlighted the new enhancements to visualizations that can help reduce noise and provide summaries of detailed information to help reduce the time it takes to triage findings. If you’d like to see an investigation scenario using Detective, watch the video Amazon Detective Security Scenario Investigation.

If you have feedback about this post, submit comments in the Comments section below. You can also start a new thread on Amazon Detective re:Post or contact AWS Support.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Rich Vorwaller

Rich Vorwaller

Rich is a Principal Product Manager of Amazon Detective. He came to AWS with a passion for walking backwards from customer security problems. AWS is a great place for innovation, and Rich is excited to dive deep on how customers are using AWS to strengthen their security posture in the cloud. In his spare time, Rich loves to read, travel, and perform a little bit of amateur stand-up comedy.

Nicholas Doropoulos

Nicholas Doropoulos

Nicholas is an AWS Cloud Security Engineer, a bestselling Udemy instructor, and a subject matter expert in AWS Shield, Amazon GuardDuty, AWS IAM, and AWS Certificate Manager. Outside work, he enjoys spending time with his wife and their beautiful baby son.

Three ways to accelerate incident response in the cloud: insights from re:Inforce 2023

Post Syndicated from Anne Grahn original https://aws.amazon.com/blogs/security/three-ways-to-accelerate-incident-response-in-the-cloud-insights-from-reinforce-2023/

AWS re:Inforce took place in Anaheim, California, on June 13–14, 2023. AWS customers, partners, and industry peers participated in hundreds of technical and non-technical security-focused sessions across six tracks, an Expo featuring AWS experts and AWS Security Competency Partners, and keynote and leadership sessions.

The threat detection and incident response track showcased how AWS customers can get the visibility they need to help improve their security posture, identify issues before they impact business, and investigate and respond quickly to security incidents across their environment.

With dozens of service and feature announcements—and innumerable best practices shared by AWS experts, customers, and partners—distilling highlights is a challenge. From an incident response perspective, three key themes emerged.

Proactively detect, contextualize, and visualize security events

When it comes to effectively responding to security events, rapid detection is key. Among the launches announced during the keynote was the expansion of Amazon Detective finding groups to include Amazon Inspector findings in addition to Amazon GuardDuty findings.

Detective, GuardDuty, and Inspector are part of a broad set of fully managed AWS security services that help you identify potential security risks, so that you can respond quickly and confidently.

Using machine learning, Detective finding groups can help you conduct faster investigations, identify the root cause of events, and map to the MITRE ATT&CK framework to quickly run security issues to ground. The finding group visualization panel shown in the following figure displays findings and entities involved in a finding group. This interactive visualization can help you analyze, understand, and triage the impact of finding groups.

Figure 1: Detective finding groups visualization panel

Figure 1: Detective finding groups visualization panel

With the expanded threat and vulnerability findings announced at re:Inforce, you can prioritize where to focus your time by answering questions such as “was this EC2 instance compromised because of a software vulnerability?” or “did this GuardDuty finding occur because of unintended network exposure?”

In the session Streamline security analysis with Amazon Detective, AWS Principal Product Manager Rich Vorwaller, AWS Senior Security Engineer Rima Tanash, and AWS Program Manager Jordan Kramer demonstrated how to use graph analysis techniques and machine learning in Detective to identify related findings and resources, and investigate them together to accelerate incident analysis.

In addition to Detective, you can also use Amazon Security Lake to contextualize and visualize security events. Security Lake became generally available on May 30, 2023, and several re:Inforce sessions focused on how you can use this new service to assist with investigations and incident response.

As detailed in the following figure, Security Lake automatically centralizes security data from AWS environments, SaaS providers, on-premises environments, and cloud sources into a purpose-built data lake stored in your account. Security Lake makes it simpler to analyze security data, gain a more comprehensive understanding of security across an entire organization, and improve the protection of workloads, applications, and data. Security Lake automates the collection and management of security data from multiple accounts and AWS Regions, so you can use your preferred analytics tools while retaining complete control and ownership over your security data. Security Lake has adopted the Open Cybersecurity Schema Framework (OCSF), an open standard. With OCSF support, the service normalizes and combines security data from AWS and a broad range of enterprise security data sources.

Figure 2: How Security Lake works

Figure 2: How Security Lake works

To date, 57 AWS security partners have announced integrations with Security Lake, and we now have more than 70 third-party sources, 16 analytics subscribers, and 13 service partners.

In Gaining insights from Amazon Security Lake, AWS Principal Solutions Architect Mark Keating and AWS Security Engineering Manager Keith Gilbert detailed how to get the most out of Security Lake. Addressing questions such as, “How do I get access to the data?” and “What tools can I use?,” they demonstrated how analytics services and security information and event management (SIEM) solutions can connect to and use data stored within Security Lake to investigate security events and identify trends across an organization. They emphasized how bringing together logs in multiple formats and normalizing them into a single format empowers security teams to gain valuable context from security data, and more effectively respond to events. Data can be queried with Amazon Athena, or pulled by Amazon OpenSearch Service or your SIEM system directly from Security Lake.

Build your security data lake with Amazon Security Lake featured AWS Product Manager Jonathan Garzon, AWS Product Solutions Architect Ross Warren, and Global CISO of Interpublic Group (IPG) Troy Wilkinson demonstrating how Security Lake helps address common challenges associated with analyzing enterprise security data, and detailing how IPG is using the service. Wilkinson noted that IPG’s objective is to bring security data together in one place, improve searches, and gain insights from their data that they haven’t been able to before.

“With Security Lake, we found that it was super simple to bring data in. Not just the third-party data and Amazon data, but also our on-premises data from custom apps that we built.” — Troy Wilkinson, global CISO, Interpublic Group

Use automation and machine learning to reduce mean time to response

Incident response automation can help free security analysts from repetitive tasks, so they can spend their time identifying and addressing high-priority security issues.

In How LLA reduces incident response time with AWS Systems Manager, telecommunications provider Liberty Latin America (LLA) detailed how they implemented a security framework to detect security issues and automate incident response in more than 180 AWS accounts accessed by internal stakeholders and third-party partners by using AWS Systems Manager Incident Manager, AWS Organizations, Amazon GuardDuty, and AWS Security Hub.

LLA operates in over 20 countries across Latin America and the Caribbean. After completing multiple acquisitions, LLA needed a centralized security operations team to handle incidents and notify the teams responsible for each AWS account. They used GuardDuty, Security Hub, and Systems Manager Incident Manager to automate and streamline detection and response, and they configured the services to initiate alerts whenever there was an issue requiring attention.

Speaking alongside AWS Principal Solutions Architect Jesus Federico and AWS Principal Product Manager Sarah Holberg, LLA Senior Manager of Cloud Services Joaquin Cameselle noted that when GuardDuty identifies a critical issue, it generates a new finding in Security Hub. This finding is then forwarded to Systems Manager Incident Manager through an Amazon EventBridge rule. This configuration helps ensure the involvement of the appropriate individuals associated with each account.

“We have deployed a security framework in Liberty Latin America to identify security issues and streamline incident response across over 180 AWS accounts. The framework that leverages AWS Systems Manager Incident Manager, Amazon GuardDuty, and AWS Security Hub enabled us to detect and respond to incidents with greater efficiency. As a result, we have reduced our reaction time by 90%, ensuring prompt engagement of the appropriate teams for each AWS account and facilitating visibility of issues for the central security team.” — Joaquin Cameselle, senior manager, cloud services, Liberty Latin America

How Citibank (Citi) advanced their containment capabilities through automation outlined how the National Institute of Standards and Technology (NIST) Incident Response framework is applied to AWS services, and highlighted Citi’s implementation of a highly scalable cloud incident response framework designed to support the 28 AWS services in their cloud environment.

After describing the four phases of the incident response process — preparation and prevention; detection and analysis; containment, eradication, and recovery; and post-incident activity—AWS ProServe Global Financial Services Senior Engagement Manager Harikumar Subramonion noted that, to fully benefit from the cloud, you need to embrace automation. Automation benefits the third phase of the incident response process by speeding up containment, and reducing mean time to response.

Citibank Head of Cloud Security Operations Elvis Velez and Vice President of Cloud Security Damien Burks described how Citi built the Cloud Containment Automation Framework (CCAF) from the ground up by using AWS Step Functions and AWS Lambda, enabling them to respond to events 24/7 without human error, and reduce the time it takes to contain resources from 4 hours to 15 minutes. Velez described how Citi uses adversary emulation exercises that use the MITRE ATT&CK Cloud Matrix to simulate realistic attacks on AWS environments, and continuously validate their ability to effectively contain incidents.

Innovate and do more with less

Security operations teams are often understaffed, making it difficult to keep up with alerts. According to data from CyberSeek, there are currently 69 workers available for every 100 cybersecurity job openings.

Effectively evaluating security and compliance posture is critical, despite resource constraints. In Centralizing security at scale with Security Hub and Intuit’s experience, AWS Senior Solutions Architect Craig Simon, AWS Senior Security Hub Product Manager Dora Karali, and Intuit Principal Software Engineer Matt Gravlin discussed how to ease security management with Security Hub. Fortune 500 financial software provider Intuit has approximately 2,000 AWS accounts, 10 million AWS resources, and receives 20 million findings a day from AWS services through Security Hub. Gravlin detailed Intuit’s Automated Compliance Platform (ACP), which combines Security Hub and AWS Config with an internal compliance solution to help Intuit reduce audit timelines, effectively manage remediation, and make compliance more consistent.

“By using Security Hub, we leveraged AWS expertise with their regulatory controls and best practice controls. It helped us keep up to date as new controls are released on a regular basis. We like Security Hub’s aggregation features that consolidate findings from other AWS services and third-party providers. I personally call it the super aggregator. A key component is the Security Hub to Amazon EventBridge integration. This allowed us to stream millions of findings on a daily basis to be inserted into our ACP database.” — Matt Gravlin, principal software engineer, Intuit

At AWS re:Inforce, we launched a new Security Hub capability for automating actions to update findings. You can now use rules to automatically update various fields in findings that match defined criteria. This allows you to automatically suppress findings, update the severity of findings according to organizational policies, change the workflow status of findings, and add notes. With automation rules, Security Hub provides you a simplified way to build automations directly from the Security Hub console and API. This reduces repetitive work for cloud security and DevOps engineers and can reduce mean time to response.

In Continuous innovation in AWS detection and response services, AWS Worldwide Security Specialist Senior Manager Himanshu Verma and GuardDuty Senior Manager Ryan Holland highlighted new features that can help you gain actionable insights that you can use to enhance your overall security posture. After mapping AWS security capabilities to the core functions of the NIST Cybersecurity Framework, Verma and Holland provided an overview of AWS threat detection and response services that included a technical demonstration.

Bolstering incident response with AWS Wickr enterprise integrations highlighted how incident responders can collaborate securely during a security event, even on a compromised network. AWS Senior Security Specialist Solutions Architect Wes Wood demonstrated an innovative approach to incident response communications by detailing how you can integrate the end-to-end encrypted collaboration service AWS Wickr Enterprise with GuardDuty and AWS WAF. Using Wickr Bots, you can build integrated workflows that incorporate GuardDuty and third-party findings into a more secure, out-of-band communication channel for dedicated teams.

Evolve your incident response maturity

AWS re:Inforce featured many more highlights on incident response, including How to run security incident response in your Amazon EKS environment and Investigating incidents with Amazon Security Lake and Jupyter notebooks code talks, as well as the announcement of our Cyber Insurance Partners program. Content presented throughout the conference made one thing clear: AWS is working harder than ever to help you gain the insights that you need to strengthen your organization’s security posture, and accelerate incident response in the cloud.

To watch AWS re:Inforce sessions on demand, see the AWS re:Inforce playlists on YouTube.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Anne Grahn

Anne Grahn

Anne is a Senior Worldwide Security GTM Specialist at AWS based in Chicago. She has more than a decade of experience in the security industry, and focuses on effectively communicating cybersecurity risk. She maintains a Certified Information Systems Security Professional (CISSP) certification.


Himanshu Verma

Himanshu is a Worldwide Specialist for AWS Security Services. In this role, he leads the go-to-market creation and execution for AWS Security Services, field enablement, and strategic customer advisement. Prior to AWS, he held several leadership roles in Product Management, engineering and development, working on various identity, information security, and data protection technologies. He obsesses brainstorming disruptive ideas, venturing outdoors, photography, and trying various “hole in the wall” food and drinking establishments around the globe.

Jesus Federico

Jesus Federico

Jesus is a Principal Solutions Architect for AWS in the telecommunications vertical, working to provide guidance and technical assistance to communication service providers on their cloud journey. He supports CSPs in designing and implementing secure, resilient, scalable, and high-performance applications in the cloud.

AWS Week in Review – Amazon EC2 Instance Connect Endpoint, Detective, Amazon S3 Dual Layer Encryption, Amazon Verified Permission – June 19, 2023

Post Syndicated from Sébastien Stormacq original https://aws.amazon.com/blogs/aws/aws-week-in-review-amazon-ec2-instance-connect-endpoint-detective-amazon-s3-dual-layer-encryption-amazon-verified-permission-june-19-2023/

This week, I’ll meet you at AWS partner’s Jamf Nation Live in Amsterdam where we’re showing how to use Amazon EC2 Mac to deploy your remote developer workstations or configure your iOS CI/CD pipelines in the cloud.Mac in an instant

Last Week’s Launches
While I was traveling last week, I kept an eye on the AWS News. Here are some launches that got my attention.

Amazon EC2 Instance Connect Endpoint. Endpoint for EC2 Instance Connect allows you to securely access Amazon EC2 instances using their private IP addresses, making the use of bastion hosts obsolete. Endpoint for EC2 Instance Connect is by far my favorite launch from last week. With EC2 Instance Connect, you use AWS Identity and Access Management (IAM) policies and principals to control SSH access to your instances. This removes the need to share and manage SSH keys. We also updated the AWS Command Line Interface (AWS CLI) to allow you to easily connect or open a secured tunnel to an instance using only its instance ID. I read and contributed to a couple of threads on social media where you pointed out that AWS Systems Manager Session Manager already offered similar capabilities. You’re right. But the extra advantage of EC2 Instance Connect Endpoint is that it allows you to use your existing SSH-based tools and libraries, such as the scp command.

Amazon Inspector now supports code scanning of AWS Lambda functions. This expands the existing capability to scan Lambda functions and associated layers for software vulnerabilities in application package dependencies. Amazon Detective also extends finding groups to Amazon Inspector. Detective automatically collects findings from Amazon Inspector, GuardDuty, and other AWS security services, such as AWS Security Hub, to help increase situational awareness of related security events.

