Tag Archives: security

Thanksgiving 2023 security incident

Post Syndicated from Matthew Prince http://blog.cloudflare.com/author/matthew-prince/ original https://blog.cloudflare.com/thanksgiving-2023-security-incident

On Thanksgiving Day, November 23, 2023, Cloudflare detected a threat actor on our self-hosted Atlassian server. Our security team immediately began an investigation, cut off the threat actor’s access, and on Sunday, November 26, we brought in CrowdStrike’s Forensic team to perform their own independent analysis.

Yesterday, CrowdStrike completed its investigation, and we are publishing this blog post to talk about the details of this security incident.

We want to emphasize to our customers that no Cloudflare customer data or systems were impacted by this event. Because of our access controls, firewall rules, and use of hard security keys enforced using our own Zero Trust tools, the threat actor’s ability to move laterally was limited. No services were implicated, and no changes were made to our global network systems or configuration. This is the promise of a Zero Trust architecture: it’s like bulkheads in a ship where a compromise in one system is limited from compromising the whole organization.

From November 14 to 17, a threat actor did reconnaissance and then accessed our internal wiki (which uses Atlassian Confluence) and our bug database (Atlassian Jira). On November 20 and 21, we saw additional access indicating they may have come back to test access to ensure they had connectivity.

They then returned on November 22 and established persistent access to our Atlassian server using ScriptRunner for Jira, gained access to our source code management system (which uses Atlassian Bitbucket), and tried, unsuccessfully, to access a console server that had access to the data center that Cloudflare had not yet put into production in São Paulo, Brazil.

They did this by using one access token and three service account credentials that had been taken, and that we failed to rotate, after the Okta compromise of October 2023. All threat actor access and connections were terminated on November 24 and CrowdStrike has confirmed that the last evidence of threat activity was on November 24 at 10:44.

(Throughout this blog post all dates and times are UTC.)

Even though we understand the operational impact of the incident to be extremely limited, we took this incident very seriously because a threat actor had used stolen credentials to get access to our Atlassian server and accessed some documentation and a limited amount of source code. Based on our collaboration with colleagues in the industry and government, we believe that this attack was performed by a nation state attacker with the goal of obtaining persistent and widespread access to Cloudflare’s global network.

“Code Red” Remediation and Hardening Effort

On November 24, after the threat actor was removed from our environment, our security team pulled in all the people they needed across the company to investigate the intrusion and ensure that the threat actor had been completely denied access to our systems, and to ensure we understood the full extent of what they accessed or tried to access.

Then, from November 27, we redirected the efforts of a large part of the Cloudflare technical staff (inside and outside the security team) to work on a single project dubbed “Code Red”. The focus was strengthening, validating, and remediating any control in our environment to ensure we are secure against future intrusion and to validate that the threat actor could not gain access to our environment. Additionally, we continued to investigate every system, account and log to make sure the threat actor did not have persistent access and that we fully understood what systems they had touched and which they had attempted to access.

CrowdStrike performed an independent assessment of the scope and extent of the threat actor’s activity, including a search for any evidence that they still persisted in our systems. CrowdStrike’s investigation provided helpful corroboration and support for our investigation, but did not bring to light any activities that we had missed. This blog post outlines in detail everything we and CrowdStrike uncovered about the activity of the threat actor.

The only production systems the threat actor could access using the stolen credentials was our Atlassian environment. Analyzing the wiki pages they accessed, bug database issues, and source code repositories, it appears they were looking for information about the architecture, security, and management of our global network; no doubt with an eye on gaining a deeper foothold. Because of that, we decided a huge effort was needed to further harden our security protocols to prevent the threat actor from being able to get that foothold had we overlooked something from our log files.

Our aim was to prevent the attacker from using the technical information about the operations of our network as a way to get back in. Even though we believed, and later confirmed, the attacker had limited access, we undertook a comprehensive effort to rotate every production credential (more than 5,000 individual credentials), physically segment test and staging systems, performed forensic triages on 4,893 systems, reimaged and rebooted every machine in our global network including all the systems the threat actor accessed and all Atlassian products (Jira, Confluence, and Bitbucket).

The threat actor also attempted to access a console server in our new, and not yet in production, data center in São Paulo. All attempts to gain access were unsuccessful. To ensure these systems are 100% secure, equipment in the Brazil data center was returned to the manufacturers. The manufacturers’ forensic teams examined all of our systems to ensure that no access or persistence was gained. Nothing was found, but we replaced the hardware anyway.

We also looked for software packages that hadn’t been updated, user accounts that might have been created, and unused active employee accounts; we went searching for secrets that might have been left in Jira tickets or source code, examined and deleted all HAR files uploaded to the wiki in case they contained tokens of any sort. Whenever in doubt, we assumed the worst and made changes to ensure anything the threat actor was able to access would no longer be in use and therefore no longer be valuable to them.

Every member of the team was encouraged to point out areas the threat actor might have touched, so we could examine log files and determine the extent of the threat actor’s access. By including such a large number of people across the company, we aimed to leave no stone unturned looking for evidence of access or changes that needed to be made to improve security.

The immediate “Code Red” effort ended on January 5, but work continues across the company around credential management, software hardening, vulnerability management, additional alerting, and more.

Attack timeline

The attack started in October with the compromise of Okta, but the threat actor only began targeting our systems using those credentials from the Okta compromise in mid-November.

The following timeline shows the major events:

October 18 – Okta compromise

We’ve written about this before but, in summary, we were (for the second time) the victim of a compromise of Okta’s systems which resulted in a threat actor gaining access to a set of credentials. These credentials were meant to all be rotated.

Unfortunately, we failed to rotate one service token and three service accounts (out of thousands) of credentials that were leaked during the Okta compromise.

One was a Moveworks service token that granted remote access into our Atlassian system. The second credential was a service account used by the SaaS-based Smartsheet application that had administrative access to our Atlassian Jira instance, the third account was a Bitbucket service account which was used to access our source code management system, and the fourth was an AWS environment that had no access to the global network and no customer or sensitive data.

The one service token and three accounts were not rotated because mistakenly it was believed they were unused. This was incorrect and was how the threat actor first got into our systems and gained persistence to our Atlassian products. Note that this was in no way an error on the part of AWS, Moveworks or Smartsheet. These were merely credentials which we failed to rotate.

November 14 09:22:49 – threat actor starts probing

Our logs show that the threat actor started probing and performing reconnaissance of our systems beginning on November 14, looking for a way to use the credentials and what systems were accessible. They attempted to log into our Okta instance and were denied access. They attempted access to the Cloudflare Dashboard and were denied access.

Additionally, the threat actor accessed an AWS environment that is used to power the Cloudflare Apps marketplace. This environment was segmented with no access to global network or customer data. The service account to access this environment was revoked, and we validated the integrity of the environment.

November 15 16:28:38 – threat actor gains access to Atlassian services

The threat actor successfully accessed Atlassian Jira and Confluence on November 15 using the Moveworks service token to authenticate through our gateway, and then they used the Smartsheet service account to gain access to the Atlassian suite. The next day they began looking for information about the configuration and management of our global network, and accessed various Jira tickets.

The threat actor searched the wiki for things like remote access, secret, client-secret, openconnect, cloudflared, and token. They accessed 36 Jira tickets (out of a total of 2,059,357 tickets) and 202 wiki pages (out of a total of 194,100 pages).

The threat actor accessed Jira tickets about vulnerability management, secret rotation, MFA bypass, network access, and even our response to the Okta incident itself.

The wiki searches and pages accessed suggest the threat actor was very interested in all aspects of access to our systems: password resets, remote access, configuration, our use of Salt, but they did not target customer data or customer configurations.

November 16 14:36:37 – threat actor creates an Atlassian user account

The threat actor used the Smartsheet credential to create an Atlassian account that looked like a normal Cloudflare user. They added this user to a number of groups within Atlassian so that they’d have persistent access to the Atlassian environment should the Smartsheet service account be removed.

November 17 14:33:52 to November 20 09:26:53 – threat actor takes a break from accessing Cloudflare systems

During this period, the attacker took a break from accessing our systems (apart from apparently briefly testing that they still had access) and returned just before Thanksgiving.

November 22 14:18:22 – threat actor gains persistence

Since the Smartsheet service account had administrative access to Atlassian Jira, the threat actor was able to install the Sliver Adversary Emulation Framework, which is a widely used tool and framework that red teams and attackers use to enable “C2” (command and control), connectivity gaining persistent and stealthy access to a computer on which it is installed. Sliver was installed using the ScriptRunner for Jira plugin.

This allowed them continuous access to the Atlassian server, and they used this to attempt lateral movement. With this access the Threat Actor attempted to gain access to a non-production console server in our São Paulo, Brazil data center due to a non-enforced ACL. The access was denied, and they were not able to access any of the global network.

Over the next day, the threat actor viewed 120 code repositories (out of a total of 11,904 repositories). Of the 120, the threat actor used the Atlassian Bitbucket git archive feature on 76 repositories to download them to the Atlassian server, and even though we were not able to confirm whether or not they had been exfiltrated, we decided to treat them as having been exfiltrated.

The 76 source code repositories were almost all related to how backups work, how the global network is configured and managed, how identity works at Cloudflare, remote access, and our use of Terraform and Kubernetes. A small number of the repositories contained encrypted secrets which were rotated immediately even though they were strongly encrypted themselves.

We focused particularly on these 76 source code repositories to look for embedded secrets, (secrets stored in the code were rotated), vulnerabilities and ways in which an attacker could use them to mount a subsequent attack. This work was done as a priority by engineering teams across the company as part of “Code Red”.

As a SaaS company, we’ve long believed that our source code itself is not as precious as the source code of software companies that distribute software to end users. In fact, we’ve open sourced a large amount of our source code and speak openly through our blog about algorithms and techniques we use. So our focus was not on someone having access to the source code, but whether that source code contained embedded secrets (such as a key or token) and vulnerabilities.

November 23 – Discovery and threat actor access termination begins

Our security team was alerted to the threat actor’s presence at 16:00 and deactivated the Smartsheet service account 35 minutes later. 48 minutes later the user account created by the threat actor was found and deactivated. Here’s the detailed timeline for the major actions taken to block the threat actor once the first alert was raised.

15:58 – The threat actor adds the Smartsheet service account to an administrator group.
16:00 – Automated alert about the change at 15:58 to our security team.
16:12 – Cloudflare SOC starts investigating the alert.
16:35 – Smartsheet service account deactivated by Cloudflare SOC.
17:23 – The threat actor-created Atlassian user account is found and deactivated.
17:43 – Internal Cloudflare incident declared.
21:31 – Firewall rules put in place to block the threat actor’s known IP addresses.

November 24 – Sliver removed; all threat actor access terminated

10:44 – Last known threat actor activity.
11:59 – Sliver removed.

Throughout this timeline, the threat actor tried to access a myriad of other systems at Cloudflare but failed because of our access controls, firewall rules, and use of hard security keys enforced using our own Zero Trust tools.

To be clear, we saw no evidence whatsoever that the threat actor got access to our global network, data centers, SSL keys, customer databases or configuration information, Cloudflare Workers deployed by us or customers, AI models, network infrastructure, or any of our datastores like Workers KV, R2 or Quicksilver. Their access was limited to the Atlassian suite and the server on which our Atlassian runs.

A large part of our “Code Red” effort was understanding what the threat actor got access to and what they tried to access. By looking at logging across systems we were able to track attempted access to our internal metrics, network configuration, build system, alerting systems, and release management system. Based on our review, none of their attempts to access these systems were successful. Independently, CrowdStrike performed an assessment of the scope and extent of the threat actor’s activity, which did not bring to light activities that we had missed and concluded that the last evidence of threat activity was on November 24 at 10:44.

We are confident that between our investigation and CrowdStrike’s, we fully understand the threat actor’s actions and that they were limited to the systems on which we saw their activity.

Conclusion

This was a security incident involving a sophisticated actor, likely a nation-state, who operated in a thoughtful and methodical manner. The efforts we have taken to ensure that the ongoing impact of the incident was limited and that we are well-prepared to fend off any sophisticated attacks in the future. This required the efforts of a significant number of Cloudflare’s engineering staff, and, for over a month, this was the highest priority at Cloudflare. The entire Cloudflare team worked to ensure that our systems were secure, the threat actor’s access was understood, to remediate immediate priorities (such as mass credential rotation), and to build a plan of long-running work to improve our overall security based on areas for improvement discovered during this process.

I am incredibly grateful to everyone at Cloudflare who responded quickly over the Thanksgiving holiday to conduct an initial analysis and lock out of the threat actor and all those who contributed to this effort. It would be impossible to name everyone involved, but their long hours and dedicated work made it possible to undertake an essential review and change of Cloudflare’s security while keeping our global network running and our customers’ service running.

We are grateful to CrowdStrike for having been available immediately to conduct an independent assessment. Now that their final report is complete, we are confident in our internal analysis and remediation of the intrusion and are making this blog post available.

IOCs
Below are the Indications of Compromise (IOCs) that we saw from this threat actor. We are publishing them so that other organizations, and especially those that may have been impacted by the Okta breach, can search their logs to confirm the same threat actor did not access their systems.

Indicator Indicator Type SHA256 Description
193.142.58[.]126 IPv4 N/A Primary threat actor
Infrastructure, owned by
M247 Europe SRL (Bucharest,
Romania
198.244.174[.]214 IPv4 N/A Sliver C2 server, owned by
OVH SAS (London, England)
idowall[.]com Domain N/A Infrastructure serving Sliver
payload
jvm-agent Filename bdd1a085d651082ad567b03e5186d1d4
6d822bb7794157ab8cce95d850a3caaf
Sliver payload

AWS completes CCAG 2023 community audit for financial services customers in Europe

Post Syndicated from Manuel Mazarredo original https://aws.amazon.com/blogs/security/aws-completes-ccag-2023-community-audit-for-financial-services-customers-in-europe/

We’re excited to announce that Amazon Web Services (AWS) has completed its fifth annual Collaborative Cloud Audit Group (CCAG) pooled audit with European financial services institutions under regulatory supervision.

At AWS, security is the highest priority. As customers embrace the scalability and flexibility of AWS, we’re helping them evolve security and compliance into key business enablers. We’re obsessed with earning and maintaining customer trust, and providing our financial services customers and their regulatory bodies with the assurances that AWS has the necessary controls in place to help protect their most sensitive material and regulated workloads.

With the increasing digitalization of the financial industry, and the importance of cloud computing as a key enabling technology for digitalization, the financial services industry is experiencing greater regulatory scrutiny. Our annual audit engagement with CCAG is an example of how AWS supports customers’ risk management and regulatory efforts. For the fifth year, the CCAG pooled audit meticulously assessed the AWS controls that enable us to help protect customers’ data and material workloads, while satisfying strict regulatory obligations.

CCAG represents more than 50 leading European financial services institutions and has grown steadily since its founding in 2017. Based on its mission to provide organizational and logistical support to members so that they can conduct pooled audits with excellence, efficiency, and integrity, the CCAG audit was initiated based on customers’ right to conduct an audit of their service providers under the European Banking Authority (EBA) outsourcing recommendations to cloud service providers (CSPs).

Audit preparations

Using the Cloud Controls Matrix (CCM) of the Cloud Security Alliance (CSA) as the framework of reference for the CCAG audit, auditors scoped in key domains and controls to audit, such as identity and access management, change control and configuration, logging and monitoring, and encryption and key management.

The scope of the audit targeted individual AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2), and specific AWS Regions where financial services institutions run their workloads, such as the Europe (Frankfurt) Region (eu-central-1).

During this phase, to help provide auditors with a common cloud-specific knowledge and language base, AWS gave various educational and alignment sessions. We offered access to our online resources such as Skill Builder, and delivered onsite briefing and orientation sessions in Paris, France; Barcelona, Spain; and London, UK.

Audit fieldwork

This phase started after a joint kick-off in Berlin, Germany, and used a hybrid approach, with work occurring remotely through the use of videoconferencing and a secure audit portal for the inspection of evidence, and onsite at Amazon’s HQ2, in Arlington, Virginia, in the US.

Auditors assessed AWS policies, procedures, and controls, following a risk-based approach and using sampled evidence and access to subject matter experts (SMEs).

Audit results

After a joint closure ceremony onsite in Warsaw, Poland, auditors finalized the audit report, which included the following positive feedback:

“CCAG would like to thank AWS for helping in achieving the audit objectives and to advocate on CCAG’s behalf to obtain the required assurances. In consequence, CCAG was able to execute the audit according to agreed timelines, and exercise audit rights in line with contractual conditions.”

The results of the CCAG pooled audit are available to the participants and their respective regulators only, and provide CCAG members with assurance regarding the AWS controls environment, enabling members to work to remove compliance blockers, accelerate their adoption of AWS services, and obtain confidence and trust in the security controls of AWS.

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Manuel Mazarredo

Manuel Mazarredo

Manuel is a security audit program manager at AWS based in Amsterdam, the Netherlands. Manuel leads security audits, attestations, and certification programs across Europe. For the past 18 years, he has worked in information systems audits, ethical hacking, project management, quality assurance, and vendor management across a variety of industries.

Andreas Terwellen

Andreas Terwellen

Andreas is a senior manager in security audit assurance at AWS, based in Frankfurt, Germany. His team is responsible for third-party and customer audits, attestations, certifications, and assessments across Europe. Previously, he was a CISO in a DAX-listed telecommunications company in Germany. He also worked for different consulting companies managing large teams and programs across multiple industries and sectors.

Introducing Foundations – our open source Rust service foundation library

Post Syndicated from Ivan Nikulin http://blog.cloudflare.com/author/ivan-nikulin/ original https://blog.cloudflare.com/introducing-foundations-our-open-source-rust-service-foundation-library


In this blog post, we’re excited to present Foundations, our foundational library for Rust services, now released as open source on GitHub. Foundations is a foundational Rust library, designed to help scale programs for distributed, production-grade systems. It enables engineers to concentrate on the core business logic of their services, rather than the intricacies of production operation setups.

Originally developed as part of our Oxy proxy framework, Foundations has evolved to serve a wider range of applications. For those interested in exploring its technical capabilities, we recommend consulting the library’s API documentation. Additionally, this post will cover the motivations behind Foundations’ creation and provide a concise summary of its key features. Stay with us to learn more about how Foundations can support your Rust projects.

What is Foundations?

In software development, seemingly minor tasks can become complex when scaled up. This complexity is particularly evident when comparing the deployment of services on server hardware globally to running a program on a personal laptop.

The key question is: what fundamentally changes when transitioning from a simple laptop-based prototype to a full-fledged service in a production environment? Through our experience in developing numerous services, we’ve identified several critical differences:

  • Observability: locally, developers have access to various tools for monitoring and debugging. However, these tools are not as accessible or practical when dealing with thousands of software instances running on remote servers.
  • Configuration: local prototypes often use basic, sometimes hardcoded, configurations. This approach is impractical in production, where changes require a more flexible and dynamic configuration system. Hardcoded settings are cumbersome, and command-line options, while common, don’t always suit complex hierarchical configurations or align with the “Configuration as Code” paradigm.
  • Security: services in production face a myriad of security challenges, exposed to diverse threats from external sources. Basic security hardening becomes a necessity.

Addressing these distinctions, Foundations emerges as a comprehensive library, offering solutions to these challenges. Derived from our Oxy proxy framework, Foundations brings the tried-and-tested functionality of Oxy to a broader range of Rust-based applications at Cloudflare.

Foundations was developed with these guiding principles:

  • High modularity: recognizing that many services predate Foundations, we designed it to be modular. Teams can adopt individual components at their own pace, facilitating a smooth transition.
  • API ergonomics: a top priority for us is user-friendly library interaction. Foundations leverages Rust’s procedural macros to offer an intuitive, well-documented API, aiming for minimal friction in usage.
  • Simplified setup and configuration: our goal is for engineers to spend minimal time on setup. Foundations is designed to be ‘plug and play’, with essential functions working immediately and adjustable settings for fine-tuning. We understand that this focus on ease of setup over extreme flexibility might be debatable, as it implies a trade-off. Unlike other libraries that cater to a wide range of environments with potentially verbose setup requirements, Foundations is tailored for specific, production-tested environments and workflows. This doesn’t restrict Foundations’ adaptability to other settings, but we approach this with compile-time features to manage setup workflows, rather than a complex setup API.

Next, let’s delve into the components Foundations offers. To better illustrate the functionality that Foundations provides we will refer to the example web server from Foundations’ source code repository.

Telemetry

In any production system, observability, which we refer to as telemetry, plays an essential role. Generally, three primary types of telemetry are adequate for most service needs:

  • Logging: this involves recording arbitrary textual information, which can be enhanced with tags or structured fields. It’s particularly useful for documenting operational errors that aren’t critical to the service.
  • Tracing: this method offers a detailed timing breakdown of various service components. It’s invaluable for identifying performance bottlenecks and investigating issues related to timing.
  • Metrics: these are quantitative data points about the service, crucial for monitoring the overall health and performance of the system.

Foundations integrates an API that encompasses all these telemetry aspects, consolidating them into a unified package for ease of use.

Tracing

Foundations’ tracing API shares similarities with tokio/tracing, employing a comparable approach with implicit context propagation, instrumentation macros, and futures wrapping:

#[tracing::span_fn("respond to request")]
async fn respond(
    endpoint_name: Arc<String>,
    req: Request<Body>,
    routes: Arc<Map<String, ResponseSettings>>,
) -> Result<Response<Body>, Infallible> {
    …
}

Refer to the example web server and documentation for more comprehensive examples.

However, Foundations distinguishes itself in a few key ways:

  • Simplified API: we’ve streamlined the setup process for tracing, aiming for a more minimalistic approach compared to tokio/tracing.
  • Enhanced trace sampling flexibility: Foundations allows for selective override of the sampling ratio in specific code branches. This feature is particularly useful for detailed performance bug investigations, enabling a balance between global trace sampling for overall performance monitoring and targeted sampling for specific accounts, connections, or requests.
  • Distributed trace stitching: our API supports the integration of trace data from multiple services, contributing to a comprehensive view of the entire pipeline. This functionality includes fine-tuned control over sampling ratios, allowing upstream services to dictate the sampling of specific traffic flows in downstream services.
  • Trace forking capability: addressing the challenge of long-lasting connections with numerous multiplexed requests, Foundations introduces trace forking. This feature enables each request within a connection to have its own trace, linked to the parent connection trace. This method significantly simplifies the analysis and improves performance, particularly for connections handling thousands of requests.

We regard telemetry as a vital component of our software, not merely an optional add-on. As such, we believe in rigorous testing of this feature, considering it our primary tool for monitoring software operations. Consequently, Foundations includes an API and user-friendly macros to facilitate the collection and analysis of tracing data within tests, presenting it in a format conducive to assertions.

Logging

Foundations’ logging API shares its foundation with tokio/tracing and slog, but introduces several notable enhancements.

During our work on various services, we recognized the hierarchical nature of logging contextual information. For instance, in a scenario involving a connection, we might want to tag each log record with the connection ID and HTTP protocol version. Additionally, for requests served over this connection, it would be useful to attach the request URL to each log record, while still including connection-specific information.

Typically, achieving this would involve creating a new logger for each request, copying tags from the connection’s logger, and then manually passing this new logger throughout the relevant code. This method, however, is cumbersome, requiring explicit handling and storage of the logger object.

To streamline this process and prevent telemetry from obstructing business logic, we adopted a technique similar to tokio/tracing’s approach for tracing, applying it to logging. This method relies on future instrumentation machinery (tracing-rs documentation has a good explanation of the concept), allowing for implicit passing of the current logger. This enables us to “fork” logs for each request and use this forked log seamlessly within the current code scope, automatically propagating it down the call stack, including through asynchronous function calls:

 let conn_tele_ctx = TelemetryContext::current();

 let on_request = service_fn({
        let endpoint_name = Arc::clone(&endpoint_name);

        move |req| {
            let routes = Arc::clone(&routes);
            let endpoint_name = Arc::clone(&endpoint_name);

            // Each request gets independent log inherited from the connection log and separate
            // trace linked to the connection trace.
            conn_tele_ctx
                .with_forked_log()
                .with_forked_trace("request")
                .apply(async move { respond(endpoint_name, req, routes).await })
        }
});

Refer to example web server and documentation for more comprehensive examples.

In an effort to simplify the user experience, we merged all APIs related to context management into a single, implicitly available in each code scope, TelemetryContext object. This integration not only simplifies the process but also lays the groundwork for future advanced features. These features could blend tracing and logging information into a cohesive narrative by cross-referencing each other.

Like tracing, Foundations also offers a user-friendly API for testing service’s logging.

Metrics

Foundations incorporates the official Prometheus Rust client library for its metrics functionality, with a few enhancements for ease of use. One key addition is a procedural macro provided by Foundations, which simplifies the definition of new metrics with typed labels, reducing boilerplate code:

use foundations::telemetry::metrics::{metrics, Counter, Gauge};
use std::sync::Arc;

#[metrics]
pub(crate) mod http_server {
    /// Number of active client connections.
    pub fn active_connections(endpoint_name: &Arc<String>) -> Gauge;

    /// Number of failed client connections.
    pub fn failed_connections_total(endpoint_name: &Arc<String>) -> Counter;

    /// Number of HTTP requests.
    pub fn requests_total(endpoint_name: &Arc<String>) -> Counter;

    /// Number of failed requests.
    pub fn requests_failed_total(endpoint_name: &Arc<String>, status_code: u16) -> Counter;
}

Refer to the example web server and documentation for more information of how metrics can be defined and used.

In addition to this, we have refined the approach to metrics collection and structuring. Foundations offers a streamlined, user-friendly API for both these tasks, focusing on simplicity and minimalism.

Memory profiling

Recognizing the efficiency of jemalloc for long-lived services, Foundations includes a feature for enabling jemalloc memory allocation. A notable aspect of jemalloc is its memory profiling capability. Foundations packages this functionality into a straightforward and safe Rust API, making it accessible and easy to integrate.

Telemetry server

Foundations comes equipped with a built-in, customizable telemetry server endpoint. This server automatically handles a range of functions including health checks, metric collection, and memory profiling requests.

Security

A vital component of Foundations is its robust and ergonomic API for seccomp, a Linux kernel feature for syscall sandboxing. This feature enables the setting up of hooks for syscalls used by an application, allowing actions like blocking or logging. Seccomp acts as a formidable line of defense, offering an additional layer of security against threats like arbitrary code execution.

Foundations provides a simple way to define lists of all allowed syscalls, also allowing a composition of multiple lists (in addition, Foundations ships predefined lists for common use cases):

  use foundations::security::common_syscall_allow_lists::{ASYNC, NET_SOCKET_API, SERVICE_BASICS};
    use foundations::security::{allow_list, enable_syscall_sandboxing, ViolationAction};

    allow_list! {
        static ALLOWED = [
            ..SERVICE_BASICS,
            ..ASYNC,
            ..NET_SOCKET_API
        ]
    }

    enable_syscall_sandboxing(ViolationAction::KillProcess, &ALLOWED)
 

Refer to the web server example and documentation for more comprehensive examples of this functionality.

Settings and CLI

Foundations simplifies the management of service settings and command-line argument parsing. Services built on Foundations typically use YAML files for configuration. We advocate for a design where every service comes with a default configuration that’s functional right off the bat. This philosophy is embedded in Foundations’ settings functionality.