Amazon Verified Permissions is generally available. If you’re designing or developing business applications that need to enforce user-based permissions, you have a new option to centrally manage application permissions. Verified Permissions is a fine-grained permissions management and authorization service for your applications that can be used at any scale. Verified Permissions centralizes permissions in a policy store and helps developers use those permissions to authorize user actions within their applications. Similarly to the way an identity provider simplifies authentication, a policy store lets you manage authorization in a consistent and scalable way. Read Danilo’s post to discover the details.

Amazon S3 Dual-Layer Server-Side Encryption with keys stored in AWS Key Management Service (DSSE-KMS). Some heavily regulated industries require double encryption to store some type of data at rest. Amazon Simple Storage Service (Amazon S3) offers DSSE-KMS, a new free encryption option that provides two layers of data encryption, using different keys and different implementation of the 256-bit Advanced Encryption Standard with Galois Counter Mode (AES-GCM) algorithm. My colleague Irshad’s post has all the details.

AWS CloudTrail Lake Dashboards provide out-of-the-box visibility and top insights from your audit and security data directly within the CloudTrail Lake console. CloudTrail Lake features a number of AWS curated dashboards so you can get started right away – with no required detailed dashboard setup or SQL experience.

AWS IAM Identity Center now supports automated user provisioning from Google Workspace. You can now connect your Google Workspace to AWS IAM Identity Center (successor to AWS Single Sign-On) once and manage access to AWS accounts and applications centrally in IAM Identity Center.

AWS CloudShell is now available in 12 additional regions. AWS CloudShell is a browser-based shell that makes it easier to securely manage, explore, and interact with your AWS resources. The list of the 12 new Regions is detailed in the launch announcement.

For a full list of AWS announcements, be sure to keep an eye on the What’s New at AWS page.

Other AWS News
Here are some other updates and news that you might have missed:

  • AWS Extension for Stable Diffusion WebUI. WebUI is a popular open-source web interface that allows you to easily interact with Stable Diffusion generative AI. We built this extension to help you to migrate existing workloads (such as inference, train, and ckpt merge) from your local or standalone servers to the AWS Cloud.
  • GoDaddy developed a multi-Region, event-driven system. Their system handles 400 millions events per day. They plan to scale it to process 2 billion messages per day in a near future. My colleague Marcia explains the detail of their architecture in her post.
  • The Official AWS Podcast – Listen each week for updates on the latest AWS news and deep dives into exciting use cases. There are also official AWS podcasts in several languages. Check out the podcasts in FrenchGermanItalian, and Spanish.
  • AWS Open Source News and Updates – This is a newsletter curated by my colleague Ricardo to bring you the latest open source projects, posts, events, and more.

Upcoming AWS Events
Check your calendars and sign up for these AWS events:

  • AWS Silicon Innovation Day (June 21) – A one-day virtual event that will allow you to better understand AWS Silicon and how you can use the Amazon EC2 chip offerings to your benefit. My colleague Irshad shared the details in this post. Register today.
  • AWS Global Summits – There are many AWS Summits going on right now around the world: Milano (June 22), Hong Kong (July 20), New York (July 26), Taiwan (Aug 2 & 3), and Sao Paulo (Aug 3).
  • AWS Community Day – Join a community-led conference run by AWS user group leaders in your region: Manila (June 29–30), Chile (July 1), and Munich (September 14).
  • AWS User Group Perú Conf 2023 (September 2023). Some of the AWS News blog writer team will be present: Marcia, Jeff, myself, and our colleague Startup Developer Advocate Mark. Save the date and register today.
  • CDK Day CDK Day is happening again this year on September 29. The call for papers for this event is open, and this year we’re also accepting talks in Spanish. Submit your talk here.

That’s all for this week. Check back next Monday for another Week in Review!

This post is part of our Week in Review series. Check back each week for a quick roundup of interesting news and announcements from AWS!
— seb

New – Simplify the Investigation of AWS Security Findings with Amazon Detective

Post Syndicated from Danilo Poccia original https://aws.amazon.com/blogs/aws/new-simplify-the-investigation-of-aws-security-findings-with-amazon-detective/

With Amazon Detective, you can analyze and visualize security data to investigate potential security issues. Detective collects and analyzes events that describe IP traffic, AWS management operations, and malicious or unauthorized activity from AWS CloudTrail logs, Amazon Virtual Private Cloud (Amazon VPC) Flow Logs, Amazon GuardDuty findings, and, since last year, Amazon Elastic Kubernetes Service (EKS) audit logs. Using this data, Detective constructs a graph model that distills log data using machine learning, statistical analysis, and graph theory to build a linked set of data for your security investigations.

Starting today, Detective offers investigation support for findings in AWS Security Hub in addition to those detected by GuardDuty. Security Hub is a service that provides you with a view of your security state in AWS and helps you check your environment against security industry standards and best practices. If you’ve turned on Security Hub and another integrated AWS security services, those services will begin sending findings to Security Hub.

With this new capability, it is easier to use Detective to determine the cause and impact of findings coming from new sources such as AWS Identity and Access Management (IAM) Access Analyzer, Amazon Inspector, and Amazon Macie. All AWS services that send findings to Security Hub are now supported.

Let’s see how this works in practice.

Enabling AWS Security Findings in the Amazon Detective Console
When you enable Detective for the first time, Detective now identifies findings coming from both GuardDuty and Security Hub, and automatically starts ingesting them along with other data sources. Note that you don’t need to enable or publish these log sources for Detective to start its analysis because this is managed directly by Detective.

If you are an existing Detective customer, you can enable investigation of AWS Security Findings as a data source with one click in the Detective Management Console. I already have Detective enabled, so I add the source package.

In the Detective console, in the Settings section of the navigation pane, I choose General. There, I choose Edit in the Optional source packages section to enable Detective for AWS Security Findings.

Console screenshot.

Once enabled, Detective starts analyzing all the relevant data to identify connections between disparate events and activities. To start your investigation process, you can get a visualization of these connections, including resource behavior and activities. Historical baselines, which you can use to provide comparisons against recent activity, are established after two weeks.

Investigating AWS Security Findings in the Amazon Detective Console
I start in the Security Hub console and choose Findings in the navigation pane. There, I filter findings to only see those where the Product name is Inspector and Severity label is HIGH.

Console screenshot.

The first one looks suspicious, so I choose its Title (CVE-2020-36223 – openldap). The Security Hub console provides me with information about the corresponding Common Vulnerabilities and Exposures (CVE) ID and where and how it was found. At the bottom, I have the option to Investigate in Amazon Detective. I follow the Investigate finding link, and the Detective console opens in another browser tab.

Console screenshot.

Here, I see the entities related to this Inspector finding. First, I open the profile of the AWS account to see all the findings associated with this resource, the overall API call volume issued by this resource, and the container clusters in this account.

For example, I look at the successful and failed API calls to have a better understanding of the impact of this finding.

Console screenshot.

Then, I open the profile for the container image. There, I see the images that are related to this image (because they have the same repository or registry as this image), the containers running from this image during the scope time (managed by Amazon EKS), and the findings associated with this resource.

Depending on the finding, Detective helps me correlate information from different sources such as CloudTrail logs, VPC Flow Logs, and EKS audit logs. This information makes it easier to understand the impact of the finding and if the risk has become an incident. For Security Hub, Detective only ingests findings for configuration checks that failed. Because configuration checks that passed have little security value, we’re filtering these outs.

Availability and Pricing
Amazon Detective investigation support for AWS Security Findings is available today for all existing and new Detective customers in all AWS Regions where Detective is available, including the AWS GovCloud (US) Regions. For more information, see the AWS Regional Services List.

Amazon Detective is priced based on the volume of data ingested. By enabling investigation of AWS Security Findings, you can increase the volume of ingested data. For more information, see Amazon Detective pricing.

When GuardDuty and Security Hub provide a finding, they also suggest the remediation. On top of that, Detective helps me investigate if the vulnerability has been exploited, for example, using logs and network traffic as proof.

Currently, findings coming from Security Hub are not included in the Finding groups section of the Detective console. Our plan is to expand Finding groups to cover the newly integrated AWS security services. Stay tuned!

Start using Amazon Detective to investigate potential security issues.


Reduce triage time for security investigations with Amazon Detective visualizations and export data

Post Syndicated from Alex Waddell original https://aws.amazon.com/blogs/security/reduce-triage-time-for-security-investigations-with-detective-visualizations-and-export-data/

To respond to emerging threats, you will often need to sort through large datasets rapidly to prioritize security findings. Amazon Detective recently released two new features to help you do this. New visualizations in Detective show the connections between entities related to multiple Amazon GuardDuty findings, and a new export data feature helps you use the data from Detective in your other tools and automated workflows.

By using these new features, you can quickly analyze, correlate, and visualize the large amounts of data generated by sources like Amazon Virtual Private Cloud (Amazon VPC) Flow Logs, AWS CloudTrail, Amazon GuardDuty findings, and Amazon Elastic Kubernetes Service (Amazon EKS) audit logs.

In this post, we’ll show you how you can use these new features to help reduce the time it takes to assess, investigate, and prioritize a security incident.

A security finding is raised

The workflow starts with GuardDuty. GuardDuty continuously monitors AWS accounts, Amazon Elastic Compute Cloud (Amazon EC2) instances, EKS clusters, and data stored in Amazon Simple Storage Service (Amazon S3) for malicious activity without the use of security software or agents.

If GuardDuty detects potential malicious activity, such as anomalous behavior, credential exfiltration, or command and control (C2) infrastructure communication, it generates detailed security incidents called findings.

Depending on the severity and complexity of the GuardDuty finding, the resolution might require deep investigation. Consider an example that involves cryptocurrency mining. If you frequently see a cryptocurrency finding on your EC2 instances, you might have a recurring malware issue that has enabled a backdoor. If a threat actor is attempting to compromise your AWS environment, they typically perform a sequence of actions that lead to multiple findings and unusual behavior. When security findings are investigated in isolation, it can lead to a misinterpretation of their significance and difficulty in finding the root cause. When you need more context around a finding, Detective can help.

Detective automatically collects log data and events from sources like CloudTrail logs, Amazon VPC Flow Logs, GuardDuty findings, and Amazon EKS audit logs and maintains up to a year of aggregated data for analysis. Detective uses machine learning to create a behavioral graph for these data sources that helps show how security issues have evolved. It highlights what AWS resources might be compromised and flags unusual activity like new API calls, new user agents, and new AWS Regions.

The search capabilities work across AWS workloads, providing the information required to show the potential impact of an incident. Detective helps you answer questions like: How did this security incident happen? What AWS resources were affected? How can we prevent this from happening again?

Finding groups help connect the dots of an incident

You can use finding groups, a recent feature of Detective, to help with your investigations. A finding group is a collection of entities related to a single potential security incident that should be investigated together. An entity can be an AWS resource like an EC2 instance, IAM role, or GuardDuty finding, but it can also be an IP address or user agent. For a full list of entities collected, see Searching for a finding or entity in the Detective User Guide.

Grouping these entities together helps provide context and a more complete understanding of the threat landscape. This makes it simpler for you to identify relationships between different events and to assess the overall impact of a potential threat.

In the cryptocurrency mining example described previously, finding groups could show the relationship between the cryptocurrency mining finding and a C2 finding so that you know the two are related and the AWS resources affected. To learn more about working with Detective finding groups, see How to improve security incident investigations using Amazon Detective finding groups.

Figure 1 shows the finding groups overview page on the Detective console, with a list of finding groups filtered by status. The dashboard also shows the severity, title, observed tactics, accounts, entities, and the total number of findings for each finding group. For more information about the attributes of finding groups, see Analyzing finding groups.

Figure 1: Finding groups overview

Figure 1: Finding groups overview

To see details about the finding group, select the title of the finding group to access the details page, which includes Details, Visualization, Involved entities, and Involved findings. On this panel, you can view entities and findings included in a finding group and interact with them. The information presented is the same in the Visualization panel, the Involved entities panel, and the Involved findings panel. The different views allow you to view the information in the way that is helpful for you. Figure 2 shows an example of the Details and Visualization for a specific finding group.

Figure 2: Details and Visualization

Figure 2: Details and Visualization

Note: Finding groups with over 100 nodes (findings and entities) do not include a graph visualization.

Visualizations to show you the situation

The new visualizations in Detective provide three layouts that display the same information from finding groups, but allow you to choose and arrange the different entities so that you can focus on the highest priority finding or resources.

To determine what each visual element represents, choose the Legend in the bottom left corner of the panel. You can change the placement of findings in the Visualization panel by selecting a different layout from the Select layout dropdown menu. Figure 2 in the preceding section shows the Force-directed layout, where the positioning of entities and findings presents an even distribution of links with minimal overlap, while maintaining consistent distance between items.

Figure 3 shows the Visualization panel with the Circle layout, where nodes are displayed in a circular layout. You can use the Legend to understand the different categories of Findings, Compute, Network, Identity, Storage, or Other.

If you’re unfamiliar with these terms, see Amazon Detective terms and concepts to learn more.

Figure 3: Visualization panel with Circle layout and Legend

Figure 3: Visualization panel with Circle layout and Legend

Figure 4 shows the Visualization panel with the Grid layout, where nodes are divided into four different columns: evidence, identity entities, GuardDuty findings, and other entities (compute, network, and storage).

Figure 4: Visualization panel with Grid layout

Figure 4: Visualization panel with Grid layout

In the Visualization panel, you can select one or more (using ctrl/cmd+click) nodes. Selected nodes are listed next to the graph, and you can select each node’s title for more information. Selecting an entity’s title opens a new page that displays detailed information about that entity, whereas selecting a finding or evidence expands the right sidebar to show details on the selected finding or evidence.

You can rearrange chosen entities and findings as needed to help improve your understanding of their connections. This can help speed up your assessment of findings. Figure 5 shows the Visualization panel with four nodes selected and the sidebar displaying information relevant to the selected finding.

Figure 5: Visualization panel with evidence selected

Figure 5: Visualization panel with evidence selected

Finding groups and visualizations provide an overview of the entities and resources related to a security activity. Presenting the information in this way highlights the interconnections between various activities. This means that you no longer have to use multiple tools or query different services to collect information or investigate entities and resources. This can help you reduce triage and scoping times and make your investigations faster and more comprehensive.

Increased flexibility for investigation with simpler data access

To expand the scope of your investigation or confirm if a security incident has taken place, you might want to combine data from Detective with your own tools or different services. This is where export data comes into play.

Detective has several Summary page panels that you can use as a starting point for your investigations because they highlight potentially suspicious activity. The panels include roles and users with the most API call volume, EC2 instances with the most traffic volume, and EKS clusters with the most Kubernetes pods created.

With export data, you can now export these panels as common-separated values (CSV) files and import the data into other AWS services or third-party applications, or manipulate the data with spreadsheet programs.

Export from the Detective console Summary screen

In the Detective console, on the Summary page, you will see an Export option on several summary panes. This is enabled and available for anyone with access to Detective. Figure 6 shows summary information for the roles and users with the most API call volume.

Figure 6: Detective console Summary screen

Figure 6: Detective console Summary screen

Choose Export to download a CSV file containing the data for the summary information. The file is downloaded to your browser’s default download folder on your local device. When you view the data, it will look something like the spreadsheet in Figure 7:

Figure 7: Example CSV data export from Detective console Summary

Figure 7: Example CSV data export from Detective console Summary

Export from the Detective console Search screen

You can also export data using the Search capability of Detective. After you apply specific filters to search for findings or entities based on your use case, an Export button appears at the top of the search results in Detective. Figure 8 shows an example of filtering for a particular CIDR range. Choose Export to download the CSV file containing the filtered data.

Figure 8: Detective search results filtering for a CIDR range

Figure 8: Detective search results filtering for a CIDR range


In this blog post, you learned how to use the two new features of Detective to visualize findings and export data. By using these new features, you and your teams can investigate an incident in the way that best fits your workflow. New visualizations show the entities involved in an issue and surface nuanced connections that can be difficult to find when you’re faced with line after line of log data. The new data export feature makes it simpler to integrate the insights discovered in Detective with the tools and automations that your team is already using.

These features are automatically enabled for both existing and new customers in AWS Regions that support Detective. There is no additional charge for finding groups. If you don’t currently use Detective, you can start a free 30-day trial. For more information on finding groups, see Analyzing finding groups in the Amazon Detective User Guide.

If you have feedback about this post, submit comments in the Comments section below. You can also start a new thread on Amazon Detective re:Post or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Alex Waddell

Alex Waddell

Alex is a Senior Security Specialist Solutions Architect at AWS based in Scotland. Alex provides security architectural guidance and operational best practices to customers of all sizes, helping them to implement AWS security services in the best way possible to keep their AWS workloads secure. Alex has been working in the security domain since 1999 and joined AWS in 2021. When he is not working, Alex enjoys spending time sampling rum from around the world (Alex is one of those rarely found Scottish people that doesn’t like whisky), walking his dogs in the local forest trails and traveling.

Nima Fotouhi

Nima Fotouhi

Nima is a Security Consultant. He’s a builder with passion for infrastructure as code (IaC) and policy as code (PaC), helping customer building secure infrastructure on AWS. In my spare time I love to hit the slopes and go snowboarding.

Rich Vorwaller

Rich Vorwaller

Rich is a Principal Product Manager of Amazon Detective. He boomerang to AWS with a passion for walking backwards from customer security problems. AWS is a great place for innovation and Rich is excited to dive deep on how customers are using AWS to strengthen their security posture in the cloud. In his spare time, Rich loves to read, travel, and perform a little bit of amateur stand up comedy.

AWS Week in Review – February 27, 2023

Post Syndicated from Antje Barth original https://aws.amazon.com/blogs/aws/aws-week-in-review-february-27-2023/

A couple days ago, I had the honor of doing a live stream on generative AI, discussing recent innovations and concepts behind the current generation of large language and vision models and how we got there. In today’s roundup of news and announcements, I will share some additional information—including an expanded partnership to make generative AI more accessible, a blog post about diffusion models, and our weekly Twitch show on Generative AI. Let’s dive right into it!

Last Week’s Launches
Here are some launches that got my attention during the previous week:

Integrated Private Wireless on AWS – The Integrated Private Wireless on AWS program is designed to provide enterprises with managed and validated private wireless offerings from leading communications service providers (CSPs). The offerings integrate CSPs’ private 5G and 4G LTE wireless networks with AWS services across AWS Regions, AWS Local Zones, AWS Outposts, and AWS Snow Family. For more details, read this Industries Blog post and check out this eBook. And, if you’re attending the Mobile World Congress Barcelona this week, stop by the AWS booth at the Upper Walkway, South Entrance, at the Fira Barcelona Gran Via, to learn more.

AWS Glue Crawlers – Now integrate with Lake Formation. AWS Glue Crawlers are used to discover datasets, extract schema information, and populate the AWS Glue Data Catalog. With this Glue Crawler and Lake Formation integration, you can configure a crawler to use Lake Formation permissions to access an S3 data store or a Data Catalog table with an underlying S3 location within the same AWS account or another AWS account. You can configure an existing Data Catalog table as a crawler’s target if the crawler and the Data Catalog table reside in the same account. To learn more, check out this Big Data Blog post.

AWS Glue Crawlers now support integration with AWS Lake Formation

Amazon SageMaker Model Monitor – You can now launch and configure Amazon SageMaker Model Monitor from the SageMaker Model Dashboard using a code-free point-and-click setup experience. SageMaker Model Dashboard gives you unified monitoring across all your models by providing insights into deviations from expected behavior, automated alerts, and troubleshooting to improve model performance. Model Monitor can detect drift in data quality, model quality, bias, and feature attribution and alert you to take remedial actions when such changes occur.

Amazon EKS – Now supports Kubernetes version 1.25. Kubernetes 1.25 introduced several new features and bug fixes, and you can now use Amazon EKS and Amazon EKS Distro to run Kubernetes version 1.25. You can create new 1.25 clusters or upgrade your existing clusters to 1.25 using the Amazon EKS console, the eksctl command line interface, or through an infrastructure-as-code tool. To learn more about this release named “Combiner,” check out this Containers Blog post.

Amazon Detective – New self-paced workshop available. You can now learn to use Amazon Detective with a new self-paced workshop in AWS Workshop Studio. AWS Workshop Studio is a collection of self-paced tutorials designed to teach practical skills and techniques to solve business problems. The Amazon Detective workshop is designed to teach you how to use the primary features of Detective through a series of interactive modules that cover topics such as security alert triage, security incident investigation, and threat hunting. Get started with the Amazon Detective Workshop.

For a full list of AWS announcements, be sure to keep an eye on the What’s New at AWS page.

Other AWS News
Here are some additional news items and blog posts that you may find interesting:

🤗❤☁ AWS and Hugging Face collaborate to make generative AI more accessible and cost-efficient – This previous week, we announced an expanded collaboration between AWS and Hugging Face to accelerate the training, fine-tuning, and deployment of large language and vision models used to create generative AI applications. Generative AI applications can perform a variety of tasks, including text summarization, answering questions, code generation, image creation, and writing essays and articles. For more details, read this Machine Learning Blog post.

If you are interested in generative AI, I also recommend reading this blog post on how to Fine-tune text-to-image Stable Diffusion models with Amazon SageMaker JumpStart. Stable Diffusion is a deep learning model that allows you to generate realistic, high-quality images and stunning art in just a few seconds. This blog post discusses how to make design choices, including dataset quality, size of training dataset, choice of hyperparameter values, and applicability to multiple datasets.

AWS open-source news and updates – My colleague Ricardo writes this weekly open-source newsletter in which he highlights new open-source projects, tools, and demos from the AWS Community. Read edition #146 here.

Upcoming AWS Events
Check your calendars and sign up for these AWS events:

Build On AWS - Generative AI#BuildOn Generative AI – Join our weekly live Build On Generative AI Twitch show. Every Monday morning, 9:00 US PT, my colleagues Emily and Darko take a look at aspects of generative AI. They host developers, scientists, startup founders, and AI leaders and discuss how to build generative AI applications on AWS.

In today’s episode, my colleague Chris walked us through an end-to-end ML pipeline from data ingestion to fine-tuning and deployment of generative AI models. You can watch the video here.

AWS Pi Day 2023 SmallAWS Pi Day – Join me on March 14 for the third annual AWS Pi Day live, virtual event hosted on the AWS On Air channel on Twitch as we celebrate the 17th birthday of Amazon S3 and the cloud.

We will discuss the latest innovations across AWS Data services, from storage to analytics and AI/ML. If you are curious about how AI can transform your business, register here and join my session.

AWS Innovate Data and AI/ML edition – AWS Innovate is a free online event to learn the latest from AWS experts and get step-by-step guidance on using AI/ML to drive fast, efficient, and measurable results. Register now for EMEA (March 9) and the Americas (March 14).

You can browse all upcoming AWS-led in-person, virtual events and developer focused events such as Community Days.

That’s all for this week. Check back next Monday for another Week in Review!

— Antje

This post is part of our Week in Review series. Check back each week for a quick roundup of interesting news and announcements from AWS!

How to improve security incident investigations using Amazon Detective finding groups

Post Syndicated from Anna McAbee original https://aws.amazon.com/blogs/security/how-to-improve-security-incident-investigations-using-amazon-detective-finding-groups/

Uncovering the root cause of an Amazon GuardDuty finding can be a complex task, requiring security operations center (SOC) analysts to collect a variety of logs, correlate information across logs, and determine the full scope of affected resources.

Sometimes you need to do this type of in-depth analysis because investigating individual security findings in insolation doesn’t always capture the full impact of affected resources.

With Amazon Detective, you can analyze and visualize various logs and relationships between AWS entities to streamline your investigation. In this post, you will learn how to use a feature of Detective—finding groups—to simplify and expedite the investigation of a GuardDuty finding.

Detective uses machine learning, statistical analysis, and graph theory to generate visualizations that help you to conduct faster and more efficient security investigations. The finding groups feature reduces triage time and provides a clear view of related GuardDuty findings. With finding groups, you can investigate entities and security findings that might have been overlooked in isolation. Finding groups also map GuardDuty findings and their relevant tactics, techniques, and procedures to the MITRE ATT&CK framework. By using MITRE ATT&CK, you can better understand the event lifecycle of a finding group.

Finding groups are automatically enabled for both existing and new customers in AWS Regions that support Detective. There is no additional charge for finding groups. If you don’t currently use Detective, you can start a free 30-day trial.

Use finding groups to simplify an investigation

Because finding groups are enabled by default, you start your investigation by simply navigating to the Detective console. You will see these finding groups in two different places: the Summary and the Finding groups pages. On the Finding groups overview page, you can also use the search capability to look for collected metadata for finding groups, such as severity, title, finding group ID, observed tactics, AWS accounts, entities, finding ID, and status. The entities information can help you narrow down finding groups that are more relevant for specific workloads.

Figure 1 shows the finding groups area on the Summary page in the Amazon Detective console, which provides high-level information on some of the individual finding groups.

Figure 1: Detective console summary page

Figure 1: Detective console summary page

Figure 2 shows the Finding groups overview page, with a list of finding groups filtered by status. The finding group shown has a status of Active.

Figure 2: Detective console finding groups overview page

Figure 2: Detective console finding groups overview page

You can choose the finding group title to see details like the severity of the finding group, the status, scope time, parent or child finding groups, and the observed tactics from the MITRE ATT&CK framework. Figure 3 shows a specific finding group details page.

Figure 3: Detective console showing a specific finding group details page

Figure 3: Detective console showing a specific finding group details page

Below the finding group details, you can review the entities and associated findings for this finding group, as shown in Figure 4. From the Involved entities tab, you can pivot to the entity profile pages for more details about that entity’s behavior. From the Involved findings tab, you can select a finding to review the details pane.

Figure 4: Detective console showing involved entities of a finding group

Figure 4: Detective console showing involved entities of a finding group

In Figure 4, the search functionality on the Involved entities tab is being used to look at involved entities that are of type AWS role or EC2 instance. With such a search filter in Detective, you have more data in a single place to understand which Amazon Elastic Compute Cloud (Amazon EC2) instances and AWS Identity and Access Management (IAM) roles were involved in the GuardDuty finding and what findings were associated with each entity. You can also select these different entities to see more details. With finding groups, you no longer have to craft specific log searches or search for the AWS resources and entities that you should investigate. Detective has done this correlation for you, which reduces the triage time and provides a more comprehensive investigation.

With the release of finding groups, Detective infers relationships between findings and groups them together, providing a more convenient starting point for investigations. Detective has evolved from helping you determine which resources are related to a single entity (for example, what EC2 instances are communicating with a malicious IP), to correlating multiple related findings together and showing what MITRE tactics are aligned across those findings, helping you better understand a more advanced single security event.


In this blog post, we showed how you can use Detective finding groups to simplify security investigations through grouping related GuardDuty findings and AWS entities, which provides a more comprehensive view of the lifecycle of the potential security incident. Finding groups are automatically enabled for both existing and new customers in AWS Regions that support Detective. There is no additional charge for finding groups. If you don’t currently use Detective, you can start a free 30-day trial. For more information on finding groups, see Analyzing finding groups in the Amazon Detective User Guide.

If you have feedback about this post, submit comments in the Comments section below. You can also start a new thread on the Amazon Detective re:Post or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.


Anna McAbee

Anna is a Security Specialist Solutions Architect focused on threat detection and incident response at AWS. Before AWS, she worked as an AWS customer in financial services on both the offensive and defensive sides of security. Outside of work, Anna enjoys cheering on the Florida Gators football team, wine tasting, and traveling the world.


Marshall Jones

Marshall is a Worldwide Security Specialist Solutions Architect at AWS. His background is in AWS consulting and security architecture, focused on a variety of security domains including edge, threat detection, and compliance. Today, he is focused on helping enterprise AWS customers adopt and operationalize AWS security services to increase security effectiveness and reduce risk.

Luis Pastor

Luis Pastor

Luis is a Security Specialist Solutions Architect focused on infrastructure security at AWS. Before AWS he worked with large and boutique system integrators, helping clients in an array of industries improve their security posture and reach and maintain compliance in hybrid environments. Luis enjoys keeping active, cooking and eating spicy food, specially Mexican cuisine.

AWS Week in Review – August 1, 2022

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-week-in-review-august-1-2022/

AWS re:Inforce returned to Boston last week, kicking off with a keynote from Amazon Chief Security Officer Steve Schmidt and AWS Chief Information Security officer C.J. Moses:

Be sure to take some time to watch this video and the other leadership sessions, and to use what you learn to take some proactive steps to improve your security posture.

Last Week’s Launches
Here are some launches that caught my eye last week:

AWS Wickr uses 256-bit end-to-end encryption to deliver secure messaging, voice, and video calling, including file sharing and screen sharing, across desktop and mobile devices. Each call, message, and file is encrypted with a new random key and can be decrypted only by the intended recipient. AWS Wickr supports logging to a secure, customer-controlled data store for compliance and auditing, and offers full administrative control over data: permissions, ephemeral messaging options, and security groups. You can now sign up for the preview.

AWS Marketplace Vendor Insights helps AWS Marketplace sellers to make security and compliance data available through AWS Marketplace in the form of a unified, web-based dashboard. Designed to support governance, risk, and compliance teams, the dashboard also provides evidence that is backed by AWS Config and AWS Audit Manager assessments, external audit reports, and self-assessments from software vendors. To learn more, read the What’s New post.