In practice, applications define their settings and defaults using Rust structures and enums. Foundations then transforms Rust documentation comments into configuration annotations. This integration allows the CLI interface to generate a default, fully annotated YAML configuration files. As a result, service users can quickly and easily understand the service settings:

use foundations::settings::collections::Map;
use foundations::settings::net::SocketAddr;
use foundations::settings::settings;
use foundations::telemetry::settings::TelemetrySettings;

#[settings]
pub(crate) struct HttpServerSettings {
    /// Telemetry settings.
    pub(crate) telemetry: TelemetrySettings,
    /// HTTP endpoints configuration.
    #[serde(default = "HttpServerSettings::default_endpoints")]
    pub(crate) endpoints: Map<String, EndpointSettings>,
}

impl HttpServerSettings {
    fn default_endpoints() -> Map<String, EndpointSettings> {
        let mut endpoint = EndpointSettings::default();

        endpoint.routes.insert(
            "/hello".into(),
            ResponseSettings {
                status_code: 200,
                response: "World".into(),
            },
        );

        endpoint.routes.insert(
            "/foo".into(),
            ResponseSettings {
                status_code: 403,
                response: "bar".into(),
            },
        );

        [("Example endpoint".into(), endpoint)]
            .into_iter()
            .collect()
    }
}

#[settings]
pub(crate) struct EndpointSettings {
    /// Address of the endpoint.
    pub(crate) addr: SocketAddr,
    /// Endoint's URL path routes.
    pub(crate) routes: Map<String, ResponseSettings>,
}

#[settings]
pub(crate) struct ResponseSettings {
    /// Status code of the route's response.
    pub(crate) status_code: u16,
    /// Content of the route's response.
    pub(crate) response: String,
}

The settings definition above automatically generates the following default configuration YAML file:

---
# Telemetry settings.
telemetry:
  # Distributed tracing settings
  tracing:
    # Enables tracing.
    enabled: true
    # The address of the Jaeger Thrift (UDP) agent.
    jaeger_tracing_server_addr: "127.0.0.1:6831"
    # Overrides the bind address for the reporter API.
    # By default, the reporter API is only exposed on the loopback
    # interface. This won't work in environments where the
    # Jaeger agent is on another host (for example, Docker).
    # Must have the same address family as `jaeger_tracing_server_addr`.
    jaeger_reporter_bind_addr: ~
    # Sampling ratio.
    #
    # This can be any fractional value between `0.0` and `1.0`.
    # Where `1.0` means "sample everything", and `0.0` means "don't sample anything".
    sampling_ratio: 1.0
  # Logging settings.
  logging:
    # Specifies log output.
    output: terminal
    # The format to use for log messages.
    format: text
    # Set the logging verbosity level.
    verbosity: INFO
    # A list of field keys to redact when emitting logs.
    #
    # This might be useful to hide certain fields in production logs as they may
    # contain sensitive information, but allow them in testing environment.
    redact_keys: []
  # Metrics settings.
  metrics:
    # How the metrics service identifier defined in `ServiceInfo` is used
    # for this service.
    service_name_format: metric_prefix
    # Whether to report optional metrics in the telemetry server.
    report_optional: false
  # Server settings.
  server:
    # Enables telemetry server
    enabled: true
    # Telemetry server address.
    addr: "127.0.0.1:0"
# HTTP endpoints configuration.
endpoints:
  Example endpoint:
    # Address of the endpoint.
    addr: "127.0.0.1:0"
    # Endoint's URL path routes.
    routes:
      /hello:
        # Status code of the route's response.
        status_code: 200
        # Content of the route's response.
        response: World
      /foo:
        # Status code of the route's response.
        status_code: 403
        # Content of the route's response.
        response: bar

Refer to the example web server and documentation for settings and CLI API for more comprehensive examples of how settings can be defined and used with Foundations-provided CLI API.

Wrapping Up

At Cloudflare, we greatly value the contributions of the open source community and are eager to reciprocate by sharing our work. Foundations has been instrumental in reducing our development friction, and we hope it can do the same for others. We welcome external contributions to Foundations, aiming to integrate diverse experiences into the project for the benefit of all.

If you’re interested in working on projects like Foundations, consider joining our team — we’re hiring!

How to build a unified authorization layer for identity providers with Amazon Verified Permissions

Post Syndicated from Akash Kumar original https://aws.amazon.com/blogs/security/how-to-build-a-unified-authorization-layer-for-identity-providers-with-amazon-verified-permissions/

Enterprises often have an identity provider (IdP) for their employees and another for their customers. Using multiple IdPs allows you to apply different access controls and policies for employees and for customers. However, managing multiple identity systems can be complex. A unified authorization layer can ease administration by centralizing access policies for APIs regardless of the user’s IdP. The authorization layer evaluates access tokens from any authorized IdP before allowing API access. This removes authorization logic from the APIs and simplifies specifying organization-wide policies. Potential drawbacks include additional complexity in the authorization layer. However, simplifying the management of policies reduces cost of ownership and the likelihood of errors.

Consider a veterinary clinic that has an IdP for their employees. Their clients, the pet owners, would have a separate IdP. Employees might have different sign-in requirements than the clients. These requirements could include features such as multi-factor authentication (MFA) or additional auditing functionality. Applying identical access controls for clients may not be desirable. The clinic’s scheduling application would manage access from both the clinic employees and pet owners. By implementing a unified authorization layer, the scheduling app doesn’t need to be aware of the different IdPs or tokens. The authorization layer handles evaluating tokens and applying policies, such as allowing the clinic employees full access to appointment data while limiting pet owners to just their pet’s records. In this post, we show you an architecture for this situation that demonstrates how to build a unified authorization layer using multiple Amazon Cognito user pools, Amazon Verified Permissions, and an AWS Lambda authorizer for Amazon API Gateway-backed APIs.

In the architecture, API Gateway exposes APIs to provide access to backend resources. API Gateway is a fully-managed service that allows developers to build APIs that act as an entry point for applications. To integrate API Gateway with multiple IdPs, you can use a Lambda authorizer to control access to the API. The IdP in this architecture is Amazon Cognito, which provides the authentication function for users before they’re authorized by Verified Permissions, which implements fine-grained authorization on resources in an application. Keep in mind that Verified Permissions has limits on policy sizes and requests per second. Large deployments might require a different policy store or a caching layer. The four services work together to combine multiple IdPs into a unified authorization layer. The architecture isn’t limited to the Cognito IdP — third-party IdPs that generate JSON Web Tokens (JWTs) can be used, including combinations of different IdPs.

Architecture overview

This sample architecture relies on user-pool multi-tenancy for user authentication. It uses Cognito user pools to assign authenticated users a set of temporary and least-privilege credentials for application access. Once users are authenticated, they are authorized to access backend functions via a Lambda Authorizer function. This function interfaces with Verified Permissions to apply the appropriate access policy based on user attributes.

This sample architecture is based on the scenario of an application that has two sets of users: an internal set of users, veterinarians, as well as an external set of users, clients, with each group having specific access to the API. Figure 1 shows the user request flow.

Figure 1: User request flow

Figure 1: User request flow

Let’s go through the request flow to understand what happens at each step, as shown in Figure 1:

  1. There two groups of users — External (Clients) and Internal (Veterinarians). These user groups sign in through a web portal that authenticates against an IdP (Amazon Cognito).
  2. The groups attempt to access the get appointment API through API Gateway, along with their JWT tokens with claims and client ID.
  3. The Lambda authorizer validates the claims.

    Note: If Cognito is the IdP, then Verified Permissions can authorize the user from their JWT directly with the IsAuthorizedWithToken API.

  4. After validating the JWT token, the Lambda authorizer makes a query to Verified Permissions with associated policy information to check the request.
  5. API Gateway evaluates the policy that the Lambda authorizer returned, to allow or deny access to the resource.
  6. If allowed, API Gateway accesses the resource. If denied, API Gateway returns a 403 Forbidden error.

Note: To further optimize the Lambda authorizer, the authorization decision can be cached or disabled, depending on your needs. By enabling caching, you can improve the performance, because the authorization policy will be returned from the cache whenever there is a cache key match. To learn more, see Configure a Lambda authorizer using the API Gateway console.

Walkthrough

This walkthrough demonstrates the preceding scenario for an authorization layer supporting veterinarians and clients. Each set of users will have their own distinct Amazon Cognito user pool.

Verified Permissions policies associated with each Cognito pool enforce access controls. In the veterinarian pool, veterinarians are only allowed to access data for their own patients. Similarly, in the client pool, clients are only able to view and access their own data. This keeps data properly segmented and secured between veterinarians and clients.

Internal policy

permit (principal in UserGroup::"AllVeterinarians",
   action == Action::"GET/appointment",
   resource in UserGroup::"AllVeterinarians")
   when {principal == resource.Veterinarian };

External policy

permit (principal in UserGroup::"AllClients",
   action == Action::"GET/appointment",
   resource in UserGroup::"AllClients")
   when {principal == resource.owner};

The example internal and external policies, along with Cognito serving as an IdP, allow the veterinarian users to federate in to the application through one IdP, while the external clients must use another IdP. This, coupled with the associated authorization policies, allows you to create and customize fine-grained access policies for each user group.

To validate the access request with the policy store, the Lambda authorizer execution role also requires the verifiedpermissions:IsAuthorized action.

Although our example Verified Permissions policies are relatively simple, Cedar policy language is extensive and allows you to define custom rules for your business needs. For example, you could develop a policy that allows veterinarians to access client records only during the day of the client’s appointment.

Implement the sample architecture

The architecture is based on a user-pool multi-tenancy for user authentication. It uses Amazon Cognito user pools to assign authenticated users a set of temporary and least privilege credentials for application access. After users are authenticated, they are authorized to access APIs through a Lambda function. This function interfaces with Verified Permissions to apply the appropriate access policy based on user attributes.

Prerequisites

You need the following prerequisites:

  • The AWS Command Line Interface (CLI) installed and configured for use.
  • Python 3.9 or later, to package Python code for Lambda.

    Note: We recommend that you use a virtual environment or virtualenvwrapper to isolate the sample from the rest of your Python environment.

  • An AWS Identity and Access Management (IAM) role or user with enough permissions to create an Amazon Cognito user pool, IAM role, Lambda function, IAM policy, and API Gateway instance.
  • jq for JSON processing in bash script.

    To install on Ubuntu/Debian, use the following command:

    sudo apt-get install jq

    To install on Mac with Homebrew, using the following command:

    brew install jq

  • The GitHub repository for the sample. You can download it, or you can use the following Git command to download it from your terminal.

    Note: This sample code should be used to test the solution and is not intended to be used in a production account.

    $ git clone https://github.com/aws-samples/amazon-cognito-avp-apigateway.git
    $ cd amazon-cognito-avp-apigateway

To implement this reference architecture, you will use the following services:

  • Amazon Verified Permissions is a service that helps you implement and enforce fine-grained authorization on resources within the applications that you build and deploy, such as HR systems and banking applications.
  • Amazon API Gateway is a fully managed service that developers can use to create, publish, maintain, monitor, and secure APIs at any scale.
  • AWS Lambda is a serverless compute service that lets you run code without provisioning or managing servers, creating workload-aware cluster scaling logic, maintaining event integrations, or managing runtimes.
  • Amazon Cognito provides an identity store that scales to millions of users, supports social and enterprise identity federation, and offers advanced security features to protect your consumers and business.

Note: We tested this architecture in the us-east-1 AWS Region. Before you select a Region, verify that the necessary services — Amazon Verified Permissions, Amazon Cognito, API Gateway, and Lambda — are available in those Regions.

Deploy the sample architecture

From within the directory where you downloaded the sample code from GitHub, first run the following command to package the Lambda functions. Then run the next command to generate a random Cognito user password and create the resources described in the previous section.

Note: In this case, you’re generating a random user password for demonstration purposes. Follow best practices for user passwords in production implementations.

$ bash ./helper.sh package-lambda-functions
 …
Successfully completed packaging files.
$ bash ./helper.sh cf-create-stack-gen-password
 …
Successfully created CloudFormation stack.

Validate Cognito user creation

Run the following commands to open the Cognito UI in your browser and then sign in with your credentials. This validates that the previous commands created Cognito users successfully.

Note: When you run the commands, they return the username and password that you should use to sign in.

For internal user pool domain users

$ bash ./helper.sh open-cognito-internal-domain-ui
 Opening Cognito UI...
 URL: xxxxxxxxx
 Please use following credentials to login:
 Username: cognitouser
 Password: xxxxxxxx

For external user pool domain users

$ bash ./helper.sh open-cognito-external-domain-ui
 Opening Cognito UI...
 URL: xxxxxxxxx
 Please use following credentials to login:
 Username: cognitouser
 Password: xxxxxxxx

Validate Cognito JWT upon sign in

Because you haven’t installed a web application that would respond to the redirect request, Cognito will redirect to localhost, which might look like an error. The key aspect is that after a successful sign-in, there is a URL similar to the following in the navigation bar of your browser.

http://localhost/#id_token=eyJraWQiOiJicVhMYWFlaTl4aUhzTnY3W...

Test the API configuration

Before you protect the API with Cognito so that only authorized users can access it, let’s verify that the configuration is correct and API Gateway serves the API. The following command makes a curl request to API Gateway to retrieve data from the API service.

$ bash ./helper.sh curl-api

API to check the appointment details of PI-T123
URL: https://epgst74zff.execute-api.us-east-1.amazonaws.com/dev/appointment/PI-T123
Response: 
{"appointment": {"id": "PI-T123", "name": "Dave", "Pet": "Onyx - Dog. 2y 3m", "Phone Number": "+1234567", "Visit History": "Patient History from last visit with primary vet", "Assigned Veterinarian": "Jane"}}

API to check the appointment details of PI-T124
URL: https://epgst74zff.execute-api.us-east-1.amazonaws.com/dev/appointment/PI-T124
Response: 
{"appointment": {"id": "PI-T124", "name": "Joy", "Pet": "Jelly - Dog. 6y 2m", "Phone Number": "+1368728", "Visit History": "None", "Assigned Veterinarian": "Jane"}}

API to check the appointment details of PI-T125
URL: https://epgst74zff.execute-api.us-east-1.amazonaws.com/dev/appointment/PI-T125
Response: 
{"appointment": {"id": "PI-T125", "name": "Dave", "Pet": "Sassy - Cat. 1y", "Phone Number": "+1398777", "Visit History": "Patient History from last visit with primary vet", "Assigned Veterinarian": "Adam"}}

Protect the API

In the next step, you deploy a Verified Permissions policy store and a Lambda authorizer. The policy store contains the policies for user authorization. The Lambda authorizer verifies users’ access tokens and authorizes the users through Verified Permissions.

Update and create resources

Run the following command to update existing resources and create a Lambda authorizer and Verified Permissions policy store.

$ bash ./helper.sh cf-update-stack
 Successfully updated CloudFormation stack.

Test the custom authorizer setup

Begin your testing with the following request, which doesn’t include an access token.

Note: Wait for a few minutes to allow API Gateway to deploy before you run the following commands.

$ bash ./helper.sh curl-api
API to check the appointment details of PI-T123
URL: https://epgst74zff.execute-api.us-east-1.amazonaws.com/dev/appointment/PI-T123
Response: 
{"message":"Unauthorized"}

API to check the appointment details of PI-T124
URL: https://epgst74zff.execute-api.us-east-1.amazonaws.com/dev/appointment/PI-T124
Response: 
{"message":"Unauthorized"}

API to check the appointment details of PI-T125
URL: https://epgst74zff.execute-api.us-east-1.amazonaws.com/dev/appointment/PI-T125
Response: 
{"message":"Unauthorized"}

The architecture denied the request with the message “Unauthorized.” At this point, API Gateway expects a header named Authorization (case sensitive) in the request. If there’s no authorization header, API Gateway denies the request before it reaches the Lambda authorizer. This is a way to filter out requests that don’t include required information.

Use the following command for the next test. In this test, you pass the required header, but the token is invalid because it wasn’t issued by Cognito and is instead a simple JWT-format token stored in ./helper.sh. To learn more about how to decode and validate a JWT, see Decode and verify a Cognito JSON token.

$ bash ./helper.sh curl-api-invalid-token
 {"Message":"User is not authorized to access this resource"}

This time the message is different. The Lambda authorizer received the request and identified the token as invalid and responded with the message “User is not authorized to access this resource.”

To make a successful request to the protected API, your code must perform the following steps:

  1. Use a user name and password to authenticate against your Cognito user pool.
  2. Acquire the tokens (ID token, access token, and refresh token).
  3. Make an HTTPS (TLS) request to API Gateway and pass the access token in the headers.

To finish testing, programmatically sign in to the Cognito UI, acquire a valid access token, and make a request to API Gateway. Run the following commands to call the protected internal and external APIs.

$ ./helper.sh curl-protected-internal-user-api

Getting API URL, Cognito Usernames, Cognito Users Password and Cognito ClientId...
User: Jane
Password: Pa%%word-2023-04-17-17-11-32
Resource: PI-T123
URL: https://16qyz501mg.execute-api.us-east-1.amazonaws.com/dev/appointment/PI-T123

Authenticating to get access_token...
Access Token: eyJraWQiOiJIaVRvckxxxxxxxxxx6BfCBKASA

Response: 
{"appointment": {"id": "PI-T123", "name": "Dave", "Pet": "Onyx - Dog. 2y 3m", "Phone Number": "+1234567", "Visit History": "Patient History from last visit with primary vet", "Assigned Veterinarian": "Jane"}}

User: Adam
Password: Pa%%word-2023-04-17-17-11-32
Resource: PI-T123
URL: https://16qyz501mg.execute-api.us-east-1.amazonaws.com/dev/appointment/PI-T123

Authenticating to get access_token...
Access Token: eyJraWQiOiJIaVRvckxxxxxxxxxx6BfCBKASA

Response: 
{"Message":"User is not authorized to access this resource"}

User: Adam
Password: Pa%%word-2023-04-17-17-11-32
Resource: PI-T125
URL: https://16qyz501mg.execute-api.us-east-1.amazonaws.com/dev/appointment/PI-T125

Authenticating to get access_token...
Access Token: eyJraWQiOiJIaVRvckxxxxxxxxxx6BfCBKASA

Response: 
{"appointment": {"id": "PI-T125", "name": "Dave", "Pet": "Sassy - Cat. 1y", "Phone Number": "+1398777", "Visit History": "Patient History from last visit with primary vet", "Assigned Veterinarian": "Adam"}}

Now calling external userpool users for accessing request

$ ./helper.sh curl-protected-external-user-api
User: Dave
Password: Pa%%word-2023-04-17-17-11-32
Resource: PI-T123
URL: https://16qyz501mg.execute-api.us-east-1.amazonaws.com/dev/appointment/PI-T123

Authenticating to get access_token...
Access Token: eyJraWQiOiJIaVRvckxxxxxxxxxx6BfCBKASA

Response: 
{"appointment": {"id": "PI-T123", "name": "Dave", "Pet": "Onyx - Dog. 2y 3m", "Phone Number": "+1234567", "Visit History": "Patient History from last visit with primary vet", "Assigned Veterinarian": "Jane"}}

User: Joy
Password Pa%%word-2023-04-17-17-11-32
Resource: PI-T123
URL: https://16qyz501mg.execute-api.us-east-1.amazonaws.com/dev/appointment/PI-T123

Authenticating to get access_token...
Access Token: eyJraWQiOiJIaVRvckxxxxxxxxxx6BfCBKASA

Response: 
{"Message":"User is not authorized to access this resource"}

User: Joy
Password Pa%%word-2023-04-17-17-11-32
Resource: PI-T124
URL: https://16qyz501mg.execute-api.us-east-1.amazonaws.com/dev/appointment/PI-T124

Authenticating to get access_token...
Access Token: eyJraWQiOiJIaVRvckxxxxxxxxxx6BfCBKASA

Response: 
{"appointment": {"id": "PI-T124", "name": "Joy", "Pet": "Jelly - Dog. 6y 2m", "Phone Number": "+1368728", "Visit History": "None", "Assigned Veterinarian": "Jane"}}

This time, you receive a response with data from the API service. Let’s recap the steps that the example code performed:

  1. The Lambda authorizer validates the access token.
  2. The Lambda authorizer uses Verified Permissions to evaluate the user’s requested actions against the policy store.
  3. The Lambda authorizer passes the IAM policy back to API Gateway.
  4. API Gateway evaluates the IAM policy, and the final effect is an allow.
  5. API Gateway forwards the request to Lambda.
  6. Lambda returns the response.

In each of the tests, internal and external, the architecture denied the request because the Verified Permissions policies denied access to the user. In the internal user pool, the policies only allow veterinarians to see their own patients’ data. Similarly, in the external user pool, the policies only allow clients to see their own data.

Clean up resources

Run the following command to delete the deployed resources and clean up.

$ bash ./helper.sh cf-delete-stack

Additional information

Verified Permissions is integrated with AWS CloudTrail, a service that provides a record of actions taken by a user, role, or AWS service in Verified Permissions. CloudTrail captures API calls for Verified Permissions as events. You can choose to capture actions performed on a Verified Permissions policy store by the Lambda authorizer. Verified Permissions logs can also be injected into your security information and event management (SEIM) solution for security analysis and compliance. For information about API call quotas, see Quotas for Amazon Verified Permission.

Conclusion

In this post, we demonstrated how you can use multiple Amazon Cognito user pools alongside Amazon Verified Permissions to build a single access layer to APIs. We used Cognito in this example, but you could implement the solution with another third-party IdP instead. As a next step, explore the Cedar playground to test policies that can be used with Verified Permissions, or expand this solution by integrating a third-party IdP.

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Author

Akash Kumar

Akash is a Senior Lead Consultant at AWS, based in India. He works with customers for application development, security, and DevOps to modernize and re-architect their workloads to the AWS Cloud. His passion is building innovative solutions and automating infrastructure, enabling customers to focus more on their businesses.

Brett Seib

Brett Seib

Brett is a Senior Solutions Architect, based in Austin, Texas. He is passionate about innovating and using technology to solve business challenges for customers. Brett has several years of experience in the enterprise, Internet of Things (IoT), and data analytics industries, accelerating customer business outcomes.

John Thach

John Thach

John is a Technical Account Manager, based in Houston, Texas. He focuses on enabling customers to implement resilient, secure, and cost-effective solutions by using AWS services. He is passionate about helping customers solve unique challenges through their cloud journeys.

How to use AWS Database Encryption SDK for client-side encryption and perform searches on encrypted attributes in DynamoDB tables

Post Syndicated from Samit Kumbhani original https://aws.amazon.com/blogs/security/how-to-use-aws-database-encryption-sdk-for-client-side-encryption-and-perform-searches-on-encrypted-attributes-in-dynamodb-tables/

Today’s applications collect a lot of data from customers. The data often includes personally identifiable information (PII), that must be protected in compliance with data privacy laws such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA). Modern business applications require fast and reliable access to customer data, and Amazon DynamoDB is an ideal choice for high-performance applications at scale. While server-side encryption options exist to safeguard customer data, developers can also add client-side encryption to further enhance the security of their customer’s data.

In this blog post, we show you how the AWS Database Encryption SDK (DB-ESDK) – an upgrade to the DynamoDB Encryption Client – provides client-side encryption to protect sensitive data in transit and at rest. At its core, the DB-ESDK is a record encryptor that encrypts, signs, verifies, and decrypts the records in DynamoDB table. You can also use DB-ESDK to search on encrypted records and retrieve data, thereby alleviating the need to download and decrypt your entire dataset locally. In this blog, we demonstrate how to use DB-ESDK to build application code to perform client-side encryption of sensitive data within your application before transmitting and storing it in DynamoDB and then retrieve data by searching on encrypted fields.

Client-side encryption

For protecting data at rest, many AWS services integrate with AWS Key Management Service (AWS KMS). When you use server-side encryption, your plaintext data is encrypted in transit over an HTTPS connection, decrypted at the service endpoint, and then re-encrypted by the service before being stored. Client-side encryption is the act of encrypting your data locally to help ensure its security in transit and at rest. When using client-side encryption, you encrypt the plaintext data from the source (for example, your application) before you transmit the data to an AWS service. This verifies that only the authorized users with the right permission to the encryption key can decrypt the ciphertext data. Because data is encrypted inside an environment that you control, it is not exposed to a third party, including AWS.

While client-side encryption can be used to improve overall security posture, it introduces additional complexity on the application, including managing keys and securely executing cryptographic tasks. Furthermore, client-side encryption often results in reduced portability of the data. After data is encrypted and written to the database, it’s generally not possible to perform additional tasks such as creating index on the data or search directly on the encrypted records without first decrypting it locally. In the next section, you’ll see how you can address these issues by using the AWS Database Encryption SDK (DB-ESDK)—to implement client-side encryption in your DynamoDB workloads and perform searches.

AWS Database Encryption SDK

DB-ESDK can be used to encrypt sensitive attributes such as those containing PII attributes before storing them in your DynamoDB table. This enables your application to help protect sensitive data in transit and at rest, because data cannot be exposed unless decrypted by your application. You can also use DB-ESDK to find information by searching on encrypted attributes while your data remains securely encrypted within the database.

In regards to key management, DB-ESDK gives you direct control over the data by letting you supply your own encryption key. If you’re using AWS KMS, you can use key policies to enforce clear separation between the authorized users who can access specific encrypted data and those who cannot. If your application requires storing multiple tenant’s data in single table, DB-ESDK supports configuring distinct key for each of those tenants to ensure data protection. Follow this link to view how searchable encryption works for multiple tenant databases.

While DB-ESDK provides many features to help you encrypt data in your database, in this blog post, we focus on demonstrating the ability to search on encrypted data.

How the AWS Database Encryption SDK works with DynamoDB

Figure 1: DB-ESDK overview

Figure 1: DB-ESDK overview

As illustrated in Figure 1, there are several steps that you must complete before you can start using the AWS Database Encryption SDK. First, you need to set up your cryptographic material provider library (MPL), which provides you with the lower level abstraction layer for managing cryptographic materials (that is, keyrings and wrapping keys) used for encryption and decryption. The MPL provides integration with AWS KMS as your keyring and allows you to use a symmetric KMS key as your wrapping key. When data needs to be encrypted, DB-ESDK uses envelope encryption and asks the keyring for encryption material. The material consists of a plaintext data key and an encrypted data key, which is encrypted with the wrapping key. DB-ESDK uses the plaintext data key to encrypt the data and stores the ciphertext data key with the encrypted data. This process is reversed for decryption.

The AWS KMS hierarchical keyring goes one step further by introducing a branch key between the wrapping keys and data keys. Because the branch key is cached, it reduces the number of network calls to AWS KMS, providing performance and cost benefits. The hierarchical keyring uses a separate DynamoDB table is referred as the keystore table that must be created in advance. The mapping of wrapping keys to branch keys to data keys is handled automatically by the MPL.

Next, you need to set up the main DynamoDB table for your application. The Java version of DB-ESDK for DynamoDB provides attribute level actions to let you define which attribute should be encrypted. To allow your application to search on encrypted attribute values, you also must configure beacons, which are truncated hashes of plaintext value that create a map between the plaintext and encrypted value and are used to perform the search. These configuration steps are done once for each DynamoDB table. When using beacons, there are tradeoffs between how efficient your queries are and how much information is indirectly revealed about the distribution of your data. You should understand the tradeoff between security and performance before deciding if beacons are right for your use case.

After the MPL and DynamoDB table are set up, you’re ready to use DB-ESDK to perform client-side encryption. To better understand the preceding steps, let’s dive deeper into an example of how this all comes together to insert data and perform searches on a DynamoDB table.