GuardDuty Malware Protection protects Amazon Elastic Block Store (EBS) volumes from malware. As Danilo describes in his blog post, a malware scan is initiated when Amazon GuardDuty detects that a workload running on an EC2 instance or in a container appears to be doing something suspicious. The new malware protection feature creates snapshots of the attached EBS volumes, restores them within a service account, and performs an in-depth scan for malware. The scanner supports many types of file systems and file formats and generates actionable security findings when malware is detected.

Amazon Neptune Global Database lets you build graph applications that run across multiple AWS Regions using a single graph database. You can deploy a primary Neptune cluster in one region and replicate its data to up to five secondary read-only database clusters, with up to 16 read replicas each. Clusters can recover in minutes in the result of an (unlikely) regional outage, with a Recovery Point Objective (RPO) of 1 second and a Recovery Time Objective (RTO) of 1 minute. To learn a lot more and see this new feature in action, read Introducing Amazon Neptune Global Database.

Amazon Detective now Supports Kubernetes Workloads, with the ability to scale to thousands of container deployments and millions of configuration changes per second. It ingests EKS audit logs to capture API activity from users, applications, and the EKS control plane, and correlates user activity with information gleaned from Amazon VPC flow logs. As Channy notes in his blog post, you can enable Amazon Detective and take advantage of a free 30 day trial of the EKS capabilities.

AWS SSO is Now AWS IAM Identity Center in order to better represent the full set of workforce and account management capabilities that are part of IAM. You can create user identities directly in IAM Identity Center, or you can connect your existing Active Directory or standards-based identify provider. To learn more, read this post from the AWS Security Blog.

AWS Config Conformance Packs now provide you with percentage-based scores that will help you track resource compliance within the scope of the resources addressed by the pack. Scores are computed based on the product of the number of resources and the number of rules, and are reported to Amazon CloudWatch so that you can track compliance trends over time. To learn more about how scores are computed, read the What’s New post.

Amazon Macie now lets you perform one-click temporary retrieval of sensitive data that Macie has discovered in an S3 bucket. You can retrieve up to ten examples at a time, and use these findings to accelerate your security investigations. All of the data that is retrieved and displayed in the Macie console is encrypted using customer-managed AWS Key Management Service (AWS KMS) keys. To learn more, read the What’s New post.

AWS Control Tower was updated multiple times last week. CloudTrail Organization Logging creates an org-wide trail in your management account to automatically log the actions of all member accounts in your organization. Control Tower now reduces redundant AWS Config items by limiting recording of global resources to home regions. To take advantage of this change you need to update to the latest landing zone version and then re-register each Organizational Unit, as detailed in the What’s New post. Lastly, Control Tower’s region deny guardrail now includes AWS API endpoints for AWS Chatbot, Amazon S3 Storage Lens, and Amazon S3 Multi Region Access Points. This allows you to limit access to AWS services and operations for accounts enrolled in your AWS Control Tower environment.

For a full list of AWS announcements, be sure to keep an eye on the What’s New at AWS page.

Other AWS News
Here are some other news items and customer stories that you may find interesting:

AWS Open Source News and Updates – My colleague Ricardo Sueiras writes a weekly open source newsletter and highlights new open source projects, tools, and demos from the AWS community. Read installment #122 here.

Growy Case Study – This Netherlands-based company is building fully-automated robot-based vertical farms that grow plants to order. Read the case study to learn how they use AWS IoT and other services to monitor and control light, temperature, CO2, and humidity to maximize yield and quality.

Journey of a Snap on Snapchat – This video shows you how a snapshot flows end-to-end from your camera to AWS, to your friends. With over 300 million daily active users, Snap takes advantage of Amazon Elastic Kubernetes Service (EKS), Amazon DynamoDB, Amazon Simple Storage Service (Amazon S3), Amazon CloudFront, and many other AWS services, storing over 400 terabytes of data in DynamoDB and managing over 900 EKS clusters.

Cutting Cardboard Waste – Bin packing is almost certainly a part of every computer science curriculum! In the linked article from the Amazon Science site, you can learn how an Amazon Principal Research Scientist developed PackOpt to figure out the optimal set of boxes to use for shipments from Amazon’s global network of fulfillment centers. This is an NP-hard problem and the article describes how they build a parallelized solution that explores a multitude of alternative solutions, all running on AWS.

Upcoming Events
Check your calendar and sign up for these online and in-person AWS events:

AWS SummitAWS Global Summits – AWS Global Summits are free events that bring the cloud computing community together to connect, collaborate, and learn about AWS. Registrations are open for the following AWS Summits in August:

Imagine Conference 2022IMAGINE 2022 – The IMAGINE 2022 conference will take place on August 3 at the Seattle Convention Center, Washington, USA. It’s a no-cost event that brings together education, state, and local leaders to learn about the latest innovations and best practices in the cloud. You can register here.

That’s all for this week. Check back next Monday for another Week in Review!


This post is part of our Week in Review series. Check back each week for a quick roundup of interesting news and announcements from AWS!

New for Amazon GuardDuty – Malware Detection for Amazon EBS Volumes

Post Syndicated from Danilo Poccia original https://aws.amazon.com/blogs/aws/new-for-amazon-guardduty-malware-detection-for-amazon-ebs-volumes/

With Amazon GuardDuty, you can monitor your AWS accounts and workloads to detect malicious activity. Today, we are adding to GuardDuty the capability to detect malware. Malware is malicious software that is used to compromise workloads, repurpose resources, or gain unauthorized access to data. When you have GuardDuty Malware Protection enabled, a malware scan is initiated when GuardDuty detects that one of your EC2 instances or container workloads running on EC2 is doing something suspicious. For example, a malware scan is triggered when an EC2 instance is communicating with a command-and-control server that is known to be malicious or is performing denial of service (DoS) or brute-force attacks against other EC2 instances.

GuardDuty supports many file system types and scans file formats known to be used to spread or contain malware, including Windows and Linux executables, PDF files, archives, binaries, scripts, installers, email databases, and plain emails.

When potential malware is identified, actionable security findings are generated with information such as the threat and file name, the file path, the EC2 instance ID, resource tags and, in the case of containers, the container ID and the container image used. GuardDuty supports container workloads running on EC2, including customer-managed Kubernetes clusters or individual Docker containers. If the container is managed by Amazon Elastic Kubernetes Service (EKS) or Amazon Elastic Container Service (Amazon ECS), the findings also include the cluster name and the task or pod ID so application and security teams can quickly find the affected container resources.

As with all other GuardDuty findings, malware detections are sent to the GuardDuty console, pushed through Amazon EventBridge, routed to AWS Security Hub, and made available in Amazon Detective for incident investigation.

How GuardDuty Malware Protection Works
When you enable malware protection, you set up an AWS Identity and Access Management (IAM) service-linked role that grants GuardDuty permissions to perform malware scans. When a malware scan is initiated for an EC2 instance, GuardDuty Malware Protection uses those permissions to take a snapshot of the attached Amazon Elastic Block Store (EBS) volumes that are less than 1 TB in size and then restore the EBS volumes in an AWS service account in the same AWS Region to scan them for malware. You can use tagging to include or exclude EC2 instances from those permissions and from scanning. In this way, you don’t need to deploy security software or agents to monitor for malware, and scanning the volumes doesn’t impact running workloads. The EBS volumes in the service account and the snapshots in your account are deleted after the scan. Optionally, you can preserve the snapshots when malware is detected.

The service-linked role grants GuardDuty access to AWS Key Management Service (AWS KMS) keys used to encrypt EBS volumes. If the EBS volumes attached to a potentially compromised EC2 instance are encrypted with a customer-managed key, GuardDuty Malware Protection uses the same key to encrypt the replica EBS volumes as well. If the volumes are not encrypted, GuardDuty uses its own key to encrypt the replica EBS volumes and ensure privacy. Volumes encrypted with EBS-managed keys are not supported.

Security in cloud is a shared responsibility between you and AWS. As a guardrail, the service-linked role used by GuardDuty Malware Protection cannot perform any operation on your resources (such as EBS snapshots and volumes, EC2 instances, and KMS keys) if it has the GuardDutyExcluded tag. Once you mark your snapshots with GuardDutyExcluded set to true, the GuardDuty service won’t be able to access these snapshots. The GuardDutyExcluded tag supersedes any inclusion tag. Permissions also restrict how GuardDuty can modify your snapshot so that they cannot be made public while shared with the GuardDuty service account.

The EBS volumes created by GuardDuty are always encrypted. GuardDuty can use KMS keys only on EBS snapshots that have a GuardDuty scan ID tag. The scan ID tag is added by GuardDuty when snapshots are created after an EC2 finding. The KMS keys that are shared with GuardDuty service account cannot be invoked from any other context except the Amazon EBS service. Once the scan completes successfully, the KMS key grant is revoked and the volume replica in GuardDuty service account is deleted, making sure GuardDuty service cannot access your data after completing the scan operation.

Enabling Malware Protection for an AWS Account
If you’re not using GuardDuty yet, Malware Protection is enabled by default when you activate GuardDuty for your account. Because I am already using GuardDuty, I need to enable Malware Protection from the console. If you’re using AWS Organizations, your delegated administrator accounts can enable this for existing member accounts and configure if new AWS accounts in the organization should be automatically enrolled.

In the GuardDuty console, I choose Malware Protection under Settings in the navigation pane. There, I choose Enable and then Enable Malware Protection.

Console screenshot.

Snapshots are automatically deleted after they are scanned. In General settings, I have the option to retain in my AWS account the snapshots where malware is detected and have them available for further analysis.

Console screenshot.

In Scan options, I can configure a list of inclusion tags, so that only EC2 instances with those tags are scanned, or exclusion tags, so that EC2 instances with tags in the list are skipped.

Console screenshot.

Testing Malware Protection GuardDuty Findings
To generate several Amazon GuardDuty findings, including the new Malware Protection findings, I clone the Amazon GuardDuty Tester repo:

$ git clone https://github.com/awslabs/amazon-guardduty-tester

First, I create an AWS CloudFormation stack using the guardduty-tester.template file. When the stack is ready, I follow the instructions to configure my SSH client to log in to the tester instance through the bastion host. Then, I connect to the tester instance:

$ ssh tester

From the tester instance, I start the guardduty_tester.sh script to generate the findings:

$ ./guardduty_tester.sh 

* Test #1 - Internal port scanning                                    *
* This simulates internal reconaissance by an internal actor or an   *
* external actor after an initial compromise. This is considered a    *
* low priority finding for GuardDuty because its not a clear indicator*
* of malicious intent on its own.                                     *

Starting Nmap 6.40 ( http://nmap.org ) at 2022-05-19 09:36 UTC
Nmap scan report for ip-172-16-0-20.us-west-2.compute.internal (
Host is up (0.00032s latency).
Not shown: 997 filtered ports
22/tcp   open   ssh
80/tcp   closed http
5050/tcp closed mmcc
MAC Address: 06:25:CB:F4:E0:51 (Unknown)

Nmap done: 1 IP address (1 host up) scanned in 4.96 seconds


* Test #2 - SSH Brute Force with Compromised Keys                     *
* This simulates an SSH brute force attack on an SSH port that we    *
* can access from this instance. It uses (phony) compromised keys in  *
* many subsequent attempts to see if one works. This is a common      *
* techique where the bad actors will harvest keys from the web in     *
* places like source code repositories where people accidentally leave*
* keys and credentials (This attempt will not actually succeed in     *
* obtaining access to the target linux instance in this subnet)       *

2022-05-19 09:36:29 START
2022-05-19 09:36:29 Crowbar v0.4.3-dev
2022-05-19 09:36:29 Trying
2022-05-19 09:36:33 STOP
2022-05-19 09:36:33 No results found...
2022-05-19 09:36:33 START
2022-05-19 09:36:33 Crowbar v0.4.3-dev
2022-05-19 09:36:33 Trying
2022-05-19 09:36:37 STOP
2022-05-19 09:36:37 No results found...
2022-05-19 09:36:37 START
2022-05-19 09:36:37 Crowbar v0.4.3-dev
2022-05-19 09:36:37 Trying
2022-05-19 09:36:41 STOP
2022-05-19 09:36:41 No results found...
2022-05-19 09:36:41 START
2022-05-19 09:36:41 Crowbar v0.4.3-dev
2022-05-19 09:36:41 Trying
2022-05-19 09:36:45 STOP
2022-05-19 09:36:45 No results found...
2022-05-19 09:36:45 START
2022-05-19 09:36:45 Crowbar v0.4.3-dev
2022-05-19 09:36:45 Trying
2022-05-19 09:36:48 STOP
2022-05-19 09:36:48 No results found...
2022-05-19 09:36:49 START
2022-05-19 09:36:49 Crowbar v0.4.3-dev
2022-05-19 09:36:49 Trying
2022-05-19 09:36:52 STOP
2022-05-19 09:36:52 No results found...
2022-05-19 09:36:52 START
2022-05-19 09:36:52 Crowbar v0.4.3-dev
2022-05-19 09:36:52 Trying
2022-05-19 09:36:56 STOP
2022-05-19 09:36:56 No results found...
2022-05-19 09:36:56 START
2022-05-19 09:36:56 Crowbar v0.4.3-dev
2022-05-19 09:36:56 Trying
2022-05-19 09:37:00 STOP
2022-05-19 09:37:00 No results found...
2022-05-19 09:37:00 START
2022-05-19 09:37:00 Crowbar v0.4.3-dev
2022-05-19 09:37:00 Trying
2022-05-19 09:37:04 STOP
2022-05-19 09:37:04 No results found...
2022-05-19 09:37:04 START
2022-05-19 09:37:04 Crowbar v0.4.3-dev
2022-05-19 09:37:04 Trying
2022-05-19 09:37:08 STOP
2022-05-19 09:37:08 No results found...
2022-05-19 09:37:08 START
2022-05-19 09:37:08 Crowbar v0.4.3-dev
2022-05-19 09:37:08 Trying
2022-05-19 09:37:12 STOP
2022-05-19 09:37:12 No results found...
2022-05-19 09:37:12 START
2022-05-19 09:37:12 Crowbar v0.4.3-dev
2022-05-19 09:37:12 Trying
2022-05-19 09:37:16 STOP
2022-05-19 09:37:16 No results found...
2022-05-19 09:37:16 START
2022-05-19 09:37:16 Crowbar v0.4.3-dev
2022-05-19 09:37:16 Trying
2022-05-19 09:37:20 STOP
2022-05-19 09:37:20 No results found...
2022-05-19 09:37:20 START
2022-05-19 09:37:20 Crowbar v0.4.3-dev
2022-05-19 09:37:20 Trying
2022-05-19 09:37:23 STOP
2022-05-19 09:37:23 No results found...
2022-05-19 09:37:23 START
2022-05-19 09:37:23 Crowbar v0.4.3-dev
2022-05-19 09:37:23 Trying
2022-05-19 09:37:27 STOP
2022-05-19 09:37:27 No results found...
2022-05-19 09:37:27 START
2022-05-19 09:37:27 Crowbar v0.4.3-dev
2022-05-19 09:37:27 Trying
2022-05-19 09:37:31 STOP
2022-05-19 09:37:31 No results found...
2022-05-19 09:37:31 START
2022-05-19 09:37:31 Crowbar v0.4.3-dev
2022-05-19 09:37:31 Trying
2022-05-19 09:37:34 STOP
2022-05-19 09:37:34 No results found...
2022-05-19 09:37:35 START
2022-05-19 09:37:35 Crowbar v0.4.3-dev
2022-05-19 09:37:35 Trying
2022-05-19 09:37:38 STOP
2022-05-19 09:37:38 No results found...
2022-05-19 09:37:38 START
2022-05-19 09:37:38 Crowbar v0.4.3-dev
2022-05-19 09:37:38 Trying
2022-05-19 09:37:42 STOP
2022-05-19 09:37:42 No results found...
2022-05-19 09:37:42 START
2022-05-19 09:37:42 Crowbar v0.4.3-dev
2022-05-19 09:37:42 Trying
2022-05-19 09:37:46 STOP
2022-05-19 09:37:46 No results found...


* Test #3 - RDP Brute Force with Password List                        *
* This simulates an RDP brute force attack on the internal RDP port  *
* of the windows server that we installed in the environment.  It uses*
* a list of common passwords that can be found on the web. This test  *
* will trigger a detection, but will fail to get into the target      *
* windows instance.                                                   *

Sending 250 password attempts at the windows server...
Hydra v9.4-dev (c) 2022 by van Hauser/THC & David Maciejak - Please do not use in military or secret service organizations, or for illegal purposes (this is non-binding, these *** ignore laws and ethics anyway).

Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2022-05-19 09:37:46
[WARNING] rdp servers often don't like many connections, use -t 1 or -t 4 to reduce the number of parallel connections and -W 1 or -W 3 to wait between connection to allow the server to recover
[INFO] Reduced number of tasks to 4 (rdp does not like many parallel connections)
[WARNING] the rdp module is experimental. Please test, report - and if possible, fix.
[DATA] max 4 tasks per 1 server, overall 4 tasks, 1792 login tries (l:7/p:256), ~448 tries per task
[DATA] attacking rdp://
[STATUS] 1099.00 tries/min, 1099 tries in 00:01h, 693 to do in 00:01h, 4 active
1 of 1 target completed, 0 valid password found
Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2022-05-19 09:39:23


* Test #4 - CryptoCurrency Mining Activity                            *
* This simulates interaction with a cryptocurrency mining pool which *
* can be an indication of an instance compromise. In this case, we are*
* only interacting with the URL of the pool, but not downloading      *
* any files. This will trigger a threat intel based detection.        *

Calling bitcoin wallets to download mining toolkits


* Test #5 - DNS Exfiltration                                          *
* A common exfiltration technique is to tunnel data out over DNS      *
* to a fake domain.  Its an effective technique because most hosts    *
* have outbound DNS ports open.  This test wont exfiltrate any data,  *
* but it will generate enough unusual DNS activity to trigger the     *
* detection.                                                          *

Calling large numbers of large domains to simulate tunneling via DNS

* Test #6 - Fake domain to prove that GuardDuty is working            *
* This is a permanent fake domain that customers can use to prove that*
* GuardDuty is working.  Calling this domain will always generate the *
* Backdoor:EC2/C&CActivity.B!DNS finding type                         *

Calling a well known fake domain that is used to generate a known finding

; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.amzn2.5.2 <<>> GuardDutyC2ActivityB.com any
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 11495
;; flags: qr rd ra; QUERY: 1, ANSWER: 8, AUTHORITY: 0, ADDITIONAL: 1

; EDNS: version: 0, flags:; udp: 4096
;GuardDutyC2ActivityB.com.	IN	ANY

GuardDutyC2ActivityB.com. 6943	IN	SOA	ns1.markmonitor.com. hostmaster.markmonitor.com. 2018091906 86400 3600 2592000 172800
GuardDutyC2ActivityB.com. 6943	IN	NS	ns3.markmonitor.com.
GuardDutyC2ActivityB.com. 6943	IN	NS	ns5.markmonitor.com.
GuardDutyC2ActivityB.com. 6943	IN	NS	ns7.markmonitor.com.
GuardDutyC2ActivityB.com. 6943	IN	NS	ns2.markmonitor.com.
GuardDutyC2ActivityB.com. 6943	IN	NS	ns4.markmonitor.com.
GuardDutyC2ActivityB.com. 6943	IN	NS	ns6.markmonitor.com.
GuardDutyC2ActivityB.com. 6943	IN	NS	ns1.markmonitor.com.

;; Query time: 27 msec
;; WHEN: Thu May 19 09:39:23 UTC 2022
;; MSG SIZE  rcvd: 238

Expected GuardDuty Findings

Test 1: Internal Port Scanning
Expected Finding: EC2 Instance  i-011e73af27562827b  is performing outbound port scans against remote host.
Finding Type: Recon:EC2/Portscan

Test 2: SSH Brute Force with Compromised Keys
Expecting two findings - one for the outbound and one for the inbound detection
Outbound:  i-011e73af27562827b  is performing SSH brute force attacks against
Inbound:  is performing SSH brute force attacks against  i-0bada13e0aa12d383
Finding Type: UnauthorizedAccess:EC2/SSHBruteForce

Test 3: RDP Brute Force with Password List
Expecting two findings - one for the outbound and one for the inbound detection
Outbound:  i-011e73af27562827b  is performing RDP brute force attacks against
Inbound:  is performing RDP brute force attacks against  i-0191573dec3b66924
Finding Type : UnauthorizedAccess:EC2/RDPBruteForce

Test 4: Cryptocurrency Activity
Expected Finding: EC2 Instance  i-011e73af27562827b  is querying a domain name that is associated with bitcoin activity
Finding Type : CryptoCurrency:EC2/BitcoinTool.B!DNS

Test 5: DNS Exfiltration
Expected Finding: EC2 instance  i-011e73af27562827b  is attempting to query domain names that resemble exfiltrated data
Finding Type : Trojan:EC2/DNSDataExfiltration

Test 6: C&C Activity
Expected Finding: EC2 instance  i-011e73af27562827b  is querying a domain name associated with a known Command & Control server. 
Finding Type : Backdoor:EC2/C&CActivity.B!DNS

After a few minutes, the findings appear in the GuardDuty console. At the top, I see the malicious files found by the new Malware Protection capability. One of the findings is related to an EC2 instance, the other to an ECS cluster.

Console screenshot.

First, I select the finding related to the EC2 instance. In the panel, I see the information on the instance and the malicious file, such as the file name and path. In the Malware scan details section, the Trigger finding ID points to the original GuardDuty finding that triggered the malware scan. In my case, the original finding was that this EC2 instance was performing RDP brute force attacks against another EC2 instance.

Console screenshot.

Here, I choose Investigate with Detective and, directly from the GuardDuty console, I go to the Detective console to visualize AWS CloudTrail and Amazon Virtual Private Cloud (Amazon VPC) flow data for the EC2 instance, the AWS account, and the IP address affected by the finding. Using Detective, I can analyze, investigate, and identify the root cause of suspicious activities found by GuardDuty.

Console screenshot.

When I select the finding related to the ECS cluster, I have more information on the resource affected, such as the details of the ECS cluster, the task, the containers, and the container images.

Console screenshot.

Using the GuardDuty tester scripts makes it easier to test the overall integration of GuardDuty with other security frameworks you use so that you can be ready when a real threat is detected.

Comparing GuardDuty Malware Protection with Amazon Inspector
At this point, you might ask yourself how GuardDuty Malware Protection relates to Amazon Inspector, a service that scans AWS workloads for software vulnerabilities and unintended network exposure. The two services complement each other and offer different layers of protection:

  • Amazon Inspector offers proactive protection by identifying and remediating known software and application vulnerabilities that serve as an entry point for attackers to compromise resources and install malware.
  • GuardDuty Malware Protection detects malware that is found to be present on actively running workloads. At that point, the system has already been compromised, but GuardDuty can limit the time of an infection and take action before a system compromise results in a business-impacting event.

Availability and Pricing
Amazon GuardDuty Malware Protection is available today in all AWS Regions where GuardDuty is available, excluding the AWS China (Beijing), AWS China (Ningxia), AWS GovCloud (US-East), and AWS GovCloud (US-West) Regions.

At launch, GuardDuty Malware Protection is integrated with these partner offerings:

With GuardDuty, you don’t need to deploy security software or agents to monitor for malware. You only pay for the amount of GB scanned in the file systems (not for the size of the EBS volumes) and for the EBS snapshots during the time they are kept in your account. All EBS snapshots created by GuardDuty are automatically deleted after they are scanned unless you enable snapshot retention when malware is found. For more information, see GuardDuty pricing and EBS pricing. Note that GuardDuty only scans EBS volumes less than 1 TB in size. To help you control costs and avoid repeating alarms, the same volume is not scanned more often than once every 24 hours.

Detect malicious activity and protect your applications from malware with Amazon GuardDuty.


Amazon Detective Supports Kubernetes Workloads on Amazon EKS for Security Investigations

Post Syndicated from Channy Yun original https://aws.amazon.com/blogs/aws/amazon-detective-supports-kubernetes-workloads-on-amazon-eks-for-security-investigations/

In March 2020, we introduced Amazon Detective, a fully managed service that makes it easy to analyze, investigate, and quickly identify the root cause of potential security issues or suspicious activities.

Amazon Detective continuously extracts temporal events such as login attempts, API calls, and network traffic from Amazon GuardDutyAWS CloudTrail, and Amazon Virtual Private Cloud (Amazon VPC) Flow Logs into a graph model that summarizes the resource behaviors and interactions observed across your entire AWS environment. We have added new features such as AWS IAM Role session analysis, enhanced IP address analytics, Splunk integration, Amazon S3 and DNS finding types, and the support of AWS Organizations.

Customers are rapidly moving to containers to deploy Kubernetes workloads with Amazon Elastic Kubernetes Service (Amazon EKS). Its highly programmatic nature allows thousands of individual container deployments and millions of configuration changes to occur in seconds. To effectively secure EKS workloads, it is important to monitor container deployments and configurations that are captured in the form of EKS audit logs and to correlate activities to user activity and network traffic happening across AWS accounts.

Today we announce new capabilities in Amazon Detective to expand security investigation coverage for Kubernetes workloads running on Amazon EKS. When you enable this new feature, Amazon Detective automatically starts ingesting EKS audit logs to capture chronological API activity from users, applications, and the control plane in Amazon EKS for clusters, pods, container images, and Kubernetes subjects (Kubernetes users and service accounts).

Detective automatically correlates user activity using CloudTrail, and network activity using Amazon VPC Flow logs, without the need for you to enable, store, or retain logs manually. The service gleans key security information from these logs and retains them in a security behavioral graph database that enables fast cross-referenced access to twelve months of activity. Detective provides a data analysis and visualization layer purpose-built to answer common security questions backed by a behavioral graph database that allows you to quickly investigate potential malicious behavior associated with your EKS workloads.

You can rapidly respond to security issues rather than focusing on log management, operational systems, or ongoing security tooling maintenance. Detective’s EKS capabilities come with a free 30-day trial for all customers that allows you to ensure that the capabilities meet your needs and to fully understand the cost for the service on an ongoing basis.

Getting Started with Security Investigations for EKS Audit Logs
To get started, enable Amazon Detective with just a few clicks in the AWS Management Console. GuardDuty is a prerequisite of Amazon Detective. When you try to enable Detective, Detective checks whether GuardDuty has been enabled for your account. You must either enable GuardDuty or wait for 48 hours. This allows GuardDuty to assess the data volume that your account produces.

You can enable your account by attaching the AWS IAM policy or delegate it to an administrator of your organization. To learn more, refer to Setting up Detective in the AWS documentation.

To enable EKS support in Detective as an existing customer, navigate to the Settings menu in the left panel and select General. Under Optional source packages, enable EKS audit logs.

If you are a new customer of Detective, the EKS protection feature will be enabled by default. If you do not want to trial EKS audit logs right away, you can disable this feature within the first week of enabling Detective and preserve the full 30-day free trial period to use in the future.

Once enabled, Detective will begin monitoring the Kubernetes audit logs that are generated by Amazon EKS, extracting and correlating information for security usage. You do not need to enable any log sources or make any configuration changes to your existing EKS clusters or future deployments.

You can see recent monitoring results of your EKS clusters on the Summary page.

When you choose one of the EKS clusters, you will see the details of containers running in the cluster, Kubernetes API activities, and network activities that occurred on this resource around the scope time.

In the Overview tab, you also see details about all containers running in the cluster, including their pod, image and security context.

In the Kubernetes API activity tab, you can get an overview of the full API activities involving the EKS cluster. You can choose a time range to drill down based on specific API methods within the EKS cluster. When you select a specific time, you can see API subjects, IP addresses, and the number of API calls by the success, failure, unauthorized, or forbidden state.

You can also see details of newly observed Kubernetes API calls  inside this cluster for the first time and subjects with increased volume that happened inside the cluster.

Enabling GuardDuty EKS Protection
In January 2022, Amazon GuardDuty expanded coverage to EKS cluster activity to identify malicious or suspicious behavior that represents potential threats to container workloads.

When the optional GuardDuty EKS Protection is enabled, GuardDuty will continuously monitor your EKS deployments and alert you to threats detected in your workloads. You can view and investigate these security findings in Detective.

With Detective for EKS enabled, you can quickly access information about the resources involved in the finding, such as their CloudTrail and Kubernetes API activity, and netflow information. This can aid in investigation and help you determine root cause, impact, and other related resources that may also be compromised.

To learn more, see How to use new Amazon GuardDuty EKS Protection findings in the AWS Security Blog.

Now Available
You can now use Amazon Detective for EKS protection in all Regions where Amazon Detective is available. This feature is priced based on the volume of audit logs processed and analyzed by Detective.

Detective provides a free 30-day trial to all customers that enable EKS coverage, allowing customers to ensure that Detective’s capabilities meet security needs and to get an estimate of the service’s monthly cost before committing to paid usage. To learn more, see the Detective pricing page.

For technical documentation, visit the Amazon Detective User Guide. Please send feedback to AWS re:Post for Amazon Detective or through your usual AWS support contacts.