AWS Database Encryption SDK in action

Let’s review the process of setting up DB-ESDK and see it in action. For the purposes of this blog post, let’s build a simple application to add records and performs searches.

The following is a sample plaintext record that’s received by the application:

{
"order_id": "ABC-10001",
“order_time”: “1672531500”,
“email”: "[email protected]",
"first_name": "John",
"last_name": "Doe",
"last4_creditcard": "4567"
"expiry_date": 082026
}

Prerequisite: For client side encryption to work, set up the integrated development environment (IDE) of your choice or set up AWS Cloud9.

Note: To focus on DB-ESDK capabilities, the following instructions omit basic configuration details for DynamoDB and AWS KMS.

Configure DB-ESDK cryptography

As mentioned previously, you must set up the MPL. For this example, you use an AWS KMS hierarchical keyring.

  1. Create KMS key: Create the wrapping key for your keyring. To do this, create a symmetric KMS key using the AWS Management Console or the API.
  2. Create keystore table: Create a DynamoDB table to serve as a keystore to hold the branch keys. The logical keystore name is cryptographically bound to the data stored in the keystore table. The logical keystore name can be the same as your DynamoDB table name, but it doesn’t have to be.
    private static void keyStoreCreateTable(String keyStoreTableName,
                                           String logicalKeyStoreName,
                                           String kmsKeyArn) {
        
        final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
                KeyStoreConfig.builder()
                        .ddbClient(DynamoDbClient.create())
                        .ddbTableName(keyStoreTableName)
                        .logicalKeyStoreName(logicalKeyStoreName)
                        .kmsClient(KmsClient.create())
                        .kmsConfiguration(KMSConfiguration.builder()
                                .kmsKeyArn(kmsKeyArn)
                                .build())
                        .build()).build();
    
        
          keystore.CreateKeyStore(CreateKeyStoreInput.builder().build());
        // It may take a couple minutes for the table to reflect ACTIVE state
    }

  3. Create keystore keys: This operation generates the active branch key and beacon key using the KMS key from step 1 and stores it in the keystore table. The branch and beacon keys will be used by DB-ESDK for encrypting attributes and generating beacons.
    private static String keyStoreCreateKey(String keyStoreTableName,
                                             String logicalKeyStoreName,
                                             String kmsKeyArn) {
       
          final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
                  KeyStoreConfig.builder()
                          .ddbClient(DynamoDbClient.create())
                          .ddbTableName(keyStoreTableName)
                          .logicalKeyStoreName(logicalKeyStoreName)
                          .kmsClient(KmsClient.create())
                          .kmsConfiguration(KMSConfiguration.builder()
                              .kmsKeyArn(kmsKeyArn)
                              .build())
                          .build()).build();
        
          final String branchKeyId = keystore.CreateKey(CreateKeyInput.builder().build()).branchKeyIdentifier();
          return branchKeyId;
      }

At this point, the one-time set up to configure the cryptography material is complete.

Set up a DynamoDB table and beacons

The second step is to set up your DynamoDB table for client-side encryption. In this step, define the attributes that you want to encrypt, define beacons to enable search on encrypted data, and set up the index to query the data. For this example, use the Java client-side encryption library for DynamoDB.

  1. Define DynamoDB table: Define the table schema and the attributes to be encrypted. For this blog post, lets define the schema based on the sample record that was shared previously. To do that, create a DynamoDB table called OrderInfo with order_id as the partition key and order_time as the sort key.

    DB-ESDK provides the following options to define the sensitivity level for each field. Define sensitivity level for each of the attributes based on your use case.

    • ENCRYPT_AND_SIGN: Encrypts and signs the attributes in each record using a unique encryption key. Choose this option for attributes with data you want to encrypt.
    • SIGN_ONLY: Adds a digital signature to verify the authenticity of your data. Choose this option for attributes that you would like to protect from being altered. The partition and sort key should always be set as SIGN_ONLY.
    • DO_NOTHING: Does not encrypt or sign the contents of the field and stores the data as-is. Only choose this option if the field doesn’t contain sensitive data and doesn’t need to be authenticated with the rest of your data. In this example, the partition key and sort key will be defined as “Sign_Only” attributes. All additional table attributes will be defined as “Encrypt and Sign”: email, firstname, lastname, last4creditcard and expirydate.
      private static DynamoDbClient configDDBTable(String ddbTableName, 
                                            IKeyring kmsKeyring, 
                                            List<BeaconVersion> beaconVersions){
      
          // Partition and Sort keys must be SIGN_ONLY
           
          final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
          attributeActionsOnEncrypt.put("order_id", CryptoAction.SIGN_ONLY);
          attributeActionsOnEncrypt.put("order_time", CryptoAction.SIGN_ONLY);
          attributeActionsOnEncrypt.put("email", CryptoAction.ENCRYPT_AND_SIGN);
          attributeActionsOnEncrypt.put("firstname", CryptoAction.ENCRYPT_AND_SIGN);
          attributeActionsOnEncrypt.put("lastname", CryptoAction.ENCRYPT_AND_SIGN);
          attributeActionsOnEncrypt.put("last4creditcard", CryptoAction.ENCRYPT_AND_SIGN);
          attributeActionsOnEncrypt.put("expirydate", CryptoAction.ENCRYPT_AND_SIGN);
      
      
          final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
          final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
                  .logicalTableName(ddbTableName)
                  .partitionKeyName("order_id")
                  .sortKeyName("order_time")
                  .attributeActionsOnEncrypt(attributeActionsOnEncrypt)
                  .keyring(kmsKeyring)
                  .search(SearchConfig.builder()
                          .writeVersion(1) // MUST be 1
                          .versions(beaconVersions)
                          .build())
                  .build();
          tableConfigs.put(ddbTableName, config);
      
          // Create the DynamoDb Encryption Interceptor
          DynamoDbEncryptionInterceptor encryptionInterceptor = DynamoDbEncryptionInterceptor.builder()
                  .config(DynamoDbTablesEncryptionConfig.builder()
                          .tableEncryptionConfigs(tableConfigs)
                          .build())
                  .build();
      
          // Create a new AWS SDK DynamoDb client using the DynamoDb Encryption Interceptor above
          final DynamoDbClient ddb = DynamoDbClient.builder()
                  .overrideConfiguration(
                          ClientOverrideConfiguration.builder()
                                  .addExecutionInterceptor(encryptionInterceptor)
                                  .build())
                  .build();
          return ddb;
      }

  2. Configure beacons: Beacons allow searches on encrypted fields by creating a mapping between the plaintext value of a field and the encrypted value that’s stored in your database. Beacons are generated by DB-ESDK when the data is being encrypted and written by your application. Beacons are stored in your DynamoDB table along with your encrypted data in fields labelled with the prefix aws_dbe_b_.

    It’s important to note that beacons are designed to be implemented in new, unpopulated tables only. If configured on existing tables, beacons will only map to new records that are written and the older records will not have the values populated. There are two types of beacons – standard and compound. The type of beacon you configure determines the type of queries you are able to perform. You should select the type of beacon based on your queries and access patterns:

    • Standard beacons: This beacon type supports querying a single source field using equality operations such as equals and not-equals. It also allows you to query a virtual (conceptual) field by concatenating one or more source fields.
    • Compound beacons: This beacon type supports querying a combination of encrypted and signed or signed-only fields and performs complex operations such as begins with, contains, between, and so on. For compound beacons, you must first build standard beacons on individual fields. Next, you need to create an encrypted part list using a unique prefix for each of the standard beacons. The prefix should be a short value and helps differentiate the individual fields, simplifying the querying process. And last, you build the compound beacon by concatenating the standard beacons that will be used for searching using a split character. Verify that the split character is unique and doesn’t appear in any of the source fields’ data that the compound beacon is constructed from.

    Along with identifying the right beacon type, each beacon must be configured with additional properties such as a unique name, source field, and beacon length. Continuing the previous example, let’s build beacon configurations for the two scenarios that will be demonstrated in this blog post.

    Scenario 1: Identify orders by exact match on the email address.

    In this scenario, search needs to be conducted on a singular attribute using equality operation.

    • Beacon type: Standard beacon.
    • Beacon name: The name can be the same as the encrypted field name, so let’s set it as email.
    • Beacon length: For this example, set the beacon length to 15. For your own uses cases, see Choosing a beacon length.

    Scenario 2: Identify orders using name (first name and last name) and credit card attributes (last four digits and expiry date).

    In this scenario, multiple attributes are required to conduct a search. To satisfy the use case, one option is to create individual compound beacons on name attributes and credit card attributes. However, the name attributes are considered correlated and, as mentioned in the beacon selection guidance, we should avoid building a compound beacon on such correlated fields. Instead in this scenario we will concatenate the attributes and build a virtual field on the name attributes

    • Beacon type: Compound beacon
    • Beacon Configuration:
      • Define a virtual field on firstname and lastname, and label it fullname.
      • Define standard beacons on each of the individual fields that will be used for searching: fullname, last4creditcard, and expirydate. Follow the guidelines for setting standard beacons as explained in Scenario 1.
      • For compound beacons, create an encrypted part list to concatenate the standard beacons with a unique prefix for each of the standard beacons. The prefix helps separate the individual fields. For this example, use C- for the last four digits of the credit card and E- for the expiry date.
      • Build the compound beacons using their respective encrypted part list and a unique split character. For this example, use ~ as the split character.
    • Beacon length: Set beacon length to 15.
    • Beacon Name: Set the compound beacon name as CardCompound.
    private static List<VirtualField> getVirtualField(){
        
        List<VirtualPart> virtualPartList = new ArrayList<>();
        VirtualPart firstnamePart = VirtualPart.builder()
            .loc("firstname")
            .build();
        VirtualPart lastnamePart = VirtualPart.builder()
            .loc("lastname")
            .build();
    
        virtualPartList.add(firstnamePart);
        virtualPartList.add(lastnamePart);
    
        VirtualField fullnameField = VirtualField.builder()
            .name("FullName")
            .parts(virtualPartList)
            .build();
    
        List<VirtualField> virtualFieldList = new ArrayList<>();
        
        virtualFieldList.add(fullnameField);
        return virtualFieldList;
       }
      
      private static List<StandardBeacon> getStandardBeacon(){
    
        List<StandardBeacon> standardBeaconList = new ArrayList<>();
        StandardBeacon emailBeacon = StandardBeacon
          .builder()
          .name("email")
          .length(15)
          .build();
        StandardBeacon last4creditcardBeacon = StandardBeacon
          .builder()
          .name("last4creditcard")
          .length(15)
          .build();
        StandardBeacon expirydateBeacon = StandardBeacon
          .builder()
          .name("expirydate")
          .length(15)
          .build();  
          
      // Virtual field
        StandardBeacon fullnameBeacon = StandardBeacon
          .builder()
          .name("FullName")
          .length(15)
          .build();  
       
        standardBeaconList.add(emailBeacon);
        standardBeaconList.add(fullnameBeacon);
        standardBeaconList.add(last4creditcardBeacon);
        standardBeaconList.add(expirydateBeacon);
        return standardBeaconList;
      }
    
    // Define compound beacon
      private static List<CompoundBeacon> getCompoundBeacon() {
         
       List<EncryptedPart> encryptedPartList_card = new ArrayList<>(); 
        EncryptedPart last4creditcardEncryptedPart = EncryptedPart
          .builder()
          .name("last4creditcard")
          .prefix("C-")
          .build();
          
        EncryptedPart expirydateEncryptedPart = EncryptedPart
          .builder()
          .name("expirydate")
          .prefix("E-")
          .build();  
          
        encryptedPartList_card.add(last4creditcardEncryptedPart);
        encryptedPartList_card.add(expirydateEncryptedPart);
    
        List<CompoundBeacon> compoundBeaconList = new ArrayList<>();
    
        CompoundBeacon CardCompoundBeacon = CompoundBeacon
          .builder()
          .name("CardCompound")
          .split("~")
          .encrypted(encryptedPartList_card)
          .build();      
    
        compoundBeaconList.add(CardCompoundBeacon);
        return compoundBeaconList;  }
    
    // Build the beacons
    private static List<BeaconVersion> getBeaconVersions(List<StandardBeacon> standardBeaconList, List<CompoundBeacon> compoundBeaconList, KeyStore keyStore, String branchKeyId){
        List<BeaconVersion> beaconVersions = new ArrayList<>();
        beaconVersions.add(
                BeaconVersion.builder()
                        .standardBeacons(standardBeaconList)
                        .compoundBeacons(compoundBeaconList)
                        .version(1) // MUST be 1
                        .keyStore(keyStore)
                        .keySource(BeaconKeySource.builder()
                                .single(SingleKeyStore.builder()
                                        .keyId(branchKeyId)
                                        .cacheTTL(6000)
                                        .build())
                                .build())
                        .build()
        );
        return beaconVersions;
    }

  3. Define index: Following DynamoDB best practices, secondary indexes are often essential to support query patterns. DB-ESDK performs searches on the encrypted fields by doing a look up on the fields with matching beacon values. Therefore, if you need to query an encrypted field, you must create an index on the corresponding beacon fields generated by the DB-ESDK library (attributes with prefix aws_dbe_b_), which will be used by your application for searches.

    For this step, you will manually create a global secondary index (GSI).

    Scenario 1: Create a GSI with aws_dbe_b_email as the partition key and leave the sort key empty. Set the index name as aws_dbe_b_email-index. This will allow searches using the email address attribute.

    Scenario 2: Create a GSI with aws_dbe_b_FullName as the partition key and aws_dbe_b_CardCompound as the sort key. Set the index name as aws_dbe_b_VirtualNameCardCompound-index. This will allow searching based on firstname, lastname, last four digits of the credit card, and the expiry date. At this point the required DynamoDB table setup is complete.

Set up the application to insert and query data

Now that the setup is complete, you can use the DB-ESDK from your application to insert new items into your DynamoDB table. DB-ESDK will automatically fetch the data key from the keyring, perform encryption locally, and then make the put call to DynamoDB. By using beacon fields, the application can perform searches on the encrypted fields.

  1. Keyring initialization: Initialize the AWS KMS hierarchical keyring.
    //Retrieve keystore object required for keyring initialization
    private static KeyStore getKeystore(
        String branchKeyDdbTableName,
        String logicalBranchKeyDdbTableName,
        String branchKeyWrappingKmsKeyArn
      ) {
        KeyStore keyStore = KeyStore
          .builder()
          .KeyStoreConfig(
            KeyStoreConfig
              .builder()
              .kmsClient(KmsClient.create())
              .ddbClient(DynamoDbClient.create())
              .ddbTableName(branchKeyDdbTableName)
              .logicalKeyStoreName(logicalBranchKeyDdbTableName)
              .kmsConfiguration(
                KMSConfiguration
                  .builder()
                  .kmsKeyArn(branchKeyWrappingKmsKeyArn)
                  .build()
              )
              .build()
          )
          .build();
        return keyStore;
      }
    
    //Initialize keyring
    private static IKeyring getKeyRing(String branchKeyId, KeyStore keyStore){
        final MaterialProviders matProv = MaterialProviders.builder()
                .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
                .build();
        CreateAwsKmsHierarchicalKeyringInput keyringInput = CreateAwsKmsHierarchicalKeyringInput.builder()
                .branchKeyId(branchKeyId)
                .keyStore(keyStore)
                .ttlSeconds(60)
                .build();
        final IKeyring kmsKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);
      
        return kmsKeyring;
    }

  2. Insert source data: For illustration purpose, lets define a method to load sample data into the OrderInfo table. By using DB-ESDK, the application will encrypt data attributes as defined in the DynamoDB table configuration steps.
    // Insert Order Data
      private static void insertOrder(HashMap<String, AttributeValue> order, DynamoDbClient ddb, String ddbTableName) {
    
        final PutItemRequest putRequest = PutItemRequest.builder()
            .tableName(ddbTableName)
            .item(order)
            .build();
    
        final PutItemResponse putResponse = ddb.putItem(putRequest);
        assert 200 == putResponse.sdkHttpResponse().statusCode();
      }
      
        private static HashMap<String, AttributeValue> getOrder(
        String orderId,
        String orderTime,
        String firstName,
        String lastName,
        String email,
        String last4creditcard,
        String expirydate
      ) 
      {
        final HashMap<String, AttributeValue> order = new HashMap<>();
        order.put("order_id", AttributeValue.builder().s(orderId).build());
        order.put("order_time", AttributeValue.builder().s(orderTime).build());
        order.put("firstname", AttributeValue.builder().s(firstName).build());
        order.put("lastname", AttributeValue.builder().s(lastName).build());
        order.put("email", AttributeValue.builder().s(email).build());
        order.put("last4creditcard", AttributeValue.builder().s(last4creditcard).build());
        order.put("expirydate", AttributeValue.builder().s(expirydate).build());
    
        return order;
      }

  3. Query Data: Define a method to query data using plaintext values

    Scenario 1: Identify orders associated with email address [email protected]. This query should return Order ID ABC-1001.

    private static void runQueryEmail(DynamoDbClient ddb, String ddbTableName) {
        Map<String, String> expressionAttributesNames = new HashMap<>();
        expressionAttributesNames.put("#e", "email");
    
        Map<String, AttributeValue> expressionAttributeValues = new HashMap<>();
        expressionAttributeValues.put(
          ":e",
          AttributeValue.builder().s("[email protected]").build()
        );
    
        QueryRequest queryRequest = QueryRequest
          .builder()
          .tableName(ddbTableName)
          .indexName("aws_dbe_b_email-index")
          .keyConditionExpression("#e = :e")
          .expressionAttributeNames(expressionAttributesNames)
          .expressionAttributeValues(expressionAttributeValues)
          .build();
    
        final QueryResponse queryResponse = ddb.query(queryRequest);
        assert 200 == queryResponse.sdkHttpResponse().statusCode();
    
        List<Map<String, AttributeValue>> items = queryResponse.items();
    
        for (Map<String, AttributeValue> returnedItem : items) {
          System.out.println(returnedItem.get("order_id").s());
        }
      }

    Scenario 2: Identify orders that were placed by John Doe using a specific credit card with the last four digits of 4567 and expiry date of 082026. This query should return Order ID ABC-1003 and ABC-1004.

    private static void runQueryNameCard(DynamoDbClient ddb, String ddbTableName) {
        Map<String, String> expressionAttributesNames = new HashMap<>();
        expressionAttributesNames.put("#PKName", "FullName");
        expressionAttributesNames.put("#SKName", "CardCompound");
    
    
       Map<String, AttributeValue> expressionAttributeValues = new HashMap<>();
        expressionAttributeValues.put(
          ":PKValue",
          AttributeValue.builder().s("JohnDoe").build()
          );
        expressionAttributeValues.put(
          ":SKValue",
          AttributeValue.builder().s("C-4567~E-082026").build()
          ); 
        
        QueryRequest queryRequest = QueryRequest
          .builder()
          .tableName(ddbTableName)
          .indexName("aws_dbe_b_VirtualNameCardCompound-index")
          .keyConditionExpression("#PKName = :PKValue and #SKName = :SKValue")
          .expressionAttributeNames(expressionAttributesNames)
          .expressionAttributeValues(expressionAttributeValues)
          .build();
        final QueryResponse queryResponse = ddb.query(queryRequest);
    
        // Validate query was returned successfully
        assert 200 == queryResponse.sdkHttpResponse().statusCode();
    
        List<Map<String, AttributeValue>> items = queryResponse.items();
    
        for (Map<String, AttributeValue> returnedItem : items) {
          System.out.println(returnedItem.get("order_id").s());
        }
      }

    Note: Compound beacons support complex string operation such as begins_with. In Scenario 2, if you had only the name attributes and last four digits of the credit card, you could still use the compound beacon for querying. You can set the values as shown below to query the beacon using the same code:

    PKValue = “JohnDoe”
    SKValue = "C-4567”
    keyConditionExpression = "#PKName = :PKValue and begins_with(#SKName, :SKValue)"

Now that you have the building blocks, let’s bring this all together and run the following steps to set up the application. For this example, a few of the input parameters have been hard coded. In your application code, replace <KMS key ARN> and <branch-key-id derived from keystore table> from Step 1 and Step 3 mentioned in the Configure DB-ESDK cryptography sections.

//Hard coded values for illustration
String keyStoreTableName = "tblKeyStore";
String logicalKeyStoreName = "lglKeyStore";
String kmsKeyArn = "<KMS key ARN>";
String ddbTableName = "OrderInfo";
String branchKeyId = "<branch-key-id derived from keystore table>";
String branchKeyWrappingKmsKeyArn = "<KMS key ARN>";
String branchKeyDdbTableName = keyStoreTableName;


//run only once to setup keystore 
keyStoreCreateTable(keyStoreTableName, logicalKeyStoreName, kmsKeyArn);

//run only once to create branch and beacon key
keyStoreCreateKey(keyStoreTableName, logicalKeyStoreName, kmsKeyArn);

//run configuration per DynamoDb table 
List<VirtualField> virtualField = getVirtualField();
List<StandardBeacon> beacon = getStandardBeacon ();
List<CompoundBeacon> compoundBeacon = getCompoundBeacon();
KeyStore keyStore = getKeystore(branchKeyDdbTableName, logicalKeyStoreName, branchKeyWrappingKmsKeyArn);
List<BeaconVersion> beaconVersions = getBeaconVersions(beacon, compoundBeacon, keyStore, branchKeyId);
IKeyring keyRing = getKeyRing(branchKeyId, keyStore);
DynamoDbClient ddb = configDDBTable(ddbTableName, keyRing, beaconVersions);

//insert sample records
    HashMap<String, AttributeValue> order1 = getOrder("ABC-1001", "1672531200", "Mary", "Major", "[email protected]", "1234", "012001");
    HashMap<String, AttributeValue> order2 = getOrder("ABC-1002", "1672531400", "John", "Doe", "[email protected]", "1111", "122023");
    HashMap<String, AttributeValue> order3 = getOrder("ABC-1003", "1672531500", "John", "Doe", "[email protected]","4567", "082026");
    HashMap<String, AttributeValue> order4 = getOrder("ABC-1004", "1672531600", "John", "Doe", "[email protected]","4567", "082026");

   insertOrder(order1, ddb, ddbTableName);
   insertOrder(order2, ddb, ddbTableName);
   insertOrder(order3, ddb, ddbTableName);
   insertOrder(order4, ddb, ddbTableName);

//Query OrderInfo table
runQueryEmail(ddb, ddbTableName); //returns orderid ABC-1001
runQueryNameCard(ddb, ddbTableName); // returns orderid ABC-1003, ABC-1004

Conclusion

You’ve just seen how to build an application that encrypts sensitive data on client side, stores it in a DynamoDB table and performs queries on the encrypted data transparently to the application code without decrypting the entire data set. This allows your applications to realize the full potential of the encrypted data while adhering to security and compliance requirements. The code snippet used in this blog is available for reference on GitHub. You can further read the documentation of the AWS Database Encryption SDK and reference the source code at this repository. We encourage you to explore other examples of searching on encrypted fields referenced in this GitHub repository.

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Samit Kumbhani

Samit Kumbhani

Samit is an AWS Sr. Solutions Architect in the New York City area. He has 18 years of experience building applications and focuses on Analytics, Business Intelligence, and Databases. He enjoys working with customers to understand and solve their challenges by creating innovative solutions using AWS services. Samit enjoys playing cricket, traveling, and biking.

Author

Nir Ozeri

Nir is a Solutions Architect Manager with Amazon Web Services, based out of New York City. Nir specializes in application modernization, application delivery, and mobile architecture.

Yuri Duchovny

Yuri Duchovny

Yuri is a New York–based Principal Solutions Architect specializing in cloud security, identity, and compliance. He supports cloud transformations at large enterprises, helping them make optimal technology and organizational decisions. Prior to his AWS role, Yuri’s areas of focus included application and networking security, DoS, and fraud protection. Outside of work, he enjoys skiing, sailing, and traveling the world.

Another Attack Vector For SMS Interception

Post Syndicated from Bozho original https://techblog.bozho.net/another-attack-vector-for-sms-interception/

SMS codes for 2FAs have been discussed for a long time, and everyone knowledgeable in security knows they are not secure. What’s more – you should remove your phone number from sensitive services like Gmail, because if an attacker can fallback to SMS, the account is compromised.

Many authors have discussed how insecure SMS is, including Brian Krebbs, citing an example of NetNumber ID abuse, in addition to SIM Swap attacks and SS7 vulnerabilities.

Another aspect that I recently thought about is again related to intermediaries. Bulk SMS resellers integrate with various telecoms around the globe and accept outgoing SMS by API calls, which they then forward to a telecom in the relevant country. Global companies that send a lot of SMS try to look for cheap bulk deals (you are probably aware that Twitter/X recently decided to charge for SMS 2FA, because it was incurring high costs). These services are sometimes called a2p (application to person).

This means that intermediaries receive the 2FA code before it reaches the subscriber. A malicious insider or an attacker that compromises those intermediaries can thus have access to 2FA codes before they reach the subscriber.

I don’t know if this attack vector has been used, but it is a valid attack – if an attacker knows the intermediaries that a given service is using, they can either try to compromise the systems of the intermediaries, or gain access through a compromised insider. In either scenario, the victim’s 2FA code will be accessible to the attacker in real time.

This just reinforces the rule of thumb – don’t rely on SMS for two-factor authentication.

The post Another Attack Vector For SMS Interception appeared first on Bozho's tech blog.

Building a security-first mindset: three key themes from AWS re:Invent 2023

Post Syndicated from Clarke Rodgers original https://aws.amazon.com/blogs/security/building-a-security-first-mindset-three-key-themes-from-aws-reinvent-2023/

Amazon CSO Stephen Schmidt

Amazon CSO Stephen Schmidt

AWS re:Invent drew 52,000 attendees from across the globe to Las Vegas, Nevada, November 27 to December 1, 2023.

Now in its 12th year, the conference featured 5 keynotes, 17 innovation talks, and over 2,250 sessions and hands-on labs offering immersive learning and networking opportunities.

With dozens of service and feature announcements—and innumerable best practices shared by AWS executives, customers, and partners—the air of excitement was palpable. We were on site to experience all of the innovations and insights, but summarizing highlights isn’t easy. This post details three key security themes that caught our attention.

Security culture

When we think about cybersecurity, it’s natural to focus on technical security measures that help protect the business. But organizations are made up of people—not technology. The best way to protect ourselves is to foster a proactive, resilient culture of cybersecurity that supports effective risk mitigation, incident detection and response, and continuous collaboration.

In Sustainable security culture: Empower builders for success, AWS Global Services Security Vice President Hart Rossman and AWS Global Services Security Organizational Excellence Leader Sarah Currey presented practical strategies for building a sustainable security culture.

Rossman noted that many customers who meet with AWS about security challenges are attempting to manage security as a project, a program, or a side workstream. To strengthen your security posture, he said, you have to embed security into your business.

“You’ve got to understand early on that security can’t be effective if you’re running it like a project or a program. You really have to run it as an operational imperative—a core function of the business. That’s when magic can happen.” — Hart Rossman, Global Services Security Vice President at AWS

Three best practices can help:

  1. Be consistently persistent. Routinely and emphatically thank employees for raising security issues. It might feel repetitive, but treating security events and escalations as learning opportunities helps create a positive culture—and it’s a practice that can spread to other teams. An empathetic leadership approach encourages your employees to see security as everyone’s responsibility, share their experiences, and feel like collaborators.
  2. Brief the board. Engage executive leadership in regular, business-focused meetings. By providing operational metrics that tie your security culture to the impact that it has on customers, crisply connecting data to business outcomes, and providing an opportunity to ask questions, you can help build the support of executive leadership, and advance your efforts to establish a sustainable proactive security posture.
  3. Have a mental model for creating a good security culture. Rossman presented a diagram (Figure 1) that highlights three elements of security culture he has observed at AWS: a student, a steward, and a builder. If you want to be a good steward of security culture, you should be a student who is constantly learning, experimenting, and passing along best practices. As your stewardship grows, you can become a builder, and progress the culture in new directions.
Figure 1: Sample mental model for building security culture

Figure 1: Sample mental model for building security culture

Thoughtful investment in the principles of inclusivity, empathy, and psychological safety can help your team members to confidently speak up, take risks, and express ideas or concerns. This supports an escalation-friendly culture that can reduce employee burnout, and empower your teams to champion security at scale.

In Shipping securely: How strong security can be your strategic advantage, AWS Enterprise Strategy Director Clarke Rodgers reiterated the importance of security culture to building a security-first mindset.

Rodgers highlighted three pillars of progression (Figure 2)—aware, bolted-on, and embedded—that are based on meetings with more than 800 customers. As organizations mature from a reactive security posture to a proactive, security-first approach, he noted, security culture becomes a true business enabler.

“When organizations have a strong security culture and everyone sees security as their responsibility, they can move faster and achieve quicker and more secure product and service releases.” — Clarke Rodgers, Director of Enterprise Strategy at AWS
Figure 2: Shipping with a security-first mindset

Figure 2: Shipping with a security-first mindset

Human-centric AI

CISOs and security stakeholders are increasingly pivoting to a human-centric focus to establish effective cybersecurity, and ease the burden on employees.

According to Gartner, by 2027, 50% of large enterprise CISOs will have adopted human-centric security design practices to minimize cybersecurity-induced friction and maximize control adoption.

As Amazon CSO Stephen Schmidt noted in Move fast, stay secure: Strategies for the future of security, focusing on technology first is fundamentally wrong. Security is a people challenge for threat actors, and for defenders. To keep up with evolving changes and securely support the businesses we serve, we need to focus on dynamic problems that software can’t solve.

Maintaining that focus means providing security and development teams with the tools they need to automate and scale some of their work.

“People are our most constrained and most valuable resource. They have an impact on every layer of security. It’s important that we provide the tools and the processes to help our people be as effective as possible.” — Stephen Schmidt, CSO at Amazon

Organizations can use artificial intelligence (AI) to impact all layers of security—but AI doesn’t replace skilled engineers. When used in coordination with other tools, and with appropriate human review, it can help make your security controls more effective.

Schmidt highlighted the internal use of AI at Amazon to accelerate our software development process, as well as new generative AI-powered Amazon Inspector, Amazon Detective, AWS Config, and Amazon CodeWhisperer features that complement the human skillset by helping people make better security decisions, using a broader collection of knowledge. This pattern of combining sophisticated tooling with skilled engineers is highly effective, because it positions people to make the nuanced decisions required for effective security that AI can’t make on its own.

In How security teams can strengthen security using generative AI, AWS Senior Security Specialist Solutions Architects Anna McAbee and Marshall Jones, and Principal Consultant Fritz Kunstler featured a virtual security assistant (chatbot) that can address common security questions and use cases based on your internal knowledge bases, and trusted public sources.

Figure 3: Generative AI-powered chatbot architecture

Figure 3: Generative AI-powered chatbot architecture

The generative AI-powered solution depicted in Figure 3—which includes Retrieval Augmented Generation (RAG) with Amazon Kendra, Amazon Security Lake, and Amazon Bedrock—can help you automate mundane tasks, expedite security decisions, and increase your focus on novel security problems.

It’s available on Github with ready-to-use code, so you can start experimenting with a variety of large and multimodal language models, settings, and prompts in your own AWS account.

Secure collaboration

Collaboration is key to cybersecurity success, but evolving threats, flexible work models, and a growing patchwork of data protection and privacy regulations have made maintaining secure and compliant messaging a challenge.

An estimated 3.09 billion mobile phone users access messaging apps to communicate, and this figure is projected to grow to 3.51 billion users in 2025.

The use of consumer messaging apps for business-related communications makes it more difficult for organizations to verify that data is being adequately protected and retained. This can lead to increased risk, particularly in industries with unique recordkeeping requirements.

In How the U.S. Army uses AWS Wickr to deliver lifesaving telemedicine, Matt Quinn, Senior Director at The U.S. Army Telemedicine & Advanced Technology Research Center (TATRC), Laura Baker, Senior Manager at Deloitte, and Arvind Muthukrishnan, AWS Wickr Head of Product highlighted how The TATRC National Emergency Tele-Critical Care Network (NETCCN) was integrated with AWS Wickr—a HIPAA-eligible secure messaging and collaboration service—and AWS Private 5G, a managed service for deploying and scaling private cellular networks.

During the session, Quinn, Baker, and Muthukrishnan described how TATRC achieved a low-resource, cloud-enabled, virtual health solution that facilitates secure collaboration between onsite and remote medical teams for real-time patient care in austere environments. Using Wickr, medics on the ground were able to treat injuries that exceeded their previous training (Figure 4) with the help of end-to-end encrypted video calls, messaging, and file sharing with medical professionals, and securely retain communications in accordance with organizational requirements.

“Incorporating Wickr into Military Emergency Tele-Critical Care Platform (METTC-P) not only provides the security and privacy of end-to-end encrypted communications, it gives combat medics and other frontline caregivers the ability to gain instant insight from medical experts around the world—capabilities that will be needed to address the simultaneous challenges of prolonged care, and the care of large numbers of casualties on the multi-domain operations (MDO) battlefield.” — Matt Quinn, Senior Director at TATRC
Figure 4: Telemedicine workflows using AWS Wickr

Figure 4: Telemedicine workflows using AWS Wickr

In a separate Chalk Talk titled Bolstering Incident Response with AWS Wickr and Amazon EventBridge, Senior AWS Wickr Solutions Architects Wes Wood and Charles Chowdhury-Hanscombe demonstrated how to integrate Wickr with Amazon EventBridge and Amazon GuardDuty to strengthen incident response capabilities with an integrated workflow (Figure 5) that connects your AWS resources to Wickr bots. Using this approach, you can quickly alert appropriate stakeholders to critical findings through a secure communication channel, even on a potentially compromised network.

Figure 5: AWS Wickr integration for incident response communications

Figure 5: AWS Wickr integration for incident response communications

Security is our top priority

AWS re:Invent featured many more highlights on a variety of topics, including adaptive access control with Zero Trust, AWS cyber insurance partners, Amazon CTO Dr. Werner Vogels’ popular keynote, and the security partnerships showcased on the Expo floor. It was a whirlwind experience, but one thing is clear: AWS is working hard to help you build a security-first mindset, so that you can meaningfully improve both technical and business outcomes.

To watch on-demand conference sessions, visit the AWS re:Invent Security, Identity, and Compliance playlist on YouTube.

If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security news? Follow us on Twitter.

Clarke Rodgers

Clarke Rodgers

Clarke is a Director of Enterprise Security at AWS. Clarke has more than 25 years of experience in the security industry, and works with enterprise security, risk, and compliance-focused executives to strengthen their security posture, and understand the security capabilities of the cloud. Prior to AWS, Clarke was a CISO for the North American operations of a multinational insurance company.

Anne Grahn

Anne Grahn

Anne is a Senior Worldwide Security GTM Specialist at AWS, based in Chicago. She has more than 13 years of experience in the security industry, and focuses on effectively communicating cybersecurity risk. She maintains a Certified Information Systems Security Professional (CISSP) certification.

How to use AWS Secrets Manager and ABAC for enhanced secrets management in Amazon EKS

Post Syndicated from Nima Fotouhi original https://aws.amazon.com/blogs/security/how-to-use-aws-secrets-manager-and-abac-for-enhanced-secrets-management-in-amazon-eks/

In this post, we show you how to apply attribute-based access control (ABAC) while you store and manage your Amazon Elastic Kubernetes Services (Amazon EKS) workload secrets in AWS Secrets Manager, and then retrieve them by integrating Secrets Manager with Amazon EKS using External Secrets Operator to define more fine-grained and dynamic AWS Identity and Access Management (IAM) permission policies for accessing secrets.

It’s common to manage numerous workloads in an EKS cluster, each necessitating access to a distinct set of secrets. You can verify adherence to the principle of least privilege by creating separate permission policies for each workload to restrict their access. To scale and reduce overhead, Amazon Web Services (AWS) recommends using ABAC to manage workloads’ access to secrets. ABAC helps reduce the number of permission policies needed to scale with your environment.

What is ABAC?

In IAM, a traditional authorization approach is known as role-based access control (RBAC). RBAC sets permissions based on a person’s job function, commonly known as IAM roles. To enforce RBAC in IAM, distinct policies for various job roles are created. As a best practice, only the minimum permissions required for a specific role are granted (principle of least privilege), which is achieved by specifying the resources that the role can access. A limitation of the RBAC model is its lack of flexibility. Whenever new resources are introduced, you must modify policies to permit access to the newly added resources.

Attribute-based access control (ABAC) is an approach to authorization that assigns permissions in accordance with attributes, which in the context of AWS are referred to as tags. You create and add tags to your IAM resources. You then create and configure ABAC policies to permit operations requested by a principal when there’s a match between the tags of the principal and the resource. When a principal uses temporary credentials to make a request, its associated tags come from session tags, incoming transitive sessions tags, and IAM tags. The principal’s IAM tags are persistent, but session tags, and incoming transitive session tags are temporary and set when the principal assumes an IAM role. Note that AWS tags are attached to AWS resources, whereas session tags are only valid for the current session and expire with the session.

How External Secrets Operator works

External Secrets Operator (ESO) is a Kubernetes operator that integrates external secret management systems including Secrets Manager with Kubernetes. ESO provides Kubernetes custom resources to extend Kubernetes and integrate it with Secrets Manager. It fetches secrets and makes them available to other Kubernetes resources by creating Kubernetes Secrets. At a basic level, you need to create an ESO SecretStore resource and one or more ESO ExternalSecret resources. The SecretStore resource specifies how to access the external secret management system (Secrets Manager) and allows you to define ABAC related properties (for example, session tags and transitive tags).

You declare what data (secret) to fetch and how the data should be transformed and saved as a Kubernetes Secret in the ExternalSecret resource. The following figure shows an overview of the process for creating Kubernetes Secrets. Later in this post, we review the steps in more detail.

Figure 1: ESO process

Figure 1: ESO process

How to use ESO for ABAC

Before creating any ESO resources, you must make sure that the operator has sufficient permissions to access Secrets Manager. ESO offers multiple ways to authenticate to AWS. For the purpose of this solution, you will use the controller’s pod identity. To implement this method, you configure the ESO service account to assume an IAM role for service accounts (IRSA), which is used by ESO to make requests to AWS.

To adhere to the principle of least privilege and verify that each Kubernetes workload can access only its designated secrets, you will use ABAC policies. As we mentioned, tags are the attributes used for ABAC in the context of AWS. For example, principal and secret tags can be compared to create ABAC policies to deny or allow access to secrets. Secret tags are static tags assigned to secrets symbolizing the workload consuming the secret. On the other hand, principal (requester) tags are dynamically modified, incorporating workload specific tags. The only viable option to dynamically modifying principal tags is to use session tags and incoming transitive session tags. However, as of this writing, there is no way to add session and transitive tags when assuming an IRSA. The workaround for this issue is role chaining and passing session tags when assuming downstream roles. ESO offers role chaining, meaning that you can refer to one or more IAM roles with access to Secrets Manager in the SecretStore resource definition, and ESO will chain them with its IRSA to access secrets. It also allows you to define session tags and transitive tags to be passed when ESO assumes the IAM roles with its primary IRSA. The ability to pass session tags allows you to implement ABAC and compare principal tags (including session tags) with secret tags every time ESO sends a request to Secrets Manager to fetch a secret. The following figure shows ESO authentication process with role chaining in one Kubernetes namespace.

Figure 2: ESO AWS authentication process with role chaining (single namespace)

Figure 2: ESO AWS authentication process with role chaining (single namespace)

Architecture overview

Let’s review implementing ABAC with a real-world example. When you have multiple workloads and services in your Amazon EKS cluster, each service is deployed in its own unique namespace, and service secrets are stored in Secrets Manager and tagged with a service name (key=service, value=service name). The following figure shows the required resources to implement ABAC with EKS and Secrets Manager.

Figure 3: Amazon EKS secrets management with ABAC

Figure 3: Amazon EKS secrets management with ABAC

Prerequisites

Deploy the solution

Begin by installing ESO:

  1. From a terminal where you usually run your helm commands, run the following helm command to add an ESO helm repository.
    helm repo add external-secrets https://charts.external-secrets.io
    

  2. Install ESO using the following helm command in a terminal that has access to your target Amazon EKS cluster:
    helm install external-secrets \
       external-secrets/external-secrets \
        -n external-secrets \
        --create-namespace \
       --set installCRDs=true 
    

  3. To verify ESO installation, run the following command. Make sure you pass the same namespace as the one you used when installing ESO:
    kubectl get pods -n external-secrets
    

See the ESO Getting started documentation page for more information on other installation methods, installation options, and how to uninstall ESO.

Create an IAM role to access Secrets Manager secrets

You must create an IAM role with access to Secrets Manager secrets. Start by creating a customer managed policy to attach to your role. Your policy should allow reading secrets from Secrets Manager. The following example shows a policy that you can create for your role:

{
	"Version": "2012-10-17",
	"Statement": [
		{
			"Effect": "Allow",k
			"Action": [
				"kms:ListKeys",
				"kms:ListAliases",
				"secretsmanager:ListSecrets"
			],
			"Resource": "*"
		},
		{
			"Effect": "Allow",
			"Action": [
				"kms:Decrypt",
				"kms:DescribeKey"
			],
			"Resource": <KMS Key ARN>
		},
		{
			"Effect": "Allow",
			"Action": [ 
				"secretsmanager:GetSecretValue",
				"secretsmanager:DescribeSecret",
				"secretsmanager:ListSecretVersionIds"
			],
			"Resource": "*",
			"Condition": {
				"StringEquals": {
					"secretsmanager:ResourceTag/ekssecret": "${aws:PrincipalTag/ekssecret}"
				}
			}
		}
	]
}

Consider the following in this policy:

  • Secrets Manager uses an AWS managed key for Secrets Manager by default to encrypt your secrets. It’s recommended to specify another encryption key during secret creation and have separate keys for separate workloads. Modify the resource element of the second policy statement and replace <KMS Key ARN> with the KMS key ARNs used to encrypt your secrets. If you use the default key to encrypt your secrets, you can remove this statement.
  • The policy statement conditionally allows access to all secrets. The condition element permits access only when the value of the principal tag, identified by the key service, matches the value of the secret tag with the same key. You can include multiple conditions (in separate statements) to match multiple tags.

After you create your policy, follow the guide for Creating IAM roles to create your role, attaching the policy you created. Use the default value for your role’s trust relationship for now, you will update the trust relationship in the next step. Note the role’s ARN after creation.

Create an IAM role for the ESO service account

Use eksctl to create the IAM role for the ESO service account (IRSA). Before creating the role, you must create an IAM policy. ESO IRSA only needs permission to assume the Secrets Manager access role that you created in the previous step.

  1. Use the following example of an IAM policy that you can create. Replace <Secrets Manager Access Role ARN> with the ARN of the role you created in the previous step and follow creating a customer managed policy to create the policy. After creating the policy, note the policy ARN.
    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Action": [
                    "sts:AssumeRole",
                    "sts:TagSession"
                ],
                "Resource": "<Secrets Manager Access Role ARN>"
            }
        ]
    }
    

  2. Next, run the following command to get the account name of the ESO service. You will see a list of service accounts, pick the one that has the same name as your helm release, in this example, the service account is external-secrets.
    kubectl get serviceaccounts -n external-secrets
    

  3. Next, create an IRSA and configure an ESO service account to assume the role. Run the following command to create a new role and associate it with the ESO service account. Replace the variables in brackets (<example>) with your specific information:
    eksctl create iamserviceaccount --name <ESO service account> \
    --namespace <ESO namespace> --cluster <cluster name> \
    --role-name <IRSA name> --override-existing-serviceaccounts \
    --attach-policy-arn <policy arn you created earlier> --approve
    

    You can validate the operation by following the steps listed in Configuring a Kubernetes service account to assume an IAM role. Note that you had to pass the ‑‑override-existing-serviceaccounts argument because the ESO service account was already created.

  4. After you’ve validated the operation, run the following command to retrieve the IRSA ARN (replace <IRSA name> with the name you used in the previous step):
    aws iam get-role --role-name <IRSA name> --query Role.Arn
    

  5. Modify the trust relationship of the role you created previously and limit it to your newly created IRSA. The following should resemble your trust relationship. Replace <IRSA Arn> with the IRSA ARN returned in the previous step:
    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Principal": {
                    "AWS": "arn:aws:iam::<AWS ACCOUNT ID>:root"
                },
                "Action": "sts:AssumeRole",
                "Condition": {
                    "ArnEquals": {
                        "aws:PrincipalArn": "<IRSA Arn>"
                    }
                }
            },
            {
                "Effect": "Allow",
                "Principal": {
                    "AWS": "<IRSA Arn>"
                },
                "Action": "sts:TagSession",
                "Condition": {
                    "StringLike": {
                        "aws:RequestTag/ekssecret": "*"
                    }
                }
            }
        ]
    }
    

Note that you will be using session tags to implement ABAC. When using session tags, trust policies for all roles connected to the identity provider (IdP) passing the tags must have the sts:TagSession permission. For roles without this permission in the trust policy, the AssumeRole operation fails.

Moreover, the condition block of the second statement limits ESO’s ability to pass session tags with the key name ekssecret. We’re using this condition to verify that the ESO role can only create session tags used for accessing secrets manager, and doesn’t gain the ability to set principal tags that might be used for any other purpose. This way, you’re creating a namespace to help prevent further privilege escalations or escapes.

Create secrets in Secrets Manager

You can create two secrets in Secrets Manager and tag them.

  1. Follow the steps in Create an AWS Secrets Manager secret to create two secrets named service1_secret and service2_secret. Add the following tags to your secrets:
    • service1_secret:
      • key=ekssecret, value=service1
    • service2_secret:
      • key=ekssecret, value=service2
  2. Run the following command to verify both secrets are created and tagged properly:
    aws secretsmanager list-secrets --query 'SecretList[*].{Name:Name, Tags:Tags}'
    

Create ESO objects in your cluster

  1. Create two namespaces in your cluster:
    ❯ kubectl create ns service1-ns
    ❯ kubectl create ns service2-ns
    

Assume that service1-ns hosts service1 and service2-ns hosts service2. After creating the namespaces for your services, verify that each service is restricted to accessing secrets that are tagged with a specific key-value pair. In this example the key should be ekssecret and the value should match the name of the corresponding service. This means that service1 should only have access to service1_secret, while service2 should only have access to service2_secret. Next, declare session tags in SecretStore object definitions.

  1. Edit the following command snippet using the text editor of your choice and replace every instance of <Secrets Manager Access Role ARN> with the ARN of the IAM role you created earlier to access Secrets Manager secrets. Copy and paste the edited command in your terminal and run it to create a .yaml file in your working directory that contains the SecretStore definitions. Make sure to change the AWS Region to reflect the Region of your Secrets Manager.
    cat > secretstore.yml <<EOF
    apiVersion: external-secrets.io/v1beta1
    kind: SecretStore
    metadata:
      name: aws-secretsmanager
      namespace: service1-ns
    spec:
      provider:
        aws:
          service: SecretsManager
          role: <Secrets Manager Access Role ARN>
          region: us-west-2
          sessionTags:
            - key: ekssecret
              value: service1
    ---
    apiVersion: external-secrets.io/v1beta1
    kind: SecretStore
    metadata:
      name: aws-secretsmanager
      namespace: service2-ns
    spec:
      provider:
        aws:
          service: SecretsManager
          role: <Secrets Manager Access Role ARN>
          region: us-west-2
          sessionTags:
            - key: ekssecret
              value: service2
    EOF
    

  2. Create SecretStore objects by running the following command:
    kubectl apply -f secretstore.yml
    

  3. Validate object creation by running the following command:
    kubectl describe secretstores.external-secrets.io -A
    

  4. Check the status and events section for each object and make sure the store is validated.
  5. Next, create two ExternalSecret objects requesting service1_secret and service2_secret. Copy and paste the following command in your terminal and run it. The command will create a .yaml file in your working directory that contains ExternalSecret definitions.
    cat > exrternalsecret.yml <<EOF
    apiVersion: external-secrets.io/v1beta1
    kind: ExternalSecret
    metadata:
      name: service1-es1
      namespace: service1-ns
    spec:
      refreshInterval: 1h
      secretStoreRef:
        name: aws-secretsmanager
        kind: SecretStore
      target:
        name: service1-ns-secret1
        creationPolicy: Owner
      data:
      - secretKey: service1_secret
        remoteRef:
          key: "service1_secret"
    ---
    apiVersion: external-secrets.io/v1beta1
    kind: ExternalSecret
    metadata:
      name: service2-es2
      namespace: service2-ns
    spec:
      refreshInterval: 1h
      secretStoreRef:
        name: aws-secretsmanager
        kind: SecretStore
      target:
        name: service1-ns-secret2
        creationPolicy: Owner
      data:
      - secretKey: service2_secret
        remoteRef:
          key: "service2_secret"
    EOF
    

  6. Run the following command to create objects:
    kubectl apply -f exrternalsecret.yml
    

  7. Verify the objects are created by running following command:
    kubectl get externalsecrets.external-secrets.io -A
    

  8. Each ExternalSecret object should create a Kubernetes secret in the same namespace it was created in. Kubernetes secrets are accessible to services in the same namespace. To demonstrate that both Service A and Service B has access to their secrets, run the following command.
    kubectl get secrets -A
    

You should see service1-ns-secret1 created in service1-ns namespace which is accessible to Service 1, and service1-ns-secret2 created in service2-ns which is accessible to Service2.

Try creating an ExternalSecrets object in service1-ns referencing service2_secret. Notice that your object shows SecretSyncedError status. This is the expected behavior, because ESO passes different session tags for ExternalSecret objects in each namespace, and when the tag where key is ekssecret doesn’t match the secret tag with the same key, the request will be rejected.

What about AWS Secrets and Configuration Provider (ASCP)?

Amazon offers a capability called AWS Secrets and Configuration Provider (ASCP), which allows applications to consume secrets directly from external stores, including Secrets Manager, without modifying the application code. ASCP is actively maintained by AWS, which makes sure that it remains up to date and aligned with the latest features introduced in Secrets Manager. See How to use AWS Secrets & Configuration Provider with your Kubernetes Secrets Store CSI driver to learn more about how to use ASCP to retrieve secrets from Secrets Manager.

Today, customers who use AWS Fargate with Amazon EKS can’t use the ASCP method due to the incompatibility of daemonsets on Fargate. Kubernetes also doesn’t provide a mechanism to add specific claims to JSON web tokens (JWT) used to assume IAM roles. Today, when using ASCP in Kubernetes, which assumes IAM roles through IAM roles for service accounts (IRSA), there’s a constraint in appending session tags during the IRSA assumption due to JWT claim restrictions, limiting the ability to implement ABAC.

With ESO, you can create Kubernetes Secrets and have your pods retrieve secrets from them instead of directly mounting secrets as volumes in your pods. ESO is also capable of using its controller pod’s IRSA to retrieve secrets, so you don’t need to set up IRSA for each pod. You can also role chain and specify secondary roles to be assumed by ESO IRSA and pass session tags to be used with ABAC policies. ESO’s role chaining and ABAC capabilities help decrease the number of IAM roles required for secrets retrieval. See Leverage AWS secrets stores from EKS Fargate with External Secrets Operator on the AWS Containers blog to learn how to use ESO on an EKS Fargate cluster to consume secrets stored in Secrets Manager.

Conclusion

In this blog post, we walked you through how to implement ABAC with Amazon EKS and Secrets Manager using External Secrets Operator. Implementing ABAC allows you to create a single IAM role for accessing Secrets Manager secrets while implementing granular permissions. ABAC also decreases your team’s overhead and reduces the risk of misconfigurations. With ABAC, you require fewer policies and don’t need to update existing policies to allow access to new services and workloads.

If you have feedback about this post, submit comments in the Comments section below.

Nima Fotouhi

Nima Fotouhi

Nima is a Security Consultant at AWS. He’s a builder with a passion for infrastructure as code (IaC) and policy as code (PaC) and helps customers build secure infrastructure on AWS. In his spare time, he loves to hit the slopes and go snowboarding.

Sandeep Singh

Sandeep is a DevOps Consultant at AWS Professional Services. He focuses on helping customers in their journey to the cloud and within the cloud ecosystem by building performant, resilient, scalable, secure, and cost-efficient solutions.

Introducing Cloudflare’s 2024 API security and management report

Post Syndicated from John Cosgrove http://blog.cloudflare.com/author/john-cosgrove/ original https://blog.cloudflare.com/2024-api-security-report


You may know Cloudflare as the company powering nearly 20% of the web. But powering and protecting websites and static content is only a fraction of what we do. In fact, well over half of the dynamic traffic on our network consists not of web pages, but of Application Programming Interface (API) traffic — the plumbing that makes technology work. This blog introduces and is a supplement to the API Security Report for 2024 where we detail exactly how we’re protecting our customers, and what it means for the future of API security. Unlike other industry API reports, our report isn’t based on user surveys — but instead, based on real traffic data.

If there’s only one thing you take away from our report this year, it’s this: many organizations lack accurate API inventories, even when they believe they can correctly identify API traffic. Cloudflare helps organizations discover all of their public-facing APIs using two approaches. First, customers configure our API discovery tool to monitor for identifying tokens present in their known API traffic. We then use a machine learning model that scans not just these known API calls, but all HTTP requests, identifying API traffic that may be going unaccounted for. The difference between these approaches is striking: we found 30.7% more API endpoints through machine learning-based discovery than the self-reported approach, suggesting that nearly a third of APIs are “Shadow APIs” — and may not be properly inventoried and secured.

Read on for extras and highlights from our inaugural API security report. In the full report, you’ll find updated statistics about the threats we see and prevent, along with our predictions for 2024. We predict that a lack of API security focus at organizations will lead to increased complexity and loss of control, and increased access to generative AI will lead to more API risk. We also anticipate an increase in API business logic attacks in 2024. Lastly, all of the above risks will necessitate growing governance around API security.

Hidden attack surfaces

How are web pages and APIs different? APIs are a quick and easy way for applications to retrieve data in the background, or ask that work be done from other applications. For example, anyone can write a weather app without being a meteorologist: a developer can write the structure of the page or mobile application and ask a weather API for the forecast using the user’s location. Critically, most end users don’t know that the data was provided by the weather API and not the app’s owner.

While APIs are the critical plumbing of the Internet, they’re also ripe for abuse. For example, flaws in API authentication and authorization at Optus led to a threat actor offering 10 million user records for sale, and government agencies have warned about these exact API attacks. Developers in an organization will often create Internet-facing APIs, used by their own applications to function more efficiently, but it’s on the security team to protect these new public interfaces. If the process of documenting APIs and bringing them to the attention of the security team isn’t clear, they become Shadow APIs — operating in production but without the organization’s knowledge. This is where the security challenge begins to emerge.