Learn all the details about Amazon Detective for EKS protection and get started today.


Top 2021 AWS Security service launches security professionals should review – Part 1

Post Syndicated from Ryan Holland original https://aws.amazon.com/blogs/security/top-2021-aws-security-service-launches-part-1/

Given the speed of Amazon Web Services (AWS) innovation, it can sometimes be challenging to keep up with AWS Security service and feature launches. To help you stay current, here’s an overview of some of the most important 2021 AWS Security launches that security professionals should be aware of. This is the first of two related posts; Part 2 will highlight some of the important 2021 launches that security professionals should be aware of across all AWS services.

Amazon GuardDuty

In 2021, the threat detection service Amazon GuardDuty expanded the internal AWS security intelligence it consumes to use more of the intel that AWS internal threat detection teams collect, including additional nation-state threat intelligence. Sharing more of the important intel that internal AWS teams collect lets you quickly improve your protection. GuardDuty also launched domain reputation modeling. These machine learning models take all the domain requests from across all of AWS, and feed them into a model that allows AWS to categorize previously unseen domains as highly likely to be malicious or benign based on their behavioral characteristics. In practice, AWS is seeing that these models often deliver high-fidelity threat detections, identifying malicious domains 7–14 days before they are identified and available on commercial threat feeds.

AWS also launched second generation anomaly detection for GuardDuty. Shortly after the original GuardDuty launch in 2017, AWS added additional anomaly detection for user behavior analytics and monitoring for unusual activity of AWS Identity and Access Management (IAM) users. After receiving customer feedback that the original feature was a little too noisy, and that it was difficult to understand why some findings were generated, the GuardDuty analytics team rebuilt this functionality on an entirely new machine learning model, considerably reducing the number of detections and generating a more accurate positive-detection rate. The new model also added additional context that security professionals (such as analysts) can use to understand why the model shows findings as suspicious or unusual.

Since its introduction, GuardDuty has detected when AWS EC2 Role credentials are used to call AWS APIs from IP addresses outside of AWS. Beginning in early 2022, GuardDuty now supports detection when credentials are used from other AWS accounts, inside the AWS network. This is a complex problem for customers to solve on their own, which is why the GuardDuty team added this enhancement. The solution considers that there are legitimate reasons why a source IP address that is communicating with AWS services APIs might be different than the Amazon Elastic Compute Cloud (Amazon EC2) instance IP address, or a NAT gateway associated with the instance’s VPC. The enhancement also considers complex network topologies that route traffic to one or multiple VPCs—for example, AWS Transit Gateway or AWS Direct Connect.

Our customers are increasingly running container workloads in production; helping to raise the security posture of these workloads became an AWS development priority in 2021. GuardDuty for EKS Protection is one recent feature that has resulted from this investment. This new GuardDuty feature monitors Amazon Elastic Kubernetes Service (Amazon EKS) cluster control plane activity by analyzing Kubernetes audit logs. GuardDuty is integrated with Amazon EKS, giving it direct access to the Kubernetes audit logs without requiring you to turn on or store these logs. Once a threat is detected, GuardDuty generates a security finding that includes container details such as pod ID, container image ID, and associated tags. See below for details on how the new Amazon Inspector is also helping to protect containers.

Amazon Inspector

At AWS re:Invent 2021, we launched the new Amazon Inspector, a vulnerability management service that continually scans AWS workloads for software vulnerabilities and unintended network exposure. The original Amazon Inspector was completely re-architected in this release to automate vulnerability management and to deliver near real-time findings to minimize the time needed to discover new vulnerabilities. This new Amazon Inspector has simple one-click enablement and multi-account support using AWS Organizations, similar to our other AWS Security services. This launch also introduces a more accurate vulnerability risk score, called the Inspector score. The Inspector score is a highly contextualized risk score that is generated for each finding by correlating Common Vulnerability and Exposures (CVE) metadata with environmental factors for resources such as network accessibility. This makes it easier for you to identify and prioritize your most critical vulnerabilities for immediate remediation. One of the most important new capabilities is that Amazon Inspector automatically discovers running EC2 instances and container images residing in Amazon Elastic Container Registry (Amazon ECR), at any scale, and immediately starts assessing them for known vulnerabilities. Now you can consolidate your vulnerability management solutions for both Amazon EC2 and Amazon ECR into one fully managed service.

AWS Security Hub

In addition to a significant number of smaller enhancements throughout 2021, in October AWS Security Hub, an AWS cloud security posture management service, addressed a top customer enhancement request by adding support for cross-Region finding aggregation. You can now view all your findings from all accounts and all selected Regions in a single console view, and act on them from an Amazon EventBridge feed in a single account and Region. Looking back at 2021, Security Hub added 72 additional best practice checks, four new AWS service integrations, and 13 new external partner integrations. A few of these integrations are Atlassian Jira Service Management, Forcepoint Cloud Security Gateway (CSG), and Amazon Macie. Security Hub also achieved FedRAMP High authorization to enable security posture management for high-impact workloads.

Amazon Macie

Based on customer feedback, data discovery tool Amazon Macie launched a number of enhancements in 2021. One new feature, which made it easier to manage Amazon Simple Storage Service (Amazon S3) buckets for sensitive data, was criteria-based bucket selection. This Macie feature allows you to define runtime criteria to determine which S3 buckets should be included in a sensitive data-discovery job. When a job runs, Macie identifies the S3 buckets that match your criteria, and automatically adds or removes them from the job’s scope. Before this feature, once a job was configured, it was immutable. Now, for example, you can create a policy where if a bucket becomes public in the future, it’s automatically added to the scan, and similarly, if a bucket is no longer public, it will no longer be included in the daily scan.

Originally Macie included all managed data identifiers available for all scans. However, customers wanted more surgical search criteria. For example, they didn’t want to be informed if there were exposed data types in a particular environment. In September 2021, Macie launched the ability to enable/disable managed data identifiers. This allows you to customize the data types you deem sensitive and would like Macie to alert on, in accordance with your organization’s data governance and privacy needs.

Amazon Detective

Amazon Detective is a service to analyze and visualize security findings and related data to rapidly get to the root cause of potential security issues. In January 2021, Amazon Detective added a convenient, time-saving integration that allows you to start security incident investigation workflows directly from the GuardDuty console. This new hyperlink pivot in the GuardDuty console takes findings directly from the GuardDuty console into the Detective console. Another time-saving capability added was the IP address drill down functionality. This new capability can be useful to security forensic teams performing incident investigations, because it helps quickly determine the communications that took place from an EC2 instance under investigation before, during, and after an event.

In December 2021, Detective added support for AWS Organizations to simplify management for security operations and investigations across all existing and future accounts in an organization. This launch allows new and existing Detective customers to onboard and centrally manage the Detective graph database for up to 1,200 AWS accounts.

AWS Key Management Service

In June 2021, AWS Key Management Service (AWS KMS) introduced multi-Region keys, a capability that lets you replicate keys from one AWS Region into another. With multi-Region keys, you can more easily move encrypted data between Regions without having to decrypt and re-encrypt with different keys for each Region. Multi-Region keys are supported for client-side encryption using direct AWS KMS API calls, or in a simplified manner with the AWS Encryption SDK and Amazon DynamoDB Encryption Client.

AWS Secrets Manager

Last year was a busy year for AWS Secrets Manager, with four feature launches to make it easier to manage secrets at scale, not just for client applications, but also for platforms. In March 2021, Secrets Manager launched multi-Region secrets to automatically replicate secrets for multi-Region workloads. Also in March, Secrets Manager added three new rules to AWS Config, to help administrators verify that secrets in Secrets Manager are configured according to organizational requirements. Then in April 2021, Secrets Manager added a CSI driver plug-in, to make it easy to consume secrets from Amazon EKS by using Kubernetes’s standard Secrets Store interface. In November, Secrets Manager introduced a higher secret limit of 500,000 per account to simplify secrets management for independent software vendors (ISVs) that rely on unique secrets for a large number of end customers. Although launched in January 2022, it’s also worth mentioning Secrets Manager’s release of rotation windows to align automatic rotation of secrets with application maintenance windows.

Amazon CodeGuru and Secrets Manager

In November 2021, AWS announced a new secrets detector feature in Amazon CodeGuru that searches your codebase for hardcoded secrets. Amazon CodeGuru is a developer tool powered by machine learning that provides intelligent recommendations to detect security vulnerabilities, improve code quality, and identify an application’s most expensive lines of code.

This new feature can pinpoint locations in your code with usernames and passwords; database connection strings, tokens, and API keys from AWS; and other service providers. When a secret is found in your code, CodeGuru Reviewer provides an actionable recommendation that links to AWS Secrets Manager, where developers can secure the secret with a point-and-click experience.

Looking ahead for 2022

AWS will continue to deliver experiences in 2022 that meet administrators where they govern, developers where they code, and applications where they run. A lot of customers are moving to container and serverless workloads; you can expect to see more work on this in 2022. You can also expect to see more work around integrations, like CodeGuru Secrets Detector identifying plaintext secrets in code (as noted previously).

To stay up-to-date in the year ahead on the latest product and feature launches and security use cases, be sure to read the Security service launch announcements. Additionally, stay tuned to the AWS Security Blog for Part 2 of this blog series, which will provide an overview of some of the important 2021 launches that security professionals should be aware of across all AWS services.

If you’re looking for more opportunities to learn about AWS security services, check out AWS re:Inforce, the AWS conference focused on cloud security, identity, privacy, and compliance, which will take place June 28-29 in Houston, Texas.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.


Ryan Holland

Ryan is a Senior Manager with GuardDuty Security Response. His team is responsible for ensuring GuardDuty provides the best security value to customers, including threat intelligence, behavioral analytics, and finding quality.


Marta Taggart

Marta is a Seattle-native and Senior Product Marketing Manager in AWS Security Product Marketing, where she focuses on data protection services. Outside of work you’ll find her trying to convince Jack, her rescue dog, not to chase squirrels and crows (with limited success).

Simplify setup of Amazon Detective with AWS Organizations

Post Syndicated from Karthik Ram original https://aws.amazon.com/blogs/security/simplify-setup-of-amazon-detective-with-aws-organizations/

Amazon Detective makes it easy to analyze, investigate, and quickly identify the root cause of potential security issues or suspicious activities by collecting log data from your AWS resources. Amazon Detective simplifies the process of a deep dive into a security finding from other AWS security services, such as Amazon GuardDuty and AWS SecurityHub. Detective uses machine learning, statistical analysis, and graph theory to build a linked set of data that enables customers to easily conduct faster and more efficient security investigations.

In this post you will learn about the new AWS Organizations integration with Amazon Detective, where new and existing Detective customers can delegate any account in their organization to be the delegated Detective administrator account, and can centrally manage the Detective behavior graph database for an organization with up to 1,200 accounts.

Customers tell us that they want to manage security findings and investigations across multiple AWS Accounts. Depending on the customer this can be 100s or 1000s of accounts. AWS Organizations integration with security services, including GuardDuty, Security Hub and AWS IAM Access Analyzer comes in handy by helping customers centralize management and governance of their environments as they scale and grow their AWS accounts and resources. Adding to the list, Detective is now integrated with AWS Organizations to simplify security posture management across all existing and future AWS accounts across an organization. Organizations integration is available in all AWS Regions that Detective supports.

Detective is aware of your existing delegated administrator accounts for other AWS Security services such as GuardDuty or Security Hub. Using this awareness, Detective recommends that you choose the same account as the administrator account for Detective, as shown in Figure 1. For a more complete walk though of how to enable your accounts, visit the AWS Detective Documentation.

Figure 1. Setting delegated administrator

Figure 1. Setting delegated administrator

You can then use the same account to manage all of your security services. AWS recommends you align your Detective administrator account with your GuardDuty and SecurityHub administrator accounts, to enable seamless integration between Detective and those services.

  • In GuardDuty or Security Hub, when viewing details for a GuardDuty finding, you can pivot from the finding details to the Detective finding profile.
  • In Detective, when investigating a GuardDuty finding, you can choose the option to archive that finding.

Once designated, the chosen account becomes the administrator account for the organization behavior graph. They can enable any organization account as a member account in the organization behavior graph, and can configure Detective to automatically enable organization accounts when they join the organization.

Figure 2. Auto-enabling Organization accounts

Figure 2. Auto-enabling Organization accounts

The Detective administrator account can also manually invite other accounts to join the organization behavior graph.

Figure 3. Inviting accounts to join the Organization behavior graph

Figure 3. Inviting accounts to join the Organization behavior graph

From Detective, the administrator account can centrally conduct security investigations across the organization

Considerations for AWS Organizations support

Some considerations and recommendations around Organizations support for Detective:

  1. Detective allows up to 1,200 member accounts in each behavior graph.
  2. The Detective administrator account becomes the administrator account for the organization’s behavior graph.
  3. An account can be a member account of multiple behavior graphs in the same Region. An account can accept multiple invitations. An organization account can be enabled as a member account in the organization behavior graph, and can then also accept invitations to other behavior graphs.
  4. An account can only be the administrator account of one behavior graph per Region, but can be an administrator account in different Regions.
  5. Changes to an organization are not immediately reflected in Detective. For most changes, such as new and removed organization accounts, it can take up to an hour for Detective to be notified.

Other recent updates from Amazon Detective

Additional support for all GuardDuty findings

With the recent expansion of security investigation support for Amazon Simple Storage Service (S3) and DNS-related findings on Amazon GuardDuty, Amazon Detective now provides full coverage of all detections from GuardDuty. Security analysts can now easily investigate and analyze the root cause of all GuardDuty findings using Detective, using the Investigate in Detective option in GuardDuty and Security Hub for further investigation.

New resource focused view

In addition to these integrations with AWS Organization and GuardDuty, Detective now makes it even easier for a security analyst to investigate entities and behaviors using a revamped user experience as seen in Figure 4. Amazon Detective presents a unified view of user and resource interactions over time, with all the context and details in one place, to help you quickly analyze the root cause of a security finding.

Figure 4. New resource focused view

Figure 4. New resource focused view

New finding overview

The new finding overview provides an expanded set of details for each finding, and provides links to the profiles for each involved entity as seen in the right panel in Figure 4. With this unified view, you can visualize all of the details and context in one place, while identifying the underlying reasons for the findings. This resource-focused view helps you understand the connections between resources affected by a security finding, and further helps you drill down into relevant historical activity to quickly determine the root cause.

Integration with Splunk

Amazon Detective, in coordination with the Splunk Trumpet project, has released the ability to pivot from an Amazon GuardDuty finding in Splunk directly to an Amazon Detective entity profile. Customers can now quickly identify the root cause of potential security issues or suspicious activities. This setting can be enabled on the Splunk Trumpet project installation page by selecting Detective GuardDuty URLs from the AWS CloudWatch Events dropdown.