To help customers solve this problem, we shipped API Discovery. When we introduced our latest release, we mentioned how few organizations have accurate API inventories. Security teams sometimes are forced to adopt an “email and ask” approach to build an inventory, and in doing so responses are immediately stale upon the next application release when APIs change. Better is to track API changes by code base changes, keeping up with new releases. However, this still has a drawback of only inventorying actively maintained code. Legacy applications may not see new releases, despite receiving production traffic.

Cloudflare’s approach to API management involves creating a comprehensive, accurate API inventory using a blend of machine learning-based API discovery and network traffic inspection. This is integral to our API Gateway product, where customers can manage their Internet-facing endpoints and monitor API health. The API Gateway also allows customers to identify their API traffic using session identifiers (typically a header or cookie), which aids in specifically identifying API traffic for the discovery process.

As noted earlier, our analysis reveals that even knowledgeable customers often overlook significant portions of their API traffic. By comparing session-based API discovery (using API sessions to pinpoint traffic) with our machine learning-based API discovery (analyzing all incoming traffic), we found that the latter uncovers on average 30.7% more endpoints! Without broad traffic analysis, you may be missing almost a third of your API inventory.

If you aren’t a Cloudflare customer, you can still get started building an API inventory. APIs are typically cataloged in a standardized format called OpenAPI, and many development tools can build OpenAPI formatted schema files. If you have a file with that format, you can start to build an API inventory yourself by collecting these schemas. Here is an example of how you can pull the endpoints out of a schema file, assuming your have an OpenAPI v3 formatted file named my_schema.json:

import json
import csv
from io import StringIO

# Load the OpenAPI schema from a file
with open("my_schema.json", "r") as file:
    schema = json.load(file)

# Prepare CSV output
output = StringIO()
writer = csv.writer(output)

# Write CSV header
writer.writerow(["Server", "Path", "Method"])

# Extract and write data to CSV
servers = schema.get("servers", [])
for server in servers:
    url = server['url']
    for path, methods in schema['paths'].items():
        for method in methods.keys():
            writer.writerow([url, path, method])

# Get and print CSV string
csv_output = output.getvalue().strip()
print(csv_output)

Unless you have been generating OpenAPI schemas and tracking API inventory from the beginning of your application’s development process, you’re probably missing some endpoints across your production application API inventory.

Precise rate limits minimize attack potential

When it comes to stopping abuse, most practitioners’ thoughts first come to rate limiting. Implementing limits on your API is a valuable tool to keep abuse in check and prevent accidental overload of the origin. But how do you know if you’ve chosen the correct rate limiting approach? Approaches can vary, but they generally come down to the error code chosen, and the basis for the limit value itself.

For some APIs, practitioners configure rate limiting errors to respond with an HTTP 403 (forbidden), while others will respond with HTTP 429 (too many requests). Using HTTP 403 sounds innocent enough until you realize that other security tools are also responding with 403 codes. When you’re under attack, it can be hard to decipher which tools are responsible for which errors / blocking.

Alternatively, if you utilize HTTP 429 for your rate limits, attackers will instantly know that they’ve been rate limited and can “surf” right under the limit without being detected. This can be OK if you’re only limiting requests to ensure your back-end stays alive, but it can tip your cards to attackers. In addition, attackers can “scale out” to more API clients to effectively request above the rate limit.

There are pros and cons to both approaches, but we find that by far most APIs respond with HTTP 429 out of all the 4xx and 5xx error messages (almost 52%).

What about the logic of the rate limit rule itself, not just the response code? Implementing request limits on IP addresses can be tempting, but we recommend you base the limit on a session ID as a best practice and only fall back to IP address (or IP + JA3 fingerprint) when session IDs aren’t available. Setting rate limits on user sessions instead of IPs will reliably identify your real users and minimize false positives due to shared IP space. Cloudflare’s Advanced Rate Limiting and API Gateway’s volumetric abuse protection make it easy to enforce these limits by profiling session traffic on each API endpoint and giving one-click solutions to set up the per-endpoint rate limits.

To find values for your rate limits, Cloudflare API Gateway computes session request statistics for you. We suggest a limit by looking at the distribution of requests per session across all sessions to your API as identified by the customer-configured API session identifier. We then compute statistical p-levels — which describe the request rates for different cohorts of traffic — for p50, p90, and p99 on this distribution and use the variance of the distribution to come up with a recommended threshold for every single endpoint in your API inventory. The recommendation might not match the p-levels, which is an important distinction and a reason not to use p-levels alone. Along with the recommendation, API Gateway informs users of our confidence in the recommendation. Generally, the more API sessions we’re able to collect, the more confident we’ll be in the recommendation.

Activating a rate limit is as easy as clicking the ‘create rule’ link, and API Gateway will automatically bring your session identifier over to the advanced rate limit rule creation page, ensuring your rules have pinpoint accuracy to defend against attacks and minimize false positives compared to traditional, overly broad limits.

APIs are also victim to web application attacks

APIs aren’t immune from normal OWASP Top 10 style attacks like SQL injection. The body of API requests can also find its way as a database input just like a web page form input or URL argument. It’s important to ensure that you have a web application firewall (WAF) also protecting your API traffic to defend against these styles of attacks.

In fact, when we looked at Cloudflare’s WAF managed rules, injection attacks were the second most common threat vector Cloudflare saw carried out on APIs. The most common threat was HTTP Anomaly. Examples of HTTP anomalies include malformed method names, null byte characters in headers, non-standard ports or content length of zero with a POST request. Here are the stats on the other top threats we saw against APIs:

Absent from the chart is broken authentication and authorization. Broken authentication and authorization occur when an API fails to check whether the entity sending requests for information to an API actually has the permission to request that data or not. It can also happen when attacks try to forge credentials and insert less restricted permissions into their existing (valid) credentials that have more restricted permissions. OWASP categorizes these attacks in a few different ways, but the main categories are Broken Object Level Authorization (BOLA) and Broken Function Level Authorization (BFLA) attacks.

The root cause of a successful BOLA / BFLA attack lies in an origin API not checking proper ownership of database records against the identity requesting those records. Tracking these specific attacks can be difficult, as the permission structure may be simply absent, inadequate, or improperly implemented. Can you see the chicken-and-egg problem here? It would be easy to stop these attacks if we knew the proper permission structure, but if we or our customers knew the proper permission structure or could guarantee its enforcement, the attacks would be unsuccessful to begin with. Stay tuned for future API Gateway feature launches where we’ll use our knowledge of API traffic norms to automatically suggest security policies that highlight and stop BOLA / BFLA attacks.

Here are four ways to plug authentication loopholes that may exist for your APIs, even if you don’t have a fine-grained authorization policy available:

  1. First, enforce authentication on each publicly accessible API unless there’s a business approved exception. Look to technologies like mTLS and JSON Web Tokens.
  2. Limit the speed of API requests to your servers to slow down potential attackers.
  3. Block abnormal volumes of sensitive data outflow.
  4. Block attackers from skipping legitimate sequences of API requests.

APIs are surprisingly human driven, not machine driven anymore

If you’ve been around technology since the pre-smartphone days when fewer people were habitually online, it can be tempting to think of APIs as only used for machine-to-machine communication in something like an overnight batch job process. However, the truth couldn’t be more different. As we’ve discussed, many web and mobile applications are powered by APIs, which facilitate everything from authentication to transactions to serving media files. As people use these applications, there is a corresponding increase in API traffic volume.

We can illustrate this by looking at the API traffic patterns observed during holidays, when people gather around friends and family and spend more time socializing in person and less time online. We’ve annotated the following Worldwide API traffic graph with common holidays and promotions. Notice how traffic peaks around Black Friday and Cyber Monday around the +10% level when people shop online, but then traffic drops off for the festivities of Christmas and New Years days.

This pattern closely resembles what we observe in regular HTTP traffic. It’s clear that APIs are no longer just the realm of automated processes but are intricately linked with human behaviors and social trends.

Recommendations

There is no silver bullet for holistic API security. For the best effect, Cloudflare recommends four strategies for increasing API security posture:

  1. Combine API application development, visibility, performance, and security with a unified control plane that can keep an up-to-date API inventory.
  2. Use security tools that utilize machine learning technologies to free up human resources and reduce costs.
  3. Adopt a positive security model for your APIs (see below for an explanation on positive and negative security models).
  4. Measure and improve your organization’s API maturity level over time (also see below for an explanation of an API maturity level).

What do we mean by a ‘positive’ or ‘negative’ security model? In a negative model, security tools look for known signs of attack and take action to stop those attacks. In a positive model, security tools look for known good requests and only let those through, blocking all else. APIs are often so structured that positive security models make sense for the highest levels of security. You can also combine security models, such as using a WAF in a negative model sense, and using API Schema Validation in a positive model sense.

Here’s a quick way to gauge your organization’s API security maturity level over time: Novice organizations will get started by assembling their first API inventory, no matter how incomplete. More mature organizations will strive for API inventory accuracy and automatic updates. The most mature organizations will actively enforce security checks in a positive security model on their APIs, enforcing API schema, valid authentication, and checking behavior for signs of abuse.

Predictions

In closing, our top four predictions for 2024 and beyond:

Increased loss of control and complexity: we surveyed practitioners in the API Security and Management field and 73% responded that security requirements interfere with their productivity and innovation. Coupled with increasingly sprawling applications and inaccurate inventories, API risks and complexity will rise.

Easier access to AI leading to more API risks: the rise in generative AI brings potential risks, including AI models’ APIs being vulnerable to attack, but also developers shipping buggy, AI-written code. Forrester predicts that, in 2024, without proper guardrails, “at least three data breaches will be publicly blamed on insecure AI-generated code – either due to security flaws in the generated code itself or vulnerabilities in AI-suggested dependencies.”

Increase in business logic-based fraud attacks: professional fraudsters run their operations just like a business, and they have costs like any other. We anticipate attackers will run fraud bots efficiently against APIs even more than in previous years.

Growing governance: The first version of PCI DSS that directly addresses API security will go into effect in March 2024. Check your industry’s specific requirements with your audit department to be ready for requirements as they come into effect.

If you’re interested in the full report, you can download the 2024 API Security Report here, which includes full detail on our recommendations.

Cloudflare API Gateway is our API security solution, and it is available for all Enterprise customers. If you aren’t subscribed to API Gateway, click here to view your initial API Discovery results and start a trial in the Cloudflare dashboard. To learn how to use API Gateway to secure your traffic, click here to view our development docs and here for our getting started guide.

AWS successfully renews GSMA security certification for US East (Ohio) and Europe (Paris) Regions

Post Syndicated from Janice Leung original https://aws.amazon.com/blogs/security/aws-successfully-renews-gsma-security-certification-for-us-east-ohio-and-europe-paris-regions-2/

Amazon Web Services is pleased to announce that the AWS US East (Ohio) and Europe (Paris) Regions have been recertified through October 2024 by the GSM Association (GSMA) under its Security Accreditation Scheme for Subscription Management (SAS-SM) with scope Data Centre Operations and Management (DCOM).

The US East (Ohio) Region first obtained GSMA certification in September 2021, and the Europe (Paris) Region first obtained GSMA certification in October 2021. This renewal demonstrates our continuous commitment to adhere to the heightened expectations for cloud service providers. AWS customers who provide an embedded Universal Integrated Circuit Card (eUICC) for mobile devices can run their remote provisioning applications with confidence in the AWS Cloud in the GSMA-certified Regions.

For up-to-date information related to the certification, see the AWS Compliance Program page and choose GSMA under Europe, Middle East & Africa.

AWS was evaluated by independent third-party auditors that GSMA selected. The Certificate of Compliance that shows AWS achieved GSMA compliance status is available on the GSMA website and through AWS Artifact. AWS Artifact is a self-service portal for on-demand access to AWS compliance reports. Sign in to AWS Artifact in the AWS Management Console, or learn more at Getting Started with AWS Artifact.

To learn more about our compliance and security programs, see AWS Compliance Programs. As always, we value your feedback and questions; reach out to the AWS Compliance team through the Contact Us page. If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security news? Follow us on Twitter.

Author

Janice Leung

Janice is a Security Audit Program Manager at Amazon Web Services, based in New York, U.S. She leads security audits across Europe and she has previously worked in security assurance and technology risk management in financial industry for 12 years.

Tammy He

Tammy He

Tammy is a Security Assurance Europe Lead at Amazon Web Services, based in London, UK. She builds EMEA customer trust through security compliance and assurance and she had over 7 years experience in technology and cyber security audit in financial industry.

Best Practices to help secure your container image build pipeline by using AWS Signer

Post Syndicated from Jorge Castillo original https://aws.amazon.com/blogs/security/best-practices-to-help-secure-your-container-image-build-pipeline-by-using-aws-signer/

AWS Signer is a fully managed code-signing service to help ensure the trust and integrity of your code. It helps you verify that the code comes from a trusted source and that an unauthorized party has not accessed it. AWS Signer manages code signing certificates and public and private keys, which can reduce the overhead of your public key infrastructure (PKI) management. It also provides a set of features to simplify lifecycle management of your keys and certificates so that you can focus on signing and verifying your code.

In June 2023, AWS announced Container Image Signing with AWS Signer and Amazon EKS, a new capability that gives you native AWS support for signing and verifying container images stored in Amazon Elastic Container Registry (Amazon ECR).

Containers and AWS Lambda functions are popular serverless compute solutions for applications built on the cloud. By using AWS Signer, you can verify that the software running in these workloads originates from a trusted source.

In this blog post, you will learn about the benefits of code signing for software security, governance, and compliance needs. Flexible continuous integration and continuous delivery (CI/CD) integration, management of signing identities, and native integration with other AWS services can help you simplify code security through automation.

Background

Code signing is an important part of the software supply chain. It helps ensure that the code is unaltered and comes from an approved source.

To automate software development workflows, organizations often implement a CI/CD pipeline to push, test, and deploy code effectively. You can integrate code signing into the workflow to help prevent untrusted code from being deployed, as shown in Figure 1. Code signing in the pipeline can provide you with different types of information, depending on how you decide to use the functionality. For example, you can integrate code signing into the build stage to attest that the code was scanned for vulnerabilities, had its software bill of materials (SBOM) approved internally, and underwent unit and integration testing. You can also use code signing to verify who has pushed or published the code, such as a developer, team, or organization. You can verify each of these steps separately by including multiple signing stages in the pipeline. For more information on the value provided by container image signing, see Cryptographic Signing for Containers.

Figure 1: Security IN the pipeline

Figure 1: Security IN the pipeline

In the following section, we will walk you through a simple implementation of image signing and its verification for Amazon Elastic Kubernetes Service (Amazon EKS) deployment. The signature attests that the container image went through the pipeline and came from a trusted source. You can use this process in more complex scenarios by adding multiple AWS CodeBuild code signing stages that make use of various AWS Signer signing profiles.

Services and tools

In this section, we discuss the various AWS services and third-party tools that you need for this solution.

CI/CD services

For the CI/CD pipeline, you will use the following AWS services:

  • AWS CodePipeline — a fully managed continuous delivery service that you can use to automate your release pipelines for fast and reliable application and infrastructure updates.
  • AWS CodeCommit — a fully managed source control service that hosts secure Git-based repositories.
  • AWS Signer — a fully managed code-signing service that you can use to help ensure the trust and integrity of your code.
  • AWS CodeBuild — A fully managed continuous integration service that compiles source code, runs tests, and produces software packages that are ready to deploy.

Container services

You will use the following AWS services for containers for this walkthrough:

  • Amazon EKS — a managed Kubernetes service to run Kubernetes in the AWS Cloud and on-premises data centers.
  • Amazon ECR — a fully managed container registry for high-performance hosting, so that you can reliably deploy application images and artifacts anywhere.

Verification tools

The following are publicly available sign verification tools that we integrated into the pipeline for this post, but you could integrate other tools that meet your specific requirements.

  • Notation — A publicly available Notary project within the Cloud Native Computing Foundation (CNCF). With contributions from AWS and others, Notary is an open standard and client implementation that allows for vendor-specific plugins for key management and other integrations. AWS Signer manages signing keys, key rotation, and PKI management for you, and is integrated with Notation through a curated plugin that provides a simple client-based workflow.
  • Kyverno — A publicly available policy engine that is designed for Kubernetes.

Solution overview

Figure 2: Solution architecture

Figure 2: Solution architecture

Here’s how the solution works, as shown in Figure 2:

  1. Developers push Dockerfiles and application code to CodeCommit. Each push to CodeCommit starts a pipeline hosted on CodePipeline.
  2. CodeBuild packages the build, containerizes the application, and stores the image in the ECR registry.
  3. CodeBuild retrieves a specific version of the image that was previously pushed to Amazon ECR. AWS Signer and Notation sign the image by using the signing profile established previously, as shown in more detail in Figure 3.
    Figure 3: Signing images described

    Figure 3: Signing images described

  4. AWS Signer and Notation verify the signed image version and then deploy it to an Amazon EKS cluster.

    If the image has not previously been signed correctly, the CodeBuild log displays an output similar to the following:

    Error: signature verification failed: no signature is associated with "<AWS_ACCOUNT_ID>.dkr.ecr.<AWS_REGION>.amazonaws.com/hello-server@<DIGEST>" , make sure the artifact was signed successfully

    If there is a signature mismatch, the CodeBuild log displays an output similar to the following:

    Error: signature verification failed for all the signatures associated with <AWS_ACCOUNT_ID>.dkr.ecr.<AWS_REGION>.amazonaws.com/hello-server@<DIGEST>

  5. Kyverno verifies the container image signature for use in the Amazon EKS cluster.

    Figure 4 shows steps 4 and 5 in more detail.

    Figure 4: Verification of image signature for Kubernetes

    Figure 4: Verification of image signature for Kubernetes

Prerequisites

Before getting started, make sure that you have the following prerequisites in place:

  • An Amazon EKS cluster provisioned.
  • An Amazon ECR repository for your container images.
  • A CodeCommit repository with your application code. For more information, see Create an AWS CodeCommit repository.
  • A CodePipeline pipeline deployed with the CodeCommit repository as the code source and four CodeBuild stages: Build, ApplicationSigning, ApplicationDeployment, and VerifyContainerSign. The CI/CD pipeline should look like that in Figure 5.
    Figure 5: CI/CD pipeline with CodePipeline

    Figure 5: CI/CD pipeline with CodePipeline

Walkthrough

You can create a signing profile by using the AWS Command Line Interface (AWS CLI), AWS Management Console or the AWS Signer API. In this section, we’ll walk you through how to sign the image by using the AWS CLI.

To sign the image (AWS CLI)

  1. Create a signing profile for each identity.
    # Create an AWS Signer signing profile with default validity period
    $ aws signer put-signing-profile \
        --profile-name build_signer \
        --platform-id Notation-OCI-SHA384-ECDSA

  2. Sign the image from the CodeBuild build—your buildspec.yaml configuration file should look like the following:
    version: 0.2
    
    phases:
      pre_build:
        commands:
          - aws ecr get-login-password --region $AWS_REGION | docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com
          - REPOSITORY_URI=$AWS_ACCOUNT_ID.dkr.ecr. $AWS_REGION.amazonaws.com/hello-server
          - COMMIT_HASH=$(echo $CODEBUILD_RESOLVED_SOURCE_VERSION | cut -c 1-7)
          - IMAGE_TAG=${COMMIT_HASH:=latest}
          - DIGEST=$(docker manifest inspect $AWS_ACCOUNT_ID.dkr.ecr. $AWS_REGION.amazonaws.com/hello-server:$IMAGE_TAG -v | jq -r '.Descriptor.digest')
          - echo $DIGEST
          
          - wget https://d2hvyiie56hcat.cloudfront.net/linux/amd64/installer/rpm/latest/aws-signer-notation-cli_amd64.rpm
          - sudo rpm -U aws-signer-notation-cli_amd64.rpm
          - notation version
          - notation plugin ls
      build:
        commands:
          - notation sign $REPOSITORY_URI@$DIGEST --plugin com.amazonaws.signer.notation.plugin --id arn:aws:signer: $AWS_REGION:$AWS_ACCOUNT_ID:/signing-profiles/notation_container_signing
          - notation inspect $AWS_ACCOUNT_ID.dkr.ecr. $AWS_REGION.amazonaws.com/hello-server@$DIGEST
          - notation verify $AWS_ACCOUNT_ID.dkr.ecr. $AWS_REGION.amazonaws.com/hello-server@$DIGEST
      post_build:
        commands:
          - printf '[{"name":"hello-server","imageUri":"%s"}]' $REPOSITORY_URI:$IMAGE_TAG > imagedefinitions.json
    artifacts:
        files: imagedefinitions.json

    The commands in the buildspec.yaml configuration file do the following:

    1. Sign you in to Amazon ECR to work with the Docker images.
    2. Reference the specific image that will be signed by using the commit hash (or another versioning strategy that your organization uses). This gets the digest.
    3. Sign the container image by using the notation sign command. This command uses the container image digest, instead of the image tag.
    4. Install the Notation CLI. In this example, you use the installer for Linux. For a list of installers for various operating systems, see the AWS Signer Developer Guide,
    5. Sign the image by using the notation sign command.
    6. Inspect the signed image to make sure that it was signed successfully by using the notation inspect command.
    7. To verify the signed image, use the notation verify command. The output should look similar to the following:
      Successfully verified signature for <AWS_ACCOUNT_ID>.dkr.ecr.<AWS_REGION>.amazonaws.com/hello-server@<DIGEST>

  3. (Optional) For troubleshooting, print the notation policy from the pipeline itself to check that it’s working as expected by running the notation policy show command:
    notation policy show

    For this, include the command in the pre_build phase after the notation version command in the buildspec.yaml configuration file.

    After the notation policy show command runs, CodeBuild logs should display an output similar to the following:

    {
      "version": "1.0",
      "trustPolicies": [
        {
          "name": "aws-signer-tp",
          "registryScopes": [
          "<AWS_ACCOUNT_ID>.dkr.ecr.<AWS_REGION>.amazonaws.com/hello-server"
          ],
          "signatureVerification": {
            "level": "strict"
          },
          "trustStores": [
            "signingAuthority:aws-signer-ts"
          ],
          "trustedIdentities": [
            "arn:aws:signer:<AWS_REGION>:<AWS_ACCOUNT_ID>:/signing-profiles/notation_test"
          ]
        }
      ]
    }

  4. To verify the image in Kubernetes, set up both Kyverno and the Kyverno-notation-AWS Signer in your EKS cluster. To get started with Kyverno and the Kyverno-notation-AWS Signer solution, see the installation instructions.
  5. After you install Kyverno and Kyverno-notation-AWS Signer, verify that the controller is running—the STATUS should show Running:
    $ kubectl get pods -n kyverno-notation-aws -w
    
    NAME                                    READY   STATUS    RESTARTS   AGE
    kyverno-notation-aws-75b7ddbcfc-kxwjh   1/1     Running   0          6h58m

  6. Configure the CodeBuild buildspec.yaml configuration file to verify that the images deployed in the cluster have been previously signed. You can use the following code to configure the buildspec.yaml file.
    version: 0.2
    
    phases:
      pre_build:
        commands:
          - echo Logging in to Amazon ECR...
          - aws --version
          - REPOSITORY_URI=${REPO_ECR}
          - COMMIT_HASH=$(echo $CODEBUILD_RESOLVED_SOURCE_VERSION | cut -c 1-7)
          - IMAGE_TAG=${COMMIT_HASH:=latest}
          - curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl"
          - curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl.sha256"
          - echo "$(cat kubectl.sha256)  kubectl" | sha256sum --check
          — chmod +x kubectl
          - mv ./kubectl /usr/local/bin/kubectl
          - kubectl version --client
      build:
        commands:
          - echo Build started on `date`
          - aws eks update-kubeconfig -—name ${EKS_NAME} —-region ${AWS_DEFAULT_REGION}
          - echo Deploying Application
          - sed -i '/image:\ image/image:\ '\"${REPOSITORY_URI}:${IMAGE_TAG}\"'/g' deployment.yaml
          - kubectl apply -f deployment.yaml 
          - KYVERNO_NOTATION_POD=$(kubectl get pods --no-headers -o custom-columns=":metadata.name" -n kyverno-notation-aws)
          - STATUS=$(kubectl logs --tail=1 kyverno-notation-aws-75b7ddbcfc-kxwjh -n kyverno-notation-aws | grep $IMAGE_TAG | grep ERROR)
          - |
            if [[ $STATUS ]]; then
              echo "There is an error"
              exit 1
            else
              echo "No Error"
            fi
      post_build:
        commands:
          - printf '[{"name":"hello-server","imageUri":"%s"}]' $REPOSITORY_URI:$IMAGE_TAG > imagedefinitions.json
    artifacts:
        files: imagedefinitions.json

    The commands in the buildspec.yaml configuration file do the following:

    1. Set up the environment variables, such as the ECR repository URI and the Commit hash, to build the image tag. The kubectl tool will use this later to reference the container image that will be deployed with the Kubernetes objects.
    2. Use kubectl to connect to the EKS cluster and insert the container image reference in the deployment.yaml file.
    3. After the container is deployed, you can observe the kyverno-notation-aws controller and access its logs. You can check if the deployed image is signed. If the logs contain an error, stop the pipeline run with an error code, do a rollback to a previous version, or delete the deployment if you detect that the image isn’t signed.

Decommission the AWS resources

If you no longer need the resources that you provisioned for this post, complete the following steps to delete them.

To clean up the resources

  1. Delete the EKS cluster and delete the ECR image.
  2. Delete the IAM roles and policies that you used for the configuration of IAM roles for service accounts.
  3. Revoke the AWS Signer signing profile that you created and used for the signing process by running the following command in the AWS CLI:
    $ aws signer revoke-signing-profile

  4. Delete signatures from the Amazon ECR repository. Make sure to replace <AWS_ACCOUNT_ID> and <AWS_REGION> with your own information.
    # Use oras CLI, with Amazon ECR Docker Credential Helper, to delete signature
    $ oras manifest delete <AWS_ACCOUNT_ID>.dkr.ecr.<AWS_REGION>.amazonaws.com/pause@sha256:ca78e5f730f9a789ef8c63bb55275ac12dfb9e8099e6a0a64375d8a95ed501c4

Note: Using the ORAS project’s oras client, you can delete signatures and other reference type artifacts. It implements deletion by first removing the reference from an index, and then deleting the manifest.

Conclusion

In this post, you learned how to implement container image signing in a CI/CD pipeline by using AWS services such as CodePipeline, CodeBuild, Amazon ECR, and AWS Signer along with publicly available tools such as Notary and Kyverno. By implementing mandatory image signing in your pipelines, you can confirm that only validated and authorized container images are deployed to production. Automating the signing process and signature verification is vital to help securely deploy containers at scale. You also learned how to verify signed images both during deployment and at runtime in Kubernetes. This post provides valuable insights for anyone looking to add image signing capabilities to their CI/CD pipelines on AWS to provide supply chain security assurances. The combination of AWS managed services and publicly available tools provides a robust implementation.

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Jorge Castillo

Jorge Castillo

Jorge is a Solutions Architect at AWS for the public sector based in Santiago, Chile. He focuses on security and compliance and works with many government agencies.

Joseph Rodríguez

Joseph Rodríguez

Joseph is a Solutions Architect at AWS for the public sector based in Chile. Joseph has collaborated with multiple public sector institutions on cloud technology adoption, with a focus on containers. He previously worked as a Software Architect at financial services institutions.