Amazon Detective’s interactive visualizations make it easy to investigate and analyze issues more thoroughly and effectively, with minimal effort. Using these visualizations, customers can easily filter large sets of event data into specific timelines, with all the details, context, and guidance needed to help you to investigate quickly. For example; Amazon Detective enables you to view login attempts on a geolocation map, drill down into relevant historical activity, quickly determine a root cause, and if necessary, take action to resolve the issue.

Amazon Detective makes it easy to analyze, investigate, and quickly identify the root cause of potential security issues. To get started, enable a 30-day free trial of Amazon Detective with just a few clicks in the AWS Management console. See the AWS Regions page for a list of all Regions where Detective is available. To learn more, visit the Amazon Detective product page.

If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security news? Follow us on Twitter.

Karthik Ram

Karthik Ram

Karthik is a Senior Solutions Architect with Amazon Web Services based in Columbus, Ohio. He has a background in Networking and Infrastructure architecture. At AWS, Karthik helps customers build secure and innovative cloud solutions, solving their business problems using data driven approaches. Karthik’s Area of Depth is Cloud Security with a focus on Threat Detection and Incident Response (TDIR).


Ross Warren

Ross Warren is a Senior Solution Architect at AWS based in Northern Virginia. Prior to his work at AWS, Ross’ areas of focus included cyber threat hunting and security operations. Ross has worked at a handful of startups and has enjoyed the transition to AWS because he can continue to build solutions for customers on today’s most innovative platform.

Analyze and understand IAM role usage with Amazon Detective

Post Syndicated from Sheldon Sides original https://aws.amazon.com/blogs/security/analyze-and-understand-iam-role-usage-with-amazon-detective/

In this blog post, we’ll demonstrate how you can use Amazon Detective’s new role session analysis feature to investigate security findings that are tied to the usage of an AWS Identity and Access Management (IAM) role. You’ll learn about how you can use this new role session analysis feature to determine which Amazon Web Services (AWS) resource assumed the role that triggered a finding, and to understand the context of the activities that the resource performed when the finding was triggered. As a result of this walkthrough, you’ll gain an understanding of how to quickly ascertain anomalous identity and access behaviors. While this demonstration utilizes an Amazon GuardDuty finding as a starting point, the techniques demonstrated within this post highlight how Detective can be utilized to investigate any access behaviors that are tied to using IAM roles.

IAM roles provide a valuable mechanism that you can use to delegate access to users and services for managing and accessing your AWS resources, but using IAM roles can make it more complex to determine who performed an action. AWS CloudTrail logs do track all usage tied to IAM roles, but attributing activity to a specific resource that assumed a role requires storage of CloudTrail logs and analysis of this log telemetry. Understanding role usage through log analysis gets even more complex if cross-account role assumptions are involved, since that requires you to collate and analyze logs from multiple accounts. In some cases, permissions may allow a resource to sequentially assume a series of different roles (role chaining), further complicating the attribution of activity to a specific resource.

With its built-in, multi-account log analysis, Detective’s new role session analysis feature provides visibility into role usage, cross-account role assumptions and into any role chaining activities that may have been performed across the accounts. With this feature, you can quickly determine who or what assumed a role, regardless of whether this was a federated, IAM user or other resource. The feature shows you when roles were assumed and for how long, and helps you determine the activities that were performed during the assumption. Detective visualizes these results based upon its automatic analysis of CloudTrail logs and VPC flow log traffic that it continuously processes for enabled accounts, regardless of whether these log sources are enabled on each account.

To demonstrate this feature, we’ll investigate a “CloudTrail logging disabled” finding that is triggered by Amazon GuardDuty as a result of activity performed by a resource that has assumed an IAM role. Amazon GuardDuty is an AWS service that continuously monitors for malicious or unauthorized behavior to help protect your AWS resources, including your AWS accounts, access keys, and EC2 instances. GuardDuty identifies unusual or unauthorized activity, like crypto-currency mining, access to data stored in S3 from unusual locations, or infrastructure deployments in a region that has never been used.

Start the investigation in GuardDuty

GuardDuty issues a CloudTrailLoggingDisabled finding to alert you that CloudTrail logging has been disabled in one of your accounts. This is an important finding, because it could indicate that an attacker is attempting to hide their tracks. Since Detective receives a copy of CloudTrail traffic directly from the AWS infrastructure, Detective will continue to receive API calls that are made after CloudTrail logging is disabled.

In order to properly investigate this type of finding and determine if this is an issue that you need to be concerned about, you’ll need to answer a few specific questions:

  1. You’ll need to determine which user or resource disabled CloudTrail.
  2. You’ll need to see what other actions they performed after disabling logging.
  3. You’ll want to understand if their access pattern and behavior is consistent with their previous access patterns and behaviors.

Let’s take a look at a CloudTrailLoggingDisabled finding in GuardDuty as we start trying to answer these questions. When you access the GuardDuty console, a list of your recent findings is displayed. In Figure 1, a filter has been applied to display the CloudTrailLoggingDisabled finding.

Figure 1: A GuardDuty finding showing that CloudTrail was disabled

Figure 1: A GuardDuty finding showing that CloudTrail was disabled

After you select the GuardDuty finding, you can see the finding details, including some of the user information related to the finding. Figure 2 shows the Resources affected section of the finding.

Figure 2: Viewing user data related to the GuardDuty finding

Figure 2: Viewing user data related to the GuardDuty finding

The Affected resources field indicates that the demo-trail-2 trail was where logging was disabled. You can also see that User type is set to AssumedRole and that User name contains the role AWSReservedSSO_AdministratorAccess_598c5f73f8b2b4e5. This was the role that was assumed and using which CloudTrail logging was disabled. This information can help you understand the resources this role delegates access to and the permissions it provides. You still need to identify who specifically assumed the role to disable CloudTrail logging and the activities they performed afterwards. You can use Amazon Detective to answer these questions.

Investigate the finding in Detective

In order to investigate this GuardDuty finding in Detective, you select the finding and then select Investigate in the Actions menu, as shown in Figure 3.

Figure 3: Choose 'Investigate with Detective' and select the GuardDuty finding ID on the pop-up to investigate the finding

Figure 3: Choose ‘Investigate with Detective’ and select the GuardDuty finding ID on the pop-up to investigate the finding

View the finding profile page

Choosing the Investigate action for this CloudTrailLoggingDisabled finding in GuardDuty opens the finding’s profile page in the Detective console, as shown in Figure 4. Detective has the concept of a profile page, which displays summaries and analytics gleaned from CloudTrail management logs, VPC flow traffic and GuardDuty findings for AWS resources, IP addresses, and user agents. Each profile page can display up to 12 months of information for the selected resource and is intended to help an investigator review and understand the behavior of a resource, or quickly triage and delve into potential issues. Detective doesn’t require a customer to enable CloudTrail or VPC Flog logging in order to retrieve this data and provides these 12 months of visibility regardless of the customers log retention or archiving policies.

Figure 4: Viewing a GuardDuty finding in Detective

Figure 4: Viewing a GuardDuty finding in Detective

Scope time

To help focus your investigation, Detective defaults the time range and thus the displayed information in a finding profile to cover the period of time from when the finding was created through when it was last updated. In the case of this finding, the scope time covers a 1-hour period of time. You can change the scope time by choosing the calendar icon at the top right of the page, if you want to examine additional information before or after the finding was created. The defaulted scope time is sufficient for this investigation, so we can leave it as-is.

Role session overview

Detective uses tabs to group information on profile pages, and for this finding it shows the role session overview tab by default. The role session represents the activities and behavior of the resource that assumed the role tied to our finding. In this case, the role was assumed by someone with the user name sara, as shown in the Assumed by field. (We’ll assume that the user’s first name is Sara.) By analyzing the role session information in the CloudTrail logs, Detective was able to immediately identify that sara was the user who disabled CloudTrail logging and caused the finding to be triggered. You now have an answer to the question of who did this action.

Before we move to answer our other questions about what Sara did after disabling logging and whether her behavior changed, let’s discuss role sessions in more detail. Every role session has a role session name, sara in this case, and a unique role session identifier. The role session identifier is the role ID of the role assumed and the role session name, concatenated together. Best practices dictate that for a specific role that’s assumed by a specific resource, the role session name represents the user name of the IAM or federated user, or includes other useful information about the resource that assumed the role (for more information, see the Naming of individual IAM role sessions blog post). In this case, because the best practices are being followed, Detective is able to track Sara’s activities and behavior each time she assumes the AWSReservedSSO_AdministratorAccess_598c5f73f8b2b4e5 role.

Detective tracks statistics such as when a role session was first observed (October in Sara’s case, for this role), as well as the actions performed and behavioral insights such as the geolocations where Sara initiated her role assumptions. Knowing that Sara has assumed this role before is useful, because you can now assess whether her usage of the role changed during the 1-hour window of the scope time that you’re looking at now, compared to all of her previous assumptions of this role.

Review changes in Sara’s access patterns and operations

Detective tracks changes in geographical access and operations on the New behavior tab. Let’s choose the New behavior tab for the role session to see this information, as displayed in Figure 5.

Figure 5: Viewing new role session behavior

Figure 5: Viewing new role session behavior

During a security investigation, determining that access patterns have changed can be helpful in highlighting malicious activity. Since Detective tracks Sara’s assumptions of the AWSReservedSSO_AdministratorAccess_598c5f73f8b2b4e5 role, it can show the location where Sara assumed the role and whether the current assumption took place from the same location as her previous ones.

In Figure 5, you can see that Sara has a history of assuming the AWSReservedSSO_AdministratorAccess_598c5f73f8b2b4e5 role from Bellevue, WA and Ashburn, VA, since those geographies are shown in blue. If she had assumed this role from a new location, you would see the new location indicated on the map in orange. Since the API calls being made by this user are from a previously observed location, it’s very unlikely that the user’s credentials were compromised. Making this determination through a manual analysis of CloudTrail logs would have been much more time consuming.

Other information that you can gather from the New behavior role session tab includes newly observed API calls, API calls with increased volume, newly observed autonomous system organizations, and newly observed user agents. It’s useful to be able to validate that the operations Sara performed during the current scope time are relatively consistent with the operations she has performed in the past. This helps us be more certain that it was indeed Sara who was conducting this activity.

Investigate Sara’s API activity

Now that we’ve determined that Sara’s access pattern and activities are consistent with previous behavior, let’s use Detective to look further into Sara’s activity to determine if she accidentally disabled CloudTrail logging or if there was possible malicious intent behind her action.

To investigate the user’s actions

  1. On the finding profile page, in the dropdown list at the top of the screen, select Overview: Role Session to go back to the Overview tab for the role session.

    Figure 6: Navigating to the 'Overview: Role Session' page

    Figure 6: Navigating to the ‘Overview: Role Session’ page

  2. Once you’re on the Overview tab, navigate to the Overall API call volume panel.
    Figure 7: Navigating to the Overall API call volume panel

    Figure 7: Navigating to the ‘Overall API call volume’ panel

    This panel displays a chart of the successful and failed API calls that Sara has made while she assumes the AWSReservedSSO_AdministratorAccess_598c5f73f8b2b4e5 role. The chart shows a black rectangle around activities that were performed during the CloudTrail findings scope time. It also displays historical activities and shows a baseline across the chart so that you can understand how actively she uses the permissions granted to her by assuming this role.

  3. Choose the display details for scope time button to retrieve the details of the API calls that were invoked by Sara during the scope time, so that you can determine her actions after she disabled CloudTrail logging.
    Figure 8: Displaying details based on scope time

    Figure 8: Displaying details based on scope time

    You will now see the Overall API call volume panel expand to show you all the IP addresses, API calls, and access keys used by Sara during the scope time window of this finding.

  4. Choose the API method tab to see a list of all the API calls that were made.
    Figure 9: Viewing the API methods called

    Figure 9: Viewing the API methods called

    She invoked just two API calls during this scope time: the StopLogging and AssumeRole API calls. You were already aware that Sara disabled CloudTrail logging, but you weren’t aware that she assumed another role. When a user assumes a role while they have another one assumed, this is called role chaining. Although role chaining can be used because a user needs additional permissions, it can also be used to hide activities. Because we don’t know what other actions Sara performed after assuming this second role, let’s dig further. That may shed light on why she chose to disable CloudTrail logging.

Examine chained role assumptions

To find out more about Sara’s use of role chaining, let’s look at the other role that she assumed during this role session.

To view the user’s other role

  1. Navigate back to the top of the finding profile page. In the Role session details panel, choose AWSReservedSSO_AdministratorAccess_598c5f73f8b2b4e5.
    Figure 10: Locating the 'Assumed role' name

    Figure 10: Locating the ‘Assumed role’ name

    Detective displays the AWS Role profile page for this role, and you can now see the activity that has occurred across all resources that have assumed this role. In order to highlight information that’s relevant to the time frame of your investigation, Detective maintains your scope time as you move from the CloudTrailLoggingDisabled finding profile page to this role profile page.

  2. The goal for coming to this page is to determine which other role Sara assumed after assuming the AWSReservedSSO_AdministratorAccess_598c5f73f8b2b4e5 role, so choose the Resource interaction tab. On this tab, you will see the following three panels: Resources that assumed this role, Assumed roles, and Sessions involved.In Figure 11, you can see the Resources that assumed this role panel, which lists all the AWS resources that have assumed this role, their type (EC2 instance, federated or IAM user, IAM role), their account, and when they assumed the role for the first and last time. Sara is on this list, but Detective does not show an AWS account next to her because federated users aren’t tied to a specific account. The account field is populated for other resource types that are displayed on this panel and can be useful to understand cross-account role assumptions.

    Figure 11: Viewing resources that have assumed a role

    Figure 11: Viewing resources that have assumed a role

  3. On the same Resource Interaction tab, as you scroll down you will see the Assumed Roles panel, Figure 12, which helps you understand role chaining by listing the other roles that have been assumed by the AWSReservedSSO_AdministratorAccess_598c5f73f8b2b4e5 role. In this case, the role has assumed several other roles, including DemoRole1 during the same window of time when the CloudTrailLoggingDisabled finding occurred.

    Figure 12: Viewing the roles that have been assumed

    Figure 12: Viewing the roles that have been assumed

  4. In Figure 13, you can see the Sessions involved panel, which shows the role sessions for all the resources that have assumed this role, and role sessions where this role has assumed other roles within the current scope time. You see two role sessions with the session name sara, one where Sara assumed the AWSReservedSSO_AdministratorAccess_598c5f73f8b2b4e5 role and another where AWSReservedSSO_AdministratorAccess_598c5f73f8b2b4e5 assumed DemoRole1.

    Figure 13: Viewing the role sessions this role was involved with

    Figure 13: Viewing the role sessions this role was involved with

Now that you know that Sara also used the role DemoRole1 during her role session, let’s take a closer look at what actions she performed.

View API operations that were called within the chained role

In this step, we’ll view Sara’s activity within the DemoRole1 role, focusing on the API calls that were made.

To view the user’s activity in another role

  1. In the Sessions involved panel, in the Session name column, find the row where DemoRole1 is the Assumed Role value. Choose the session name in this row, sara, to go to the role session profile page.
  2. You will be most interested in the API methods that were called during this role session, and you can view those in the Overall API call volume panel. As shown in Figure 14, you can see that Sara has accessed DemoRole1 before, because there are calls graphed prior to the calls in our scope time.
  3. Choose the display details for scope time button on the Overall API call volume panel, and then choose the API method tab.

    Figure 14: Viewing the role session API method calls

    Figure 14: Viewing the role session API method calls

In Figure 14, you can see that calls were made to the DescribeInstances and RunInstances API methods. So you now know that Sara determined the type of Amazon Elastic Compute Cloud (Amazon EC2) instances that were running in your account and then successfully created an EC2 instance by calling the RunInstances API method. You can also see that successful and failed calls were made to the AttachRolePolicy API method as a part of the session. This could possibly be an attempt to elevate permissions in the account and would justify further investigation into the user’s actions.

As an investigator, you’ve determined that Sara was the user who disabled CloudTrail logging and that her access pattern was consistent with her past accesses. You’ve also determined the other actions she performed after she disabled logging and assumed a second role, but you can continue to investigate further by answering additional questions, such as:

  • What did Sara do with DemoRole1 when she assumed this role in the past? Are her current activities consistent with those past activities?
  • What activities are being performed across this account? Are those consistent with Sara’s activities?

By using Detective’s features that have been demonstrated in this post, you will be able to answer the questions like the ones listed above.


After you read this post, we hope you have a better understanding of the ways in which Amazon Detective collects, organizes, and presents log data to simplify your security investigations. All Detective service subscriptions include the new role session analysis capabilities. With these capabilities, you can quickly attribute activity performed under a role to a specific resource in your environment, understand cross-account role assumptions, determine role chaining behavior, and quickly see called APIs.

All customers receive a 30-day free trial when they enable Amazon Detective. See the AWS Regional Services page for all the Regions where Detective is available. To learn more, visit the Amazon Detective product page or see the additional resources at the end of this post to further expand your knowledge of Detective capabilities and features.

Additional resources

Amazon Detective features

Amazon Detective overview and demo

Amazon Detective FAQs

Amazon Detective Regions, endpoints, and quotas

Naming of individual IAM role sessions

If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.


Sheldon Sides

Sheldon is a Senior Solutions Architect, focused on helping customers implement native AWS security services. He enjoys using his experience as a consultant and running a cloud security startup to help customers build secure AWS Cloud solutions. His interests include working out, software development, and learning about the latest technologies.


Gagan Prakash

Gagan is a Product Manager on the Amazon Detective team and is passionate about ensuring that Detective’s new features and capabilities address the needs of our customers. He leverages his past experiences in cybersecurity startups and software companies to help drive product improvements. His interests include spending time with family, reading, and learning more about the world at large.

Investigate VPC flow with Amazon Detective

Post Syndicated from Ross Warren original https://aws.amazon.com/blogs/security/investigate-vpc-flow-with-amazon-detective/

Many Amazon Web Services (AWS) customers need enhanced insight into IP network flow. Traditionally, cost, the complexity of collection, and the time required for analysis has led to incomplete investigations of network flows. Having good telemetry is paramount, and VPC Flow Logs are a very important part of a robust centralized logging architecture. The information that VPC Flow Logs provide is frequently used by security analysts to determine the scope of security issues, to validate that network access rules are working as expected, and to help analysts investigate issues and diagnose network behaviors. Flow logs capture information about the IP traffic going to and from EC2 interfaces in a VPC. Each record describes aspects of the traffic flow, such as where it originated and where it was sent to, what network ports were used, and how many bytes were sent.

Amazon Detective now enables you to interactively examine the details of the virtual private cloud (VPC) network flows of your Amazon Elastic Compute Cloud (Amazon EC2) instances. Amazon Detective makes it easy to analyze, investigate, and quickly identify the root cause of potential security issues or suspicious activities. Detective automatically collects VPC flow logs from your monitored accounts, aggregates them by EC2 instance, and presents visual summaries and analytics about these network flows. Detective doesn’t require VPC Flow Logs to be configured and doesn’t impact existing flow log collection.

In this blog post, I describe how to use the new VPC flow feature in Detective to investigate an UnauthorizedAccess:EC2/TorClient finding from Amazon GuardDuty. Amazon GuardDuty is a threat detection service that continuously monitors for malicious activity and unauthorized behavior to protect your AWS accounts, workloads, and data stored in Amazon S3. GuardDuty documentation states that this alert can indicate unauthorized access to your AWS resources with the intent of hiding the unauthorized user’s true identity. I’ll demonstrate how to use Amazon Detective to investigate an instance that was flagged by Amazon GuardDuty to determine whether it is compromised or not.

Starting the investigation in GuardDuty

In my GuardDuty console, I’m going to select the UnauthorizedAccess:EC2/TorClient finding shown in Figure 1, choose the Actions menu, and select Investigate.

Figure 1: Investigating from the GuardDuty console

Figure 1: Investigating from the GuardDuty console

This opens a new browser tab and launches the Amazon Detective console, where I’m presented with the profile page for this finding, shown in Figure 2. You must have Detective enabled to pivot between a GuardDuty finding and Detective. Detective provides profile pages for supported GuardDuty findings and AWS resources (for example, IP address, EC2 instance, user, and role) that include information and data visualizations that summarize observed behaviors and give guidance for interpreting them. Profiles help analysts to determine whether the finding is of genuine concern or a false positive. For resources, profiles provide supporting details for an investigation into a finding or for a general hunt for suspicious activity.

Figure 2: Finding profile panel

Figure 2: Finding profile panel

In this case, the profile page for this GuardDuty UnauthorizedAccess:EC2/TorClient finding provides contextual and behavioral data about the EC2 instance on which GuardDuty has noted the issue. As I dive into this finding, I’m going to be asking questions that help assess whether the instance was in fact accessed unintentionally, such as, “What IP port or network service was in use at that time?,” “Were any large data transfers involved?,” “Was the traffic allowed by my security groups?” Profile pages in Detective organize content that helps security analysts investigate GuardDuty findings, examine unexpected network behavior, and identify other AWS resources that might be affected by a potential security issue.

I begin scrolling down the page and notice the Findings associated with EC2 instance i-9999999999999999 panel. Detective displays related findings to provide analysts with additional evidence and context about potentially related issues. The finding I’m investigating is listed there, as well as an Unusual Behaviors/VM/Behavior:EC2-NetworkPortUnusual finding. GuardDuty builds a baseline on your network traffic and will generate findings where there is traffic outside the calculated normal. While we might not investigate every instance of anomalous traffic, having these alerts correlated by Detective provides context for validating the issue. Keeping this in mind as I scroll down, at the bottom of this profile page, I find the Overall VPC flow volume panel. If you choose the Info link next to the panel title, you can see helpful tips that describe how to use the visualizations and provide ideas for questions to ask within your investigation. These info links are available throughout Detective. Check them out!

Investigating VPC flow in Detective

In this investigation, I’m very curious about the two large spikes in inbound traffic that I see in the Overall VPC flow volume panel, which seem to be visually associated with some unusual outbound traffic spikes. It’s most likely that these outbound spikes are related to the Unusual Behaviors/VM/Behavior:EC2-NetworkPortUnusual finding I mentioned earlier. To start the investigation, I choose the display details for scope time button, shown circled at the bottom of Figure 2. This expands the VPC Flow Details, shown in Figure 3.

Figure 3: Our first look at VPC Flow Details

Figure 3: Our first look at VPC Flow Details

We now can see that each entry displays the volume of inbound traffic, the volume of outbound traffic, and whether the access request was accepted or rejected. Detective provides annotations on the VPC flows to help guide your investigation. These From finding annotations make it clear which flows and resources were involved in the finding. In this case, we can easily see (in Figure 3) the three IP addresses at the top of the list that triggered this GuardDuty finding.

I’m first going to focus on the spikes in traffic that are above the baseline. When I click on one of the spikes in the graph, the time window for the VPC flow activity now matches the dates of these spikes I’m investigating.

If I choose the Inbound Traffic column header, shown in Figure 4, I can find the flows that contributed to the spike during this time window.

Figure 4: Inbound traffic spikes

Figure 4: Inbound traffic spikes

Note that the two large inbound spikes aren’t associated with the IP address from the UnauthorizedAccess:EC2/TorClient finding, based on the Detective annotation From finding. Let’s check the outbound traffic. If I do a quick sort of the table based on the outbound traffic column, as shown in Figure 5, we can also see the outbound spikes, and it isn’t immediately evident whether the spikes are associated with this finding. I could continue to investigate the spikes (because they are a visual anomaly), or focus just on the VPC flow traffic that GuardDuty and Detective have labeled as associated with this TOR finding.

Figure 5: Outbound traffic spikes

Figure 5: Outbound traffic spikes

Let’s focus on the outbound and inbound spikes and see if we can determine what’s happening. The inbound spikes are on port 443, typically an HTTPS port, or a secure web connection. The outbound spikes are on port 22 (ssh), but go to IP addresses that look to be internal based on their addresses of 172.16.x.x. The port 443 traffic might indicate a web server that’s open to the internet and receiving traffic. With further investigation, we can determine if this idea is valid, and continue hunting for potentially malicious traffic.

A good next step would be to investigate the two specific IP addresses to rule out their involvement in the finding. I can do this by right-clicking on either of the external IP addresses and opening a new tab, where I can focus on investigating these two specific IP addresses. I would take this line of investigation to possibly rule out the involvement of these IP addresses in this finding, determine if they regularly communicate with my resources, find out what instance(s) they’re related to, and see if there are other findings associated with these instances or IP addresses. This deeper investigation is outside the scope of this blog post, but it’s something you should be doing in your own environment.

IP addresses in AWS are ephemeral in nature. The unique identifier in VPC flow logs is the Instance ID. At the time of this investigation, is assigned to the instance related to this finding, so let’s continue to take a look at the internal IP address with 218 MB outbound traffic on port 22. I choose, and Detective opens up the profile page for this specific IP address, as shown in Figure 6. Here we see some interesting correlations: two other GuardDuty findings related to SSH brute-force attacks. These could be related to our outbound port 22 spikes, because they’re certainly in the window of time we’re investigating.

Figure 6: IP address profile panel

Figure 6: IP address profile panel

As part of a deeper investigation, you would investigate the SSH brute-force findings for and but for now I’m interested what this IP is involved in. Detective easily associates this IP address with the instance that was assigned the IP during the scope time. I scroll down to the bottom of the profile page for and investigate the i-9999999999999999 instance by choosing the instance name.

Filtering VPC flow activity

In Detective, as the investigator we are looking at an instance profile panel, similar to the one in Figure 2, and since we’re interested in VPC flow details, I’m going to scroll down and select display details for scope time.

To focus on specific activity, I can filter the activity details by the following values:

  • IP address
  • Local or remote port
  • Direction
  • Protocol
  • Whether the request was accepted or rejected

I’m going to filter these VPC flow details and just look at port 22 (sshd) inbound traffic. I select the Filter check box and select Local Port and 22, as shown in Figure 7. Detective fills in all the available ports for you, making it easy to complete this filter.

Figure 7: Port 22 traffic

Figure 7: Port 22 traffic

The activity details show a few IP addresses related to port 22, and we’re still following the large outbound spikes of traffic. It’s outside the scope of this blog post, but now it would be time to start looking at your security groups and network access control lists (ACLs) and determine why port 22 is open to the internet and sending all this traffic.

Understanding traffic behavior

As an investigator, I now have a good picture of the traffic related to the initial finding, and by diving deeper we’re able to discover other interesting traffic during the same timeframe. While we may not always determine “who has done it,” the goal should be to improve our understanding of the behavior of our environment and gather important technical evidence. Detective helps you identify and investigate anomalies to give you insight into your environment. If we were to continue our investigation into the finding, here are some actions we can take within Detective.

Investigate VPC findings with Detective:

  • Perform ports and utilization analysis
    • Identify service and ephemeral ports
    • Determine whether traffic was accepted or rejected based on security groups and NACL configurations
    • Investigate possible reconnaissance traffic by exploring the significant amount of rejected traffic
  • Correlate EC2 instances to TCP/IP ports and IPs
  • Analyze traffic spikes and anomalies
  • Discover traffic patterns and make behavioral correlations

Explore EC2 instance behavior with Detective:

  • Directional Traffic Analysis
  • Investigate possible data exfiltration events by digging into large transfers
  • Enumerate distinct IP connections and sort and filter by protocol, amount of traffic, and traffic direction
  • Gather data related to a spike in port count from a single IP address (potential brute force) or multiple IP addresses (distributed denial of service (DDoS))

Additional forensics steps to consider

  • Snapshot EC2 Volumes
  • Memory dump of EC2 instance
  • Isolate EC2 instance
  • Review your authentication strategy and assess whether the chosen authentication method is sufficient to protect your asset


Without requiring you to set up infrastructure or spend time configuring log ingestion, Detective collects, organizes, and presents relevant data for your threat analysis and investigations. Security and operations teams will find this new capability helpful for simplifying EC2 traffic analysis, validating security group permissions, and diagnosing EC2 instance behavior. Detective does the heavy lifting of storing, and analyzing VPC flow data so you can focus on quickly answering your investigative questions. VPC network flow details are available now in all Detective supported Regions and are included as part of your service subscription.

To get started, you can enable a 30-day free trial of Amazon Detective. See the AWS Regional Services page for all the regions where Detective is available. To learn more, visit the Amazon Detective product page.

Are you a visual learner? Check out Amazon Detective Overview and Demonstration. This video helps you learn how and when to use Amazon Detective to improve the security of your AWS resources.

If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.


Ross Warren

Ross Warren is a Solution Architect at AWS based in Northern Virginia. Prior to his work at AWS, Ross’ areas of focus included cyber threat hunting and security operations. Ross has worked at a handful of startups and has enjoyed the transition to AWS because he can continue to build solutions for customers on today’s most innovative platform.


Jim Miller

Jim is a Solution Architect at AWS based in Connecticut. Jim has worked within cyber security his entire career with areas of focus including cyber security architecture and incident response. At AWS he loves building secure solutions for customers to enable teams to build and innovate with confidence.