Monika Vu Minh

Monika Vu Minh

Monika is a ProServe Security Consultant at AWS based in London. She works with financial services customers to help them follow security best practices on AWS. In her free time, she likes painting, cooking, and travelling.

DNS over HTTPS is now available in Amazon Route 53 Resolver

Post Syndicated from Danilo Poccia original https://aws.amazon.com/blogs/aws/dns-over-https-is-now-available-in-amazon-route-53-resolver/

Starting today, Amazon Route 53 Resolver supports using the DNS over HTTPS (DoH) protocol for both inbound and outbound Resolver endpoints. As the name suggests, DoH supports HTTP or HTTP/2 over TLS to encrypt the data exchanged for Domain Name System (DNS) resolutions.

Using TLS encryption, DoH increases privacy and security by preventing eavesdropping and manipulation of DNS data as it is exchanged between a DoH client and the DoH-based DNS resolver.

This helps you implement a zero-trust architecture where no actor, system, network, or service operating outside or within your security perimeter is trusted and all network traffic is encrypted. Using DoH also helps follow recommendations such as those described in this memorandum of the US Office of Management and Budget (OMB).

DNS over HTTPS support in Amazon Route 53 Resolver
You can use Amazon Route 53 Resolver to resolve DNS queries in hybrid cloud environments. For example, it allows AWS services access for DNS requests from anywhere within your hybrid network. To do so, you can set up inbound and outbound Resolver endpoints:

  • Inbound Resolver endpoints allow DNS queries to your VPC from your on-premises network or another VPC.Amazon Route 53 Resolver inbound endpoint architecture.
  • Outbound Resolver endpoints allow DNS queries from your VPC to your on-premises network or another VPC.Amazon Route 53 Resolver outbound endpoint architecture.

After you configure the Resolver endpoints, you can set up rules that specify the name of the domains for which you want to forward DNS queries from your VPC to an on-premises DNS resolver (outbound) and from on-premises to your VPC (inbound).

Now, when you create or update an inbound or outbound Resolver endpoint, you can specify which protocols to use:

  • DNS over port 53 (Do53), which is using either UDP or TCP to send the packets.
  • DNS over HTTPS (DoH), which is using TLS to encrypt the data.
  • Both, depending on which one is used by the DNS client.
  • For FIPS compliance, there is a specific implementation (DoH-FIPS) for inbound endpoints.

Let’s see how this works in practice.

Using DNS over HTTPS with Amazon Route 53 Resolver
In the Route 53 console, I choose Inbound endpoints from the Resolver section of the navigation pane. There, I choose Create inbound endpoint.

I enter a name for the endpoint, select the VPC, the security group, and the endpoint type (IPv4, IPv6, or dual-stack). To allow using both encrypted and unencrypted DNS resolutions, I select Do53, DoH, and DoH-FIPS in the Protocols for this endpoint option.

Console screenshot.

After that, I configure the IP addresses for DNS queries. I select two Availability Zones and, for each, a subnet. For this setup, I use the option to have the IP addresses automatically selected from those available in the subnet.

After I complete the creation of the inbound endpoint, I configure the DNS server in my network to forward requests for the amazonaws.com domain (used by AWS service endpoints) to the inbound endpoint IP addresses.

Similarly, I create an outbound Resolver endpoint and and select both Do53 and DoH as protocols. Then, I create forwarding rules that tell for which domains the outbound Resolver endpoint should forward requests to the DNS servers in my network.

Now, when the DNS clients in my hybrid environment use DNS over HTTPS in their requests, DNS resolutions are encrypted. Optionally, I can enforce encryption and select only DoH in the configuration of inbound and outbound endpoints.

Things to know
DNS over HTTPS support for Amazon Route 53 Resolver is available today in all AWS Regions where Route 53 Resolver is offered, including GovCloud Regions and Regions based in China.

DNS over port 53 continues to be the default for inbound or outbound Resolver endpoints. In this way, you don’t need to update your existing automation tooling unless you want to adopt DNS over HTTPS.

There is no additional cost for using DNS over HTTPS with Resolver endpoints. For more information, see Route 53 pricing.

Start using DNS over HTTPS with Amazon Route 53 Resolver to increase privacy and security for your hybrid cloud environments.

Danilo

Championing CyberSecurity: Grab’s bug bounty programme in 2023

Post Syndicated from Grab Tech original https://engineering.grab.com/cybersec-bug

Launched in 2015, Grab’s Security bug bounty programme has achieved remarkable success and forged strong partnerships within a thriving bounty community. By holding quarterly campaigns with HackerOne, Grab has been dedicated to security and giving back to the global security community to research further. Over the years, Grab has paid over $700,000 in cumulative payments to committed security researchers, aiding their research.

Our journey doesn’t stop there – we’ve also expanded our internal bug bounty team, ensuring that we have the necessary resources to stay at the forefront of security challenges. As we continue to innovate and evolve, it’s critical that our team remains at the cutting edge of security developments.

Marking its eighth year in 2023, this initiative has achieved new milestones and continues to set the stage for an even more successful ninth year. In 2023, this included a special campaign in Threatcon Nepal, aimed at increasing our bounty engagements. A key development was the enrichment of monetary incentives to honour our hacker community’s remarkable contributions to our programme’s success.

Let’s look at the key takeaways we gained from the bug bounty programme in 2023.

Highlights from 2023

This year, we had some of the highest participation and engagement rates we’ve seen since the programme launched.

  • We’ve processed ~1000 submissions through our HackerOne bug bounty programme.
  • Impressive record of 400 submissions in the Q1 2023 campaign.
  • We’ve maintained a consistent schedule of campaigns and innovative efforts to enhance hacker engagement.
  • Released a comprehensive report of our seven-year bug bounty journey – check out some key highlights in the image below.

What’s next?

As Grab expands and transforms its product and service portfolio, we are dedicated to ensuring that our bug bounty programme reflects this growth. In our rigorous pursuit of boosting security, we regularly introduce new areas of focus to our scope. In 2024, expect the inclusion of new scopes, enhanced response times, heightened engagement from the hacker community, and more competitive rewards.

In the past year, we have incorporated Joint Ventures and Acquisitions into the scope of our bug bounty programme. By doing so, we proactively address emerging security challenges, while fortifying the safety and integrity of our expanding ecosystem. We remain fully dedicated to embracing change and growth as integral parts of our journey to provide a secure and seamless experience for our users.

On top of that, we continue to improve our methods of motivating researchers through the bug bounty programme. One recent change is to diversify our reward methods by incorporating both financial rewards and recognition. This allows us to cater to different researcher motivations, cultivate stronger relationships, and acknowledge researchers’ contributions.

That said, we recognise that there’s always room for improvement and the bug bounty programme is uniquely poised for substantial expansion. In the near future, we will be:

  • Introducing more elements to the scope of our bug bounty programme
  • Enhancing feedback loops on the HackerOne platform

With these improvements, we can drive continuous improvement efforts to provide a secure experience for our users while strengthening our connection with the security research community.

A word of thanks

2023 has been an exhilarating year for our team. We’re grateful for the continued support from all the security researchers who’ve actively participated in our programme.

Here are the top three researchers in 2023:

  1. Damian89 
  2. Happy_csr 
  3. mclaren650sspider 

As we head into our ninth year, we know there are new opportunities and challenges that await us. We strive to remain dedicated to the values of collaboration and continuous improvement, working hand in hand with the security community to enhance our superapp’s security and deliver an even safer experience for our users.

We’re gearing up for another exciting year ahead in our programme, and looking forward to interesting submissions from our participants. We extend an open invitation to all researchers to submit reports to our bug bounty programme. Your contributions hold immense value and have a significant impact on the safety and security of our products, our users, and the broader security community. For comprehensive information about the programme scope, rules, and rewards, visit our website.

Until next year, keep up the great work, and happy hacking!

Join us

Grab is the leading superapp platform in Southeast Asia, providing everyday services that matter to consumers. More than just a ride-hailing and food delivery app, Grab offers a wide range of on-demand services in the region, including mobility, food, package and grocery delivery services, mobile payments, and financial services across 428 cities in eight countries.

Powered by technology and driven by heart, our mission is to drive Southeast Asia forward by creating economic empowerment for everyone. If this mission speaks to you, join our team today!

Integrating Turnstile with the Cloudflare WAF to challenge fetch requests

Post Syndicated from Adam Martinetti http://blog.cloudflare.com/author/adam-martinetti/ original https://blog.cloudflare.com/integrating-turnstile-with-the-cloudflare-waf-to-challenge-fetch-requests


Two months ago, we made Cloudflare Turnstile generally available — giving website owners everywhere an easy way to fend off bots, without ever issuing a CAPTCHA. Turnstile allows any website owner to embed a frustration-free Cloudflare challenge on their website with a simple code snippet, making it easy to help ensure that only human traffic makes it through. In addition to protecting a website’s frontend, Turnstile also empowers web administrators to harden browser-initiated (AJAX) API calls running under the hood. These APIs are commonly used by dynamic single-page web apps, like those created with React, Angular, Vue.js.

Today, we’re excited to announce that we have integrated Turnstile with the Cloudflare Web Application Firewall (WAF). This means that web admins can add the Turnstile code snippet to their websites, and then configure the Cloudflare WAF to manage these requests. This is completely customizable using WAF Rules; for instance, you can allow a user authenticated by Turnstile to interact with all of an application’s API endpoints without facing any further challenges, or you can configure certain sensitive endpoints, like Login, to always issue a challenge.

Challenging fetch requests in the Cloudflare WAF

Millions of websites protected by Cloudflare’s WAF leverage our JS Challenge, Managed Challenge, and Interactive Challenge to stop bots while letting humans through. For each of these challenges, Cloudflare intercepts the matching request and responds with an HTML page rendered by the browser, where the user completes a basic task to demonstrate that they’re human. When a user successfully completes a challenge, they receive a cf_clearance cookie, which tells Cloudflare that a user has successfully passed a challenge, the type of challenge, and when it was completed. A clearance cookie can’t be shared between users, and is only valid for the time set by the Cloudflare customer in their Security Settings dashboard.

This process works well, except when a browser receives a challenge on a fetch request and the browser has not previously passed a challenge. On a fetch request, or an XML HTTP Request (XHR), the browser expects to get back simple text (in JSON or XML formats) and cannot render the HTML necessary to run a challenge.

As an example, let’s imagine a pizzeria owner who built an online ordering form in React with a payment page that submits data to an API endpoint that processes payments. When a user views the web form to add their credit card details they can pass a Managed Challenge, but when the user submits their credit card details by making a fetch request, the browser won’t execute the code necessary for a challenge to run. The pizzeria owner’s only option for handling suspicious (but potentially legitimate) requests is to block them, which runs the risk of false positives that could cause the restaurant to lose a sale.

This is where Turnstile can help. Turnstile allows anyone on the Internet to embed a Cloudflare challenge anywhere on their website. Before today, the output of Turnstile was only a one-time use token. To enable customers to issue challenges for these fetch requests, Turnstile can now issue a clearance cookie for the domain that it’s embedded on. Customers can issue their challenge within the HTML page before a fetch request, pre-clearing the visitor to interact with the Payment API.

Turnstile Pre-Clearance mode

Returning to our pizzeria example, the three big advantages of using Pre-Clearance to integrate Turnstile with the Cloudflare WAF are:

  1. Improved user experience: Turnstile’s embedded challenge can run in the background while the visitor is entering their payment details.
  2. Blocking more requests at the edge: Because Turnstile now issues a clearance cookie for the domain that it’s embedded on, our pizzeria owner can use a Custom Rule to issue a Managed Challenge for every request to the payment API. This ensures that automated attacks attempting to target the payment API directly are stopped by Cloudflare before they can reach the API.
  3. (Optional) Securing the action and the user: No backend code changes are necessary to get the benefit of Pre-Clearance. However, further Turnstile integration will increase security for the integrated API. The pizzeria owner can adjust their payment form to validate the received Turnstile token, ensuring that every payment attempt is individually validated by Turnstile to protect their payment endpoint from session hijacking.

A Turnstile widget with Pre-Clearance enabled will still issue turnstile tokens, which gives customers the flexibility to decide if an endpoint is critical enough to require a security check on every request to it, or just once a session. Clearance cookies issued by a Turnstile widget are automatically applied to the Cloudflare zone the Turnstile widget is embedded on, with no configuration necessary. The clearance time the token is valid for is still controlled by the zone specific “Challenge Passage” time.

Implementing Turnstile with Pre-Clearance

Let’s make this concrete by walking through a basic implementation. Before we start, we’ve set up a simple demo application where we emulate a frontend talking to a backend on a /your-api endpoint.

To this end, we have the following code:

<!DOCTYPE html>
<html lang="en">
<head>
   <title>Turnstile Pre-Clearance Demo </title>
</head>
<body>
  <main class="pre-clearance-demo">
    <h2>Pre-clearance Demo</h2>
    <button id="fetchBtn">Fetch Data</button>
    <div id="response"></div>
</main>


<script>
  const button = document.getElementById('fetchBtn');
  const responseDiv = document.getElementById('response');
  button.addEventListener('click', async () => {
  try {
    let result = await fetch('/your-api');
    if (result.ok) {
      let data = await result.json();
      responseDiv.textContent = JSON.stringify(data);
    } else {
      responseDiv.textContent = 'Error fetching data';
    }
  } catch (error) {
    responseDiv.textContent = 'Network error';
  }
});
</script>

We’ve created a button. Upon clicking, Cloudflare makes a fetch() request to the /your-api endpoint, showing the result in the response container.

Now let’s consider that we have a Cloudflare WAF rule set up that protects the /your-api endpoint with a Managed Challenge.

Due to this rule, the app that we just wrote is going to fail for the reason described earlier (the browser is expecting a JSON response, but instead receives the challenge page as HTML).

If we inspect the Network Tab, we can see that the request to /your-api has been given a 403 response.

Upon inspection, the Cf-Mitigated header shows that the response was challenged by Cloudflare’s firewall, as the visitor has not solved a challenge before.

To address this problem in our app, we set up a Turnstile Widget in Pre-Clearance mode for the Turnstile sitekey that we want to use.

In our application, we override the fetch() function to invoke Turnstile once a Cf-Mitigated response has been received.

<script>
turnstileLoad = function () {
  // Save a reference to the original fetch function
  const originalFetch = window.fetch;

  // A simple modal to contain Cloudflare Turnstile
  const overlay = document.createElement('div');
  overlay.style.position = 'fixed';
  overlay.style.top = '0';
  overlay.style.left = '0';
  overlay.style.right = '0';
  overlay.style.bottom = '0';
  overlay.style.backgroundColor = 'rgba(0, 0, 0, 0.7)';
  overlay.style.border = '1px solid grey';
  overlay.style.zIndex = '10000';
  overlay.style.display = 'none';
  overlay.innerHTML =       '<p style="color: white; text-align: center; margin-top: 50vh;">One more step before you proceed...</p><div style=”display: flex; flex-wrap: nowrap; align-items: center; justify-content: center;” id="turnstile_widget"></div>';
  document.body.appendChild(overlay);

  // Override the native fetch function
  window.fetch = async function (...args) {
      let response = await originalFetch(...args);

      //If the original request was challenged...
      if (response.headers.has('cf-mitigated') && response.headers.get('cf-mitigated') === 'challenge') {
          //The request has been challenged...
          overlay.style.display = 'block';

          await new Promise((resolve, reject) => {
              turnstile.render('#turnstile_widget', {
                  'sitekey': ‘YOUR_TURNSTILE_SITEKEY',
                  'error-callback': function (e) {
                      overlay.style.display = 'none';
                      reject(e);
                  },
                  'callback': function (token, preClearanceObtained) {
                      if (preClearanceObtained) {
                          //The visitor successfully solved the challenge on the page. 
                          overlay.style.display = 'none';
                          resolve();
                      } else {
                          reject(e);
                      }
                  },
              });
          });

          // Replay the original fetch request, this time it will have the cf_clearance Cookie
          response = await originalFetch(...args);
      }
      return response;
  };
};
</script>
<script src="https://challenges.cloudflare.com/turnstile/v0/api.js?onload=turnstileLoad" async defer></script>

There is a lot going on in the snippet above: First, we create a hidden overlay element and override the browser’s fetch() function. The fetch() function is changed to introspect the Cf-Mitigated header for ‘challenge’. If a challenge is issued, the initial result will be unsuccessful; instead, a Turnstile overlay (with Pre-Clearance enabled) will appear in our web application. Once the Turnstile challenge has been completed we will retry the previous request after Turnstile has obtained the cf_clearance cookie to get through the Cloudflare WAF.

Upon solving the Turnstile widget, the overlay disappears, and the requested API result is shown successfully:

Pre-Clearance is available to all Cloudflare customers

Every Cloudflare user with a free plan or above can use Turnstile in managed mode free for an unlimited number of requests. If you’re a Cloudflare user looking to improve your security and user experience for your critical API endpoints, head over to our dashboard and create a Turnstile widget with Pre-Clearance today.

Strengthening customer third-party due diligence with renewed AWS CyberGRX assessment

Post Syndicated from Naranjan Goklani original https://aws.amazon.com/blogs/security/strengthening-customer-third-party-due-diligence-with-renewed-aws-cybergrx-assessment/

CyberGRX

Amazon Web Services (AWS) is pleased to announce the successful renewal of the AWS CyberGRX cyber risk assessment report. This third-party validated report helps customers perform effective cloud supplier due diligence on AWS and enhances customers’ third-party risk management process.

With the increase in adoption of cloud products and services across multiple sectors and industries, AWS has become a critical component of customers’ environments. Regulated customers are held to high standards by regulators and auditors when it comes to exercising effective due diligence on third parties.

Many customers use third-party cyber risk management (TPCRM) services such as CyberGRX to better manage risks from their evolving third-party environments and to drive operational efficiencies. To help with such efforts, AWS has completed the CyberGRX assessment of its security posture. CyberGRX security analysts perform the assessment and validate the results annually.

The CyberGRX assessment applies a dynamic approach to third-party risk assessment. This approach integrates advanced analytics, threat intelligence, and sophisticated risk models with vendors’ responses to provide an in-depth view of how a vendor’s security controls help protect against potential threats.

Vendor profiles are continuously updated as the risk level of cloud service providers changes, or as AWS updates its security posture and controls. This approach eliminates outdated static spreadsheets for third-party risk assessments, in which the risk matrices are not updated in near real time.

In addition, AWS customers can use the CyberGRX Framework Mapper to map AWS assessment controls and responses to well-known industry standards and frameworks, such as National Institute of Standards and Technology (NIST) 800-53, NIST Cybersecurity Framework, International Organization for Standardization (ISO) 27001, Payment Card Industry Data Security Standard (PCI DSS), and the U.S. Health Insurance Portability and Assessment Act (HIPAA). This mapping can reduce customers’ third-party supplier due-diligence burden.

Customers can access the AWS CyberGRX report at no additional cost. Customers can request access to the report by completing an access request form, available on the AWS CyberGRX page.

As always, we value your feedback and questions. Reach out to the AWS Compliance team through the Contact Us page. If you have feedback about this post, submit comments in the Comments section below. To learn more about our other compliance and security programs, see AWS Compliance Programs.

Want more AWS Security news? Follow us on Twitter.

Naranjan Goklani

Naranjan Goklani

Naranjan is an Audit Lead for Canada. He has experience leading audits, attestations, certifications, and assessments across the Americas. Naranjan has more than 13 years of experience in risk management, security assurance, and performing technology audits. He previously worked in one of the Big 4 accounting firms and supported clients from the financial services, technology, retail, and utilities industries.

Simplify workforce identity management using IAM Identity Center and trusted token issuers

Post Syndicated from Roberto Migli original https://aws.amazon.com/blogs/security/simplify-workforce-identity-management-using-iam-identity-center-and-trusted-token-issuers/

AWS Identity and Access Management (IAM) roles are a powerful way to manage permissions to resources in the Amazon Web Services (AWS) Cloud. IAM roles are useful when granting permissions to users whose workloads are static. However, for users whose access patterns are more dynamic, relying on roles can add complexity for administrators who are faced with provisioning roles and making sure the right people have the right access to the right roles.

The typical solution to handle dynamic workforce access is the OAuth 2.0 framework, which you can use to propagate an authenticated user’s identity to resource services. Resource services can then manage permissions based on the user—their attributes or permissions—rather than building a complex role management system. AWS IAM Identity Center recently introduced trusted identity propagation based on OAuth 2.0 to support dynamic access patterns.

With trusted identity propagation, your requesting application obtains OAuth tokens from IAM Identity Center and passes them to an AWS resource service. The AWS resource service trusts tokens that Identity Center generates and grants permissions based on the Identity Center tokens.

What happens if the application you want to deploy uses an external OAuth authorization server, such as Okta Universal Directory or Microsoft Entra ID, but the AWS service uses IAM Identity Center? How can you use the tokens from those applications with your applications that AWS hosts?

In this blog post, we show you how you can use IAM Identity Center trusted token issuers to help address these challenges. You also review the basics of Identity Center and OAuth and how Identity Center enables the use of external OAuth authorization servers.

IAM Identity Center and OAuth

IAM Identity Center acts as a central identity service for your AWS Cloud environment. You can bring your workforce users to AWS and authenticate them from an identity provider (IdP) that’s external to AWS (such as Okta or Microsoft Entra), or you can create and authenticate the users on AWS.

Trusted identity propagation in IAM Identity Center lets AWS workforce identities use OAuth 2.0, helping applications that need to share who’s using them with AWS services. In OAuth, a client application and a resource service both trust the same authorization server. The client application gets an OAuth token for the user and sends it to the resource service. Because both services trust the OAuth server, the resource service can identify the user from the token and set permissions based on their identity.

AWS supports two OAuth patterns:

  • AWS applications authenticate directly with IAM Identity Center: Identity Center redirects authentication to your identity source, which generates OAuth tokens that the AWS managed application uses to access AWS services. This is the default pattern because the AWS services that support trusted identity propagation use Identity Center as their OAuth authorization server.
  • Third-party, non-AWS applications authenticate outside of AWS (typically to your IdP) and access AWS resources: During authentication, these third-party applications obtain an OAuth token from an OAuth authorization server outside of AWS. In this pattern, the AWS services aren’t connected to the same OAuth authorization server as the client application. To enable this pattern, AWS introduced a model called the trusted token issuer.

Trusted token issuer

When AWS services use IAM Identity Center as their authentication service, directory, and OAuth authorization server, the AWS services that use OAuth tokens require that Identity Center issues the tokens. However, most third-party applications federate with an external IdP and obtain OAuth tokens from an external authorization server. Although the identities in Identity Center and the external authorization server might be for the same person, the identities exist in separate domains, one in Identity Center, the other in the external authorization server. This is required to manage authorization of workforce identities with AWS services.

The trusted token issuer (TTI) feature provides a way to securely associate one identity from the external IdP with the other identity in IAM Identity Center.

When using third-party applications to access AWS services, there’s an external OAuth authorization server for the third-party application, and IAM Identity Center is the OAuth authorization server for AWS services; each has its own domain of users. The Identity Center TTI feature connects these two systems so that tokens from the external OAuth authorization server can be exchanged for tokens from Identity Center that AWS services can use to identify the user in the AWS domain of users. A TTI is the external OAuth authorization server that Identity Center trusts to provide tokens that third-party applications use to call AWS services, as shown in Figure 1.

Figure 1: Conceptual model using a trusted token issuer and token exchange

Figure 1: Conceptual model using a trusted token issuer and token exchange

How the trust model and token exchange work

There are two levels of trust involved with TTIs. First, the IAM Identity Center administrator must add the TTI, which makes it possible to exchange tokens. This involves connecting Identity Center to the Open ID Connect (OIDC) discovery URL of the external OAuth authorization server and defining an attribute-based mapping between the user from the external OAuth authorization server and a corresponding user in Identity Center. Second, the applications that exchange externally generated tokens must be configured to use the TTI. There are two models for how tokens are exchanged:

  • Managed AWS service-driven token exchange: A third-party application uses an AWS driver or API to access a managed AWS service, such as accessing Amazon Redshift by using Amazon Redshift drivers. This works only if the managed AWS service has been designed to accept and exchange tokens. The application passes the external token to the AWS service through an API call. The AWS service then makes a call to IAM Identity Center to exchange the external token for an Identity Center token. The service uses the Identity Center token to determine who the corresponding Identity Center user is and authorizes resource access based on that identity.
  • Third-party application-driven token exchange: A third-party application not managed by AWS exchanges the external token for an IAM Identity Center token before calling AWS services. This is different from the first model, where the application that exchanges the token is the managed AWS service. An example is a third-party application that uses Amazon Simple Storage Service (Amazon S3) Access Grants to access S3. In this model, the third-party application obtains a token from the external OAuth authorization server and then calls Identity Center to exchange the external token for an Identity Center token. The application can then use the Identity Center token to call AWS services that use Identity Center as their OAuth authorization server. In this case, the Identity Center administrator must register the third-party application and authorize it to exchange tokens from the TTI.

TTI trust details

When using a TTI, IAM Identity Center trusts that the TTI authenticated the user and authorized them to use the AWS service. This is expressed in an identity token or access token from the external OAuth authorization server (the TTI).

These are the requirements for the external OAuth authorization server (the TTI) and the token it creates:

  • The token must be a signed JSON Web Token (JWT). The JWT must contain a subject (sub) claim, an audience (aud) claim, an issuer (iss), a user attribute claim, and a JWT ID (JTI) claim.
    • The subject in the JWT is the authenticated user and the audience is a value that represents the AWS service that the application will use.
    • The audience claim value must match the value that is configured in the application that exchanges the token.
    • The issuer claim value must match the value configured in the issuer URL in the TTI.
    • There must be a claim in the token that specifies a user attribute that IAM Identity Center can use to find the corresponding user in the Identity Center directory.
    • The JWT token must contain the JWT ID claim. This claim is used to help prevent replay attacks. If a new token exchange is attempted after the initial exchange is complete, IAM Identity Center rejects the new exchange request.
  • The TTI must have an OIDC discovery URL that IAM Identity Center can use to obtain keys that it can use to verify the signature on JWTs created by your TTI. Identity Center appends the suffix /.well-known/openid-configuration to the provider URL that you configure to identify where to fetch the signature keys.

Note: Typically, the IdP that you use as your identity source for IAM Identity Center is your TTI. However, your TTI doesn’t have to be the IdP that Identity Center uses as an identity source. If the users from a TTI can be mapped to users in Identity Center, the tokens can be exchanged. You can have as many as 10 TTIs configured for a single Identity Center instance.

Details for applications that exchange tokens

Your OAuth authorization server service (the TTI) provides a way to authorize a user to access an AWS service. When a user signs in to the client application, the OAuth authorization server generates an ID token or an access token that contains the subject (the user) and an audience (the AWS services the user can access). When a third-party application accesses an AWS service, the audience must include an identifier of the AWS service. The third-party client application then passes this token to an AWS driver or an AWS service.

To use IAM Identity Center and exchange an external token from the TTI for an Identity Center token, you must configure the application that will exchange the token with Identity Center to use one or more of the TTIs. Additionally, as part of the configuration process, you specify the audience values that are expected to be used with the external OAuth token.

  • If the applications are managed AWS services, AWS performs most of the configuration process. For example, the Amazon Redshift administrator connects Amazon Redshift to IAM Identity Center, and then connects a specific Amazon Redshift cluster to Identity Center. The Amazon Redshift cluster exchanges the token and must be configured to do so, which is done through the Amazon Redshift administrative console or APIs and doesn’t require additional configuration.
  • If the applications are third-party and not managed by AWS, your IAM Identity Center administrator must register the application and configure it for token exchange. For example, suppose you create an application that obtains an OAuth token from Okta Universal Directory and calls S3 Access Grants. The Identity Center administrator must add this application as a customer managed application and must grant the application permissions to exchange tokens.

How to set up TTIs

To create new TTIs, open the IAM Identity Center console, choose Settings, and then choose Create trusted token issuer, as shown in Figure 2. In this section, I show an example of how to use the console to create a new TTI to exchange tokens with my Okta IdP, where I already created my OIDC application to use with my new IAM Identity Center application.

Figure 2: Configure the TTI in the IAM Identity Center console

Figure 2: Configure the TTI in the IAM Identity Center console

TTI uses the issuer URL to discover the OpenID configuration. Because I use Okta, I can verify that my IdP discovery URL is accessible at https://{my-okta-domain}.okta.com/.well-known/openid-configuration. I can also verify that the OpenID configuration URL responds with a JSON that contains the jwks_uri attribute, which contains a URL that lists the keys that are used by my IdP to sign the JWT tokens. Trusted token issuer requires that both URLs are publicly accessible.

I then configure the attributes I want to use to map the identity of the Okta user with the user in IAM Identity Center in the Map attributes section. I can get the attributes from an OIDC identity token issued by Okta:

{
    "sub": "00u22603n2TgCxTgs5d7",
    "email": "<masked>",
    "ver": 1,
    "iss": "https://<masked>.okta.com",
    "aud": "123456nqqVBTdtk7890",
    "iat": 1699550469,
    "exp": 1699554069,
    "jti": "ID.MojsBne1SlND7tCMtZPbpiei9p-goJsOmCiHkyEhUj8",
    "amr": [
        "pwd"
    ],
    "idp": "<masked>",
    "auth_time": 1699527801,
    "at_hash": "ZFteB9l4MXc9virpYaul9A"
}

I’m requesting a token with an additional email scope, because I want to use this attribute to match against the email of my IAM Identity Center users. In most cases, your Identity Center users are synchronized with your central identity provider by using automatic provisioning with the SCIM protocol. In this case, you can use the Identity Center external ID attribute to match with oid or sub attributes. The only requirement for TTI is that those attributes create a one-to-one mapping between the two IdPs.

Now that I have created my TTI, I can associate it with my IAM Identity Center applications. As explained previously, there are two use cases. For the managed AWS service-driven token exchange use case, use the service-specific interface to do so. For example, I can use my TTI with Amazon Redshift, as shown in Figure 3:

Figure 3: Configure the TTI with Amazon Redshift

Figure 3: Configure the TTI with Amazon Redshift

I selected Okta as the TTI to use for this integration, and I now need to configure the audclaim value that the application will use to accept the token. I can find it when creating the application from the IdP side–in this example, the value is 123456nqqVBTdtk7890, and I can obtain it by using the preceding example OIDC identity token.

I can also use the AWS Command Line Interface (AWS CLI) to configure the IAM Identity Center application with the appropriate application grants:

aws sso put-application-grant \
    --application-arn "<my-application-arn>" \
    --grant-type "urn:ietf:params:oauth:grant-type:jwt-bearer" \
    --grant '
    {
        "JwtBearer": { 
            "AuthorizedTokenIssuers": [
                {
                    "TrustedTokenIssuerArn": "<my-tti-arn>", 
                    "AuthorizedAudiences": [
                        "123456nqqVBTdtk7890"
                    ]
                 }
            ]
       }
    }'

Perform a token exchange

For AWS service-driven use cases, the token exchange between your IdP and IAM Identity Center is performed automatically by the service itself. For third-party application-driven token exchange, such as when building your own Identity Center application with S3 Access Grants, your application performs the token exchange by using the Identity Center OIDC API action CreateTokenWithIAM:

aws sso-oidc create-token-with-iam \  
    --client-id "<my-application-arn>" \ 
    --grant-type "urn:ietf:params:oauth:grant-type:jwt-bearer" \
    --assertion "<jwt-from-idp>"

This action is performed by an IAM principal, which then uses the result to interact with AWS services.

If successful, the result looks like the following:

{
    "accessToken": "<idc-access-token>",
    "tokenType": "Bearer",
    "expiresIn": 3600,
    "idToken": "<jwt-idc-identity-token>",
    "issuedTokenType": "urn:ietf:params:oauth:token-type:access_token",
    "scope": [
        "sts:identity_context",
        "openid",
        "aws"
    ]
}

The value of the scope attribute varies depending on the IAM Identity Center application that you’re interacting with, because it defines the permissions associated with the application.

You can also inspect the idToken attribute because it’s JWT-encoded:

{
    "aws:identity_store_id": "d-123456789",
    "sub": "93445892-f001-7078-8c38-7f2b978f686f",
    "aws:instance_account": "12345678912",
    "iss": "https://identitycenter.amazonaws.com/ssoins-69870e74abba8440",
    "sts:audit_context": "<sts-token>",
    "aws:identity_store_arn": "arn:aws:identitystore::12345678912:identitystore/d-996701d649",
    "aud": "20bSatbAF2kiR7lxX5Vdp2V1LWNlbnRyYWwtMQ",
    "aws:instance_arn": "arn:aws:sso:::instance/ssoins-69870e74abba8440",
    "aws:credential_id": "<masked>",
    "act": {
      "sub": "arn:aws:sso::12345678912:trustedTokenIssuer/ssoins-69870e74abba8440/c38448c2-e030-7092-0f0a-b594f83fcf82"
    },
    "aws:application_arn": "arn:aws:sso::12345678912:application/ssoins-69870e74abba8440/apl-0ed2bf0be396a325",
    "auth_time": "2023-11-10T08:00:08Z",
    "exp": 1699606808,
    "iat": 1699603208
  }

The token contains:

  • The AWS account and the IAM Identity Center instance and application that accepted the token exchange
  • The unique user ID of the user that was matched in IAM Identity Center (attribute sub)

AWS services can now use the STS Audit Context token (found in the attribute sts:audit_context) to create identity-aware sessions with the STS API. You can audit the API calls performed by the identity-aware sessions in AWS CloudTrail, by inspecting the attribute onBehalfOf within the field userIdentity. In this example, you can see an API call that was performed with an identity-aware session:

"userIdentity": {
    ...
    "onBehalfOf": {
        "userId": "93445892-f001-7078-8c38-7f2b978f686f",
        "identityStoreArn": "arn:aws:identitystore::425341151473:identitystore/d-996701d649"
    }
}

You can thus quickly filter actions that an AWS principal performs on behalf of your IAM Identity Center user.

Troubleshooting TTI

You can troubleshoot token exchange errors by verifying that:

  • The OpenID discovery URL is publicly accessible.
  • The OpenID discovery URL response conforms with the OpenID standard.
  • The OpenID keys URL referenced in the discovery response is publicly accessible.
  • The issuer URL that you configure in the TTI exactly matches the value of the iss scope that your IdP returns.
  • The user attribute that you configure in the TTI exists in the JWT that your IdP returns.
  • The user attribute value that you configure in the TTI matches exactly one existing IAM Identity Center user on the target attribute.
  • The aud scope exists in the token returned from your IdP and exactly matches what is configured in the requested IAM Identity Center application.
  • The jti claim exists in the token returned from your IdP.
  • If you use an IAM Identity Center application that requires user or group assignments, the matched Identity Center user is already assigned to the application or belongs to a group assigned to the application.

Note: When an IAM Identity Center application doesn’t require user or group assignments, the token exchange will succeed if the preceding conditions are met. This configuration implies that the connected AWS service requires additional security assignments. For example, Amazon Redshift administrators need to configure access to the data within Amazon Redshift. The token exchange doesn’t grant implicit access to the AWS services.

Conclusion

In this blog post, we introduced the trust token issuer feature of IAM Identity Center and what it offers, how it’s configured, and how you can use it to integrate your IdP with AWS services. You learned how to use TTI with AWS-managed applications and third-party applications by configuring the appropriate parameters. You also learned how to troubleshoot token-exchange issues and audit access through CloudTrail.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on the AWS IAM Identity Center re:Post or contact AWS Support.

Roberto Migli

Roberto Migli

Roberto is a Principal Solutions Architect at AWS. Roberto supports global financial services customers, focusing on security and identity and access management. In his free time, he enjoys building electronic gadgets, learning about space, and spending time with his family.

Ron Cully

Ron Cully

Ron is a Principal Product Manager at AWS where he leads feature and roadmap planning for workforce identity products at AWS. Ron has over 20 years of industry experience in product and program management in networking and directory related products. He is passionate about delivering secure, reliable solutions that help make it simple for customers to migrate directory-aware applications and workloads to the cloud.

Rafael Koike

Rafael Koike

Rafael is a Principal Solutions Architect supporting enterprise customers in the Southeast and is a Storage SME. Rafael has a passion to build, and his expertise in security, storage, networking, and application development has been instrumental in helping customers move to the cloud quickly and securely.

Optimize AWS administration with IAM paths

Post Syndicated from David Rowe original https://aws.amazon.com/blogs/security/optimize-aws-administration-with-iam-paths/

As organizations expand their Amazon Web Services (AWS) environment and migrate workloads to the cloud, they find themselves dealing with many AWS Identity and Access Management (IAM) roles and policies. These roles and policies multiply because IAM fills a crucial role in securing and controlling access to AWS resources. Imagine you have a team creating an application. You create an IAM role to grant them access to the necessary AWS resources, such as Amazon Simple Storage Service (Amazon S3) buckets, Amazon Key Management Service (Amazon KMS) keys, and Amazon Elastic File Service (Amazon EFS) shares. With additional workloads and new data access patterns, the number of IAM roles and policies naturally increases. With the growing complexity of resources and data access patterns, it becomes crucial to streamline access and simplify the management of IAM policies and roles

In this blog post, we illustrate how you can use IAM paths to organize IAM policies and roles and provide examples you can use as a foundation for your own use cases.

How to use paths with your IAM roles and policies

When you create a role or policy, you create it with a default path. In IAM, the default path for resources is “/”. Instead of using a default path, you can create and use paths and nested paths as a structure to manage IAM resources. The following example shows an IAM role named S3Access in the path developer:

arn:aws:iam::111122223333:role/developer/S3Access

Service-linked roles are created in a reserved path /aws-service-role/. The following is an example of a service-linked role path.

arn:aws:iam::*:role/aws-service-role/SERVICE-NAME.amazonaws.com/SERVICE-LINKED-ROLE-NAME

The following example is of an IAM policy named S3ReadOnlyAccess in the path security:

arn:aws:iam::111122223333:policy/security/S3ReadOnlyAccess

Why use IAM paths with roles and policies?

By using IAM paths with roles and policies, you can create groupings and design a logical separation to simplify management. You can use these groupings to grant access to teams, delegate permissions, and control what roles can be passed to AWS services. In the following sections, we illustrate how to use IAM paths to create groupings of roles and policies by referencing a fictional company and its expansion of AWS resources.

First, to create roles and policies with a path, you use the IAM API or AWS Command Line Interface (AWS CLI) to run aws cli create-role.

The following is an example of an AWS CLI command that creates a role in an IAM path.

aws iam create-role --role-name <ROLE-NAME> --assume-role-policy-document file://assume-role-doc.json --path <PATH>

Replace <ROLE-NAME> and <PATH> in the command with your role name and role path respectively. Use a trust policy for the trust document that matches your use case. An example trust policy that allows Amazon Elastic Compute Cloud (Amazon EC2) instances to assume this role on your behalf is below:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "sts:AssumeRole"
            ],
            "Principal": {
                "Service": [
                    "ec2.amazonaws.com"
                ]
            }
        }
    ]
}

The following is an example of an AWS CLI command that creates a policy in an IAM path.

aws iam create-policy --policy-name <POLICY-NAME> --path <PATH> --policy-document file://policy.json

IAM paths sample implementation

Let’s assume you’re a cloud platform architect at AnyCompany, a startup that’s planning to expand its AWS environment. By the end of the year, AnyCompany is going to expand from one team of developers to multiple teams, all of which require access to AWS. You want to design a scalable way to manage IAM roles and policies to simplify the administrative process to give permissions to each team’s roles. To do that, you create groupings of roles and policies based on teams.

Organize IAM roles with paths

AnyCompany decided to create the following roles based on teams.

Team name Role name IAM path Has access to
Security universal-security-readonly /security/ All resources
Team A database administrators DBA-role-A /teamA/ TeamA’s databases
Team B database administrators DBA-role-B /teamB/ TeamB’s databases

The following are example Amazon Resource Names (ARNs) for the roles listed above. In this example, you define IAM paths to create a grouping based on team names.

  1. arn:aws:iam::444455556666:role/security/universal-security-readonly-role
  2. arn:aws:iam::444455556666:role/teamA/DBA-role-A
  3. arn:aws:iam::444455556666:role/teamB/DBA-role-B

Note: Role names must be unique within your AWS account regardless of their IAM paths. You cannot have two roles named DBA-role, even if they’re in separate paths.

Organize IAM policies with paths

After you’ve created roles in IAM paths, you will create policies to provide permissions to these roles. The same path structure that was defined in the IAM roles is used for the IAM policies. The following is an example of how to create a policy with an IAM path. After you create the policy, you can attach the policy to a role using the attach-role-policy command.

aws iam create-policy --policy-name <POLICY-NAME> --policy-document file://policy-doc.json --path <PATH>
  1. arn:aws:iam::444455556666:policy/security/universal-security-readonly-policy
  2. arn:aws:iam::444455556666:policy/teamA/DBA-policy-A
  3. arn:aws:iam::444455556666:policy/teamB/DBA-policy-B

Grant access to groupings of IAM roles with resource-based policies

Now that you’ve created roles and policies in paths, you can more readily define which groups of principals can access a resource. In this deny statement example, you allow only the roles in the IAM path /teamA/ to act on your bucket, and you deny access to all other IAM principals. Rather than use individual roles to deny access to the bucket, which would require you to list every role, you can deny access to an entire group of principals by path. If you create a new role in your AWS account in the specified path, you don’t need to modify the policy to include them. The path-based deny statement will apply automatically.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Action": "s3:*",
      "Effect": "Deny",
      "Resource": [
		"arn:aws:s3:::EXAMPLE-BUCKET",
		"arn:aws:s3:::EXAMPLE-BUCKET/*"
		],
      "Principal": "*",
"Condition": {
        "ArnNotLike": {
          "aws:PrincipalArn": "arn:aws:iam::*:role/teamA/*"
        }
      }
}
  ]
}

Delegate access with IAM paths

IAM paths can also enable teams to more safely create IAM roles and policies and allow teams to only use the roles and policies contained by the paths. Paths can help prevent teams from privilege escalation by denying the use of roles that don’t belong to their team.

Continuing the example above, AnyCompany established a process that allows each team to create their own IAM roles and policies, providing they’re in a specified IAM path. For example, AnyCompany allows team A to create IAM roles and policies for team A in the path /teamA/:

  1. arn:aws:iam::444455556666:role/teamA/<role-name>
  2. arn:aws:iam::444455556666:policy/teamA/<policy-name>

Using IAM paths, AnyCompany can allow team A to more safely create and manage their own IAM roles and policies and safely pass those roles to AWS services using the iam:PassRole permission.

At AnyCompany, four IAM policies using IAM paths allow teams to more safely create and manage their own IAM roles and policies. Following recommended best practices, AnyCompany uses infrastructure as code (IaC) for all IAM role and policy creation. The four path-based policies that follow will be attached to each team’s CI/CD pipeline role, which has permissions to create roles. The following example focuses on team A, and how these policies enable them to self-manage their IAM credentials.

  1. Create a role in the path and modify inline policies on the role: This policy allows three actions: iam:CreateRole, iam:PutRolePolicy, and iam:DeleteRolePolicy. When this policy is attached to a principal, that principal is allowed to create roles in the IAM path /teamA/ and add and delete inline policies on roles in that IAM path.
    {
      "Version": "2012-10-17",
      "Statement": [
    {
            "Effect": "Allow",
            "Action": [
                "iam:CreateRole",
                "iam:PutRolePolicy",
                "iam:DeleteRolePolicy"
            ],
            "Resource": "arn:aws:iam::444455556666:role/teamA/*"
        }
    ]
    }

  2. Add and remove managed policies: The second policy example allows two actions: iam:AttachRolePolicy and iam:DetachRolePolicy. This policy allows a principal to attach and detach managed policies in the /teamA/ path to roles that are created in the /teamA/ path.
    {
      "Version": "2012-10-17",
      "Statement": [
    
    {
            "Effect": "Allow",
            "Action": [
                "iam:AttachRolePolicy",
                "iam:DetachRolePolicy"
            ],
            "Resource": "arn:aws:iam::444455556666:role/teamA/*",
            "Condition": {
                "ArnLike": {
                    "iam:PolicyARN": "arn:aws:iam::444455556666:policy/teamA/*"
                }          
            }
        }
    ]}

  3. Delete roles, tag and untag roles, read roles: The third policy allows a principal to delete roles, tag and untag roles, and retrieve information about roles that are created in the /teamA/ path.
    {
      "Version": "2012-10-17",
      "Statement": [
    
    
    {
            "Effect": "Allow",
            "Action": [
                "iam:DeleteRole",
                "iam:TagRole",
                "iam:UntagRole",
                "iam:GetRole",
                "iam:GetRolePolicy"
            ],
            "Resource": "arn:aws:iam::444455556666:role/teamA/*"
        }]}

  4. Policy management in IAM path: The final policy example allows access to create, modify, get, and delete policies that are created in the /teamA/ path. This includes creating, deleting, and tagging policies.
    {
      "Version": "2012-10-17",
      "Statement": [
    
    {
            "Effect": "Allow",
            "Action": [
                "iam:CreatePolicy",
                "iam:DeletePolicy",
                "iam:CreatePolicyVersion",            
                "iam:DeletePolicyVersion",
                "iam:GetPolicy",
                "iam:TagPolicy",
                "iam:UntagPolicy",
                "iam:SetDefaultPolicyVersion",
                "iam:ListPolicyVersions"
             ],
            "Resource": "arn:aws:iam::444455556666:policy/teamA/*"
        }]}

Safely pass roles with IAM paths and iam:PassRole

To pass a role to an AWS service, a principal must have the iam:PassRole permission. IAM paths are the recommended option to restrict which roles a principal can pass when granted the iam:PassRole permission. IAM paths help verify principals can only pass specific roles or groupings of roles to an AWS service.

At AnyCompany, the security team wants to allow team A to add IAM roles to an instance profile and attach it to Amazon EC2 instances, but only if the roles are in the /teamA/ path. The IAM action that allows team A to provide the role to the instance is iam:PassRole. The security team doesn’t want team A to be able to pass other roles in the account, such as an administrator role.

The policy that follows allows passing of a role that was created in the /teamA/ path and does not allow the passing of other roles such as an administrator role.

{
    "Version": "2012-10-17",
    "Statement": [{
        "Effect": "Allow",
        "Action": "iam:PassRole",
        "Resource": "arn:aws:iam::444455556666:role/teamA/*"
    }]
}

How to create preventative guardrails for sensitive IAM paths

You can use service control policies (SCP) to restrict access to sensitive roles and policies within specific IAM paths. You can use an SCP to prevent the modification of sensitive roles and policies that are created in a defined path.

You will see the IAM path under the resource and condition portion of the statement. Only the role named IAMAdministrator created in the /security/ path can create or modify roles in the security path. This SCP allows you to delegate IAM role and policy management to developers with confidence that they won’t be able to create, modify, or delete any roles or policies in the security path.

{
    "Version": "2012-10-17",
    "Statement": [
        {
	    "Sid": "RestrictIAMWithPathManagement",
            "Effect": "Deny",
            "Action": [
                "iam:AttachRolePolicy",
                "iam:CreateRole",
                "iam:DeleteRole",
                "iam:DeleteRolePermissionsBoundary",
                "iam:DeleteRolePolicy",
                "iam:DetachRolePolicy",
                "iam:PutRolePermissionsBoundary",
                "iam:PutRolePolicy",
                "iam:UpdateRole",
                "iam:UpdateAssumeRolePolicy",
                "iam:UpdateRoleDescription",
                "sts:AssumeRole",
                "iam:TagRole",
                "iam:UntagRole"
            ],
            "Resource": [
                "arn:aws:iam::*:role/security/* "
            ],
            "Condition": {
                "ArnNotLike": {
                    "aws:PrincipalARN": "arn:aws:iam::444455556666:role/security/IAMAdministrator"
                }
            }
        }
    ]
}

This next example shows you how you can safely exempt IAM roles created in the security path from specific controls in your organization. The policy denies all roles except the roles created in the /security/ IAM path to close member accounts.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "PreventCloseAccount",
      "Effect": "Deny",
      "Action": "organizations:CloseAccount",
      "Resource": "*",
      "Condition": {
        "ArnNotLikeIfExists": {
          "aws:PrincipalArn": [
            "arn:aws:iam::*:role/security/*"
          ]
        }
      }
    }
  ]
}

Additional considerations when using IAM paths

You should be aware of some additional considerations when you start using IAM paths.

  1. Paths are immutable for IAM roles and policies. To change a path, you must delete the IAM resource and recreate the IAM resource in the alternative path. Deleting roles or instance profiles has step-by-step instructions to delete an IAM resource.
  2. You can only create IAM paths using AWS API or command line tools. You cannot create IAM paths with the AWS console.
  3. IAM paths aren’t added to the uniqueness of the role name. Role names must be unique within your account without the path taken into consideration.
  4. AWS reserves several paths including /aws-service-role/ and you cannot create roles in this path.

Conclusion

IAM paths provide a powerful mechanism for effectively grouping IAM resources. Path-based groupings can streamline access management across AWS services. In this post, you learned how to use paths with IAM principals to create structured access with IAM roles, how to delegate and segregate access within an account, and safely pass roles using iam:PassRole. These techniques can empower you to fine-tune your AWS access management and help improve security while streamlining operational workflows.

You can use the following references to help extend your knowledge of IAM paths. This post references the processes outlined in the user guides and blog post, and sources the IAM policies from the GitHub repositories.

  1. AWS Organizations User Guide, SCP General Examples
  2. AWS-Samples Service-control-policy-examples GitHub Repository
  3. AWS Security Blog: IAM Policy types: How and when to use them
  4. AWS-Samples how-and-when-to-use-aws-iam-policy-blog-samples GitHub Repository

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

David Rowe

David Rowe

As a Senior Solutions Architect, David unites diverse global teams to drive cloud transformation through strategies and intuitive identity solutions. He creates consensus, guiding teams to adopt emerging technologies. He thrives on bringing together cross-functional perspectives to transform vision into reality in dynamic industries.

How to use multiple instances of AWS IAM Identity Center

Post Syndicated from Laura Reith original https://aws.amazon.com/blogs/security/how-to-use-multiple-instances-of-aws-iam-identity-center/

Recently, AWS launched a new feature that allows deployment of account instances of AWS IAM Identity Center . With this launch, you can now have two types of IAM Identity Center instances: organization instances and account instances. An organization instance is the IAM Identity Center instance that’s enabled in the management account of your organization created with AWS Organizations. This instance is used to manage access to AWS accounts and applications across your entire organization. Organization instances are the best practice when deploying IAM Identity Center. Many customers have requested a way to enable AWS applications using test or sandbox identities. The new account instances are intended to support sand-boxed deployments of AWS managed applications such as Amazon CodeCatalyst and are only usable from within the account and AWS Region in which they were created. They can exist in a standalone account or in a member account within AWS Organizations.

In this blog post, we show you when to use each instance type, how to control the deployment of account instances, and how you can monitor, manage, and audit these instances at scale using the enhanced IAM Identity Center APIs.

IAM Identity Center instance types

IAM Identity Center now offers two deployment types, the traditional organization instance and an account instance, shown in Figure 1. In this section, we show you the differences between the two.
 

Figure 1: IAM Identity Center instance types

Figure 1: IAM Identity Center instance types

Organization instance of IAM Identity Center

An organization instance of IAM Identity Center is the fully featured version that’s available with AWS Organizations. This type of instance helps you securely create or connect your workforce identities and manage their access centrally across AWS accounts and applications in your organization. The recommended use of an organization instance of Identity Center is for workforce authentication and authorization on AWS for organizations of any size and type.

Using the organization instance of IAM Identity Center, your identity center administrator can create and manage user identities in the Identity Center directory, or connect your existing identity source, including Microsoft Active Directory, Okta, Ping Identity, JumpCloud, Google Workspace, and Azure Active Directory (Entra ID). There is only one organization instance of IAM Identity Center at the organization level. If you have enabled IAM Identity Center before November 15, 2023, you have an organization instance.

Account instances of IAM Identity Center

Account instances of IAM Identity Center provide a subset of the features of the organization instance. Specifically, account instances support user and group assignments initially only to Amazon CodeCatalyst. They are bound to a single AWS account, and you can deploy them in either member accounts of an organization or in standalone AWS accounts. You can only deploy one account instance per AWS account regardless of Region.

You can use account instances of IAM Identity Center to provide access to supported Identity Center enabled application if the application is in the same account and Region.

Account instances of Identity Center don’t support permission sets or assignments to customer managed applications. If you’ve enabled Identity Center before November 15, 2023 then you must enable account instance creation from your management account. To learn more see Enable account instances in the AWS Management Console documentation. If you haven’t yet enabled Identity Center, then account instances are now available to you.

When should I use account instances of IAM Identity Center?

Account instances are intended for use in specific situations where organization instances are unavailable or impractical, including:

  • You want to run a temporary trial of a supported AWS managed application to determine if it suits your business needs. See Additional Considerations.
  • You are unable to deploy IAM Identity Center across your organization, but still want to experiment with one or more AWS managed applications. See Additional Considerations.
  • You have an organization instance of IAM Identity Center, but you want to deploy a supported AWS managed application to an isolated set of users that are distinct from those in your organization instance.

Additional considerations

When working with multiple instances of IAM Identity Center, you want to keep a number of things in mind:

  • Each instance of IAM Identity Center is separate and distinct from other Identity Center instances. That is, users and assignments are managed separately in each instance without a means to keep them in sync.
  • Migration between instances isn’t possible. This means that migrating an application between instances requires setting up that application from scratch in the new instance.
  • Account instances have the same considerations when changing your identity source as an organization instance. In general, you want to set up with the right identity source before adding assignments.
  • Automating assigning users to applications through the IAM Identity Center public APIs also requires using the applications APIs to ensure that those users and groups have the right permissions within the application. For example, if you assign groups to CodeCatalyst using Identity Center, you still have to assign the groups to the CodeCatalyst space from the Amazon CodeCatalyst page in the AWS Management Console. See the Setting up a space that supports identity federation documentation.
  • By default, account instances require newly added users to register a multi-factor authentication (MFA) device when they first sign in. This can be altered in the AWS Management Console for Identity Center for a specific instance.

Controlling IAM Identity Center instance deployments

If you’ve enabled IAM Identity Center prior to November 15, 2023 then account instance creation is off by default. If you want to allow account instance creation, you must enable this feature from the Identity Center console in your organization’s management account. This includes scenarios where you’re using IAM Identity Center centrally and want to allow deployment and management of account instances. See Enable account instances in the AWS Management Console documentation.

If you enable IAM Identity Center after November 15, 2023 or if you haven’t enabled Identity Center at all, you can control the creation of account instances of Identity Center through a service control policy (SCP). We recommend applying the following sample policy to restrict the use of account instances to all but a select set of AWS accounts. The sample SCP that follows will help you deny creation of account instances of Identity Center to accounts in the organization unless the account ID matches the one you specified in the policy. Replace <ALLOWED-ACCOUNT_ID> with the ID of the account that is allowed to create account instances of Identity Center:

{
    "Version": "2012-10-17",
    "Statement" : [
        {
            "Sid": "DenyCreateAccountInstances",
            "Effect": "Deny",
            "Action": [
                "sso:CreateInstance"
            ],
            "Resource": "*",
            "Condition": {
                "StringNotEquals": [
                    "aws:PrincipalAccount": ["<ALLOWED-ACCOUNT-ID>"]
                ]
            }
        }
    ]
}

To learn more about SCPs, see the AWS Organizations User Guide on service control policies.

Monitoring instance activity with AWS CloudTrail

If your organization has an existing log ingestion pipeline solution to collect logs and generate reports through AWS CloudTrail, then IAM Identity Center supported CloudTrail operations will automatically be present in your pipeline, including additional account instances of IAM Identity Center actions such as sso:CreateInstance.

To create a monitoring solution for IAM Identity Center events in your organization, you should set up monitoring through AWS CloudTrail. CloudTrail is a service that records events from AWS services to facilitate monitoring activity from those services in your accounts. You can create a CloudTrail trail that captures events across all accounts and all Regions in your organization and persists them to Amazon Simple Storage Service (Amazon S3).

After creating a trail for your organization, you can use it in several ways. You can send events to Amazon CloudWatch Logs and set up monitoring and alarms for Identity Center events, which enables immediate notification of supported IAM Identity Center CloudTrail operations. With multiple instances of Identity Center deployed within your organization, you can also enable notification of instance activity, including new instance creation, deletion, application registration, user authentication, or other supported actions.

If you want to take action on IAM Identity Center events, you can create a solution to process events using additional service such as Amazon Simple Notification Service, Amazon Simple Queue Service, and the CloudTrail Processing Library. With this solution, you can set your own business logic and rules as appropriate.

Additionally, you might want to consider AWS CloudTrail Lake, which provides a powerful data store that allows you to query CloudTrail events without needing to manage a complex data loading pipeline. You can quickly create a data store for new events, which will immediately start gathering data that can be queried within minutes. To analyze historical data, you can copy your organization trail to CloudTrail Lake.

The following is an example of a simple query that shows you a list of the Identity Center instances created and deleted, the account where they were created, and the user that created them. Replace <Event_data_store_ID> with your store ID.

SELECT 
    userIdentity.arn AS userARN, eventName, userIdentity.accountId 
FROM 
    <Event_data_store_ID> 
WHERE 
    userIdentity.arn IS NOT NULL 
    AND eventName = 'DeleteInstance' 
    OR eventName = 'CreateInstance'

You can save your query result to an S3 bucket and download a copy of the results in CSV format. To learn more, follow the steps in Download your CloudTrail Lake saved query results. Figure 2 shows the CloudTrail Lake query results.

Figure 2: AWS CloudTrail Lake query results

Figure 2: AWS CloudTrail Lake query results

If you want to automate the sourcing, aggregation, normalization, and data management of security data across your organization using the Open Cyber Security Framework (OCSF) standard, you will benefit from using Amazon Security Lake. This service helps make your organization’s security data broadly accessible to your preferred security analytics solutions to power use cases such like threat detection, investigation, and incident response. Learn more in What is Amazon Security Lake?

Instance management and discovery within an organization

You can create account instances of IAM Identity Center in a standalone account or in an account that belongs to your organization. Creation can happen from an API call (CreateInstance) from the Identity Center console in a member account or from the setup experience of a supported AWS managed application. Learn more about Supported AWS managed applications.

If you decide to apply the DenyCreateAccountInstances SCP shown earlier to accounts in your organization, you will no longer be able to create account instances of IAM Identity Center in those accounts. However, you should also consider that when you invite a standalone AWS account to join your organization, the account might have an existing account instance of Identity Center.

To identify existing instances, who’s using them, and what they’re using them for, you can audit your organization to search for new instances. The following script shows how to discover all IAM Identity Center instances in your organization and export a .csv summary to an S3 bucket. This script is designed to run on the account where Identity Center was enabled. Click here to see instructions on how to use this script.

. . .
. . .
accounts_and_instances_dict={}
duplicated_users ={}

main_session = boto3.session.Session()
sso_admin_client = main_session.client('sso-admin')
identity_store_client = main_session.client('identitystore')
organizations_client = main_session.client('organizations')
s3_client = boto3.client('s3')
logger = logging.getLogger()
logger.setLevel(logging.INFO)

#create function to list all Identity Center instances in your organization
def lambda_handler(event, context):
    application_assignment = []
    user_dict={}
    
    current_account = os.environ['CurrentAccountId']
 
    logger.info("Current account %s", current_account)
    
    paginator = organizations_client.get_paginator('list_accounts')
    page_iterator = paginator.paginate()
    for page in page_iterator:
        for account in page['Accounts']:
            get_credentials(account['Id'],current_account)
            #get all instances per account - returns dictionary of instance id and instances ARN per account
            accounts_and_instances_dict = get_accounts_and_instances(account['Id'], current_account)
                    
def get_accounts_and_instances(account_id, current_account):
    global accounts_and_instances_dict
    
    instance_paginator = sso_admin_client.get_paginator('list_instances')
    instance_page_iterator = instance_paginator.paginate()
    for page in instance_page_iterator:
        for instance in page['Instances']:
            #send back all instances and identity centers
            if account_id == current_account:
                accounts_and_instances_dict = {current_account:[instance['IdentityStoreId'],instance['InstanceArn']]}
            elif instance['OwnerAccountId'] != current_account: 
                accounts_and_instances_dict[account_id]= ([instance['IdentityStoreId'],instance['InstanceArn']])
    return accounts_and_instances_dict
  . . .  
  . . .
  . . .

The following table shows the resulting IAM Identity Center instance summary report with all of the accounts in your organization and their corresponding Identity Center instances.

AccountId IdentityCenterInstance
111122223333 d-111122223333
111122224444 d-111122223333
111122221111 d-111111111111

Duplicate user detection across multiple instances

A consideration of having multiple IAM Identity Center instances is the possibility of having the same person existing in two or more instances. In this situation, each instance creates a unique identifier for the same person and the identifier associates application-related data to the user. Create a user management process for incoming and outgoing users that is similar to the process you use at the organization level. For example, if a user leaves your organization, you need to revoke access in all Identity Center instances where that user exists.

The code that follows can be added to the previous script to help detect where duplicates might exist so you can take appropriate action. If you find a lot of duplication across account instances, you should consider adopting an organization instance to reduce your management overhead.

...
#determine if the member in IdentityStore have duplicate
def get_users(identityStoreId, user_dict): 
    global duplicated_users
    paginator = identity_store_client.get_paginator('list_users')
    page_iterator = paginator.paginate(IdentityStoreId=identityStoreId)
    for page in page_iterator:
        for user in page['Users']:
            if ( 'Emails' not in user ):
                print("user has no email")
            else:
                for email in user['Emails']:
                    if email['Value'] not in user_dict:
                        user_dict[email['Value']] = identityStoreId
                    else:
                        print("Duplicate user found " + user['UserName'])
                        user_dict[email['Value']] = user_dict[email['Value']] + "," + identityStoreId
                        duplicated_users[email['Value']] = user_dict[email['Value']]
    return user_dict 
... 

The following table shows the resulting report with duplicated users in your organization and their corresponding IAM identity Center instances.

User_email IdentityStoreId
[email protected] d-111122223333, d-111111111111
[email protected] d-111122223333, d-111111111111, d-222222222222
[email protected] d-111111111111, d-222222222222

The full script for all of the above use cases is available in the multiple-instance-management-iam-identity-center GitHub repository. The repository includes instructions to deploy the script using AWS Lambda within the management account. After deployment, you can invoke the Lambda function to get .csv files of every IAM Identity center instance in your organization, the applications assigned to each instance, and the users that have access to those applications. With this function, you also get a report of users that exist in more than one local instance.

Conclusion

In this post, you learned the differences between an IAM Identity Center organization instance and an account instance, considerations for when to use an account instance, and how to use Identity Center APIs to automate discovery of Identity Center account instances in your organization.

To learn more about IAM Identity Center, see the AWS IAM Identity Center user guide.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on AWS IAM Identity Center re:Post or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Author

Laura Reith

Laura is an Identity Solutions Architect at AWS, where she thrives on helping customers overcome security and identity challenges. In her free time, she enjoys wreck diving and traveling around the world.

Steve Pascoe

Steve Pascoe

Steve is a Senior Technical Product Manager with the AWS Identity team. He delights in empowering customers with creative and unique solutions to everyday problems. Outside of that, he likes to build things with his family through Lego, woodworking, and recently, 3D printing.

sowjir-1.jpeg

Sowjanya Rajavaram

Sowjanya is a Sr Solutions Architect who specializes in Identity and Security in AWS. Her entire career has been focused on helping customers of all sizes solve their identity and access management challenges. She enjoys traveling and experiencing new cultures and food.

2023 Canadian Centre for Cyber Security Assessment Summary report available with 20 additional services

Post Syndicated from Naranjan Goklani original https://aws.amazon.com/blogs/security/2023-canadian-centre-for-cyber-security-assessment-summary-report-available-with-20-additional-services/

At Amazon Web Services (AWS), we are committed to providing continued assurance to our customers through assessments, certifications, and attestations that support the adoption of current and new AWS services and features. We are pleased to announce the availability of the 2023 Canadian Centre for Cyber Security (CCCS) assessment summary report for AWS. With this assessment, a total of 150 AWS services and features are assessed in the Canada (Central) Region, including 20 additional AWS services and features. The assessment report is available for review and download on demand through AWS Artifact.

The full list of services in scope for the CCCS assessment is available on the Services in Scope page. The 20 new services and features are the following:

The CCCS is Canada’s authoritative source of cyber security expert guidance for the Canadian government, industry, and the general public. Public and commercial sector organizations across Canada rely on CCCS’s rigorous Cloud Service Provider (CSP) IT Security (ITS) assessment in their decision to use CSP services. In addition, CCCS’s ITS assessment process is a mandatory requirement for AWS to provide cloud services to Canadian federal government departments and agencies.  

The CCCS cloud service provider information technology security assessment process determines if the Government of Canada (GC) ITS requirements for the CCCS Medium cloud security profile (previously referred to as GC’s PROTECTED B/Medium Integrity/Medium Availability [PBMM] profile) are met as described in ITSG-33 (IT security risk management: A lifecycle approach, Annex 3 – Security control catalogue). As of November 2023, 150 AWS services in the Canada (Central) Region have been assessed by CCCS and meet the requirements for the Medium cloud security profile. Meeting the Medium cloud security profile is required to host workloads that are classified up to and including Medium categorization. On a periodic basis, CCCS assesses new or previously unassessed services and re-assesses the AWS services that were previously assessed to verify that they continue to meet the GC’s requirements. CCCS prioritizes the assessment of new AWS services based on their availability in Canada, and customer demand for the AWS services. The full list of AWS services that have been assessed by CCCS is available on our Services in Scope for CCCS Assessment page.

To learn more about the CCCS assessment or our other compliance and security programs, visit AWS Compliance Programs. As always, we value your feedback and questions; reach out to the AWS Compliance team through the Contact Us page.

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Naranjan Goklani

Naranjan Goklani

Naranjan is an Audit Lead for Canada. He has experience leading audits, attestations, certifications, and assessments across the Americas. Naranjan has more than 13 years of experience in risk management, security assurance, and performing technology audits. He previously worked in one of the Big 4 accounting firms and supported clients from the financial services, technology, retail, and utilities industries.

Implement an early feedback loop with AWS developer tools to shift security left

Post Syndicated from Barry Conway original https://aws.amazon.com/blogs/security/implement-an-early-feedback-loop-with-aws-developer-tools-to-shift-security-left/

Early-feedback loops exist to provide developers with ongoing feedback through automated checks. This enables developers to take early remedial action while increasing the efficiency of the code review process and, in turn, their productivity.

Early-feedback loops help provide confidence to reviewers that fundamental security and compliance requirements were validated before review. As part of this process, common expectations of code standards and quality can be established, while shifting governance mechanisms to the left.

In this post, we will show you how to use AWS developer tools to implement a shift-left approach to security that empowers your developers with early feedback loops within their development practices. You will use AWS CodeCommit to securely host Git repositories, AWS CodePipeline to automate continuous delivery pipelines, AWS CodeBuild to build and test code, and Amazon CodeGuru Reviewer to detect potential code defects.

Why the shift-left approach is important

Developers today are an integral part of organizations, building and maintaining the most critical customer-facing applications. Developers must have the knowledge, tools, and processes in place to help them identify potential security issues before they release a product to production.

This is why the shift-left approach is important. Shift left is the process of checking for vulnerabilities and issues in the earlier stages of software development. By following the shift-left process (which should be part of a wider application security review and threat modelling process), software teams can help prevent undetected security issues when they build an application. The modern DevSecOps workflow continues to shift left towards the developer and their practices with the aim to achieve the following:

  • Drive accountability among developers for the security of their code
  • Empower development teams to remediate issues up front and at their own pace
  • Improve risk management by enabling early visibility of potential security issues through early feedback loops

You can use AWS developer tools to help provide this continual early feedback for developers upon each commit of code.

Solution prerequisites

To follow along with this solution, make sure that you have the following prerequisites in place:

Make sure that you have a general working knowledge of the listed services and DevOps practices.

Solution overview

The following diagram illustrates the architecture of the solution.

Figure 1: Solution overview

Figure 1: Solution overview

We will show you how to set up a continuous integration and continuous delivery (CI/CD) pipeline by using AWS developer tools—CodeCommit, CodePipeline, CodeBuild, and CodeGuru—that you will integrate with the code repository to detect code security vulnerabilities. As shown in Figure 1, the solution has the following steps:

  1. The developer commits the new branch into the code repository.
  2. The developer creates a pull request to the main branch.
  3. Pull requests initiate two jobs: an Amazon CodeGuru Reviewer code scan and a CodeBuild job.
    1. CodeGuru Reviewer uses program analysis and machine learning to help detect potential defects in your Java and Python code, and provides recommendations to improve the code. CodeGuru Reviewer helps detect security vulnerabilities, secrets, resource leaks, concurrency issues, incorrect input validation, and deviation from best practices for using AWS APIs and SDKs.
    2. You can configure the CodeBuild deployment with third-party tools, such as Bandit for Python to help detect security issues in your Python code.
  4. CodeGuru Reviewer or CodeBuild writes back the findings of the code scans to the pull request to provide a single common place for developers to review the findings that are relevant to their specific code updates.

The following table presents some other tools that you can integrate into the early-feedback toolchain, depending on the type of code or artefacts that you are evaluating:

Early feedback – security tools Usage License
cfn-guard , cfn-nag , cfn-lint Infrastructure linting and validation cfn-guard license, cfn-nag license, cfn-lint license
CodeGuru, Bandit Python Bandit license
CodeGuru Java
npm-audit, Dependabot npm libraries Dependabot license

When you deploy the solution in your AWS account, you can review how Bandit for Python has been built into the deployment pipeline by using AWS CodeBuild with a configured buildspec file, as shown in Figure 2. You can implement the other tools in the table by using a similar approach.

Figure 2: Bandit configured in CodeBuild

Figure 2: Bandit configured in CodeBuild

Walkthrough

To deploy the solution, you will complete the following steps:

  1. Deploy the solution by using a CloudFormation template
  2. Associate CodeGuru with a code repository
  3. Create a pull request to the code repository
  4. Review the code scan results in the pull request and address the findings

Deploy the solution

The first step is to deploy the required resources into your AWS environment by using CloudFormation.

To deploy the solution

  1. Choose the following Launch Stack button to deploy the solution’s CloudFormation template:

    Select this image to open a link that starts building the CloudFormation stack

    The solution deploys in the AWS US East (N. Virginia) Region (us-east-1) by default because each service listed in the Prerequisites section is available in this Region. To deploy the solution in a different Region, use the Region selector in the console navigation bar and make sure that the services required for this walkthrough are supported in your newly selected Region. For service availability by Region, see AWS Services by Region.

  2. On the Quick Create Stack screen, do the following:
    1. Leave the provided parameter defaults in place.
    2. Scroll to the bottom, and in the Capabilities section, select I acknowledge that AWS CloudFormation might create IAM resources with custom names.
    3. Choose Create Stack.
  3. When the CloudFormation template has completed, open the AWS Cloud9 console.
  4. In the Environments table, for the provisioned shift-left-blog-cloud9-ide environment, choose Open, as shown in Figure 3.
    Figure 3: Cloud9 environments

    Figure 3: Cloud9 environments

  5. The provisioned Cloud9 environment opens in a new tab. Wait for Cloud9 to initialize the two sample code repositories: shift-left-sample-app-java and shift-left-sample-app-python, as shown in Figure 4. For this post, you will work only with the Python sample repository shift-left-sample-app-python, but the procedures we outline will also work for the Java repository.
    Figure 4: Cloud9 IDE

    Figure 4: Cloud9 IDE

Associate CodeGuru Reviewer with a code repository

The next step is to associate the Python code repository with CodeGuru Reviewer. After you associate the repository, CodeGuru Reviewer analyzes and comments on issues that it finds when you create a pull request.

To associate CodeGuru Reviewer with a repository

  1. Open the CodeGuru console, and in the left navigation pane, under Reviewer, choose Repositories.
  2. In the Repositories section, choose Associate repository and run analysis.
  3. In the Associate repository section, do the following:
    1. For Select source provider, select AWS CodeCommit.
    2. For Repository location,select shift-left-sample-app-python.
  4. In the Run a repository analysis section, do the following, as shown in Figure 5:
    1. For Source branch, select main.
    2. For Code review name – optional, enter a name.
    3. For Tagsoptional, leave the default settings.
    4. Choose Associate repository and run analysis.
      Figure 5: CodeGuru repository configuration

      Figure 5: CodeGuru repository configuration

  5. CodeGuru initiates the Full repository analysis and the status is Pending, as shown in Figure 6. The full analysis takes about 5 minutes to complete. Wait for the status to change from Pending to Completed.
    Figure 6: CodeGuru full analysis pending

    Figure 6: CodeGuru full analysis pending

Create a pull request

The next step is to create a new branch and to push sample code to the repository by creating a pull request so that the code scan can be initiated by CodeGuru Reviewer and the CodeBuild job.

To create a new branch

  1. In the Cloud9 IDE, locate the terminal and create a new branch by running the following commands.
    cd ~/environment/shift-left-sample-app-python
    git checkout -b python-test

  2. Confirm that you are working from the new branch, which will be highlighted in the Cloud9 IDE terminal, as shown in Figure 7.
    git branch -v

    Figure 7: Cloud9 IDE terminal

    Figure 7: Cloud9 IDE terminal

To create a new file and push it to the code repository

  1. Create a new file called sample.py.
    touch sample.py

  2. Copy the following sample code, paste it into the sample.py file, and save the changes, as shown in Figure 8.
    import requests
    
    data = requests.get("https://www.example.org/", verify = False)
    print(data.status_code)

    Figure 8: Cloud9 IDE noncompliant code

    Figure 8: Cloud9 IDE noncompliant code

  3. Commit the changes to the repository.
    git status
    git add -A
    git commit -m "shift left blog python sample app update"

    Note: if you receive a message to set your name and email address, you can ignore it because Git will automatically set these for you, and the Git commit will complete successfully.

  4. Push the changes to the code repository, as shown in Figure 9.
    git push origin python-test

    Figure 9: Git push

    Figure 9: Git push

To create a new pull request

  1. Open the CodeCommit console and select the code repository called shift-left-sample-app-python.
  2. From the Branches dropdown, select the new branch that you created and pushed, as shown in Figure 10.
    Figure 10: CodeCommit branch selection

    Figure 10: CodeCommit branch selection

  3. In your new branch, select the file sample.py, confirm that the file has the changes that you made, and then choose Create pull request, as shown in Figure 11.
    Figure 11: CodeCommit pull request

    Figure 11: CodeCommit pull request

    A notification appears stating that the new code updates can be merged.

  4. In the Source dropdown, choose the new branch python-test. In the Destination dropdown, choose the main branch where you intend to merge your code changes when the pull request is closed.
  5. To have CodeCommit run a comparison between the main branch and your new branch python-test, choose Compare. To see the differences between the two branches, choose the Changes tab at the bottom of the page. CodeCommit also assesses whether the two branches can be merged automatically when the pull request is closed.
  6. When you’re satisfied with the comparison results for the pull request, enter a Title and an optional Description, and then choose Create pull request. Your pull request appears in the list of pull requests for the CodeCommit repository, as shown in Figure 12.
    Figure 12: Pull request

    Figure 12: Pull request

The creation of this pull request has automatically started two separate code scans. The first is a CodeGuru incremental code review and the second uses CodeBuild, which utilizes Bandit to perform a security code scan of the Python code.

Review code scan results and resolve detected security vulnerabilities

The next step is to review the code scan results to identify security vulnerabilities and the recommendations on how to fix them.

To review the code scan results

  1. Open the CodeGuru console, and in the left navigation pane, under Reviewer, select Code reviews.
  2. On the Incremental code reviews tab, make sure that you see a new code review item created for the preceding pull request.
    Figure 13: CodeGuru Code review

    Figure 13: CodeGuru Code review

  3. After a few minutes, when CodeGuru completes the incremental analysis, choose the code review to review the CodeGuru recommendations on the pull request. Figure 14 shows the CodeGuru recommendations for our example.
    Figure 14: CodeGuru recommendations

    Figure 14: CodeGuru recommendations

  4. Open the CodeBuild console and select the CodeBuild job called shift-left-blog-pr-Python. In our example, this job should be in a Failed state.
  5. Open the CodeBuild run, and under the Build history tab, select the CodeBuild job, which is in Failed state. Under the Build Logs tab, scroll down until you see the following errors in the logs. Note that the severity of the finding is High, which is why the CodeBuild job failed. You can review the Bandit scanning options in the Bandit documentation.
    Test results:
    >> Issue: [B501:request_with_no_cert_validation] Call to requests with verify=False disabling SSL certificate checks, security issue.
       Severity: High   Confidence: High
       CWE: CWE-295 (https://cwe.mitre.org/data/definitions/295.html)
       More Info: https://bandit.readthedocs.io/en/1.7.5/plugins/b501_request_with_no_cert_validation.html
       Location: sample.py:3:7
    
    2   
    3   data = requests.get("https://www.example.org/", verify = False)
    4   print(data.status_code)

  6. Navigate to the CodeCommit console, and on the Activity tab of the pull request, review the CodeGuru recommendations. You can also review the results of the CodeBuild jobs that Bandit performed, as shown in Figure 15.
    Figure 15: CodeGuru recommendations and CodeBuild logs

    Figure 15: CodeGuru recommendations and CodeBuild logs

This demonstrates how developers can directly link the relevant information relating to security code scans with their code development and associated pull requests, hence shifting to the left the required security awareness for developers.

To resolve the detected security vulnerabilities

  1. In the Cloud9 IDE, navigate to the file sample.py in the Python sample repository, as shown in Figure 16.
    Figure 16: Cloud9 IDE sample.py

    Figure 16: Cloud9 IDE sample.py

  2. Copy the following code and paste it in the sample.py file, overwriting the existing code. Save the update.
    import requests
    
    data = requests.get("https://www.example.org", timeout=5)
    print(data.status_code)

  3. Commit the changes by running the following commands.
    git status
    git add -A
    git commit -m "shift left python sample.py resolve security errors"
    git push origin python-test

  4. Open the CodeCommit console and choose the Activity tab on the pull request that you created earlier. You will see a banner indicating that the pull request was updated. You will also see new comments indicating that new code scans using CodeGuru and CodeBuild were initiated for the new pull request update.
  5. In the CodeGuru console, on the Incremental code reviews page, check that a new code scan has begun. When the scans are finished, review the results in the CodeGuru console and the CodeBuild build logs, as described previously. The previously detected security vulnerability should now be resolved.
  6. In the CodeCommit console, on the Activity tab, under Activity history, review the comments to verify that each of the code scans has a status of Passing, as shown in Figure 17.
    Figure 17: CodeCommit activity history

    Figure 17: CodeCommit activity history

  7. Now that the security issue has been resolved, merge the pull request into the main branch of the code repository. Choose Merge, and under Merge strategy, select Fast Forward merge.

AWS account clean-up

Clean up the resources created by this solution to avoid incurring future charges.

To clean up your account

  1. Start by deleting the CloudFormation stacks for the Java and Python sample applications that you deployed. In the CloudFormation console, in the Stacks section, select one of these stacks and choose Delete; then select the other stack and choose Delete.
    Figure 18: Delete repository stack

    Figure 18: Delete repository stack

  2. To initiate deletion of the Cloud9 CloudFormation stack, select it and choose Delete.
  3. Open the Amazon S3 console, and in the search box, enter shift-left to search for the S3 bucket that CodePipeline used.
    Figure 19: Select CodePipeline S3 bucket

    Figure 19: Select CodePipeline S3 bucket

  4. Select the S3 bucket, select all of the object folders in the bucket, and choose Delete
    Figure 20: Select CodePipeline S3 objects

    Figure 20: Select CodePipeline S3 objects

  5. To confirm deletion of the objects, in the section Permanently delete objects?, enter permanently delete, and then choose Delete objects. A banner message that states Successfully deleted objects appears at the top confirming the object deletion.
  6. Navigate back to the CloudFormation console, select the stack named shift-left-blog, and choose Delete.

Conclusion

In this blog post, we showed you how to implement a solution that enables early feedback on code development through status comments in the CodeCommit pull request activity tab by using Amazon CodeGuru Reviewer and CodeBuild to perform automated code security scans on the creation of a code repository pull request.

We configured CodeBuild with Bandit for Python to demonstrate how you can integrate third-party or open-source tools into the development cycle. You can use this approach to integrate other tools into the workflow.

Shifting security left early in the development cycle can help you identify potential security issues earlier and empower teams to remediate issues earlier, helping to prevent the need to refactor code towards the end of a build.

This solution provides a simple method that you can use to view and understand potential security issues with your newly developed code and thus enhances your awareness of the security requirements within your organization.

It’s simple to get started. Sign up for an AWS account, deploy the provided CloudFormation template through the Launch Stack button, commit your code, and start scanning for vulnerabilities.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on AWS re:Post or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Barry Conway

Barry Conway

Barry is an Enterprise Solutions Architect with years of experience in the technology industry, bridging the gap between business and technology. Barry has helped banking, manufacturing, logistics, and retail organizations realize their business goals.

Author

Deenadayaalan Thirugnanasambandam

Deenadayaalan is a Senior Practice manager at AWS. He provides prescriptive architectural guidance and consulting to help accelerate customers’ adoption of AWS.

Balamurugan Kumaran

Balamurugan Kumaran

Balamurugan is a Senior Cloud Architect at AWS. Over the years, Bala has architected and implemented highly available, scalable, and secure applications using AWS services for various enterprise customers.

Nitin Kumar

Nitin Kumar

Nitin is a Senior Cloud Architect at AWS. He plays a pivotal role in driving organizational success by harnessing the power of technology. With a focus on enabling innovation through architectural guidance and consulting, he empowers customers to excel on the AWS Cloud. Outside of work, Nitin dedicates his time to crafting IoT devices for reef tanks.